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Abstract. In this paper, we build up a scaled homology theory, lc-homology,
for metric spaces such that every metric space can be visually regarded as “lo-
cally contractible” with this newly-built homology. We check that lc-homology
satisfies all Eilenberg-Steenrod axioms except the exactness axiom whereas its
corresponding lc-cohomology satisfies exactness axiom for cohomology. This
homology can relax the smooth manifold restrictions on the compact metric
space such that the entropy conjecture will hold for the first lc-homology group.

1. Introduction and preliminaries

The topological entropy of a map f : M → M , denoted by h(f), measures
the evolution of distinguishable orbits over time, thereby providing an idea of how
complex the orbit structure of a system is. Entropy distinguishes a dynamical
system where points that are close together remain close from a dynamical system
where sets of points move farther. On the other hand, it measures how much f
mixes up the point set topology of M whereas its induced homomorphism f∗ :
H∗(M ;R) → H∗(M ;R) measures how much f mixes up the algebraic topology of
M .

In order to discover the connection between topological entropy and homology
theory, there is an entropy conjecture due to Shub [9] relating h(f) to r(f∗), the
spectral radius of f∗. The idea is that h(f) should be bounded below by log r(f∗).
Unfortunately, Shub showed [9] that it is not true in general for continuous maps
f of a manifold M nor for f a homeomorphism of a finite complex.

One of the known results [5] is that the entropy conjecture holds for the first
homology group once M is a compact smooth manifold. Moreover, it is also shown
in [5] that M does not necessarily have to be a manifold. It suffices that the space
can be seen as “locally contractible”. Motivated by this relaxation, we consider
building up a new homology theory such that every metric space can be regarded
as locally contractible with this homology. Our initial idea is to “rescale” the
metric space. Naturally, when we observe things around us, sometimes it is hard
to guarantee that everything we see is absolutely precise, especially for someone
suffering from myopia. For example, given a metric space (X, d), for any x �= y with
d(x, y) = ε, they can be seen as one point when we put a “scale” greater than ε onto
the space. So in the second section, we introduce the definitions of comparatively
“rough” continuous maps, ε-continuous maps, ε-singular chain groups as well as
ε-singular homology groups Hε

∗(X). If the diameter of a space is sufficiently small,
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then the ε-homology group of that space is trivial for n > 0, i.e., it is like a point
or contractible!

Since we have an explicit chain complex for ε-homology, we can easily check that
it satisfies the Eilenberg–Steenrod axioms except for homotopy axiom. Indeed,
the ε-homology is not a functor from category of metric spaces Met to category
of abelian groups Ab. Concerning this drawback, we take the inverse limit of
(Hε

∗(X))ε∈R+ to obtain the infinitesimal-scaled homology groups of the space and
call them lc-homology groups where lc denotes the meaning of “local contractifica-
tion”. It is then a homology functor and satisfies most of the homology axioms, but
it fails to satisfy exactness axiom in general. In the following we discuss two coun-
terexamples and claim that it holds, however, for the corresponding lc-cohomology
theory.

Our work in the last section generalizes the existing results of entropy conjecture,
relaxing the restrictions on the compact metric space on which f acts. The entropy
conjecture will then hold for the first homology group with lc-homology.

Through out this paper, all spaces are metric spaces. To begin with, let’s recall
the concept of topological entropy defined by Bowen [3].

Given a compact metric space (X, d) and a continuous map f : X → X, we set
dn : X ×X → R by

dn(x, y) = max
0≤k<n

d(fk(x), fk(y)).

The map dn is a metric on X for each n and we will consider the metric dn to count
distinguishable orbit segments at a fixed resolution.

Definition 1.1. Fix ε > 0 and let n ∈ N. A set S ⊂ X is said to be an (n, ε)-
spanning set for f if for all x ∈ X, there exists y ∈ S such that dn(x, y) < ε, and
it is said to be an (n, ε)-separated set for f if for all x �= y ∈ S, dn(x, y) ≥ ε, i.e.,
there exists k ∈ {0, 1, · · · , n− 1} such that d(fk(x), fk(y)) ≥ ε.

Let rn(ε, f) be the minimum cardinality of an (n, ε)-spanning set and sn(ε, f)
be the maximum cardinality of an (n, ε)-separated set. Then we have the following
relation

rn(ε, f) ≤ sn(ε, f) ≤ rn(
ε

2
, f)

and this implies the following equivalent definition of the topological entropy:

Definition 1.2. Let f : X → X be a continuous map. The topological entropy of
f is defined as

h(f) = lim
ε→0+

lim sup
n→∞

1

n
log sn(ε, f) = lim

ε→0+
lim sup
n→∞

1

n
log rn(ε, f).

In [9], Shub stated the following conjecture.
Entropy conjecture. Let f be a continuous map on a compact finite-dimen-

sional manifold M to itself. Then

h(f) ≥ log ρ(f∗),

where f∗ : H∗(M,R) → H∗(M,R) denotes the homomorphism induced by f on the
total homology of M , i.e.,

(1.1) H∗(M,R) =

dimM⊕
i=0

Hi(M,R)
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and ρ(f∗) denotes the spectral radius of f∗, i.e., ρ(f∗) = limn→∞(‖fn
∗ ‖

1
n ), which

coincides with the maximum of the moduli of the eigenvalues of f∗. The entropy
conjectures means that f∗ must capture some but not necessarily all of the mixing
f does.

Since the expansion (1.1) is clearly invariant under f∗, we have

ρ(f∗) = max
1≤i≤dimM

ρ(f∗i)

where f∗i denotes the restriction of f∗ to the space Hi(M ;R). Hence the entropy
conjecture is equivalent to the system of inequalities

h(f) ≥ log ρ(f∗i), i = 1, · · · , dimM.

