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Abstract. In formulating a non-orientable analogue of the Milnor Conjecture
on the 4-genus of torus knots, Batson [Math. Res. Lett. 21 (2014), pp. 423–
436] developed an elegant construction that produces a smooth non-orientable
spanning surface in B4 for a given torus knot in S3. While Lobb [Math.
Res. Lett. 26 (2019), pp. 1789] showed that Batson’s surfaces do not always
minimize the non-orientable 4-genus, we prove that they do minimize among

surfaces that share their normal Euler number. We also determine the possible
pairs of normal Euler number and first Betti number for non-orientable surfaces
whose boundary lies in a class of torus knots for which Batson’s surfaces are
non-orientable 4-genus minimizers.

1. Introduction

The orientable 4-genus of a knot in S3 and its significant role in low-dimensional
topology have been extensively studied, but comparatively little is known about its
non-orientable counterpart. For example, an important milestone in the study of
the smooth orientable 4-genus was Kronheimer and Mrowka’s solution of the Milnor
Conjecture, which showed that the 3- and 4-genera of torus knots coincide [11,12];
see also [18]. On the other hand, the non-orientable 4-genus of torus knots is still
not known in general, though the goal of this paper is to increase our understanding.

To specify the problem more precisely, say that, for a knot K ⊂ S3, a properly
embedded smooth (non-orientable) surface F ⊂ B4 with ∂F = K is a (non-
orientable) filling of K. The non-orientable genus of K is

γ4(K) = min{b1(F ) : F is a non-orientable filling of K}.
Lower bounds on the non-orientable 4-genus have proven to be more subtle to
construct than those on the orientable 4-genus. In this paper, we will rely on
lower bounds derived from the signature [8] and on the υ invariant from knot Floer
homology [17]; see Section 3 for details. See [6,16,19,20] for other efforts based on
classical tools and [1–7] for more recent developments based on the Heegaard Floer
package, gauge theory, or Khovanov homology.

To approach the question of the non-orientable 4-genus of torus knots, Batson
[3] proposed a construction of minimal-genus fillings using pinch moves, which,
briefly, consist of attaching a non-orientable band between two adjacent strands
of a torus knot lying on a standard torus. The result of a pinch move is another
torus knot, which, as we shall detail in Section 2.1, is strictly simpler. Thus,
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repeatedly pinching a torus knot T (p, q) yields an unknot, and attaching the non-
orientable bands to a disk bounded by the unknot yields a pinch surface F (p, q).
Batson conjectured that pinch surfaces realize γ4(T (p, q)). Jabuka and Van Cott
[10, Corollary 1.12] showed that Batson’s conjecture holds for the infinite family of
torus knots for which the υ bound is sharp (cf. Corollary 3.5). We shall term such
knots JVC knots; see Definition 3.7 for the precise characterization. Even so, Lobb
[13] showed that, for T (4, 9), the pinch surface does not realize the non-orientable
4-genus; see [4, 14] for further counterexamples.

To explore Batson’s conjecture and pinch surfaces more deeply, recall that, in
contrast to the orientable case, a non-orientable filling F has an interesting addi-
tional invariant: the Euler class of its normal bundle, termed the normal Euler
number e(F ). The normal Euler number may be used to refine the non-orientable
4-genus by defining, for any e ∈ 2Z,

γe
4(K) = min{b1(F ) : F is a non-orientable filling of K with e(F ) = e}.

The main result of this paper shows that pinch surfaces do, indeed, minimize genus
among fillings that share their normal Euler number.

Theorem 1.1 (Refined Batson Conjecture). The pinch surface F (p, q) realizes
the minimal first Betti number among all non-orientable fillings F of T (p, q) with
e(F ) = e(F (p, q)), i.e. γe

4(T (p, q)) = b1(F (p, q)).

To give the theorem above more context, we turn to Allen’s work on the “geogra-
phy” of non-orientable fillings [1]. For a given knot K ⊂ S3, Allen asked for the set
R(K) of pairs (e, b) ∈ Z

2 realized by the normal Euler number and non-orientable
genus, repectively, of a filling F of K. To state the second main theorem of the
paper, we introduce the wedge W(E,B) ⊂ Z

2, which is defined by

W(E,B) =
{
(e, b) ∈ 2Z× Z :

1

2
|e− E| ≤ b−B,

e ≡ 2b mod 4
}
.

