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PIECEWISE LINEAR FUNCTIONS REPRESENTABLE WITH

INFINITE WIDTH SHALLOW RELU NEURAL NETWORKS
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Abstract. This paper analyzes representations of continuous piecewise lin-
ear functions with infinite width, finite cost shallow neural networks using the
rectified linear unit (ReLU) as an activation function. Through its integral
representation, a shallow neural network can be identified by the correspond-
ing signed, finite measure on an appropriate parameter space. We map these
measures on the parameter space to measures on the projective n-sphere cross
R, allowing points in the parameter space to be bijectively mapped to hyper-

planes in the domain of the function. We prove a conjecture of Ongie et al.
[A Function Space View of Bounded Norm Infinite Width ReLU Nets: The
Multivariate Case, arXiv, 2019] that every continuous piecewise linear func-
tion expressible with this kind of infinite width neural network is expressible
as a finite width shallow ReLU neural network.

1. Introduction

We consider shallow neural networks which use rectified linear unit (ReLU) as the
activation function. It is well known ReLU has universal approximation properties
on compact domains, and in practice has advantages over sigmoidal activation
functions [6, 16]. Finite width shallow neural networks with n + 1-dimensional
input take the form

(1) f(x) = c0 +
k∑

i=1

ciσ (ai · x− bi)

where ai ∈ Sn (the unit sphere in Rn+1) and bi, ci ∈ R for all i.
Generalizing to infinite width neural networks transforms the sum to an integral

and the weights ci to a signed measure μ on Sn × R where

(2) f(x) =

∫
Sn×R

σ (a · x− b) dμ(a, b) + c0.

Some authors choose instead to have the measure and integral over all of Rn+1×R.
An important class of functions are those representable with an infinite width neural
network with finite representation cost, which corresponds with |μ| (Sn × R) < ∞
[3]. Similar classes of functions are studied in [7] as Barron spaces and in [2] as F1.

To ensure the integral in Equation 2 is well defined, we can require μ has a finite
first moment where

∫
Sn×R

|b| d|μ|(a, b) < ∞. Alternatively, Ongie et al. in [15]
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writes the integral in the form

(3)

∫
Sn×R

σ(a · x− b)− σ(−b) dμ(a, b) + c0,

so the integral is well-defined whenever μ is a finite measure. Since they differ
only by a constant, the class of functions representable with a finite measure in the
form of Equation 2 is a subclass of the class of functions representable with a finite
measure in the form of Equation 3 [15]. Therefore, we choose to consider integral
representations in the form of Equation 3.

Since σ(a · x− b) is a ridge function, integral representations are also naturally
studied as the dual ridgelet transform on distributions [4, 14, 18]. Functions with
these representations are then often analyzed with the Radon transform [14,15,18].
Savarese in [17] characterized which one-dimensional functions are representable
with infinite width, finite cost shallow ReLU neural networks.

Many finitely piecewise linear functions cannot be represented with a finite width
ReLU shallow network, including all non-trivial compactly supported piecewise
linear functions on Rn, n ≥ 2 [15]. Lower and upper bounds on number of layers
needed to represent continuous piecewise linear functions with finite width, deep
neural networks have been established [1, 11]. However, the class of infinite width
ReLU networks is certainly more expressive than the class of finite width networks
in general, such as being able to express some non-piecewise linear functions [17].
It is not obvious if the class of infinite width shallow ReLU neural networks can
express a finitely piecewise linear function that the class of finite width shallow
ReLU networks cannot. By decomposing measures, E and Wojtowytsch in [8]
established the set of points of non-differentiability of a function in a Barron space
must be a subset of a countable union of affine subspaces. However, proper subsets
are possible. In [15], Ongie et al. proved many compactly supported piecewise
linear functions are not representable with finite cost, infinite width shallow ReLU
neural networks. This led to Conjecture 1.