In fact, the entropy conjecture only holds for some special cases. In [5], Manning
showed that

Theorem 1.3. Let M be a compact differentiable manifold without boundary and
f : M → M a continuous map. Then

h(f) ≥ log ρ(f∗1)

where f∗1 : H1(M ;R) → H1(M ;R) is the induced map on the first homology group.

Corollary 1.4. If M has dimension ≤ 3 and f is a homeomorphism, then h(f) ≥
log ρ(f∗) where f∗ is the map induced on the homology of all dimensions.

In [7], the authors propose to imitate for homeomorphisms the “Markov approx-
imation” procedure for diffeomorphisms mentioned in [10] and construct a dense
set of homeomorphisms where the entropy conjecture holds.

Theorem 1.5. If dimM ≥ 5, the entropy conjecture holds for all homeomorphisms
belonging to an open dense set of the space of all homeomorphisms of M with the
C0-topology.

Next, due to Nitecki in [6], this holds for diffeomorphisms with a hyperbolic
structure. This would imply that any sufficiently small perturbation in the C0-
topology of such a homeomorphism could not decrease the topological entropy.

For arbitrary homeomorphisms by [8], however, the entropy conjecture does not
hold.

It is also shown in [5] that it is not necessary to suppose that M is a manifold.
It suffices that the following conditions be met:

(1) For any ε > 0, there exists a δ > 0 such that any two points x and y for
which d(x, y) < δ can be joined by a path of diameter < ε.

(2) There exists an ε0 > 0 such that any loop of diameter < ε0 is contractible
in M .

Inspired by the relaxation of the restrictions Manning did on the space on which f
acts, we attempt to generalize the existing results regarding smooth manifolds to a
metric scale.

2. Scaled homology and cohomology

Definition 2.1. Given ε > 0, a map f : X → Y is said to be ε-continuous if there
exists δ = δ(ε) > 0 such that

sup{dY (f(x1), f(x2)) : dX(x1, x2) < δ} < ε.
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Let Δn = {(t0, . . . , tn) ∈ R
n+1|

∑n
i=0 ti = 1 and ti ≥ 0, ∀i}, the standard n-

simplex. An ε-continuous map σ : Δn → X is said to be an ε-singular n-simplex.
Moreover, we define the n-dimensional ε-singular chain group, denoted by Cε

n(X),
to be the free abelian group generated by all ε-singular n-simplices of X, and
∂n : Cε

n(X) → Cε
n−1(X) to be the boundary operator defined as the one in classic

singular homology theory, i.e.,

∂nσ =
n∑

i=0

(−1)iσ|[v0, · · · , v̂i, · · · , vn].

Then we call (Cε
∗(X), ∂) an ε-singular chain complex.

Definition 2.2. Let (Cε
∗(X), ∂) be an ε-singular chain complex. Define Zε

n(X) =
Ker(∂n) to be the subgroup of cycles and Bε

n(X) = Im(∂n+1) to be the subgroup of
boundaries. Furthermore, Hε

n(X) = Zε
n(X)/Bε

n(X) is said to be the nth ε-homology
group of X.

Proposition 2.3. If (X, d) is a metric space with diameter < ε, i.e., the maximum
distance between any two of its points is less than ε, then Hε

0(X) = Z and Hε
n(X) =

0 for all n > 0.

Proof. As in the case of singular homology theory, it is easy to see that if X is a
point {pt}, then Hε

n(X) = 0 for n > 0 and Hε
0(X) ∼= Z since there is a unique

ε-singular n-simplex σn for all n.
Now let f be a constant map sending all of X to x0 ∈ X. Since diamX < ε, f

is ε-homotopic to the identity map id : X → X, i.e., there exists F : X × I → Y
given by F (x, t) = ft(x) that is ε-continuous such that f0 = f , f1 = id.

Let Δn × 0 = [v0, · · · , vn] and Δn × 1 = [w0, · · · , wn] and let P : Cε
n(X) →

Cε
n+1(X) be such that

P (σ) =
∑
i

(−1)iF · (σ × id)|[v0, · · · , vi, wi, · · · , wn]

for σ : Δn → X, an ε-continuous map. It is easy to check that P is a chain homotopy
between the chain maps f� and id� that are induced by f and id respectively, and
f∗ : Hε

n(X) → Hε
n({pt}) are isomorphisms for all n. Therefore, Hε

0(X) = Z and
Hε

n(X) = 0 for all n > 0. �

Thus, a metric space (X, d) with ε-scale can be informally seen as a “locally
contractible” space. Like in the singular homology theory, we can define the re-

duced ε-homology groups H̃ε
∗(X) to be the homology groups of the augmented chain

complex

· · · �� Cε
2(X)

∂2 �� Cε
1(X)

∂1 �� Cε
0(X)

ε �� Z �� 0

where ε(
∑

i kiσi) =
∑

i ki. It can be easily checked that Hε
0(X) = H̃ε

0(X)⊕ Z and

Hε
n(X) = H̃ε

n(X) for all n > 0.
For a subspace A ⊂ X, let Cε

n(X,A) = Cε
n(X)/Cε

n(A). Then ∂ : Cε
n(A) →

Cε
n−1(A) induces a quotient boundary map ∂ : Cε

n(X,A) → Cε
n−1(X,A) and

we have ∂2 = 0. So we can define the relative ε-homology group Hε
n(X,A) =

Ker ∂/ Im ∂.
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Thus, a metric space (X, d) with ε-scale can be informally seen as a “locally
contractible” space. Like in the singular homology theory, we can define the re-

duced ε-homology groups H̃ε
∗(X) to be the homology groups of the augmented chain

complex

· · · �� Cε
2(X)

∂2 �� Cε
1(X)

∂1 �� Cε
0(X)