For a non-orientable filling F , we use the shorthand WF = W(e(F ),b1(F )).

Theorem 1.2. For any JVC knot T (p, q), the realizable set R(T (p, q)) coincides
with WF (p,q).

The theorem is illustrated in Figure 1. As a corollary, JVC knots satisfy Allen’s
conjecture that torus knots realize their non-orientable 4-genus at a unique normal
Euler number [1, Conjecture 1.6].

The remainder of the paper is organized as follows. In Section 2, we recall the
construction of pinch surfaces and compute their normal Euler numbers. We review
several lower bounds on the non-orientable genus and define the class of JVC torus
knots in Section 3. Finally, in Sections 4 and 5, we prove Theorems 1.1 and 1.2,
respectively.

2. Pinch surfaces

2.1. Construction of pinch surfaces. As described in the introduction, a pinch
surface F (p, q) for a torus knot T (p, q) is, roughly speaking, the result of attaching
a specific sequence of non-orientable bands to T (p, q) to produce an unknot, and
then capping the unknot off with a disk. We will make this construction more
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e
(e(F ), b1(F ))

Figure 1. The set of realizable pairs (e(F ), b1(F )) for fillings F
of a JVC knot T (p, q) lie in the shaded wedge WF (p,q). The T (3, 4)
knot is illustrated here.

precise using ideas from [3] and [10], adapting notation to better dovetail with later
arguments.

We start by defining a non-orientable band cobordism. An embedding h of the
square S = [0, 1]2 into S3 is an non-orientable band for a knot K if K ∩ h(S) =
h([0, 1] × {0, 1}), the orientation of K agrees with that of h([0, 1] × {0}), and the
orientation of K disagrees with that of h([0, 1] × {1}) (or vice versa). A non-
orientable band move on K along h is the result of the surgery that replaces
the arcs K ∩ h(S) with the image of {0, 1} × [0, 1]; we denote the result by K#h.
A non-orientable band cobordism for K is a properly embedded surface in
S3× [0, 1] with boundary given by K ⊂ S3×{1} and K#h ⊂ S3×{0} constructed
by attaching a 1-handle to K × {1} along K ∩ h with framing specified by h. The
direction of the cobordism has been chosen so that successive non-orientable band
moves produce a surface in B4.

Next, we specialize to torus knots T (p, q), which we understand to lie on a
standard torus T in S3. For the rest of the paper, we make the following assumption
about the indices p and q:

Assumption. Assume that p and q are positive and relatively prime, and that q
is odd with p > q if p is also odd, reversing the roles of p and q if necessary if this
were not the case.

We visualize T (p, q) as a collection of parallel lines with slope p/q on a unit
square with opposite sides identified. Up to isotopy, there is a unique choice of
non-orientable band h ⊂ T for T (p, q). We call a non-orientable band move on
T (p, q) along h a pinch move; see Figure 2. Note that T (p, q)#h also lies on T,
and hence is, itself, a torus knot T (r, s). We use the term pinch cobordism for the
cobordism between T (r, s)× {0} and T (p, q)× {1} resulting from a concatenation
of the trace of a “straightening” isotopy from T (r, s) to T (p, q)#h and the non-
orientable band cobordism coming from the pinch move.

Lemma 2.1 (Lemma 2.1 of [10]). The result of applying a pinch move to T (p, q) is
the torus knot T (p− 2t, q− 2u), where t and u are the integers uniquely determined
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=

Figure 2. A non-orientable band move applied to T (p, q) yields T (r, s).

by the requirements that

t ≡ −q−1 mod p and 0 ≤ t ≤ p− 1,

u ≡ p−1 mod q and 0 ≤ u ≤ q − 1.

The sign of a pinch move is ε = Sign(q − 2u); by [10, Lemma 2.3], the signs of
p − 2t and q − 2u agree when both quantities are nonzero. If the sign of a pinch
move is negative, then replace T (r, s) by T (−r,−s) to maintain the assumption on

the positivity of the indices. Denote a pinch move with sign ε by T (p, q)
ε−→ T (r, s).

Lemma 2.1 implies that 0 ≤ |r| < p and 0 ≤ |s| < q. Hence, T (p, q) must reduce to
the unknot U after some n pinch moves, which we keep track of using the following
notation:

(2.1) T (p, q) = T (pn, qn)
εn−→ T (pn−1, qn−1)

εn−1−−−→ · · · ε1−→ T (p0, q0) = U.

