THE nth ITERATE OF A FORMAL POWER SERIES WITH LINEAR TERM A PRIMITIVE nth ROOT OF UNITY

MARSHALL M. COHEN AND GALAMO F. MONKAM

(Communicated by Isabella Novik)

ABSTRACT. We give a very short proof of the Theorem: Suppose that $f(x) = a_1x + a_2x^2 + \cdots$ is a formal power series with coefficients in an integral domain, and a_1 is a primitive n^{th} root of unity $(n \in \mathbb{N})$. If the n^{th} iterate $f^{(n)}(x) \equiv f(f(\cdots f(f(x)) \cdots)$ satisfies $f^{(n)}(x) = x + b_m x^m + b_{m+1} x^{m+1} + \cdots$, with $b_m \neq 0$ and m > 1, then $m \equiv 1 \pmod{n}$.

The Theorem. Suppose that $n \ge 2$ is an integer and

(1) $f(x) = a_1 x + a_2 x^2 + \cdots$, with a_1 a primitive n^{th} root of unity,

is a formal power series, with coefficients in an integral domain, which has n^{th} iterate (n^{th} compositional power),

(2) $f^{(n)}(x) \equiv f(f(\cdots(f(x)))\cdots) = x + b_m x^m + b_{m+1} x^{m+1} + \cdots, b_m \neq 0, m > 1.$ Then $m \equiv 1 \pmod{n}$.

Thus, there exists $q \in \mathbb{N}$ such that $b_k = 0$ if 1 < k < qn + 1 and $b_{qn+1} \neq 0$.

We will give a very short proof of this theorem.

Recall that a_1 is a primitive n^{th} root of unity iff $a_1^n = 1$ and n is the smallest such positive integer.

The background. Iteration of formal power series is the combinatorial face of the iteration of complex analytic functions, the study of which goes back at least to the 1870's ([7], [3]). A series f with $a_0 = 0$ and $a_1 \neq 0$ has a compositional inverse, and will be called *invertible*. Formal series f satisfying (1) and (2) are the invertible series which have linear term $a_1 \neq 1$ of finite multiplicative order, but for which f is of infinite compositional order. We call these *hybrid series*. They have been the hardest (see below) to compute or characterize among invertible series.

Induction shows that $b_1 = a_1^n$ and b_k is a polynomial in a_1, a_2, \ldots, a_k . In general, if $j \ge 2$ and $f^{(j-1)}(x) = \sum_{q=1}^{\infty} c_q x^q$ then $f^{(j)}(x) = f^{(j-1)}(f(x)) = \sum_{q=1}^{\infty} c_q (f(x))^q$. Each coefficient of x^k in $(f(x))^q (q \le k)$ is a multinomial polynomial, the sum of a large sum of terms involving multinomial coefficients $\binom{k}{r_1, r_2, \cdots, r_q} a_1^{r_1} \cdots a_q^{r_q}$ (see [10], p.17). The final formula for the coefficient b_k in $f^{(n)}$ builds up inductively.

For $a_1 = 1$, Schröder [7] (1871) gave an explicit formula for each $b_k - i.e.$, gave A Multinomial Theorem for Formal Power Series Under Composition. But he explicitly passed on the case $0 \neq a_1 \neq 1$. Instead he introduced the problem of

Received by the editors October 7, 2022, and, in revised form, October 17, 2022, November 1, 2022, and November 16, 2022.

²⁰²⁰ Mathematics Subject Classification. Primary 13F25, 30D05.

 $[\]textcircled{C2023}$ by the author(s) under Creative Commons Attribution 3.0 License (CC BY 3.0)

conjugating, when possible, f(x) to the linear function $\ell(x) = a_1 x$, in order to get information about $f^{(n)}(x)$ without using an explicit formula. Later mathematicians – most notably Scheinberg [6] (1970) – generalized this problem to finding normal forms under conjugation for formal power series. It turns out [6, Propostion 8] that an invertible series f(x) is conjugate to $\ell(x) = a_1 x$ – written $f(x) \sim \ell(x)$ – if and only if f(x) is not a hybrid series.¹ When f is a hybrid series then Scheinberg's conjugacy classification [6, Table 1] yields $f^{(n)}(x) \sim z + z^m + cz^{2m-1}$ where $m \equiv 1 \mod n$. But the equality proved in the Theorem of this paper was not proved until the 1990s,

We note that there has been much effort to find the coefficients b_k in (2) above. Using the Riordan matrix $(R_f)_{k\geq 0, q\geq 0} = (1, f)$ [8] (this is an infinite lower triangular matrix of multinomial polynomials), one sees that b_k is the (k, 1) element of the matrix $(R_f)^n$. Closely related, one can identify $(k!)b_k$ as the ((k, 1)) element of the the matrix $(B(f))^n$, where B(f) is the matrix of Bell polynomials of f ([2], p.145). Only in 2020 did Monkam [4] generalize Schröder's result to an explicit closed formula for every coefficient of $f^{(n)}(x)$ when $a_1 \neq 0$. This gave much information about the form of the polynomial $b_k = b_k(a_1, \ldots, a_k)$. But after all is said and done, it is very hard to look at these explicit formulas and decide when, indeed, a particular $b_k = 0$, or that one has a consecutive string of zero coefficients.