ε �� Z �� 0

where ε(
∑

i kiσi) =
∑

i ki. It can be easily check that Hε
0(X) = H̃ε

0(X) ⊕ Z and

Hε
n(X) = H̃ε

n(X) for all n > 0.
For a subspace A ⊂ X, let Cε

n(X,A) = Cε
n(X)/Cε

n(A). Then ∂ : Cε
n(A) →

Cε
n−1(A) induces a quotient boundary map ∂ : Cε

n(X,A) → Cε
n−1(X,A) and

we have ∂2 = 0. So we can define the relative ε-homology group Hε
n(X,A) =

Ker ∂/ Im ∂.
An interesting object is the limit of Hε

n(X) as ε → 0+. Note that an n-
dimensional μ-singular simplex is naturally an n-dimensional ε-singular simplex
if 0 < μ ≤ ε. Then, let ϕμε∗ be the homomorphism induced by the natural inclu-
sion chain map ϕμε : (C

μ
n(X), ∂) ↪→ (Cε

n(X), ∂). In particular, ϕεε∗ is the identity
on Hε

n(X).
Since (R+,≤) is a directed partially-ordered set, we obtain an inverse system

((Hε
n(X))ε∈R+ , (ϕμε∗)μ≤ε∈R+).

Furthermore, we can take the inverse limit

H lc
n (X) = lim←−−−

ε∈R
+

((Hε
n(X))ε∈R+ , (ϕμε∗)μ≤ε∈R+)

= {
−→
[a] ∈

∏
ε∈R+

Hε
n(X) : [aε] = ϕμε∗([aμ]) for all μ ≤ ε in R

+}.

Let {εm} be a non-increasing sequence of R+ converging to 0. Then we have

lim←−−−
ε∈R

+

((Hε
n(X))ε∈R+ , (ϕμε∗)μ≤ε∈R+) ∼= lim←−((Hεm

n (X))∞m=1, (ϕεkεl∗)l≤k∈N),

since {εm} is a cofinal subset of the directed index set R+. We call the inverse limit
above the nth infinitesimal-scaled homology group of X or lc-homology group of X
(the homology group under infinitesimal scale or the homology group of the “local
contractification” of X).

The lc-homology group of X is said to be stable if there exists ε > 0 such
that for all 0 < ε2 ≤ ε1 ≤ ε, ϕε2,ε1∗ is an isomorphism, i.e., for any 0 < μ ≤ ε,
Hμ

n (X) ∼= Hε
n(X). Later we will show that when X is a Riemannian manifold, its

lc-homology group will be stable.

Now we build up the lc-homology theory similar to what we did for classic
singular version in [4]. To begin with, we check that lc-homology is a functor from
category of topological spaces Metu to category of abelian groups Ab, where Metu

denotes the category that has metric spaces as its objects and uniformly continous
maps between metric spaces as its morphisms.

Proposition 2.4. If f : X → Y is a uniformly continuous map, then f induces a
homomorphism f lc

∗ : H lc
n (X) → H lc

n (Y ), ∀n ≥ 0.
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Proof. Let σ : Δn → X be an ε-continuous map. Composing with f , we get a
μ-continuous map f εμ

� (σ) = fσ : Δn → Y , where μ is determined by f and σ. In
fact, we can choose

μ = inf{r > 0 : whenever dX(σ(v1), σ(v2)) < ε, dY (f(σ(v1)), f(σ(v2))) < r}.
Extend f εμ

� : Cε
n(X) → Cμ

n(Y ) linearly by f εμ
� (

∑
i niσi) =

∑
i nif

εμ
� (σi) and we

have f εμ
� ∂ = ∂f εμ

� , which implies that f εμ
� takes cycles to cycles and takes bound-

aries to boundaries. Hence f� induces a homomorphism f εμ
∗ : Hε

n(X) → Hμ
n (Y ).

Let {εn} be a monotonically non-increasing sequence such that limn→∞ εn = 0.
For each εk-continuous map ϕ : Δn → X, composing with f , we get a corre-
sponding μk-continuous map f εkμk

� (ϕ) = fϕ : Δn → Y , where μk = inf{rk > 0 :

if dX(σ(v1), σ(v2)) < εk, dY (f(σ(v1)), f(σ(v2))) < rk}. Since f is uniformly con-
tinuous, μn → 0 as εn → 0. Hence, after taking the inverse limit, we obtain the
induced homomorphism f lc

∗ : H lc
n (X) → H lc

n (Y ). �

Naturally, we can define the corresponding lc-cohomology group of X in the
following ways.

Let G be an abelian group. For the ε-singular chain complexes

· · · �� Cε
n+1(X)

∂ �� Cε
n(X)

∂ �� Cε
n−1(X) �� · · ·

we apply the Hom(−, G) functor and obtain the corresponding ε-singular cochain
complex

· · · Cn+1
ε (X;G)�� Cn

ε (X;G)
δ�� Cn−1

ε (X;G)
δ�� · · ·��

where Cn
ε (X;G) = Hom(Cε

n(X);G) and δ = ∂∗ : Cn
ε (X;G) → Cn+1

ε (X;G) sending
ϕ ∈ Cn

ε (X;G) to ϕ∂ ∈ Cn+1
ε (X;G). Then we can define the ε-singular cohomology

group

Hn
ε (X;G) = Ker δ/ Im δ.

Let i∗με : Hn
ε (X;G) → Hn

μ (X;G) be the homomorphism induced by the natural
inclusion iμε : Cμ

n(X) ↪→ Cε
n(X) and we obtain a direct system ((Hn

ε (X))ε∈R+ ,
(i∗με)μ≤ε∈R+). Then we can take the direct limit

Hn
lc(X) = lim−−−→

ε∈R
+

((Hn
ε (X))ε∈R+ , (i∗με)μ≤ε∈R+) =

⊕
ε∈R+

Hn
ε (X)/S

where S is generated by

{qμi∗με([ϕε])− qε[ϕε] : [ϕε] ∈ Hn
ε (X), qεis the embedding : Hn

ε (X) ↪→
⊕
ε∈R+

Hn
ε (X)}.