By [10, Theorem 2.7], we have q0 = 1.
Finally, the pinch surface F (p, q) ⊂ B4 of T (p, q) is the non-orientable filling

of T (p, q) constructed from concatenating the minimal number of pinch cobordisms
necessary to transform T (p, q) into an unknot T (p0, 1), and then gluing a disk to
the unknot T (p0, 1).

2.2. Normal Euler numbers of pinch surfaces. A key ingredient in under-
standing the refined Batson Conjecture is a computation of the normal Euler num-
ber of a pinch surface. We begin by recalling a definition of the normal Euler
number of a closed surface in a 4-manifold, then proceed to adjust it to a properly
embedded surface. See [8] as well as [3,17] for further discussion. The actual com-
putation of the normal Euler number of a pinch surface, which will be accomplished
in Lemma 2.3, will use Lemma 2.2 rather than the details of the definition.

As a first step, let F be a smooth closed surface in an oriented 4-manifold M ;
the manifold M will be either B4 or S3× [0, 1] in this paper. To concretely compute
the Euler number of the normal bundle to F , let F ′ be a small transverse pushoff
of F , i.e. a section of the normal bundle. At each point x ∈ F ∩F ′, find compatible
orientations of TxF and TxF

′, and use those orientations and an ambient orientation
of M to assign a sign to each such x. The normal Euler number e(F ) is defined
to be the sum of the signs of the intersection points x ∈ F ∩ F ′.

We next extend this definition to a filling F ⊂ B4 of a knot K ⊂ S3. In
fact, it will prove useful to go further and define the normal Euler number for
a non-orientable cobordism F in S3 × [0, 1] between knots K0 ⊂ S3 × {0} and
K1 ⊂ S3 × {1}; a filling of K may be regarded as a cobordism from K0 = ∅ to
K1 = K. To define the normal Euler number in this setting, we cap off F by
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Seifert surfaces of the Ki in S3 ×{i} to form the closed surface F̂ , and we take the
normal Euler number e(F ) to be the normal Euler number of the closed surface

F̂ . This definition is equivalent to constructing a transverse pushoff F ′ of F so that
the push-offs K ′

i at the ends realize the Seifert framings of Ki, and then summing
signed intersections of F and F ′.

Some facts about the normal Euler number e(F ) to keep in mind are that it
vanishes for orientable surfaces, that it is always even, that it satisfies

(2.2) e(F ) ≡ 2b1(F ) mod 4

(see [15]), and that it is additive under concatenation of cobordisms. This last fact,
combined with the computation of the normal Euler number of a band cobordism
in the lemma below, may be used to compute the normal Euler number of a surface
constructed via a sequence of band moves.

Lemma 2.2 (Lemma 4.2 of [17]). Suppose h is a non-orientable band for a knot K.
Choose a section s of the normal bundle of h and framings λ of K and λh of K#h
that agree with s along K ∩ h(S). The normal Euler number of the non-orientable
band cobordism F is then computed by

e(F ) = lk(K#h, λh)− lk(K,λ).

Lemma 2.3, which computes the normal Euler number of a pinch surface, is the
main technical contribution in this paper.

Lemma 2.3. If T (p, q) is transformed to T (p0, 1) in the construction of the pinch
surface F (p, q), then

e(F (p, q)) = p0 − pq.

Proof. Suppose that the pinch surface from T (p, q) to T (p0, 1) is constructed from
n pinches as in Equation (2.1). We claim that the normal Euler number of the non-
orientable band cobordism Fk for T (pk, qk) → T (pk−1, qk−1) is pk−1qk−1 − pkqk.
The lemma then follows from the claim, the additivity of the normal Euler number,
and the fact that the normal Euler number of the final capping disk vanishes.

