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Abstract. We prove that a family of links, which includes all special alternat-
ing knots, does not admit non-nugatory crossing changes which preserve the
isotopy type of the link. Our proof incorporates a result of Lidman and Moore
[Trans. Amer. Math. Soc. 369 (2017), pp. 3639–3654] on crossing changes to
knots with L-space branched double-covers, as well as tools from Scharlemann
and Thompson’s [Comment. Math. Helv. 64 (1989), pp. 527–535] proof of

the cosmetic crossing conjecture for the unknot.

1. Introduction

The cosmetic crossing conjecture, attributed to Xiao-Song Lin [12, Problem 1.58],
posits that changing a nontrivial crossing in a link diagram must change the isotopy
type of the link. More concretely, given an oriented link L ⊂ S3, define a crossing
disk to be a disk D ⊂ S3 which intersects L transversely at two points of opposite
orientation. A crossing change is then performed by passing a neighborhood of one
point of L ∩D through a neighborhood of the other, as in Figure 1. The crossing
is said to be nugatory if ∂D bounds a disk in S3 − L, and a crossing change is
cosmetic if it preserves the isotopy type of L.

Conjecture 1.1 (Cosmetic crossing conjecture). For any knot L ⊂ S3, only a
nugatory crossing admits a cosmetic crossing change.

Conjecture 1.1 has been affirmed for two-bridge knots [19] and fibered knots
[11], and significant partial results exist for genus one knots and satellite knots
[1, 2, 9, 10]. Further, Lidman and Moore have verified the conjecture for all knots
L ⊂ S3 such that the branched double-cover Σ(L) is an L-space, and L has square-
free determinant [13]; their work has been extended by Ito [8].

In this note, we prove the cosmetic crossing conjecture for all special alternating
knots in S3. (The case of special alternating knots with square-free determinant is
included in [13].)

Theorem 1.2. Let L ⊂ S3 be a special alternating knot. Then L admits no
cosmetic, non-nugatory crossing change.

Actually, we prove Conjecture 1.1 for a family of oriented links which includes
all non-split special alternating links with certain orientations, and some non-
alternating links—see Theorem 3.2.
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Figure 1. A crossing change

A diagram D ⊂ S2 of a link L ⊂ S3 is alternating if crossings alternate over-
under as one traverses any link component of the diagram. The diagram is special if
one of its checkerboard surfaces, constructed by shading the components of S2−D
in a checkerboard fashion and taking the union of the shaded regions with half-
twisted bands at each crossing, is orientable. Equivalently, a diagram is special
if one of its Tait graphs is bipartite. A link L ⊂ S3 is called special alternating
if it admits a diagram which is both alternating and special. Special alternating
links include (2, n)-torus links, and many twist and pretzel knots. More generally,
as alluded to above, a special alternating diagram can be constructed from any
embedding of a bipartite planar graph in S2.

Our proof of Theorem 1.2 incorporates a key result from Lidman and Moore [13],
as well as tools from Scharlemann and Thompson’s proof of Conjecture 1.1 for the
unknot [18, Theorem 1.4]. As a corollary, we obtain the following:

Corollary 1.3. Suppose a link L ⊂ S3 admits a cosmetic, non-nugatory crossing
change, and Σ(L) is an L-space. Then L bounds two minimal-genus Seifert sur-
faces, with Seifert forms represented by matrices (vij) and (v′ij), such that v11 =
v′11 + 1 and vij = v′ij otherwise.

Corollary 1.3 is analogous to a finding of Balm, Friedl, Kalfagianni and Powell
[1, Corollary 1.3], who use a related approach to study genus one knots.

2. Background

A three-manifold Y is an L-space if it is a rational homology sphere with

rank(ĤF (Y )) = |H1(Y ;Z)|, where ĤF denotes the hat flavor of Heegaard Floer
homology. Of importance to us is the fact that, if L ⊂ S3 is a non-split alternating
link, then its branched double-cover, Σ(L), is an L-space [16].

Let L ⊂ S3, and D a crossing disk for L as above. A crossing arc is an embedded
arc γ ⊂ D connecting the two points of L ∩D, and we use γ̃ to denote the closed
curve which is the preimage of γ in the branched covering Σ(L) → S3. Lidman and
Moore proved the following:

Theorem 2.1 ([13, Remark 13]). Let L be an oriented knot with Σ(L) an L-space,
D a crossing disk for L, and γ a crossing arc in D. If the crossing change induced
by D is cosmetic, and γ̃ is nullhomologous in Σ(L), then D is nugatory.

Their argument uses the surgery characterization of an unknot in an L-space,
due to Gainullin [4]. In the appendix, we extend Theorem 2.1 to links.

