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A 4-FOLD CATEGORICAL EQUIVALENCE
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Abstract. In this note, we will illuminate some immediate consequences of
work done by Reineke in [Algebr. Represent. Theory 16 (2013), no. 5. 1313–
1314] that may prove to be useful in the study of elliptic curves. In particular,
we will construct an isomorphism between the category of smooth projective
curves with a category of quiver Grassmannians. We will use this to provide
a 4-fold categorical equivalence between a category of quiver Grassmannians,
smooth projective curves, compact Riemann surfaces, and fields of transcen-
dence degree 1 over C. We finish with noting that the category of elliptic
curves is isomorphic to a category of quiver Grassmannians, whence providing
an analytic group structure to a class of quiver Grassmannians.

1. Introduction

It is well known that there is a three-fold equivalence between the categories of
compact Riemann surfaces, fields of transcendence degree 1 over C, and smooth
projective curves [2] and [10]. A more recent development is the notion of quiver
Grassmannians, first introduced by Schofield in [9]. Since their introduction, they
have become a popular topic of research. It has been known that quiver Grassman-
nians are projective varieties, but just how much projective geometry is captured
by quiver Grassmannians was unclear until the early 2010s. A famous result of Hille
[3], Huisgen-Zimmermann [4], and Reineke [5], is that all projective varieties can
be realized as quiver Grassmannians for some wild acyclic quiver Q. Actually, even
more is true. Expanding on his work in [6] in which he proved the result for a gen-
eralized Kronecker quiver, Ringel showed in [8] the incredible result that given any
wild quiver Q, we can realize all projective varieties as the quiver Grassmannian of
a suitable Q-representation. It may be interesting to ask, is there is a “best” quiver
with which to study projective varieties, and if not, which quivers are “better” in
which circumstances? Another natural question to ask is, can we restrict the quiver
Q and still get a similar result? Ringel showed in [7] that the answer to this ques-
tion is partially yes. Namely, Ringel showed that for a (controlled) wild algebra,
any projective variety can be realized as an Auslander variety, but not necessarily
as a quiver Grassmannian.

In this note, we will use the construction given by Reineke in [5] to define a
functor from the category of smooth projective curves to a subcategory of quiver
Grassmannians. We will show that this functor is an isomorphism of categories,
which will ultimately yield a four-fold categorical equivalence. We finish this note
with some immediate consequences regarding elliptic curves.
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2. Preliminaries

To establish the equivalence, we will first recall some definitions.

2.1. Projective Varieties. Following [10], let k denote a perfect field. We begin

by recalling that projective n-space over a field k is defined as Pn
k
= Pn = k

n+1

∼ ,

where (z0, . . . , zn) ∼ (z′0, . . . , z
′
n) if and only if there exists λ ∈ k

∗
such that

(λz0, . . . , λzn) = (z′0, . . . , z
′
n) and k denotes the algebraic closure of k. Denote

by [z0, . . . , zn] the class of (z0, . . . , zn) under the aforementioned quotient map.
Let R = k[x0, . . . , xn] be the polynomial ring in n+ 1 variables over k. A polyno-

mial P ∈ R is homogeneous of degree d if P (λx) = λdP (x) for all λ ∈ k
∗
. An

ideal I ⊂ R is homogeneous if I is generated by homogeneous polynomials. A
projective algebraic set is some subset of Pn of the form V (I) = {[x0, . . . , xn] ∈
Pn : P (x) = 0 for all homogeneous P ∈ I ⊂ R}, where I is a homogeneous ideal.
A projective algebraic variety is V (I) for I a prime homogeneous ideal of R.

We define the field of rational functions of PN by k(PN ) = { f
g }, where

f, g ∈ R, g �= 0 and both f and g are homogeneous of the same degree. The field

of rational functions of a projective variety V ⊂ P
N is defined as k(V ) = k(PN )

∼ ,

where f1
g1

∼ f2
g2

if and only if f1g2 − f2g1 ∈ I(V ), where I(V ) = {homogeneous P ∈
R : P (x) = 0 for all x ∈ k

n+1}. We define a rational map between a projective
variety V ⊂ PN and PM as the data of M + 1 elements of k(V ). A rational map
V → V ′ ⊂ PM is a rational map V → PM such that [f0, . . . , fM ](x) ∈ V ′ for all
x ∈ V for which [f0, . . . , fM ](x) is defined. A rational map between varieties is
called a morphism if it is defined everywhere.

The dimension of a projective variety is the transcendence degree of k(V ) over
k. Projective varieties V ⊂ P

2 of dimension one are called projective curves.
A projective variety is called nonsingular, or smooth, if the dimension of its
tangent space equals its dimension at every point. For more on projective algebraic
geometry, see [10] and [2]. The following 3-fold categorical equivalence is well
known.