Conjecture 1 (Ongie et al., [15]). A continuous piecewise linear function f has
finite representation cost if and only if it is exactly representable by a finite width
shallow neural network.

A finite representation cost corresponds with the existence of a finite measure μ
such that f admits a representation in the form of Equation 3. Our main result is
to prove the conjecture, which for precision we formulate here as a theorem.

Theorem. Let f : Rn+1 → R be a continuous finitely piecewise linear function.
If there exist a finite, signed Borel measure μ on Sn × R and c0 ∈ R such that
f(x) =

∫
Sn×R

σ (a · x− b)−σ(−b) dμ (a, b)+ c0, then f is representable as a finite-
width network as in Equation 1.

This result will be a corollary of Theorem 1, which will be stated after establish-
ing notation.

1.1. Notation. For m ∈ N, let [m] := {1, . . . ,m}.
The rectified linear unit (ReLU) function from R to R is denoted σ(t) and defined

as σ(t) := max{0, t}.
The pushforward measure of measure μ induced by a mapping ϕ is denoted

μ ◦ ϕ−1.
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Regular lower case Latin letter variables generally represent real numbers: x, y, z,
t ∈ R. Once n is fixed, bold lower case Latin letter variables indicate elements of
Rn+1: a,x ∈ Rn+1. Bold lower case Greek letter variables indicate elements of Rn:
ζ, ξ ∈ Rn.

Let ha,b := {x ∈ Rn+1 | a · x = b}.
For m ∈ N, m − 1 dimensional affine subspaces in Rm are called hyperplanes.

The m-sphere in Rm+1 is denoted Sm. The real-projective space is denoted RP
m.

Let em+1 := (0, . . . , 0, 1) ∈ Sm.
Let S0 := {1} ⊆ S0. For m ≥ 1, let Sm be defined as

(4) Sm := {x ∈ Sm | em+1 ·x > 0}∪{(x1, . . . , xm, 0) | (x1 . . . , xm) ∈ Sm−1} ⊆ Sm.

Let−Sm denote the pointwise negation of all the points in Sm. By simple induction,
exactly one of x,−x ∈ Sm for all x ∈ Sm. Therefore, Sm = Sm 	 (−Sm).

Let Dd+f(x) denote the one-sided directional derivative of f in the positive
direction of d for d ∈ Sn.

For any metric space W , B(W ) denotes the set of Borel sets and M(W ) denotes
the set of Borel, finite, signed measures on W .

1.2. Overview. The key to proving the conjecture is the following theorem. Recall,
a representation of RPn, Sn, is precisely defined in Equation 4.

Theorem 1. Suppose μ ∈ M (Sn × R) is such that

(1) μ is atomless
(2) f(x) =

∫
Sn×R

σ (a · x− b)−σ(−b) dμ (a, b) is a continuous countably piece-

wise linear function from Rn+1 to R.

Then, μ is the zero measure.

Informally, Theorem 1 states, with Sn ×R as a parameter space, atomless mea-
sures cannot induce the sudden change in first-order derivatives that occur at the
boundaries of affine pieces. Since point masses have easy-to-characterize effects on
affineness, this implies the conjecture with Sn×R as the parameter space. Lemmas
4 and 5 show expanding the parameter space only introduces new affine terms to
the representable functions. The conjecture will be established in Corollary 3.

The conjecture only concerns finitely piecewise linear functions and its proof
only relies on Theorem 1 applied to finitely piecewise linear functions. However,
the proof of Theorem 1 naturally extends to countably piecewise linear functions
and provides insight into the role of point masses for this broader class of functions,
particularly in Corollary 2.

Additionally, the conjecture implies non-trivial compactly supported piecewise
linear functions in dimensions higher than two cannot be represented in a shallow
ReLU network (Corollary 4). In contrast, many such functions are representable in
finite-width two-layer networks, such as f(x1, x2) = σ(1−σ(2x1)−σ(−x1+2x2)−
σ(−x1 − 2x2)).