Next, we recall the Gordon-Litherland form. Given a surface S ⊂ S3, this is a
symmetric, bilinear form GS : H1(S)

2 → Z [5]. Briefly, let ν(S) ⊂ S3 denote the
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unit normal bundle of S, with projection p : ν(S) → S. Given homology classes
a, b ∈ H1(S), represented by embedded multi-curves α, β ⊂ S, we define

GS(a, b) = lk(α, p−1β),

where lk is the linking number. If L ⊂ S3 is an oriented link, and S a compatibly
oriented Seifert surface for L, then GS coincides with the symmetrized Seifert form
of S, and the signature σ(GS) equals the signature of L. If, in addition, S is
connected, then the nullity η(GS) is a link invariant called the nullity of L, η(L).
(In some literature, η(L) is defined to be η(GS) + 1.)

Convention 2.2. All links are oriented, and we require Seifert surfaces be oriented
compatibly with the link. We allow Seifert surfaces to be disconnected, but not to
have closed components.

A surface in S3 is called definite if its Gordon-Litherland form is positive- or
negative-definite. If D ⊂ S2 is an alternating link diagram, then the two checker-
board surfaces of D are known to be definite; conversely, definite surfaces can be
used to characterize alternating links topologically [6, 7]. In particular, a suitably
oriented, non-split special alternating link bounds a definite Seifert surface.

3. Proof of main result

We say a Seifert surface spanning an oriented, non-split link L ⊂ S3 is taut if it
has maximal Euler characteristic among all Seifert surfaces of L. (For equivalence
with the standard definition of tautness, see [18, Lemma 1.2].) We have:

Lemma 3.1. Suppose non-split L ⊂ S3 bounds a definite Seifert surface S. Then
S is taut in S3 − L, and conversely every taut Seifert surface for L is definite.

Proof. First, we argue that S has the maximal number of components of any Seifert
surface for L. Suppose some Seifert surface S′ has b0(S

′) > b0(S). We form a

connected Seifert surface Ŝ for L by joining the components of S using b0(S) − 1

tubes, and likewise form a connected surface Ŝ′ by adding b0(S
′) − 1 tubes to S′.

We have

η(GŜ) = η(GŜ′) ≥ b0(S
′)− 1,

since each tube increases the nullity by one. It follows that

η(GS) = η(GŜ)− b0(S) + 1 ≥ b0(S
′)− b0(S) > 0,

contradicting the definite-ness of S.
Next, as in [6, Proposition 3.1], for any Seifert surface S′ of L, we have

b1(S
′) ≥ |σ(L)| = b1(S),

the last equality following from the fact that S is definite. This shows S has minimal
b1, and therefore maximal Euler characteristic. Finally, any Seifert surface S′ with
χ(S′) = χ(S) must have b1(S

′) = b1(S) = |σ(L)|, so must be definite as well. �

Theorem 3.2. Suppose an oriented link L ⊂ S3 satisfies the following conditions:

• The link L bounds a definite Seifert surface S.
• The branched double-cover Σ(L) is an L-space.

Then L does not admit a non-nugatory, cosmetic crossing change.
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Figure 2. Two oriented lifts of S − n(L), in a neighborhood of a

meridian of ∂n(L̃)

We note the second condition above implies L is non-split, since Σ(L) is a rational
homology sphere. Examples of non-alternating links which satisfy the hypotheses
of Theorem 3.2 include the knots 949, 10134, and 10142. These knots are known to
be quasi-alternating [3, 15], and hence have branched double-covers which are L-
spaces. Further, each knot K satisfies 2g(K) = |σ(K)|, g the genus of K, implying
the existence of a definite Seifert surface. These examples were found with the help
of KnotInfo [14].

Proof of Theorem 3.2. Let L be a link satisfying the hypotheses of the theorem, and
let D be a cosmetic crossing disk for L. Let K = ∂D, and let M = S3 − n(K ∪L),
where n indicates a regular neighborhood. Following [18], let M−1, M0, and M∞
denote the result of filling M along ∂n(K) by a solid torus with slope −1, 0, and
∞ respectively. Then M∞ = S3 − n(L), and without loss of generality, M−1

is the result of performing the crossing change indicated by D. By assumption,
M−1

∼= M∞.
Let S ⊂ M be a Seifert surface for L which is taut in M . Shrinking D if

necessary, we may assume that S ∩D is a single arc γ, which is also a crossing arc
for D. Scharlemann and Thompson prove that S is taut in at least two of M−1, M0,
and M∞ [18, Claim 1]. Thus S is taut in at least one of M−1 and M∞, and since
these manifolds are homeomorphic, S is taut in both. Let S denote the inclusion
of S in M∞, and let S′ denote the inclusion of S in M−1. It follows from Lemma
3.1 that both S and S′ are definite.