Next, we will check whether the lc-homology satisfies the Eilenberg-Steenrod axioms
of homology theory. Obviously, the lc-homology theory satisfies the dimension
axiom.

Theorem 2.5 (Dimension Axiom). H lc
n ({pt}) = 0 for all n > 0.

Theorem 2.6 (Homotopy Axiom). Let f, g : X → Y be two uniformly continuous
maps. If f and g are uniformly homotopic, i.e., there is a family of uniformly
continuous maps ft : X → Y, t ∈ [0, 1] such that f0 = f , g0 = g and the associated
map F : X × [0, 1] → Y given by F (x, t) = ft(x) is uniformly continuous, then
f lc
∗ = glc∗ : H lc

n (X) → H lc
n (Y ), ∀n ≥ 0.
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Proof. Let {εn} be a non-increasing sequence of R+ with limn→∞ εn = 0. and we
can take

H lc
n (X) = lim←−((Hεm

n (X))∞m=1, (ϕεk,εl∗)l≤k∈N)

= {
−→
[a] ∈

∞∏
m=1

Hεm
n (X) : [aεl ] = ϕεk,εl∗([aεk ]) for all l ≤ k ∈ N}.

Then, we have

f lc
∗ (

−→
[a]) = {[

−−→
f(a)] : [f(aεl)] = ϕμk,μl∗([f(aεk)]) for all l ≤ k ∈ N} and

glc∗ (
−→
[a]) = {[

−−→
g(a)] : [g(aεl)] = ϕωk,ωl∗([g(aεk)]) for all l ≤ k ∈ N},

where an ε∗-continuous map composed with f and g will be a μ∗-continuous map
and an ω∗-continuous map respectively. Since a μk-continuous map is naturally an
ωk-continuous map if μk ≤ ωk, without loss of generality, we can assume μ∗ = ω∗.

Next, given a homotopy F : X × I → Y from f to g with associated maps
uniformly continuous and an εk-singular simplex σ : Δn → X, we can form the
composition F ·(σ× id) : Δn×I → X×I → Y with associated maps θk-continuous.
As in the case of singular homology theory, we can construct a prism operator which
cuts Δn × I into a sum of (n+ 1)-simplices in Δn × I by

P (σ) =

n∑
i=0

(−1)iF · (σ × id)|[v0,··· ,vi,wi,··· ,wn]

where Δn × 0 = [v0, · · · , vn] and Δn × 1 = [w0, · · · , wn]. Then P (σ) ∈ Cθk
n+1(Y ).

Pick τk = max{μk, θk} and we have P (σ), g� − f� − P∂ ∈ Cτk
n+1(Y ). As we did in

singular homology theory,

∂P (σ) = g�(σ)− f�(σ)− P∂(σ).

Hence, f and g induce the same homomorphism f∗ = g∗ : Hεk
n (X) → Hτk

n (Y ), k =
1, 2, · · · . By taking the inverse limit, f lc

∗ = glc∗ : H lc
n (X) → H lc

n (Y ), ∀n ≥ 0. �

Corollary 2.7. The maps f lc
∗ : H lc

n (X) → H lc
n (Y ) induced by a uniform homotopy

equivalence f : X → Y are isomorphisms for all n. In particular, if X is compact

and contractible, then H̃ lc
n (X) = 0 for any n.

Remark 2.8. Actually, we cannot simply omit the restriction “uniformly homo-
topic”. Indeed, let p ∈ S1 and consider a space S1 \ {p}. If ε is sufficiently small,
then we cannot distinguish between Cn(S

1) and Cε
n(S

1 \ {p}). Naturally, we have
Hn(S

1) ∼= Hε
n(S

1 \ {p}) (we will give a rigorous proof later in this section) since
B(p, 12ε) \ {p} is contractible under the “ε-scale” and can be regarded as a point.

By taking inverse limit, we have H lc
1 (S1 \ {p}) = Z, even though S1 \ {p} is obvi-

ously contractible. The reason for this is that the homotopy map connecting the
retraction of S1 \ {p} to a point and the identity map is not uniformly continuous.

Theorem 2.9 (Excision Axiom). Let Z and A be two subspaces of X such that

the closure of Z is contained in the interior of A, i.e., Z̄ ⊆ Å and dist(Z̄, ∂A) > 0.
Then the inclusion map i : (X − Z,A − Z) → (X,A) induces an isomorphism
ilc∗ : H lc

n (X − Z,A− Z) → H lc
n (X,A) for all n. Equivalently, for subspaces A,B ⊆

X with X = Å ∪ B̊, the inclusion (B,A ∩ B) ↪→ (X,A) induces isomorphisms
H lc

n (B,A ∩B) → H lc
n (X,A) for all n.
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Proof. For the cover {A,B} with X = A ∪ B and Z = X − B, pick 0 < ε <

dist(Z̄, ∂A) and denote C
ε{A,B}
n (X) by Cε

n(A + B), the formal sums of chains in
A and chains in B (here ε is globally fixed for this space). As we do for singular
homology theory, by barycentric subdivision of chains, we can construct a chain
map S : Cε

n(X) → Cε
n(X) and a chain homotopy T : Cε

n(X) → Cε
n+1(X), s.t.

∂T + T∂ = id− S.

In addition, for the cover A,B of X and any ε-simplex σ : Δn → X, there exists

m ∈ N, s.t. Smσ ∈ C
ε{A,B}
n (X) since dist(A ∩ B) > ε. It will follow that S, T

restrict to maps on C
ε{A,B}
n (X). Let Dm =

∑
0≤i<m TSi and it satisfies

∂Dm +Dm∂ = id− Sm.