2. Preliminaries

We start by formally defining countably piecewise linear.

Definition 1. A convex polyhedron C is a subset of Rn such that C =
⋂

H∈H H
where H is a finite set of closed half-spaces. A defining supporting hyperplane of C
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with respect to H is a hyperplane h that is the boundary of a half-space in H such
that C ∩ h �= ∅.

Remark 1. For each polyhedron, there are many acceptable choices ofH of varying
cardinalities. We will assume there is a fixed choice and refer to the finite set of
defining supporting hyperplanes of C. The boundary of C is always a closed subset
of the union of defining supporting hyperplanes.

Definition 2. A continuous countably (finitely) piecewise linear function is a con-
tinuous function such that there is a countable (finite) collection of convex poly-
hedra that cover the domain where the function is affine when restricted to each
polyhedron.

Remark 2. The requirement of continuity in the definition does not impose any
limitations on the results. Every function with a representation of the form f(x) =∫
Sn×R

σ(a · x− b)− σ(−b) dμ(a, b) + c0 is continuous.

In our proof, we use the fact first-order directional derivatives are constant on
affine polyhedra. To simplify calculations, we will be particularly interested in
directional derivatives in the direction en+1 := (0, . . . , 0, 1).

Lemma 1. Suppose f(x) =
∫
Sn×R

σ (a · x− b) − σ(−b) dμ (a, b) where μ ∈
M (Sn × R). Then,

De+
n+1

f(x) =

∫
{(a,b)∈Sn×R | a·x≥b}

a · en+1 dμ (a, b) .

Proof. First,

lim
h→0+

f(x+ hen+1)− f(x)

h

= lim
h→0+

∫
Sn×R

σ (a · x− b+ a · (hen+1))− σ (a · x− b)

h
dμ (a, b) .

Whenever a · x < b, for sufficiently small h,

σ (a · x− b+ a · (hen+1)) = σ (a · x− b) = 0.

Thus, when a · x < b,

lim
h→0+

σ (a · x− b+ a · (hen+1))− σ (a · x− b)

h
= 0.

By definition of Sn, a·(hen+1) ≥ 0 when h ≥ 0 for all a ∈ Sn. Hence, if a·x−b ≥ 0,
then a · x − b + a · (hen+1) ≥ 0 for all a ∈ Sn and h ≥ 0. It follows whenever
a · x ≥ b,

lim
h→0+

σ (a · x− b+ a · (hen+1))− σ (a · x− b)

h

= lim
h→0+

a · x− b+ a · (hen+1)− (a · x− b)

h
= lim

h→0+

a · (hen+1)

h
= a · en+1.

Further, as ‖a‖ = ‖en+1‖ = 1, for all a,x, b and all h ≥ 0,

(5)

∣∣∣∣σ (a · x− b+ a · (hen+1))− σ (a · x− b)

h

∣∣∣∣ ≤ |a · (hen+1)|
h

≤ 1.
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Since |μ|(Sn × R) < ∞, by Equation 5, the Dominated Convergence Theorem
applies. Therefore,

lim
h→0+

f(x+ (hen+1))− f(x)

h

=

∫
Sn×R

lim
h→0+

σ (a · x− b+ a · (hen+1))− σ (a · x− b)

h
dμ (a, b)

=

∫
{(a,b)∈Sn×R | a·x≥b}

lim
h→0+

a · (hen+1)

h
dμ (a, b)

=

∫
{(a,b)∈Sn×R | a·x≥b}

a · en+1 dμ (a, b) . �

The proof of Theorem 1 will proceed by induction on the dimension of the do-
main, therefore we prove the one-dimensional case first. While the one-dimensional
case is much simpler than the general case, the technique of using first-order deriva-
tives to conclude a measure is zero will be repeated.

Lemma 2. Suppose μ ∈ M(S0 × R) is such that

(1) μ is atomless
(2) f(x) =

∫
S0×R

σ (ax− b) − σ(−b) dμ (a, b) is a continuous countably piece-
wise linear function.