To prove the claim, we use Lemma 2.2 with K = T (pk, qk) and K#h =
T (pk−1, qk−1). Let the section s and the framings λ and λh all come from a normal
vector field to T; this choice clearly satisfies the hypothesis of the lemma. Isotope
the knot λ to another copy of T (pk, qk) on T by rotating by π

2 in the direction nor-
mal to K. Thus, we see that lk(K,λ) is the same as the linking number between
the two components of the torus link T (2pk, 2qk). It is straightforward to check
that this linking number is pkqk. A similar computation for K#h and λh holds,
and hence Lemma 2.2 implies that

e(Fk) = lk(K#h, λh)− lk(K,λ) = pk−1qk−1 − pkqk,

as required. �

3. Lower bounds on the non-orientable genus

Of particular importance for this paper are two lower bounds that involve both
the non-orientable 4-genus and the normal Euler number. The first bound relies on
the signature.
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Theorem 3.1 ([8]). For any filling F of a knot K, we have |σ(K)− e(F )/2| ≤
b1(F ). In particular, we have

∣
∣
∣σ(K)− e

2

∣
∣
∣ ≤ γe

4(K).

See [1, §2.3] or [20, Theorem 1.1] for further discussion of this theorem.
The second bound uses the υ invariant, which is derived from an unoriented

version of knot Floer homology.

Theorem 3.2 (Theorem 1.1 of [17]). For any filling F of a knot K, we have
|2υ(K)− e(F )/2| ≤ b1(F ). In particular, we have

∣
∣∣2υ(K)− e

2

∣
∣∣ ≤ γe

4(K).

To apply Theorem 3.2 to the proof of Theorem 1.1, we will use Jabuka and
Van Cott’s computation of the υ invariant for a torus knot in terms of its pinching
sequence (2.1).

Theorem 3.3 (Theorem 1.14 of [10]). If T (p, q) is transformed to T (p0, 1) in the
construction of the pinch surface, then

2υ(T (p, q)) = b1(F (p, q)) +
1

2
(p0 − pq).

Combining Theorem 3.3 with Lemma 2.3 yields a relationship between υ of a
torus knot and the normal Euler number of its pinch surface.

Corollary 3.4. Under the conditons of Theorem 3.3, we obtain:

(1) 2υ(T (p, q)) = b1(F (p, q)) + 1
2e(F (p, q)) and hence

(2) 2υ(T (p, q)) ≥ 1
2e(F (p, q)).

Returning to the original Theorems 3.1 and 3.2, we may combine them obtain a
bound on the non-orientable 4-genus independent of the normal Euler number.

Corollary 3.5 (Theorem 1.2 of [17]). For any knot K ⊂ S3, we have
∣
∣∣
∣υ(K)− σ(K)

2

∣
∣∣
∣ ≤ γ4(K).

Jabuka and Van Cott were able to determine the sign of the quantity on the left
of the inequality above for torus knots.

Proposition 3.6 (Corollary 1.10 of [10]). For any torus knot T (p, q), we have
2υ(T (p, q)) ≥ σ(T (p, q)).

Jabuka and Van Cott also completely characterized which torus knots have a
pinch surface that realizes the bound in Corollary 3.5. As the precise identification
of the conditions on the pairs (p, q) that determine these knots is not necessary for
this paper, we leave the technicalities for Theorem 1.11 in [10]. Nevertheless, we
make Definition 3.7.

Definition 3.7. A torus knot T (p, q) is a JVC knot if its pinch surface realizes
the bound in Corollary 3.5, i.e. if

2υ(T (p, q))− σ(T (p, q)) = 2b1(F (p, q)).

Example 3.8. As noted in Example 1.13 of [10], the knots T (2k, 2k− 1) are JVC
knots.
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Figure 3. The wedges Wσ, Wυ, and WF for (left) an arbitrary
knot K and filling F and (right) for a JVC knot T (p, q) and F =
F (p, q)

Example 3.9. The computations in the proof of Theorem 1.3 in [1, §5] show that
T (3, k) is a JVC knot if and only if k is equal to 4 or 5 modulo 6.

Example 3.10. Example 5.3 of [9], together with Theorem 1.11(b) of [10], shows
that T (km+ 1,m) with k ≥ 1, m > 1, and both m and k odd are JVC knots.

4. Proof of the Refined Batson Conjecture

We now have all of the ingredients needed for the proof of Theorem 1.1. Given
a torus knot T (p, q) and its pinch surface F (p, q), the theorem follows from the
following short computation, in which we use the notation e = e(F (p, q)) for ease
of reading:

b1(F (p, q)) ≥ γe
4(T (p, q))

≥ 2υ(T (p, q))− 1

2
e by Theorem 3.2

= b1(F (p, q)) by Corollary 3.4(1).

Hence, we obtain γe
4(T (p, q)) = b1(F (p, q)), as required.