We consider two cases.

Case 1 (The arc γ separates S). Let S′′ be one of the components of S − γ, and

let S̃, S̃′′, L̃, γ̃ ⊂ Σ(L) denote the respective preimages of S, S′′, L, and γ in the
branched covering Σ(L) → S3. (Here we view S as a subset of S3, rather than a
subset of S3 − n(L).) Considering the classical construction of a branched cover

from a Seifert surface [17], we see that S̃ − n(L̃) consists of two lifted copies of
S − n(L); we orient these copies by lifting an orientation from S − n(L). When

restricted to a meridian circle of ∂n(L̃), the covering map Σ(L) → S3 has the form

z 
→ z2. Thus, near such a meridian, the two components of S̃ − n(L̃) are oriented
as in Figure 2.

The surface S̃ is constructed by gluing the two lifted copies of S−n(L) together

along the annuli S̃ ∩ n(L̃). With Figure 2 in mind, by switching the orientation
of one of the lifted copies, these annuli can be made to preserve orientation, and
therefore S̃ is orientable. Since S̃′′ ⊂ S̃, S̃′′ is also orientable, and its boundary is
exactly γ̃. The existence of S̃′′ shows γ̃ is nullhomologous in H1(Σ(L)), so Theorem
2.1 implies the crossing change is nugatory in this case.

Case 2 (The arc γ does not separate S). In this case, we choose a basis a1, . . . , an for
H1(S), represented by curves α1, . . . , αn ⊂ S respectively, such that α1 intersects
D one time, and αi ∩ D = ∅ for i �= 1. Let G = (gij) be the symmetric matrix
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representing the Gordon-Litherland form GS in this basis. We also let a1, . . . , an
denote the same basis for H1(S

′), i.e. the basis induced by the inclusion S ⊂ M ↪→
M−1. Let G

′ = (g′ij) be the corresponding matrix representing GS′ .
We have | det(G)| = | det(G′)| = det(L), and since GS and GS′ are both definite

of the same rank and sign, determined by σ(L), det(G) = det(G′). Further, by
inspecting how S changes in a neighborhood of D when (−1)-surgery is performed,
we calculate that g′11+2 = g11, and gij = g′ij for i and j not both equal to one. We
consider computing the determinants of G and G′ using a Laplace expansion along
the top row—since the two quantities are equal, and the matrices differ at only one
entry, we find

g11 det(G11) = g′11 det(G
′
11) = (g11 + 2) det(G11),

where G11 denotes the matrix formed by removing the first row and column of G.
This matrix represents the restriction of GS to the subspace of H1(S) spanned by
a2, . . . , an; as the restriction of a definite form, this form is also definite, and hence
det(G11) �= 0. We conclude that

g11 = g11 + 2,

a contradiction which indicates this case cannot occur.

�

Proof of Corollary 1.3. Following the proof of Theorem 3.2, we obtain two taut
Seifert surfaces for L, with the crossing arc γ embedded as a non-separating arc in
each. Choosing the homology bases a1, . . . , an, as above, gives the desired Seifert
matrices. �

Finally, we give a minor application of Corollary 1.3.

Corollary 3.3. Suppose a knot L ⊂ S3 admits a cosmetic, non-nugatory crossing
change, and Σ(L) is an L-space. Then, letting m denote the size of a minimal
generating set for H1(Σ(L)), we have m < 2g(L).

Proof. Let G and G′ be the two matrices obtained in the proof of Theorem 3.2,
representing two Gordon-Litherland forms of L with rank 2g(L). We use the fact
that G and G′ give presentations for the finite abelian group H1(Σ(L)), and com-
pute this group’s invariant factors. For an invertible matrix A, let ΓA

i denote the
greatest common divisor of the determinants of the i-by-i minors of A, and let
δAi = ΓA

i /Γ
A
i−1. We recall, via the Smith normal form of A, that the invariant

factors of the abelian group presented by A are given by the set of all δAi not equal
to 1.

Since G and G′ have the same rank and present the same group, we have

gcd
ij

(gij) = δG1 = δG
′

1 = gcd
ij

(g′ij).

Because g11 = g′11 +2, δG1 divides 2. Additionally, since
∏

i δ
G
i = det(L), and knots

have odd determinant, we have δG1 = 1. Thus m < rk(G) = 2g, as desired. �

This result extends [1, Theorem 1.1(2)]. In general m ≤ 2g(L), but equality is
occasionally attained. For example, the pretzel knot K = P (9, 9, 9, 9,−27) is quasi-
alternating by [3, Theorem 3.2(1)], hence has branched double-cover an L-space.
The knot K has genus two and H1(Σ(K)) ∼= Z/9⊕Z/9⊕Z/9⊕Z/99, so Corollary
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3.3 shows K does not admit cosmetic crossings. This example is easily generalized,
for instance by considering the family of pretzel knots P (m2,m2,m2,m2,−3m2)
with m odd, to produce many new examples of knots which do not admit cos-
metic crossings. Choosing square numbers ensures the resulting pretzel knot is not
included in the main theorem of [13].