Reich [5] (1992) gave a proof of the Theorem of this paper using the theory of normal forms under conjugation. Bogatyi [1] (1998) gave a proof of this Theorem involving the theory of the index of an isolated fixed point of a holomorphic map. He also sketched a proof using Scheinberg's normal forms. We give a proof which uses only the definition and associativity of composition of formal power series.

The proof.

Proof. We use a clever trick from line 11 of the proof of Theorem 9 of [6]: Equate the coefficients of x^m in $(f^{(n)} \circ f)(x)$ and in $(f \circ f^{(n)})(x)$.

(a)
$$(f^{(n)} \circ f)(x)$$

$$= f(x) + b_m \cdot (f(x))^m + b_{m+1} \cdot (f(x))^{m+1} + \cdots$$

$$= (a_1 x + \cdots + \underline{a_m x^m} + \cdots) + \underline{b_m (a_1^m x^m} + \cdots) + \text{(higher powers)}$$

(b)
$$(f \circ f^{(n)})(x)$$

$$= a_1 \cdot f^{(n)}(x) + a_2(f^{(n)}(x))^2 + \cdots + a_m(f^{(n)}(x))^m + \cdots$$

$$= a_1 \cdot (x + b_m x^m + b_{m+1} x^{m+1} + \cdots) + \cdots + a_m (x + b_m x^m + \cdots)^m + \cdots$$

$$= \underline{a_1} \cdot (x + \underline{b_m} x^m + b_{m+1} x^{m+1} + \cdots) + \cdots + \underline{a_m} (x^m + \cdots) + \text{ higher powers}$$

(c) Thus, equating coefficients of x^m , we have (since $b_m \neq 0$ and our coefficients lie in an integral domain):

$$a_m + b_m a_1^m = a_1 b_m + a_m \implies b_m a_1^m = a_1 b_m \implies a_1^{m-1} = 1.$$

¹Scheinberg also showed [6, Theorem 11], building on Sternberg [11, Section 2], that an invertible series belongs to a one-parameter subgroup of the group of all invertible series if and only if it is not hybrid. Further, Siegel [9] notes that an analytic function f(z) with a_1 a root of unity is stable at 0 iff it is not given by a hybrid series.

Since the order of a_1 equals n, we see that n divides m-1. Thus, $m \equiv 1 \pmod{n}$.

References

- Semeon Bogatyi, A topological view on a problem on formal series, Aequationes Math. 56 (1998), no. 1-2, 18–26, DOI 10.1007/s000100050040. MR1628287
- [2] Louis Comtet, Advanced combinatorics, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. The art of finite and infinite expansions. MR0460128
- [3] Detlef Gronau, Gottlob Frege, a pioneer in iteration theory, Iteration theory (ECIT 94) (Opava), Grazer Math. Ber., vol. 334, Karl-Franzens-Univ. Graz, Graz, 1997, pp. 105–119. MR1644773
- Galamo F. Monkam, A Multinomial Theorem for Formal Power Series under Composition, ProQuest LLC, Ann Arbor, MI, 2020. Thesis (Ph.D.)-Morgan State University. MR4225090
- [5] L. Reich, On power series transformations in one indeterminate having iterative roots of given order and with given multiplier, In: J. P. Lampreia et al., European Conf. Iteration Theory (ECIT 91, Lisbon 1991). World Sci. Publishing, River Edge, New York, 1992, pp. 210–216.
- [6] Stephen Scheinberg, Power series in one variable, J. Math. Anal. Appl. 31 (1970), 321–333, DOI 10.1016/0022-247X(70)90028-4. MR268364
- [7] Ernst Schröder, Ueber iterirte Functionen (German), Math. Ann. 3 (1870), no. 2, 296–322, DOI 10.1007/BF01443992. MR1509704
- [8] Louis W. Shapiro, Seyoum Getu, Wen Jin Woan, and Leon C. Woodson, *The Riordan group*, Discrete Appl. Math. **34** (1991), no. 1-3, 229–239, DOI 10.1016/0166-218X(91)90088-E. Combinatorics and theoretical computer science (Washington, DC, 1989). MR1137996
- [9] Carl Ludwig Siegel, Iteration of analytic functions, Ann. of Math. (2) 43 (1942), 607–612, DOI 10.2307/1968952. MR7044
- [10] Richard P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota; Corrected reprint of the 1986 original, DOI 10.1017/CBO9780511805967. MR1442260
- Shlomo Sternberg, Infinite Lie groups and the formal aspects of dynamical systems, J. Math. Mech. 10 (1961), 451–474. MR0133400

Department of Mathematics, Morgan State University, 1700 E Cold Spring Lane, Baltimore, Maryland 21251

Email address: mmc25@cornell.edu

DEPARTMENT OF COMPUTER SCIENCE, BOWIE STATE UNIVERSITY 14000 JERICHO PARK RD, BOWIE, MARYLAND 20715

Email address: galamo.monkam@gmail.com