Theorem 2.1. The following three categories are equivalent:

(1) Compact connected Riemann Surfaces with holomorphic maps.
(2) Field extensions of transcendence degree one over C with field morphisms.
(3) Smooth projective curves in P2

C
with morphisms of varieties. �

2.2. Quiver Grassmannians. A quiver Q is a directed graph. More formally,
it is a 4-tuple Q = (Q0, Q1, s, t), where Q0 is the set of vertices, Q1 is the
set of arrows, and s and t are maps that assign to each vertex a starting and
terminal point respectively. For a field k that is usually taken to be algebraically
closed but need not be, a representation V of a quiver Q is an assignment of
a k-vector space Vi for each i ∈ Q0 and a vector space morphism φα : Vi → Vj

for each α ∈ Q1 such that s(α) = i and t(α) = j. A subrepresentation M =
(Mi, ψα) of a representation V = (Vi, φα) is a representation of Q such thatMi ⊂ Vi

is a subvector space for all vertices i, ψα is the restriction of φα to Ms(α), and
ψα(Mi) ⊂ Mj for all arrows α : i → j ∈ Q1. In other words, a subrepresentation
is a collection of subspaces that are compatible with the morphisms defining the
parent representation. The dimension vector of a representation is dimV =
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Figure 1. The quiver key to Theorem 2.2

(dimV1, . . . ,dimV|Q0|). We call a representation V finite dimensional if Vi is a
finite-dimensional vector space for all i ∈ Q0.

Given a quiver Q and a representation V of Q, the quiver Grassmannian
GrQe (V ) is the set of subrepresentations of V with dimension vector e. The subrep-

resentation M in Figure 1 is an element of GrQ(0,1,1)(V ). It is well known that quiver

Grassmannians are projective varieties. For more on quiver Grassmannians, see [1].
We also have the following result of Hille, Huisgen-Zimmermann, and Reineke. The
wording below is consistent with Reineke’s in [5]:

Theorem 2.2. Every projective variety is isomorphic to a quiver Grassmannian
GrQe (V ) for an acyclic quiver Q with at most three vertices, a Schurian representa-
tion V, and a thin dimension vector e; that is, ei ≤ 1 for all i ∈ Q0. �

3. The 4-fold equivalence

Theorem 2.2 relies on the d-uple Veronese embedding. We will use essentially
the same idea to create a category of quiver Grassmannians equivalent to the third
category listed in Theorem 2.1.

Let X ⊂ P2
k
be a smooth projective curve. Thus X is defined as the vanishing

locus of a homogeneous polynomial P of degree d in three variables. Let νd : P2
k
→

P
(d+2

2 )−1

k
denote the d-uple Veronese embedding, which is an isomorphism onto its

image since k is a field of characteristic 0. Then by Reineke’s result, Theorem 2.2,
νd(X) = Gr(0,1,1)(V ) for V a representation of the quiver Q in Figure 1 of dimension

(1,M,M ′), where M =
(
d+2
2

)
and M ′ =

(
d+1
2

)
. On the top right of Figure 1 is an

example of ν3(X), where X is a projective curve defined by the vanishing locus of
a degree d = 3 polynomial in three variables.

The condition of being in the image of the d-uple Veronese embedding is encoded
into anM ′×3 matrix Ad(x), whose 2×2 subminors vanish. In particular, letM2,d be
the set of tuples m = (m0,m1,m2) ∈ N3 summing to d, so that M is the cardinality
of M2,d, and νd maps homogeneous coordinates [x0, x1, x2] to [. . . , xm, . . . ]m∈M2,d

,
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where xm = xm0
0 xm1

1 xm2
2 . We define the matrix Ad(x) with rows indexed by the

n ∈ M2,d−1 and columns indexed by the i = 0, 1, 2 with the (2, i)-th entry being
xn+ei . Then x ∈ νd(X) if and only if P (x) = 0 and Ad(x) has rank 1. We thus
define V as in Figure 1 with f = νd(P ) and ϕi the ith column of Ad(x). Then
νd(X) = Gr(0,1,1)(V ). For more on this construction, see [5].

Fix the quiver Q to be the one in Figure 1 and let d ∈ Z≥0. Let V f
d be a

k-representation of Q such that dim(V ) = (1,M,M ′), ϕi is the ith column of
Ad(x), and the preimage of the linear map f , denoted by ν−1

d (f), is irreducible as

a homogeneous polynomial in k[x0, x1, x2].

Definition 3.1. Define GR(0,1,1)(V ) to be the category whose objects are

Gr(0,1,1)(V
f
d ) for all d ∈ Z≥0 and any f such that ν−1

d (f) is irreducible, and whose
morphisms are those of projective varieties. Let GRsm

(0,1,1)(V ) be the full subcate-

gory of GR(0,1,1)(V ) who’s objects are smooth.

Theorem 3.2. The category of nonsingular projective curves in P2
k
with morphisms

of varieties, (NPC) for short, is isomorphic to GRsm
(0,1,1)(V ).

Proof. We begin by constructing a functor ν : (NPC) → GRsm
(0,1,1)(V ). For X

a nonsingular projective curve cut out by a homogeneous polynomial of degree
d, define ν(X) := νd(X). Then ν(X) is nonsingular since X is and ν(X) ∼= X.