Hence the iterate Sm is chain homotopic to id.
Then the inclusion Cε

n(A+B)/Cε
n(A) ↪→ Cε

n(X)/Cε
n(A) induces an isomorphism

on homology. In addition, we have a natural isomorphism Cε
n(B)/Cε

n(A ∩ B) →
Cε

n(A + B)/Cε
n(A) since both sides are free abelian groups generated by the ε-

singular n-simplices in B that are not contained in A. Composing these two iso-
morphisms on homology, we get Hε

n(B,A∩B) ∼= Hε
n(X,A) for all n. By taking the

inverse limit, H lc
n (B,A ∩B) ∼= H lc

n (X,A). �

As a corollary of excision theorem, we naturally have:

Theorem 2.10 (Refined Additivity Axiom). Let X =
⊔

λ∈Λ Xλ. If there exists

ε > 0 such that for any k, λ ∈ Λ, dist(Xk, Xλ) > ε, then H lc
n (X) ∼=

⊕
λ∈Λ H lc

n (Xλ)
for all n.

Example 2.11. X = { 1

2k
; k = 0, 1, 2, · · · } ∪ {0}.

Take εk = 1/2k+1. For a fixed εk, H
εk
0 (X) is the free abelian group generated

by elements of X that are ≥ 1/2k+1 and {0}, i.e., elements of Hεk
0 (X) are given

by (a0, a1, · · · , ak+2) ∈ Z
k+3. Hence the inverse limit of (Hεk

0 (X))n∈N is H lc
0 (X) =

Z
|X|, the direct product of Z, where |X| denotes the cardinality of X.

Next, for εk, X can be written as X = X
(k)
1

⊔
X

(k)
2 with

X
(k)
1 = {0, 1, 1

2
, · · · , 1

2k
}, X(k)

2 = { 1

2k+1
,

1

2k+2
, · · · }

and for n ≥ 1, Hεk
n (X) ∼= Hεk

n (X
(k)
1 )⊕Hεk

n (X
(k)
2 ). By dimension axiom,

Hεk
n (X(k)

n ) ∼= Hεk
n ({0})⊕Hεk

n ({1})⊕ · · · ⊕Hεk
n ({ 1

2k
}) = 0.

Since the diameter of X
(k)
2 is less than εk, by Proposition 2.3, Hεk

n (X
(k)
2 ) = 0.

Therefore, Hεk
n (X) = 0 holds for all εk and by taking the inverse limit, H lc

n (X) = 0
for n ≥ 1.

Consider the commutative diagram

0 �� Cε
n(A)

iε ��

∂

��

Cε
n(X)

jε ��

∂

��

Cε
n(X,A) ��

∂

��

0

0 �� Cε
n−1(A)

iε
�� Cε

n−1(X)
jε

�� Cε
n−1(X,A) �� 0
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where iε is inclusion and jε is the quotient map. By the Snake Lemma, we obtain
an induced long exact sequence in ε-homology:

· · · �� Hε
n(A)

iε∗ �� Hε
n(X)

jε∗ �� Hε
n(X,A)

∂ε �� Hε
n−1(A) �� · · ·

Then we have Proposition 2.12.

Proposition 2.12. Let A be a subspace of X. Then we have H lc
n (A) ∼= H lc

n (Ā) for
all n.

Proof. First we claim that for any ε > 0, Hε
n(A) ∼= Hε

n(Ā). Indeed, by the long
exact sequence in ε-homology

· · · �� Hε
n+1(Ā, A)

∂ε �� Hε
n(A)

iε∗ �� Hε
n(Ā)

jε∗ �� Hε
n(Ā, A) �� · · ·

it suffices to show that Hε
n(Ā, A) = 0 for all n.

Let [α] ∈ Hε
n(Ā, A) where α ∈ Cε

n(Ā) and ∂α ∈ Cε
n−1(A). Write α =

∑k
i=1 niαi

where αi : Δ
n → Ā is ε-continuous. For each αi, ∃δi > 0, s.t.

ωi = sup{d(αi(x1), αi(x2)) : d(x1, x2) < δi} < ε.

By definition,

∂α =
k∑

i=1

n∑
j=0

niαi|[v0, · · · , v̂j , · · · , vn]

which is a formal sum of ε-continuous maps. Hence the restrictions of αi : Δ
n → Ā

to the faces of Δn consist of ε-continuous maps whose images are contained in either
Ā or A, and in the formal sum of ∂α, all of those ε-continuous maps whose images
intersect ∂A are cancelled.

Then, we construct βi : Δ
n × I → Ā by

βi(
n∑

l=0
l �=j

λlvl, t) ≡ αi(
n∑

l=0
l �=j

λlvl)

where
∑n

l=0
l �=j

λl = 1 for j = 0, 1, · · · , n and

βi(

n∑
l=0

λlvl, 0) = αi(

n∑
l=0

λlvl)

where
∑n

l=0 λl = 1.
Moreover, for other points (x, t) ∈ Δn × I, if αi(x) ∈ A, then we let βi(x, t) =

αi(x). On the other hand, if αi(x) /∈ A, we do a perturbation for αi(x) under the
scale of (ε − ωi)/3 and we obtain α̃i(x). Then we let βi(x, t) = α̃i(x). Clearly, βi

is still ε-continuous and since Δn × I is a simplicial complex, βi can be seen as a

formal sum of ε-singular n + 1-simplices. Let β =
∑k

i=1 niβi ∈ Cε
n+1(Ā). Then

∂β − α ∈ Cε
n(A). So [α] = 0 in Hε

n(Ā, A) and Hε
n(A) ∼= Hε

n(Ā) for ∀ε > 0.
Finally, by taking the inverse limit, H lc

n (A) ∼= H lc
n (Ā) for all n. �

But unfortunately, the inverse limit functor preserving left exactness is still not
exact in our case.
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Example 2.13. Let A be the set of positive integers and let X be the set of all
n+ i

n where i, n are integers with 0 ≤ i < n, i.e.,

X = {1, 2, 2 1
2 , 3, 3 1

3 , 3
2
3 , 4, 4 1

4 , 4
1
2 , 4

3
4 , 5, 5 1

5 , · · · }.
Consider the short exact sequence

0 �� Ker iε∗ �� Hε
0(A) �� Im iε∗ �� 0

where Hε
0(A) is the same for all 0 < ε < 1, which is the direct sum of countably

infinitely many copies of Z and Hε
0(X) is a finitely generated abelian group. With-

out loss of generality, take εn = 1/n. Then elements of iεn∗(H
εn
0 (A)) ⊂ Hεn

0 (X)
are given by a sequence of integers (a0, a1, · · · , an), i.e., iεn∗(Hεn

0 (A)) is generated
by only n generators.

Let ([a]εn) ∈ lim←− Im(iεn), which can be written as

((a1, a2), (a1, a2, a3), · · · , (a1, a2, · · · , am), · · · )
and can have countably infinite length (the number of nonzero coefficients). But
the element of lim←−Hεn

0 (A) can be characterized by the element of the direct sum of
countably infinitely many copies of Z, so its length can only be finite. Therefore,
there is no element of H lc

0 (A) that can go to the elements with infinitely many
nonzero coordinates in lim←− Im iεn∗, i.e., H

lc
0 (A) → lim←− Im iεn∗ is not surjective and

we fail to show the exactness at Hε
0(X).

Furthermore, we can give a counterexample showing that the lc-homology doesn’t
satisfy the exactness axiom.

Example 2.14. Let B be the set of all n+ i
n where i, n are integers with 0 ≤ i < n,

i.e.,
B = {1, 2, 2 1

2 , 3, 3 1
3 , 3

2
3 , 4, 4 1

4 , 4
1
2 , 4

3
4 , 5, 5 1

5 , · · · }.
Take εn to be such that 1/n < εn ≤ 1/(n− 1). Clearly, Hεn

0 (B) is the free abelian
group generated by the elements of B which are ≤ n. For instance, for n = 3,
Hε3

0 (B) = Z
4, which is freely generated by {[1], [2], [2.5], [3] = [3 1

3 ] = [3 2
3 ]}. Thus,

elements of Hε3
0 (B) are given by the set of tuples {(a1, a2, a5/2, a3) ∈ Z

4}. Add a
“dummy variable” a0 = −(a1 + a2 + a5/2 + a3) and we obtain a sequence of five
integers (a0, a1, a2, a5/2, a3) whose sum is 0.

Take B+ = B
∐
{0}. Then the inverse limit of (Hεn

0 )n∈N is H lc
0 (B) = Z

|B+|, the
set of all infinite sequences of integers (a0, a1, a2, a5/2, . . . ) indexed by the elements
of B+.

Let A = B×{0, 1} = B
∐

B, the disjoint union of two copies of B with distance
> εn. Then H lc

0 (A) = H lc
0 (B)⊕H lc

0 (B) whose elements are given by pairs of infinite
sequences of integers(

(a0, a1, a2, a5/2, . . . ), (b0, b1, b2, b5/2, . . . )
)
.

Take X = A ∪ {1, 2, · · · } × I. For any ε < 1, Hε
1(X,A) is the free abelian group

generated by the set of vertical line segments in X, which is the direct sum of
countable copies of Z. Therefore, Hε

1(X,A) ∼= H lc
1 (X,A) and elements in H lc

1 (X,A)
can only have finite nonzero coefficients.

Note that the homomorphism H lc
0 (A) → H lc

0 (X) adds together the coefficients
an, bn for all integers n, so the kernel consists of all pairs of infinite sequence (a∗, b∗)
such that ak + bk = 0 for all integers k and ax = bx = 0 for all x ∈ B that are
not integers. So the kernel of H lc

0 (A) → H lc
0 (X) is a product of infinitely many
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copies of Z, i.e., it can have countably infinite nonzero coefficients that cannot be
the image of H lc

1 (X,A).
Therefore, the sequence

· · · �� H lc
1 (X,A) �� H lc

0 (A) �� H lc
0 (X)

is not exact at H lc
0 (A).

Remark 2.15. However, lc-cohomology satisfies the exactness axiom. Indeed, the
lc-cohomology sequence

· · · �� Hn
lc(X) �� Hn

lc(A) �� Hn+1
lc (X,A) �� Hn+1

lc (X) �� · · ·

with any coefficients is exact since it is the direct limit of the exact sequences

· · · �� Hn
ε (X) �� Hn

ε (A) �� Hn+1
ε (X,A) �� Hn+1

ε (X) �� · · ·

and the direct limit serves as an exact functor.
In particular, for our counterexample, the lc-cohomologies are all countably gen-

erated since they are countable direct limits of countably generated groups.
Therefore, the Universal Coefficient Theorem does not hold for lc-cohomology

theory in general.

To end this section, we will show the equivalence of lc-homology and singular
homology in one special case.

Theorem 2.16. Let (X, d) be a compact n-dimensional manifold endowed with a
Riemannian structure. Then the homomorphisms Hn(X) → H lc

n (X) are isomor-
phisms for all n.

Proof. Since X is a Riemannian manifold, by Theorem 5.1 in [2], every point has a
geodesically convex neighborhood. So for any x ∈ X, there exists εx > 0 such that
B(x, εx) ∼= R

n and X =
⋃

x∈X B(x, εx). By compactnesss, there exists N > 0 such

that X can be expressed as
⋃N

i=1 B(xi, εxi
). Let δ > 0 be a Lebesgue number for

this cover, i.e., for ∀x ∈ X, B(x, δ) ⊂ B(xk, εxk
) for some 1 ≤ k ≤ N . Hence each

point of X has a δ-ball homeomorphic to R
n.