Appendix A. Extending Theorem 2.1 to links

In what follows, let L ⊂ S3 be a link, D a crossing disk, and γ the associated
crossing arc. As above, let γ̃ denote the closed curve which is the preimage of γ in
the branched cover Σ(L).

The extension of Theorem 2.1 to links ultimately reduces to Proposition A.1.

Proposition A.1. Suppose det(L) �= 0, and the crossing change associated with
D is cosmetic. If γ̃ is a null-homologous unknot in Σ(L), then D is nugatory.

To complete the argument, the reader may consult the proof of [13, Thm. 2],
using Proposition A.1 in place of [13, Prop. 12]. Our proof closely follows that of the
latter proposition, and we set up some additional notation before sketching it. Let
B ⊂ S3 be a regular neighborhood of γ, chosen so that B∩D is a disk contained in
int(D), and so that B∩L consists of two arcs. Observe that the preimage B̃ ⊂ Σ(L)

of B under the branched covering is a solid torus, and let N = Σ(L) − B̃. Since
det(L) �= 0, Σ(L) is a rational homology sphere, and a Mayer-Vietoris argument
shows H2(N ;Q) ∼= 0 and H1(N ;Q) ∼= Q. There is a unique slope λN of ∂N which
generates the kernel of the inclusion-induced map H1(∂N ;Q) → H1(N ;Q). This
slope λN is called the rational longitude of N ; we refer the reader to [13, 20] for
more details.

Proof. Let Γ̃ ⊂ Σ(L) be a disk with boundary γ̃; by definition, Γ̃ ∩ ∂N is the
rational longitude λN of N . Let τ denote the covering involution on Σ(L). By the

equivariant Dehn’s Lemma, we may assume that either τ (Γ̃) ∩ Γ̃ = ∅ or τ (Γ̃) = Γ̃.

Suppose τ (Γ̃)∩ Γ̃ is empty. This implies Γ̃ descends to a properly embedded disk

Γ in S3−B. Since Γ̃ avoids the fixed-point set of τ , which is the preimage of L, the
disk Γ is disjoint from L. To show D is nugatory, we will show that ∂Γ is parallel
to D ∩ ∂B in ∂B −L. If follows that ∂D bounds a disk disjoint from L, formed by
gluing Γ to the annulus D−B. To show ∂Γ and D ∩ ∂B are parallel in ∂B −L, it
suffices to show that D ∩ ∂B lifts to λN in ∂N .

Let L0 be the link formed by replacing the crossing ball B with the ball shown
in Figure 3c, which we label B0. Let Δ denote the Alexander polynomial, which
satisfies the skein relation

ΔL+
(x)−ΔL−(x) = −(x−1/2 − x−1/2)ΔL0

(x).

Since L+ = L− = L, we conclude ΔL0
≡ 0. In particular, det(L0) = ΔL0

(−1) = 0,
so H1(Σ(L0)) is infinite, and by Poincaré duality and the universal coefficient the-

orem, so is H2(Σ(L0)). Let B̃0 be the preimage of B0 in Σ(L0), which is equivalent
to a Dehn filling of N along some slope γ0. Using the fact that H2(N ;Q) ∼= 0, the
Mayer-Vietoris theorem gives an exact sequence

0 → H2(Σ(L0);Q) → H1(∂N ;Q) → H1(N ;Q)⊕H1(B̃0;Q).
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(A) L+ (B) L− (C) L0

Figure 3. Crossing balls

Let a ∈ H2(Σ(L0);Q) be non-trivial, and let ∂a be its (non-trivial) image in
H1(∂N ;Q). By exactness, ∂a is in the kernel of the second map, so ∂a is triv-

ial in H1(B̃0;Q) and H1(N ;Q). Since ∂a is trivial in H1(B̃0;Q), ∂a is a rational
multiple of γ0 (forgetting the orientation of the former). Since ∂a is trivial in
H1(N ;Q), ∂a is a rational multiple of λN . Thus γ0 = λN .

We’ve shown the rational longitude of N corresponds to the slope γ0 of the Dehn
filling B̃0. Since D∩B0 is a disk separating the two components of L0∩B0, D∩B0

lifts to a meridian disk of B̃0, and D ∩ ∂B0 = D ∩ ∂B lifts to γ0 = λN . This
completes the proof in this case, and the case of τ (Γ̃) = Γ̃ is handled just as in the
proof of [13, Prop. 12]. �
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