Moreover, ν(X) = Gr(0,1,1)(V
f
d ) for f the homogeneous polynomial of degree d

that cuts out X by Reineke’s result, Theorem 2.2. Thus ν(X) ∈ GRsm
(0,1,1)(Vd)

and ν is well defined on objects. Given a morphism ψ : X → Y between two
nonsingular projective curves cut out by homogeneous polynomials of degree d and
d′ respectively, define ν(ψ) : ν(X) → ν(Y ) by νd′◦ψ◦ν−1

d . Since ν(ψ) is a morphism
of varieties and ν preserves the identity and composition, ν defines a functor.

It is well known that the d-uple Veronese embedding is an isomorphism onto its
image. Notice by construction, for any d, the image of νd restricted to projective
curves cut out by a homogeneous polynomial of degree d is equal to the collection

of Gr(0,1,1)(V
f
d ). This allows us to define ν−1 : GRsm

(0,1,1)(V ) → (NPC) analogously
to ν, and these two functors are inverse. �

By taking k = C, an immediate consequence of Theorems 2.2 and 3.2 is the
following 4-fold categorical equivalence.

Corollary 3.3. The following four categories are equivalent:

(1) Compact connected Riemann Surfaces with holomorphic maps.
(2) Field extensions of transcendence degree one over C with field morphisms.
(3) Smooth projective curves in P2

C
with morphisms of varieties.

(4) GRsm
(0,1,1)(V ), where V is a C-representation of Q. �

Recall that, by definition, elliptic curves are nonsingular curves of genus one;
however, every such curve can be written as the locus in P2

k
of a cubic equation with

the base point on the line at ∞ [10]. The next corollary follows from the fact that
elliptic curves are the vanishing locus of an irreducible homogeneous polynomial of
degree 3 and the fact that the functor ν restricts to an isomorphism, namely ν3.

Corollary 3.4. The category of elliptic curves in P2
k
with morphisms of varieties

is equivalent to GRsm
(0,1,1)(V3), the full subcategory of GRsm

(0,1,1)(V ) whose objects are

Grsm(0,1,1)(V
f
3 ) for f such that ν−1

3 (f) is irreducible. �
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Remark 3.5. Since in Corollary 3.4 we do not take k = C, this equivalence along
with the linear-algebraic nature of representations of quivers may prove to be useful
in the study of rational points of elliptic curves. Moreover, one may be able to use
the moduli space of quiver Grassmannians to study that of elliptic curves and vice
versa.

Corollary 3.4 also provides us with a way to remove the artificial imposition

of smoothness in Definition 3.1. In determining smoothness of Gr(0,1,1)(V
f
d ), it

suffices to check the Jacobian criterion on the equations that cut out the quiver
Grassmannian; however, after embedding into a higher-dimensional projective space
there can be several of these equations and checking this criterion can quickly
become computationally expensive. We do however have the following proposition.

Proposition 3.6. Suppose the characteristic of k is not 2 or 3, and consider a

quiver Grassmannian GR(0,1,1)(V
f
3 ). Then GR(0,1,1)(V

f
3 ) is smooth if and only if it

is isomorphic to GR(0,1,1)(V
ξ
3 ), where ξ = x7 − x0 − ax5 − bx9 and 4a3 + 27b2 �= 0.

Proof. By definition, a curve in P2
k
cut out by a degree 3 homogeneous polynomial

is smooth if and only if it is an elliptic curve. In the case of elliptic curves however,
it is known that each curve can be written in reduced Weierstrass form as y2 =
x3 + ax + b, when the field is not characteristic 2 or 3 [10]. Upon realizing this
in homogeneous coordinates, we get the equation y2z − x3 − axz2 − bz3 = 0. To
attain the corresponding quiver Grassmannian, we analyze the 3-uple Veronese
embedding:

ν3(x, y, z) = (x3, x2y, x2z, xy2, xyz, xz2, y3, y2z, yz2, z3).

Relabeling the P9
k
coordinates as (x0, x1, . . . , x9), any elliptic curve is the solution set

to x7−x0−ax5−bx9 = 0. Letting ξ = x7−x0−ax5−bx9, the corresponding quiver

Grassmannian is Gr(0,1,1)(V
ξ
3 ). Now by Corollary 3.4, we have that Gr(0,1,1)(V

ξ
3 )

is an object of GRsm
(0,1,1)(V3) if and only if ξ is smooth, which occurs if and only if

4a3 + 27b2 �= 0 [10]. �

Using Corollary 3.4 we can also see that the objects of GRsm
(0,1,1)(V

f
3 ) can be

endowed with a commutative group structure inherited from that of elliptic curves.
In the case k = C, we can use Corollary 3.3 to further state that these quiver Grass-
mannians are also isomorphic to connected compact Riemann surfaces of genus 1,
hence complex tori.

Corollary 3.7. Let X be a connected compact Riemann surface. Then the following
are equivalent:

(1) X has genus 1.
(2) X has a structure of an analytic group.
(3) X has a commutative analytic group structure.
(4) X ∼= C

Zl+Zw

(5) X ∼= CF , where CF is an elliptic curve.

(6) X ∼= Grsm(0,1,1)(V
f
3 ) for some f. �
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