Then, μ is the zero measure.

Proof. Since |S0| = |{1}| = 1, μ is uniquely determined by its marginal mea-
sure on R, μR. As f is countably piecewise linear, there are countably many
intervals {[qi, ri]}i∈N such that f is affine when restricted to each interval and
R \
(⋃

i∈N
(qi, ri)

)
is countable. Further, μ is atomless, so μR is determined by its

values on closed intervals that are subsets of intervals in {(qi, ri)}i∈N [12]. Thus, it
suffices to show μR([x1, x2]) = 0 whenever f is affine on (q, r) and [x1, x2] ⊆ (q, r).

Suppose f is affine on (q, r) and [x1, x2] ⊆ (q, r). By Lemma 1,

f ′(x2) =

∫
{(a,b)∈S0×R | x2≥b}

a · 1 dμ (a, b) =

∫
{(a,b)∈S0×R | x2≥b}

1 · 1 dμ (a, b)

=

∫
{(a,b)∈S0×R | x2≥b}

1 dμ (a, b) = μ
({

(a, b) ∈ S0 × R | x2 ≥ b
})

.

Similarly,
f ′(x1) = μ

({
(a, b) ∈ S0 × R | x1 ≥ b

})
.

Therefore, as f is affine in-between x1 and x2,

0 = f ′(x2)− f ′(x1) = μ
(
{1} ×

(
x1, x2

])
= μ
(
{1} ×

[
x1, x2

])
= μR([x1, x2]).

�

3. Constructing a dense set of directions

Any set of countably many points has zero weight with respect to an atomless
measure. In the one-dimensional case, this allows us to disregard points in S0 × R

associated with boundaries when determining μ is the zero measure. However,
in higher dimensions there are more than countably many points associated with
boundaries. Nonetheless, a carefully picked subset of points associated with bound-
aries will have zero weight with respect to μ and will be large enough to ultimately
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conclude μ is the zero measure. The first step to constructing this set is finding a
large set of non-co-hyperplanar points.

Proposition 1. For every n ∈ N, there exists a set S ⊆ Rn such that

(1) For every open ball B ⊆ Rn, S ∩B is uncountable
(2) For every hyperplane P ⊆ Rn, |S ∩ P | ≤ n.

Proof. By [19], there is a set I ⊆ R algebraically independent over Q such that
|I| = |R|.

There is a bijective function φ : [n]× N× R → I.
Let {Bm}m∈N be an enumeration of open balls in Rn centered at rational coor-

dinates with rational radius.
Note, 0 �∈ I. For every m ∈ N, r ∈ R, there exist q1,m,r, . . . , qn,m,r ∈ Q\{0} such

that
(q1,m,rφ(1,m, r), . . . , qn,m,rφ(n,m, r)) ∈ Bm.

The set {q�,m,rφ(�,m, r) | � ∈ [n],m ∈ N, r ∈ R} is also algebraically independent
and each element has a unique representation of the form q�,m,rφ(�,m, r). Define

S := {(q1,m,rφ(1,m, r), . . . , qn,m,rφ(n,m, r)) | m ∈ N, r ∈ R}.
Consider an open ball B ⊆ Rn. Since Q is dense, there is m0 such that Bm0

⊆ B.
Further, {(q1,m0,rφ(1,m0, r), . . . , qn,m0,rφ(n,m0, r)) | r ∈ R} ⊆ Bm0

⊆ B. It
follows S ∩B is uncountable.

By way of contradiction, suppose there exist distinct
(
z10 , . . . , z

n
0

)
, . . . ,(

z1n, . . . , z
n
n

)
∈ S ∩ P for some hyperplane P . It follows any n vectors between

these points are linearly dependent, so

(6) det

⎡
⎢⎣
z10 − z11 . . . zn0 − zn1

...
. . .

...
z10 − z1n . . . zn0 − znn

⎤
⎥⎦ = 0.

The determinant is a polynomial over Q in terms of zji . Since a unique zji , i ≥ 1,
is an addend in each entry, the determinant cannot be the trivial polynomial. This
contradicts the zji being algebraically independent.

It follows for all hyperplanes P , |S ∩ P | ≤ n. �

Corollary 1. Suppose S ⊆ Rn is as in Proposition 1. Let φ : S → R and S′ :=
{(ζ, φ(ζ)) | ζ ∈ S} ⊆ Rn+1. For every n−1 dimensional affine subspace P ⊆ Rn+1,
|S′ ∩ P | ≤ n.

Proof. Let φ : S → R. By way of contradiction, let P be a n− 1 dimensional affine
subspace and suppose distinct points (z10 , . . . , z

n+1
0 ), . . . , (z1n, . . . , z

n+1
n ) ∈ S′ ∩ P.

Then,

rank

⎡
⎢⎣
z10 − z11 . . . zn0 − zn1

...
. . .

...
z10 − z1n . . . zn0 − znn

⎤
⎥⎦ ≤ rank

⎡
⎢⎣
z10 − z11 . . . zn+1

0 − zn+1
1

...
. . .

...
z10 − z1n . . . zn+1

0 − zn+1
n

⎤
⎥⎦ ≤ n− 1.

Therefore, as in Equation 6 of Proposition 1,

det

⎡
⎢⎣
z10 − z11 . . . zn0 − zn1

...
. . .

...
z10 − z1n . . . zn0 − znn

⎤
⎥⎦ = 0,
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a contradiction. �

4. Proofs of main results

Lemma 3. Let W be a metric space and μ ∈ M(W ). Consider a collection of

Borel sets P ⊆ B(W ) such that there exists a c ∈ N where |μ|
(⋂

i∈[c] Pi

)
= 0 for

all distinct P1, . . . , Pc ∈ P. Then, there are only countably many P ∈ P such that
|μ| (P ) > 0.

Proof. Every uncountable family of sets of positive measure has an infinite subfam-
ily with positive intersection [10]. The lemma follows from the contrapositive. �

The sets in the following definition are the intersection of certain half-spaces in
Rn+1 and will be used in the proof of Theorem 1.

Definition 3. Suppose ζ0 ∈ Rn, y1, y2 ∈ R ∪ {±∞} with y1 ≤ y2. Define

Lζ0
(y1, y2) := {(ξ, v) ∈ Rn × R | v − ξ · ζ0 ∈ (y1, y2]}

and

Lζ0
(y1) := {(ξ, v) ∈ Rn × R | v − ξ · ζ0 = y1} .

We now outline the argument of Theorem 1 before the proof. Recall, Theorem 1
will be proved by induction on the dimension of the domain. The inductive step of
Theorem 1 will show μ is zero everywhere on the interior of the parameter space.
Then, f is constant as xn+1 changes and is characterized by a function of lower-
dimension. Hence, the inductive hypothesis applies. The proof of the inductive
step is divided into five parts.

(1) Definitions and maps between measure spaces. There is a natural
bijection between the parameter space and hyperplanes in the domain. It
links μ to where it induces changes in first-order derivatives. There is a
related bijection ϕ between the interior of the parameter space and Rn+1.

(2) Refinement of S. We generate large sets of points in the domain from
S which lie on the boundaries of the affine pieces of f . For most of these
points, the measure of the set associated with non-affineness at the point
is zero. Since S is large, we can remove any problematic points and refine
S to S′.

(3) Vanishing integrals over line segments. In Parts (3) and (4), we
consider an integral with respect to μ ◦ϕ−1 of a function closely related to
the first-order directional derivatives. In Part (3), we integrate over sets
associated with non-affineness within certain line segments in the domain.
These sets take the form Lζ0

(y1, y2), motivating Definition 3. When this
line segment is entirely contained in a polyhedron on which f is affine, the
integral vanishes.

(4) Vanishing integrals over half-spaces. We now consider the integral
over sets associated with nonaffineness within certain rays in the domain.
Through the maps in Part (1), these correspond with half-spaces in Rn+1.
The ray is broken into line segments entirely contained within polyhedra on
which f is affine and points associated with S′ on boundaries. Combining
the results of the previous two parts shows these integrals vanish.
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(5) Conclusion with Cramer–Wold and Radon–Nikodym. Since Part
(4) concerns half-spaces, the Cramer–Wold theorem applies. Along with
the Radon–Nikodym theorem, we can show μ ◦ϕ−1 on Rn+1 is zero. Thus,
μ is zero on the interior of the parameter space.

Proof of Theorem 1. First, Lemma 2 proves the theorem for the case n = 0. For
induction, assume the theorem holds for n− 1.

Definitions and maps between measure spaces. Suppose μ ∈ M (Sn × R)
satisfies all the hypotheses.

Let C be a countable collection of convex polyhedra that cover the domain of f
such that f is affine on each.

Define the following sets of hyperplanes in Rn+1

H0 := {ha,b | a ∈ Sn, b ∈ R} and H1 := {ha,b | a ∈ Sn,a · en+1 �= 0, b ∈ R} .

Define the map γ : Sn × R → H0 as γ (a, b) = ha,b. By construction of Sn, this is
bijective.

Define the map ψ : H1 → Rn × R such that for a = (a1, . . . , an+1),

(7) ψ (ha,b) =

(
a1

an+1
, . . . ,

an
an+1

,
b

an+1

)
.

By definition of H1, it is routine to verify ψ is well-defined and bijective.
The image of ψ is Rn × R, however, elements in the image of ψ should not be

thought of as being in the domain of f . Therefore, identify generic elements in the
image of ψ with (ξ, v) ∈ Rn × R and call the space Ξ× V where Ξ = Rn, V = R.

Define ϕ : γ−1[H1] → Ξ×V as ϕ := ψ ◦ γ. Then, μ ◦ϕ−1 is a measure on Ξ×V .
Since ϕ is bijective, μ ◦ ϕ−1 is atomless.

For fixed ζ0 ∈ Rn, y0 ∈ R,

(8) ψ [{ha,b ∈ H1 | a · (ζ0, y0) = b}] = {(ξ, v) ∈ Ξ× V | v = y0 + ξ · ζ0} .

That is the image under ψ of hyperplanes in H1 which intersect (ζ0, y0) ∈ Rn × R

is a hyperplane in Ξ× V .
Refinement of S. Let S ⊆ Rn be the set in Proposition 1.
Suppose h ∈ H1. Let φh : Rn → R be the unique function such that (ζ, φh(ζ)) ∈

h for all ζ ∈ Rn.
Let Pζ,h = {(ξ, v) ∈ Ξ× V | v = φh(ζ) + ξ · ζ}. By Corollary 8 and because ψ is

injective, all hyperplanes in ψ−1[Pζ,h] intersect the point (ζ, φh(ζ)) in the domain.
Let Ph = {Pζ,h | ζ ∈ S}.
For unique ζ1, . . . , ζn+1 ∈ S, consider

⋂
i∈[n+1] Pζi,h. It follows any hyperplane in

ψ−1
[⋂

i∈[n+1] Pζi,h

]
intersects the points {(ζ1, φh(ζ1)), . . . , (ζn+1, φh(ζn+1))} where

each ζi ∈ S. By Corollary 1, these points do not lie on a common n−1 dimensional
affine subspace, so h is the only hyperplane in the domain of f intersecting

{(ζ1, φh(ζ1)), . . . , (ζn+1, φh(ζn+1))}.

It follows
⋂

i∈[n+1] Pζi,h={ψ(h)}. Since μ◦ϕ−1 is atomless, |μ◦ϕ−1|
(⋂

i∈[n+1] Pζi,h

)
= 0.

By Lemma 3, there are only countably many Pζ,h ∈ Ph such that |μ◦ϕ−1| (Pζ,h)
> 0.

Define Sh := {ζ ∈ S | |μ ◦ ϕ−1| (Pζ,h) = 0}, so S \ Sh is countable.
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Let Hsupp be the set of defining supporting hyperplanes of polyhedra in C. Con-
sider

S′ :=
⋂

h∈H1∩Hsupp

Sh.

Since Hsupp is countable, S \ S′ is countable. Since B ∩ S is uncountable for all
open balls B ⊆ Rn, S′ is dense in Rn. Notice, whenever ζ ∈ S′ and (ζ, y) is on a
hyperplane in H1 ∩Hsupp,

(9) |μ ◦ ϕ−1| ({(ξ, v) ∈ Ξ× V | v = y + ξ · ζ}) = 0.

Vanishing integrals over line segments. Suppose ζ0 ∈ Rn, y1, y2 ∈ R. Suppose
y1 ≤ y2.

By Equation 8, Lζ0
(y1, y2) is the image under ψ of hyperplanes inH1 which inter-

sect the line segment between (ζ0, y1) (exclusive) and (ζ0, y2) (inclusive). Therefore,

ϕ−1 [Lζ0
(y1, y2)] = {(a, b) ∈ Sn × R | ∃y′ ∈ (y1, y2] a · (ζ0, y′) = b, a · en+1 �= 0} .

If ϕ (a, b) = (ξ, v), then

1√
1 +
∑

i∈[n] ξ
2
i

=
1√

1 +
∑

i∈[n]
a2
i

a2
n+1

=
an+1√∑
i∈[n+1] a

2
i

= an+1 = a · en+1.

Therefore, as (a, b) such that a · en+1 = 0 do not contribute to the integral,∫
Lζ0

(y1,y2)

1√
1 + ‖ξ‖2

dμ ◦ ϕ−1 (ξ, v) =

∫
ϕ−1[Lζ0

(y1,y2)]
a · en+1 dμ (a, b)

=

∫
{(a,b)∈Sn×R | ∃y′∈(y1,y2] a·(ζ0,y′)=b}

a · en+1 dμ (a, b) .

By Lemma 1, for y ∈ R,

De+
n+1

f(ζ0, y) =

∫
{(a,b)∈Sn×R | a·(ζ0,y)≥b}

a · en+1 dμ (a, b) .

By definition of Sn, y �→ a · (ζ0, y) is a non-decreasing, continuous function on R

for any fixed a ∈ Sn. Thus, a · (ζ0, y2) ≥ a · (ζ0, y1) for all a ∈ Sn. Further,
a · (ζ0, y2) ≥ b and a · (ζ0, y1) < b if and only if a · (ζ0, y′) = b for some y′ ∈ (y1, y2].
Therefore,

De+
n+1

f(ζ0, y2)−De+
n+1

f(ζ0, y1) =

∫
Lζ0

(y1,y2)

1√
1 + ‖ξ‖2

dμ ◦ ϕ−1 (ξ, v) .

It follows whenever De+
n+1

f(ζ0, y1) = De+
n+1

f(ζ0, y2),

(10)

∫
Lζ0

(y1,y2)

1√
1 + ‖ξ‖2

dμ ◦ ϕ−1 (ξ, v) = 0.

Vanishing integrals over half-spaces. Consider ζ0 ∈ S′. Consider an interval
(y0,∞) ⊆ R.

For sets E ⊆ Rn+1, let riζ0
(E) denote the relative interior of E∩({ζ0}×(−∞,∞))

with respect to {ζ0} × (−∞,∞). Then, define

J :=

{
y ∈ (y0,∞) | (ζ0, y) ∈

⋃
C∈C

riζ0
(C)

}
.
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It follows J is open. Then, there are countably many qi, ri ∈ R ