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MILNOR OPERATIONS AND CLASSIFYING SPACES

MASAKI KAMEKO

(Communicated by Julie Bergner)

Abstract. We give an example of a nonzero odd degree element of the clas-
sifying space of a connected Lie group such that all higher Milnor operations
vanish on it. It is a counterexample of a conjecture of Kono and Yagita [Trans.
Amer. Math. Soc. 339 (1993), pp. 781–798].

1. Introduction

For each prime number p, there are the mod p and Brown-Peterson cohomology.
For a compact connected Lie group G, the mod p cohomology of the classifying
space BG has no nonzero odd degree element if the integral cohomology of G has
no p-torsion. So does the Brown-Peterson cohomology. On the one hand, if the
integral homology of G has p-torsion, the mod p cohomology of BG has a nonzero
odd degree element. On the other hand, for the Brown-Peterson cohomology, Kono
and Yagita conjectured the following:

Conjecture 1.1 (Kono and Yagita, (1) in Conjecture 4 in [KY93]). There is no
nonzero odd degree element in the Brown-Peterson cohomology of the classifying
space of a compact Lie group.

Conjecture 1.1 is interesting in conjunction with Totaro’s conjecture on the cycle
map from the Chow ring of the classifying space of a complex linear algebraic group
G to its Brown-Peterson cohomology. In [Tot97], Totaro showed that the cycle
map from the Chow ring of a complex smooth algebraic variety to its ordinary
cohomology factors through the Brown-Peterson cohomology after localized at p.
In [Tot99], he defined the Chow ring CH∗(BG) of a linear algebraic group G and
conjectured the following.

Conjecture 1.2 (Totaro, p.250 in [Tot99]). For a complex linear algebraic group
G, if there is no nonzero odd degree element in the Brown-Peterson cohomology
BP ∗(BG), the cycle map

CHi(BG)(p) → (Z(p) ⊗BP ∗ BP ∗(BG))2i

is an isomorphism.

With Conjectures 1.1 and 1.2, we expect a close connection between the Chow
ring in algebraic geometry and the Brown-Peterson cohomology in algebraic topol-
ogy. In [KY93], Kono and Yagita confirmed Conjecture 1.1 for some compact
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connected Lie groups with p-torsion by computing the Atiyah-Hirzebruch spectral
sequences. The non-triviality of Milnor operations on odd degree elements yields
non-trivial differentials sending odd degree elements to nonzero elements, so odd de-
gree elements do not survive to the E∞-term. With their computational results on
the Brown-Peterson cohomology of classifying spaces, Kono and Yagita conjectured
the following:

Conjecture 1.3 (Kono and Yagita, Conjecture 5 in [KY93]). For each nonzero
odd degree element x of the mod p cohomology of the classifying space of a compact
connected Lie group, there exists an integer i such that for m ≥ i,

Qmx �= 0.

Conjecture 1.3 is interesting in the cohomology theory of classifying spaces of
non-simply connected Lie groups. In [VV05], Vavpetič and Viruel showed that if p is
an odd prime, Conjecture 1.3 holds for the projective unitary group PU(p). More-
over, the cohomology of classifying spaces of non-simply connected Lie groups has
recently enjoyed renewed interest. Many mathematicians have studied it in various
contexts. Antieau, Gu and Williams ([AW14], [Gu19], [Gu20], [GZZZ22]) stud-
ied it for the topological period-index problem. Antieau, the author and Tripathy
([Ant16], [Kam15], [Kam17], [Tri16]) studied it for integral Hodge conjecture mod-
ulo torsion. Furthermore, the Atiyah-Hirzebruch spectral sequence is used in theo-
retical physics to study anomalies, cf. Garćıa-Etxebarria and Montero [GEM19].

In this paper, we give a counterexample for Conjecture 1.3 in the case p = 2.
Our result is as follows: Let H be the quaternions. Let Sp(1) ⊂ H be the symplectic
group consisting of unit quaternions. Let G be the quotient of the 3-fold product
Sp(1)3 of the symplectic groups Sp(1) by the subgroup Γ2 generated by (−1,−1, 1)
and (−1, 1,−1).

Theorem 1.4. In the mod 2 cohomology of the classifying space of the compact
connected Lie group G above, there exists a nonzero element x13 of degree 13 such
that

Qmx13 = 0

for m ≥ 1.

This paper is organized as follows. In Section 2, we describe the action of Milnor
operations on the mod 2 cohomology of BSO(3). In Section 3, we prove Theo-
rem 1.4 as Proposition 3.5.

2. Milnor operations

In this section, we recall Milnor operations

Qm : Hi(X;Z/2) → Hi+2m+1(X;Z/2)

and the mod 2 cohomology of the classifying space BSO(3). Milnor operations Qm

are defined by

Q0 = Sq1, Qm = Sq2
m

Qm−1 +Qm−1Sq
2m (m ≥ 1).

They have the following properties:

QmQn = QnQm,

Q2
m = 0,
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and

Qm(x · y) = (Qmx) · y + x · (Qmy).

These formulae are essential in our proofs Propositions 2.2 and 3.5. The mod 2
cohomology of BSO(3) is a polynomial ring

H∗(BSO(3);Z/2) = Z/2[w2, w3]

generated by two elements w2, w3 of degree 2, 3, respectively. The action of Steen-
rod squares on these elements is well-known as the Wu formula. In particular, we
have

Sq1w2 = w3, Sq2w2 = w2
2,

Sq1w3 = 0, Sq2w3 = w2w3.

By the Wu formula and by the definition and elementary properties of Milnor
operations stated above, it is easy to obtain

Q0w2 = w3, Q1w2 = w2w3, Q0Q1w2 = w2
3,

Q0w3 = 0, Q1w3 = w2
3, Q0Q1w3 = 0.

This section aims to prove the following lemma on the action of Milnor operations
on the mod 2 cohomology of BSO(3).

Lemma 2.1. For m ≥ 2, there exists a polynomial gm in w2
2 and w2

3 such that we
have

QmQ1w2 = gmw4
3.

in the mod 2 cohomology of BSO(3).

To prove Lemma 2.1, we may recall the relation between Dickson invariants and
Milnor operations as Proposition 2.2. The connection between Dickson invariants
and Milnor operations is an exciting subject in algebraic topology. Thus, we refer
the reader to the classical work of Adams and Wilkerson ([AW80], [Wil83]) for more
detail on the background of this section. However, to make this paper self-contained
as far as possible, we give detailed proof for Lemma 2.1 without mentioning Dickson
invariants and the above background.

Let (Z/2)2 = Z/2×Z/2 be the elementary abelian 2-subgroup of SO(3) generated
by diagonal matrices ⎛

⎝−1 0 0
0 −1 0
0 0 1

⎞
⎠ ,

⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠ .

We denote by ι : (Z/2)2 → SO(3) the inclusion map. The induced homomorphism

Bι∗ : H∗(BSO(3);Z/2) → H∗(B(Z/2)2;Z/2)

is injective, and its image is the subring generated by the following elements.

Bι∗(w2) = s21 + s1s2 + s22,

Bι∗(w3) = s21s2 + s1s
2
2.

Proposition 2.2. Suppose that m ≥ 2. For an element x of the mod 2 cohomology
of B(Z/2)2, let

Dmx = Qmx+Bι∗(w2m−1

2 )Qm−1x+Bι∗(w2m−1

3 )Qm−2x.
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Then, we have

Dmx = 0.

Proof. Here, in the proof of Proposition 2.2, by the mod 2 cohomology ring, we
mean the mod 2 cohomology ring of B(Z/2)2 unless otherwise stated explicitly.
Recall that

Qm(x · y) = (Qmx) · y + x · (Qmy),

for x, y ∈ H∗(X;Z/2). For i = 1 and 2, we have

Dmsi = Qmsi +Bι∗(w2m−1

2 )Qm−1si +Bι∗(w2m−1

3 )Qm−2si

= s2
m+1

i + (s21 + s1s2 + s22)
2m−1

s2
m

i + (s21s2 + s1s
2
2)

2m−1

s2
m−1

i

=
(
s4i + (s21 + s1s2 + s22)s

2
i + (s21s2 + s1s

2
2)si

)2m−1

= 0.

Thus, for elements x, y in the mod 2 cohomology ring, we have

Dm(x · y) = Dmx · y + x ·Dmy.

Therefore, since the mod 2 cohomology ring is generated by s1, s2, the fact that
Dmsi = 0 for i = 1, 2 implies that Dmx = 0 for each element x in the mod 2
cohomology ring. �

Now, for m ≥ 2, we describe the action of the Milnor operation Qm in terms of
certain polynomials fm,0, fm.1 in w2

2 and w2
3 and Milnor operations Q0, Q1. Since

the induced homomorphism

Bι∗ : H∗(BSO(3);Z/2) → H∗(B(Z/2)2;Z/2)

is injective, by Proposition 2.2, for each x in the mod 2 cohomology of BSO(3), we
have

Qmx = w2m−1

2 Qm−1x+ w2m−1

3 Qm−2x.

We may write it in the following form.(
Qmx

Qm−1x

)
=

(
w2m−1

2 w2m−1

3

1 0

)(
Qm−1x
Qm−2x

)
.

Let us define a matrix Am whose coefficients are polynomials in w2
2, w

2
3 as follows:

Am =

(
w2m−1

2 w2m−1

3

1 0

)(
w2m−2

2 w2m−2

3

1 0

)
· · ·

(
w4

2 w4
3

1 0

)(
w2

2 w2
3

1 0

)
.

Furthermore, let us define polynomials fm,0, fm,1 by(
fm,1 fm,0

)
=

(
1 0

)
Am.

Then, for x in the mod 2 cohomology of BSO(3), we have

Qmx =
(
1 0

)( Qmx
Qm−1x

)
=

(
1 0

)
Am

(
Q1x
Q0x

)
= fm,1Q1x+ fm,0Q0x.

Proof of Lemma 2.1. We have the following congruence.

Am ≡
(
w2m−1

2 0
1 0

)
· · ·

(
w2

2 0
1 0

)
≡

(
w2m−2

2 0

w2m−1−2
2 0

)
mod (w2

3).
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Hence, we have fm,0 ≡ 0 mod (w2
3). Therefore, there exists a polynomial gm in w2

2

and w2
3 such that

fm,0 = gmw2
3.

Recall the fact that Q0Q1w2 = w2
3 and Q1Q1 = 0. Then, we have

QmQ1w2 = fm,1Q1Q1w2 + fm,0Q0Q1w2

= fm,0Q0Q1w2

= gmw4
3. �

Example 2.3. For m = 2, 3, 4, elements Qmx and polynomials gm in Lemma 2.1
are as follows:

Q2x = w2
2Q1x+ w2

3Q0x, g2 = 1,

Q3x = (w6
2 + w4

3)Q1x+ w4
2w

2
3Q0x, g3 = w4

2,

Q4x = (w14
2 + w8

2w
4
3 + w2

2w
8
3)Q1x+ (w12

2 + w8
3)w

2
3Q0x, g4 = w12

2 + w8
3.

3. The nonzero odd degree element

In this section, we prove Theorem 1.4 as Proposition 3.5.
We begin with recalling the definition of the connected Lie group G in Section 1

and set up notations. Let us consider the 3-fold product of symplectic groups
Sp(1) ⊂ H consisting of unit quaternions. Let

Γ3 = {(±1,±1,±1)}
be the center of Sp(1)3. Let Γ2 be its subgroup generated by (−1, 1,−1), (1,−1,−1)
and

G = Sp(1)3/Γ2.

Let Z/2 = {(±1, 1, 1)} ⊂ Γ3. Then, Z/2 and Γ2 generate Γ3. Moreover, we have

Sp(1)3/Γ3 = SO(3)3.

Therefore, we have the following fiber sequence:

BZ/2 → BG → BSO(3)3.

We denote by
{Ep,q

r , dr : E
p,q
r → Ep+r,q−r+1

r }
the Leray-Serre spectral sequence associated with this fiber sequence. Let us denote
its Er-term by

Er =
⊕
p,q

Ep,q
r .

We compute the mod 2 cohomology of BG using the above Leray-Serre spectral
sequence. Although it is easy, we quickly review it. See [Kam19] for more detail.

We describe the E2-term and compute the first non-trivial differential d2. Let

Bπi : BSO(3)3 → BSO(3)

be the map induced by the projection to the ith factor for i = 1, 2, 3. We denote by
w′

i, w
′′
i , w

′′′
i the cohomology classes Bπ∗

1(wi), Bπ∗
2(wi), Bπ∗

3(wi), respectively. Let
u1 be the generator of the mod 2 cohomology H1(BZ/2;Z/2) ∼= Z/2 of the fiber
BZ/2. The E2-term is given by

E2 = Z/2[w′
2, w

′
3, w

′′
2 , w

′′
3 , w

′′′
2 , w′′′

3 ]⊗ Z/2[u1].
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To compute the differential d2, we consider the Leray-Serre spectral sequence

{Ēp,q
r , d̄r : Ē

p,q
r → Ēp+r,q−r+1

r }
associated with the fiber sequence

BZ/2 → BSp(1) → BSO(3).

Recall that its E2-term is given as follows:

Ē2 = Z/2[w2, w3]⊗ Z/2[u1],

and its first nontrivial differential d̄2 is given by

d̄2(u1) = w2.

Let
Bιi : BSO(3) → BSO(3)3

be the map induced by the inclusion map ιi of Sp(1) for i = 1, 2, 3 such that

ι1(g) = (g, 1, 1), ι2(g) = (1, g, 1), ι3(g) = (1, 1, g).

Then we have the following commutative diagram,

BZ/2 BSp(1) BSO(3)

BZ/2 BG BSO(3)3.

�

�
=

�

� �
Bιi

� �

Furthermore, we have

Bι∗1(w
′
2) = w2, Bι∗1(w

′′
2 ) = 0, Bι∗1(w

′′′
2 ) = 0,

Bι∗2(w
′
2) = 0, Bι∗2(w

′′
2 ) = w2, Bι∗2(w

′′′
2 ) = 0,

Bι∗3(w
′
2) = 0, Bι∗3(w

′′
2 ) = 0, Bι∗3(w

′′′
2 ) = w2.

Now, we are ready to compute the differential d2. Suppose that the first nontrivial
differential d2 is given as follows:

d2(u1) = α1w
′
2 + α2w

′′
2 + α3w

′′′
2 ,

where α1, α2, α3 are in Z/2. Since

Bι∗i (d2(u)) = αiw2,

and
d̄2(u1) = w2,

we obtain
αi = 1

for i = 1, 2, 3. Thus, the first nontrivial differential d2 : E
0,1
2 → E2,0

2 is given as
follows:

d2(u1) = w′
2 + w′′

2 + w′′′
2 .

Let us recall the relation between the transgression and Steenrod squares. For
r ≥ 2, the transgression

dr : E
0,r−1
r → Er,0

r

commutes with Steenrod squares Sqi. In other words, if dr(x) = y then we may

have an element Sqix ∈ E0,r−1+i
s for r ≤ s, an element Sqiy ∈ Er+i,0

r+i and there

hold that ds(Sq
ix) = 0 for r ≤ s < r + i and that dr+i(Sq

ix) = Sqiy.



268 MASAKI KAMEKO

Starting with the above E2 and d2, since u2
1 = Sq1u1, u

4
1 = Sq2u2

1, and u8
1 =

Sq4u4
1, we have the following Er-tems and differentials up to r ≤ 9.