5. The geography of the JVC knots

In this final section, we contextualize Theorem 1.1 using Allen’s geography ques-
tion. In particular, we prove Theorem 1.2, which completely determines the geog-
raphy of the JVC knots.

We begin by defining, for a given knot K, two special wedges, which we illustrate
in Figure 3 (see also Figures 11 and 12 in [1]):

(1) Let Wσ be the wedge W(2σ(K),0), which contains all pairs (e, b) allowed by
Theorem 3.1.

(2) Let Wυ be the wedge W(4υ(K),0), which contains all pairs (e, b) allowed by
Theorem 3.2.

Thus, Theorems 3.1 and 3.2 yield the following:

Lemma 5.1. For any knot K, R(K) ⊂ Wσ ∩Wυ.

Next, we formalize a fact hinted at in the introduction, namely that every point
in the wedge WF associated to a filling F is realizable.

Lemma 5.2. If F is a non-orientable filling of a knot K, then WF ⊂ R(K).
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= =

Figure 4. Concatenating with the non-orientable band cobordism
pictured results in a new filling of a given knot with b1 increased
by 1 and e changed by 2. To change e by −2, switch the crossing.

Proof. We may modify the filling F to a new filling F ′ with b1(F
′) = b1(F ) + 1

and e(F ′) = e(F )± 2, either by taking a connect sum with a projective plane with
normal Euler number ±2 as in [1, §3.1] or by applying Lemma 2.2 as in Figure 4.
Repeating this process appropriately yields fillings for all (e, b) ∈ WF . �

We now proceed to prove Theorem 1.2. For readability, we denote the torus
knot T (p, q) by K and the pinch surface for T (p, q) by F . The proof is visualized
in Figure 3(b), where we see that the pinch surface F lies at the intersection of the
wedges Wσ and Wυ.

Lemmas 5.1 and 5.2 imply that WF ⊂ R(K) ⊂ Wσ ∩ Wυ. Thus, it suffices
to show that Wσ ∩ Wυ ⊂ WF . Suppose that (e, b) ∈ Wσ ∩ Wυ. To show that
(e, b) ∈ WF , we need to prove that 1

2 |e − e(F )| ≤ b − b1(F ) (the parity properties
required by the wedge are automatically satisfied).

First, rearrange Corollary 3.4(1) to yield

(5.1) e(F ) = 4υ(K)− 2b1(F ).

Second, combine the sharpness of Corollary 3.5 with Proposition 3.6 to obtain the
relation

(5.2) 4υ(K) = 2σ(K) + 4b1(F ).

Plugging Equation (5.2) into Equation (5.1) produces

(5.3) e(F ) = 2σ(K) + 2b1(F ).

Returning to the goal of proving that 1
2 |e− e(F )| ≤ b− b1(F ), we may compute

that

e(F )− e = 4υ(K)− e− 2b1(F ) by (5.1)

≤ 2b− 2b1(F ) since (e, b) ∈ Wυ

and that

e(F )− e = 2σ(K)− e+ 2b1(F ) by (5.3)

≥ −2b+ 2b1(F ) since (e, b) ∈ Wσ.

This completes the proof of Theorem 1.2.

Remark 5.3. The proof of Theorem 1.2 potentially applies more generally than
to JVC knots, as what we really needed was the sharpness of the bounds in Theo-

rem 3.2 and Corollary 3.5 at a given filling F ofK, along with a guarantee that σ(K)
2
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e

−34−36 −32 = 2σ = 4υ

Fmin

F (4, 9)

Figure 5. Two realizable (e, b) pairs for T (4, 9)

and e(F )
4 lie on the same side of υ(K), as in Proposition 3.6 and Corollary 3.4(2),

respectively.

Remark 5.4. The torus knot T (4, 9) investigated in [13] presents a different picture
than the JVC knots analyzed above. Instead of intersecting in the wedge WF (4,9),
the wedges Wσ and Wυ coincide, and hence give less information than in the JVC
knot case. In fact, it is straightforward, if delicate, to calculate that the pinch
surface has e(F (4, 9)) = −36 and b1(F (4, 9)) = 2, while Lobb’s minimizing surface
Fmin has e(Fmin) = −34 and b1(Fmin) = 1. While we already knew from Theo-
rem 1.1 and Corollary 3.4(2) that the pinch surface F (4, 9) lies on the lower left
boundary of the wedge Wυ, we see that Fmin does as well; see Figure 5.
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