Now for μ ≤ ε < δ, consider the short exact sequence

0 �� Cμ
n(X) �� Cε

n(X) �� Cε
n(X)/Cμ

n(X) �� 0

and by Snake Lemma, we have the following long exact sequence

· · · �� Hn+1(X
ε, Xμ) �� Hμ

n (X) �� Hε
n(X) �� Hn(X

ε, Xμ) �� · · ·

where Hn(X
ε, Xμ) denotes the homology group of

∂ : Cε
n(X)/Cμ

n(X) → Cε
n−1(X)/Cμ

n−1(X).

Then we claim that Hn(X
ε, Xμ) = 0 for all n.

Let [α] ∈ Hn(X
ε, Xμ) where α ∈ Cε

n(X) and ∂α ∈ Cμ
n−1(X). Write α =∑k

i=1 niσi with σi : Δ
n → X an ε-continuous map. By definition,

∂α =
k∑

i=1

n∑
j=0

niσi|[v0, · · · , v̂j , · · · , vn]
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which is a formal sum of μ-continuous maps. Hence the restrictions of σi : Δ
n → X

to the faces of Δn consist of μ-continuous maps and ε-continuous maps and in the
formal sum of ∂α, all of those ε-continuous maps are cancelled.

For σi, for any x ∈ Im(σi) ⊂ X,
⋃

x∈Im(σi)
B(x, δ) forms an open cover of its

image in X. Define S : Cε
n(X) → Cε

n(X) by sending each ε-singular n-simplex
σ : Δn → X to σ�SΔ

n where SΔn is the signed sum of the n-simplices in the
barycentric subdivision of Δn and Sσ is the corresponding signed sum of the restric-
tions of σ to the n-simplices of the barycentric subdivision of Δn. Since μ ≤ ε < δ,

we can guarantee that there exists m > 0, s.t. Smσi =
∑N

l=1 klσil with kl = ±1,

Im(σil) ⊂ B(xl, δ) for some xl ∈ Im(σi), where σil : Δ
n
l → X and

⋃N
l=1 Δ

n
l = Δn.

Next, for each σil : [v0, v1, · · · , vn] → X, let ϕl : B(xl, δ) → R
n be the coordinate

map and let fil = ϕl ◦ σil : Δ
n
l → R

n. Then we do the following construction,

Fil : Δ
n
l × I → R

n

(

n∑
j=0

λjvj , t) �→ (1− t)fl(

n∑
j=0

λjvj) + t

n∑
j=0

λjfl(vj).

(v0, 1) (v1, 1)

(v2, 1)

(v0, 0) (v1, 0)

(v2, 0)
(
∑2

j=0 λjvj , 0)

Δ2
l × I

X

B(xl, δ)

σil

ϕl

fl = ϕl ◦ σil

Let βil = ϕ−1
l ◦ Fil : Δ

n
l × I → X that can be seen as a homotopy equivalence

between an ε-continuous map and a continuous map. Since Δn
l × I is a simplicial

complex, βil can be regarded as a formal sum of ε-singular n+ 1-simplices.

Finally, given [α] ∈ Hn(X
ε, Xμ), we can take β =

∑k
i=1 ni

∑N
l=1 βil to be such

that ∂β is a formal sum of α as well as some μ-continuous maps, i.e., α − ∂β ∈
Cμ

n(X). Therefore, Hn(X
ε, Xμ) = 0 and Hμ

n (X) ∼= Hε
n(X) for 0 < μ ≤ ε < δ.

Actually, from the argument above, we can even see that Hε
n(X) ∼= Hn(X) for

0 < ε < δ. Therefore, by universal property of the inverse limit, H lc
n (X) ∼= Hn(X)

for all n. �
Example 2.17. Let p be a point in Sn, thenH lc

n (Sn\{p}) ∼= Z and H lc
i (Sn\{p}) =

0 for i �= n. Indeed, Sn \ {p} = Sn and Sn is a compact Riemannian manifold, so

H lc
i (Sn \ {p}) ∼= H lc

i (Sn) ∼= Hn
i (S

n).
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3. Topological entropy and lc-homology

In this section, we give a generalization of the entropy conjecture and conse-
quently establish a connection between topological entropy and lc-homology.

Let (X, d) be a compact metric space with rank(H lc
i (X)) < ∞ for each i ≥ 0 and

f : X → X be a continuous map. For the induced homomorphism f lc
∗i : H

lc
i (X) →

H lc
i (X), denote the spectral radius of f lc

∗i by ρ(f lc
∗i), i.e.,

ρ(f lc
∗i) = lim

n→∞
‖(f lc

∗i)
n‖ 1

n

where ‖(f lc
∗i)

n‖ is the operator norm of the linear operator (f lc
∗i)

n.

Theorem 3.1. h(f) ≥ log ρ(f lc
∗1).

Proof. Let H lc
1 (X) = lim←−((Hεn

1 (X))∞n=0, (ϕεkεl∗)l≤k) and fix ε0 > 0. Then any loop
of diameter < ε0 can be seen as contractible under ε0-scale. Choose μ < ε0 such
that whenever d(x, y) < μ, d(f(x), f(y)) < ε0. Then take δ < 1

3μ and clearly
there exists an ε0-continuous path from x to y whenever d(x, y) < 3δ. Let P be
a δ-net in X and define Cε0

1 (P, 3δ;R) to be the free abelian group generated by
{[x, y] : x, y ∈ P, d(x, y) < 3δ}, where [x, y] denotes some fixed ε0-path from x to y
of diameter < μ, with real coefficients. Similarly, let Cε0

0 (P ;R) be the free abelian
group generated by P with real coefficients and we can define ∂ε0 : Cε0

1 (P, 3δ;R) →
Cε0

0 (P ;R) by ∂ε0 [x, y] = y − x.
For any ε1 < 3δ, consider the ε0-coordinate of lim←−((Hεn

1 (X))∞n=0, (ϕεkεl∗)l≤k) that

is contained in ϕε1ε0∗(H
ε1
1 (X)). LetHε1ε0

1 (P, 3δ;R) be the subgroup ofHε0
1 (P, 3δ;R)

whose representatives are in Cε1
1 (P, 3δ;R) and it is naturally isomorphic to

ϕε1ε0∗(H
ε1
1 (X;R)). Indeed, every ε0-homology class in ϕε1ε0∗(H

ε1
1 (X;R)) has a rep-

resentative in Cε1
1 (P, 3δ;R) (defined similarly as Cε0

1 (P, 3δ;R)) obtained by breaking
down ε1-paths in Cε1

1 (X;R) into combinations of short ε1-paths joining points of
P , since ε1 < 3δ. Then we can define a norm ‖ ‖ on Cε1

1 (P, 3δ;R) by

‖
∑
i

aiσi‖ =
∑
i

|ai|

and a norm ‖ ‖′ on Hε1ε0
1 (P, 3δ;R) by

‖[u]‖′ = inf
[σ]=[u]

‖σ‖

(since Hε1ε0
1 (P, 3δ;R) is finite dimensional, all norms on it are equivalent).

Take ε1 to be sufficiently small. For a nonzero class [u] ∈ Hε1ε0
1 (P, 3δ;R), take

σ =
∑n

i=1 aiσi ∈ Cε1
1 (P, 3δ;R) to be its cycle with ‖σ‖ ≤ 2‖[u]‖′.

Let Qk be a minimal (k, δ)-spanning set for f . For each i, we do the following
construction with σi : I → X. Define

Fk = id×f × f2 × · · · × fk−1 : X �→ X × f(X)× · · · × fk−1(X)

and then the points of Fk(Qk) have δ-neighbourhoods in Xk (endowed with d∞
metric that takes the largest of the distances in each of the k factors) that cover
Fk(X). For the sequence of these neighbourhoods through which Fk(σi(I)) passes,
we pick a sequence

x1, x2, · · · , xb ∈ Qk

of some length b such that each Fk(xp) is in a δ-neighbourhood of Fk(σi(I)) ⊂ Xk,
d(f j(xp−1), f

j(xp))<3δ for 1<p≤b, and d(f j(σi(0)), f
j(x1)), d(f

j(xb), f
j(σi(1)))
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< δ for 0 ≤ j < k. Then σi is homologous to

τi = [σi(0), x1] ∗ [x1, x2] ∗ [x2, x3] · · · ∗ [xb−1, xb] ∗ [xb, σi(1)]

where ∗ denotes the composition of paths.
It is possible that the length b > |Qk|(the cardinality of Qk). If xj = xl for some

j �= l, then τi contains a loop from xj to xl = xj and this loop is contained in an
ε1 + δ neighbourhood of σiI which itself has diameter < ε1. So the diameter of the
loop is < ε0. Hence we could suppress xj+1, · · · , xl and assume that b ≤ |Qk|.

Since σi is ε0-continuous, without loss of generality, we can assume that fmσi

is ε
(m)
0 -continuous with ε

(k−1)
0 ≥ ε

(k−2)
0 ≥ · · · ≥ ε

(0)
0 = ε0. We claim that under

ε
(k−1)
0 -scale, fk−1σi is homologous (∼) to fk−1τi ∼ vi, where

vi = [fk−1(σi(0)), f
k−1(x1)] ∗ · · · ∗ [fk−1(xb−1), f

k−1(xb)] ∗ [fk−1(xb), f
k−1(σi(1))].

Indeed, f [xj−1, xj ] ∼ [f(xj−1), f(xj)] under ε
(1)
0 -scale since f does not extend

the path [xj−1, xj ] so much. Similarly, f [f(xj−1), f(xj)] ∼ [f2(xj−1), f
2(xj)] under

ε
(2)
0 -scale etc. and so fk−1[xj−1, xj ] ∼ [fk−1(xj−1), f

k−1(xj)] under ε
(k−1)
0 -scale

and

fk−1σ ∼
∑

aif
k−1σi ∼

∑
aif

k−1τi ∼
∑

aivi = v.

Let p : X → P be a map such that d(x, px) < δ for ∀x ∈ X. Then we replace

α by the ε
(k−1)
0 -singularly homologous cycle α obtained by replacing each ε

(k−1)
0 -

singular simplex [fk−1(x), fk−1(y)] in v by [pfk−1(x), pfk−1(y)] which is a generator

of C
ε
(k−1)
0

1 (P, 3δ;R) since d(pfk−1(x), pfk−1(y)) < 3δ.

Since fk−1
ε0∗1 is the induced homomorphism on the ε0-coordinate of

lim←−((Hεn
1 (X))∞n=0)

to H
ε
(k−1)
0

1 (X;R), by the choice of ‖ ‖′, we have

‖fk−1
ε0∗1([u])‖

′ ≤ ‖α‖ ≤ (1 + |Qk|)
∑

|ai|

whereas on Hε1ε0
1 (P, 3δ;R),

‖[u]‖′ ≥ 1

2
‖σ‖ =

1

2

∑
|ai|.

Therefore
‖fk−1

ε0∗1([u])‖
′

‖[u]‖′ < 2(1 + |Qk|)

and this holds for any nonzero [u] ∈ Hε0
1 (X;R) and all k. Hence ‖fk−1

ε0∗1‖
′ < 2(1 +

|Qk|). But ρ(fε0∗1) = limk→∞ ‖fk
ε0∗1‖′

1
k , so for the ε0-coordinate of

lim←−((Hεn
1 (X))∞n=0),

log ρ(fε0∗1) = lim
1

k
log ‖fk

ε0∗1‖
′ ≤ lim sup

1

k
log 2(1 + |Qk+1|)

= lim sup
1

k
log |Qk| = h(f, δ) ≤ h(f).

Similarly, this will hold for each coordinate of the given inverse limit. Hence,

log ρ(f lc
∗1) ≤ h(f).

�
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