E3 = Z/2[w′
2, w

′
3, w

′′
2 , w

′′
3 , w

′′′
3 ]⊗ Z/2[u2

1],

d3(u
2
1) = Sq1(w′

2 + w′′
2 + w′′′

2 )

= w′
3 + w′′

3 + w′′′
3 ,

E4 = Z/2[w′
2, w

′
3, w

′′
2 , w

′′
3 ]⊗ Z/2[u4

1],

d4(u
4
1) = 0,

E5 = E4,

d5(u
4
1) = Sq2(w′

3 + w′′
3 + w′′′

3 )

= w′
2w

′
3 + w′′

2w
′′
3 + w′′′

2 w′′′
3

= w′
2w

′′
3 + w′′

2w
′
3,

E6 = Z/2[w′
2, w

′
3, w

′′
2 , w

′′
3 ]/(w

′
2w

′′
3 + w′′

2w
′
3)⊗ Z/2[u8

1],

d6(u
8
1) = 0,

d7(u
8
1) = 0,

d8(u
8
1) = 0,

E9 = E6.

To compute higher terms and differentials, let us consider the ring homomorphism

φ : Z/2[w′
2, w

′
3, w

′′
2 , w

′′
3 ] → Z/2[w′

2, w
′′
2 , t1]

defined by

φ(w′
2) = w′

2,

φ(w′
3) = t1w

′
2,

φ(w′′
2 ) = w′′

2 ,

φ(w′′
3 ) = t1w

′′
2 .

We assign weight 0, 1, 0, 1 to w′
2, w

′
3, w

′′
2 , w

′′
3 , respectively. We also assign weight

1 to t1. Then, the ring homomorphism φ is weight-preserving.
Let

M = Z/2[w′
2, w

′
3, w

′′
2 , w

′′
3 ]/(w

′
2w

′′
3 + w′′

2w
′
3).

It is the bottom line of the E9-term of the spectral sequence such that

M =
⊕
p

Ep,0
9 .

The ring homomorphism φ induces the weight-preserving ring homomorphism

φ̄ : M → Z/2[w′
2, w

′′
2 , t1].

It is clear that the ring homomorphism φ̄ is injective. Thus, M is isomorphic to
the subring φ̄(M) of Z/2[w′

2, w
′′
2 , t1]. Therefore, both M and φ̄(M) are integral

domains.
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The next nontrivial differential is d9. It is given by

d9(u
8
1) = Sq4(w′

2w
′′
3 + w′′

2w
′
3)

= w′2
2 w

′′
2w

′′
3 + w′

3w
′′2
3 + w′′2

2 w′
2w

′
3 + w′′

3w
′′2
3

= w′
2w

′′
2 (w

′
2w

′′
3 + w′′

2w
′
3) + w′

3w
′′2
3 + w′′

3w
′2
3

= w′
3w

′′2
3 + w′′

3w
′2
3 .

Since

φ̄(w′
3w

′′2
3 + w′′

3w
′2
3 ) = t31w

′
2w

′′
2 (w

′
2 + w′′

2 )

is nonzero in Z/2[w′
2, w

′′
2 , t1], multiplication by w′

3w
′′2
3 + w′′

3w
′2
3 is injective on M .

Therefore, we have

E10 =Z/2[w′
2, w

′
3, w

′′
2 , w

′′
3 ]/(w

′
2w

′′
3 + w′′

2w
′
3, w

′
3w

′′2
3 + w′′

3w
′2
3 )⊗ Z/2[u16

1 ].

We would like to point out that w′
2w

′′
3 +w′′

2w
′
3, w

′
3w

′′2
3 +w′′

3w
′2
3 is a regular sequence

in the polynomial ring Z/2[w′
2, w

′′
2 , w

′
3, w

′′
3 ].

Finally, using the commutativity between the transgression and Steenrod squares
again, we have

dr(u
16
1 ) = 0 for 10 ≤ r ≤ 16 and

d17(u
16
1 ) = Sq8(w′

3w
′′2
3 + w′2

3 w
′′
3 )

= w′
2w

′
3w

′′4
3 + w′′

2w
′′
3w

′4
3

= (w′
2w

′′
3 + w′′

2w
′
3)w

′
3w

′′3
3 + w′′

2w
′
3(w

′
3 + w′′

3 )(w
′
3w

′′2
3 + w′2

3 w
′′
3 )

= 0.

Hence, we have dr = 0 for r ≥ 10 and E∞ = E10.
To describe the E∞-term, let

N = Z/2[w′
2, w

′
3, w

′′
2 , w

′′
3 ]/(w

′
2w

′′
3 + w′′

2w
′
3, w

′
3w

′′2
3 + w′′

3w
′2
3 ).

It is the bottom line of the E∞-term of the spectral sequence such that

N =
⊕
p

Ep,0
∞ .

It is also the subring of the mod 2 cohomology ring of BG generated by w′
2, w

′
3, w

′′
2 ,

w′′
3 . What we need is the fact that the induced homomorphism

N → H∗(BG;Z/2)

is injective, and N is closed under the action of Milnor operations Qm for m ≥ 0.
For a graded set {x1, x2, . . . }, we denote by Z/2{x1, x2, . . . } the graded Z/2-

module spanned by {x1, x2, . . . }. Recall that we defined weight of w′
2, w

′
3, w

′′
2 , w

′′
3 , t1

as 0, 1, 0, 1, 1, respectively. We have direct sum decompositions of M and N with
respect to weight. Namely, Mk, Nk are graded submodules of M , N spanned by
monomials of weight k, respectively.

We will define the element x13 as an element in N1. We also need Proposition 3.1
on the basis for N1 to show that x13 is nonzero.
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Proposition 3.1. For N0, N1, N2, we have

N0 = Z/2{w′m
2 w′′n

2 | m,n ≥ 0},
N1 = Z/2{w′m

2 w′
3, w

′m
2 w′′n

2 w′′
3 | m,n ≥ 0},

N2 = Z/2{w′m
2 w′2

3 , w
′m
2 w′′n

2 w′
3w

′′
3 , w

′′n
2 w′′2

3 | m,n ≥ 0}.
Proof. The weight of monomials in

φ̄(w′
3w

′′2
3 + w′2

3 w
′′
3 ) = t31w

′
2w

′′2
2 + t31w

′2
2 w

′′
2

is 3. Therefore, the ideal of M generated by

w′
3w

′′2
3 + w′2

3 w
′′
3

is spanned by monomials of weight greater than or equal to 3. Hence, we have.
Ni = Mi for i = 0, 1, 2. It is clear that

φ̄(M0) = Z/2{w′m
2 w′′n

2 },
φ̄(M1) = Z/2{t1w′m

2 w′′n
2 | m+ n ≥ 1},

φ̄(M2) = Z/2{t21w′m
2 w′′n

2 | m+ n ≥ 2}
and that

φ̄(Z/2{w′m
2 w′′n

2 }) = Z/2{w′m
2 w′′n

2 },
φ̄(Z/2{w′m

2 w′
3, w

′m
2 w′′n

2 w′′
3}) = Z/2{t1w′m

2 w′′n
2 | m+ n ≥ 1},

φ̄(Z/2{w′m
2 w′2

3 , w
′m
2 w′′n

2 w′
3w

′′
3 , w

′′n
2 w′′2

3 }) = Z/2{t21w′m
2 w′′n

2 | m+ n ≥ 2},
wherem,n range over the set of nonnegative integers. Since the ring homomorphism
φ̄ is injective, we obtain the desired results. �

We need the following lemma on Nk (k ≥ 3) to show that Qmx13 = 0 for m ≥ 2.

Proposition 3.2. Suppose that k ≥ 3. For 1 ≤ i ≤ k − 1, m ≥ 0, n ≥ 0, we have

w′m
2 w′′n

2 w′i
3w

′′k−i
3 = w′′m+n

2 w′
3w

′′k−1
3

in Nk.

Proof. For i ≥ 2, we have

w′i
3w

′′k−i
3 = w′2

3 w
′′
3 · w′i−2

3 w′′k−i−1
3

= w′
3w

′′2
3 · w′i−2

3 w′′k−i−1
3 (∵ w′2

3 w
′′
3 = w′

3w
′′2
3 )

= w′i
3w

′′k−i
3 .

Iterating this process, we have w′i
3w

′′k−i
3 = w′

3w
′′k−1
3 . For m ≥ 1, we have

w′m
2 w′′n

2 w′
3w

′′k−1
3 = w′

2w
′′
3 · w′m−1

2 w′′n
2 w′

3w
′′k−2
3

= w′
3w

′′
2 · w′m−1

2 w′′n
2 w′

3w
′′k−2
3 (∵ w′

2w
′′
3 = w′

3w
′′
2 )

= w′m−1
2 w′′n+1

2 w′2
3 w

′′k−2
3

= w′m−1
2 w′′n+1

2 w′
3w

′′k−1
3 (∵ w′2

3 w
k−2
3 = w′

3w
′′k−1
3 ).

Hence, we have the desired result w′m
2 w′′n

2 w′i
3w

′′k−i
3 = w′′m+n

2 w′
3w

′′k−1
3 . �

Remark 3.3. With Proposition 3.2, it is easy to find a basis for Nk. And we have
the following.

Nk = Z/2{w′m
2 w′k

3 , w′′n
2 w′

3w
′′k−1
3 , w′′n

2 w′′k
3 | m,n ≥ 0}.
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Remark 3.4. It is easy to compute the Poincaré series

(1− t5)(1− t9)

(1− t2)2(1− t3)2

of N since w′
2w

′′
3 + w′′

2w
′
3, w′

3w
′′2
3 + w′′

3w
′2
3 is a regular sequence. To prove the

linear independence of elements in Propositions 3.1 and 3.2, one may compute the
Poincaré series of each Nk and add them up to obtain the Poincaré series of N
above.

Proposition 3.5. Let us define an element x13 of degree 13 in the mod 2 cohomol-
ogy of BG by

x13 := Bπ∗
1(Q1w2)w

′′2
2 (w′2

2 + w′′2
2 ).

Then, x13 is nonzero and for m ≥ 1, we have

Qmx13 = 0.

Proof. First, we verify that x13 is nonzero. Since Bπ∗
1(Q1w2) = w′

2w
′
3, we have

x13 = w′3
2 w

′′2
2 w′

3 + w′
2w

′′4
2 w′

3

= w′4
2 w

′′
2w

′′
3 + w′2

2 w
′′3
2 w′′

3

�= 0

in N1 by Proposition 3.1. Next, we compute Qmx13. Since Qm acts trivially on
w′′2

2 (w′2
2 + w′′2

2 ),

Qmx13 = Bπ∗
1(QmQ1w2)w

′′2
2 (w′2

2 + w′′2
2 ).

For m = 1, since Q1Q1 = 0, we have Q1x13 = 0. For m ≥ 2, by Lemma 2.1, we
have

Bπ∗
1(QmQ1w2)w

′′2
2 (w′2

2 + w′′2
2 ) = Bπ∗

1(gmw4
3)w

′′2
2 (w′2

2 + w′′2
2 )

= Bπ∗
1(gm)w′4

3 w
′′2
2 (w′2

2 + w′′2
2 ).

By Proposition 3.2, we obtain

w′4
3 w

′′2
2 w′2

2 = w′′4
2 w′

3w
′′3
3 ,

w′4
3 w

′′2
2 w′′2

2 = w′′4
2 w′

3w
′′3
3 ,

hence, we have

w′4
3 w

′′2
2 (w′2

2 + w′′2
2 ) = 0.

Therefore, we obtain Qmx13 = 0. �
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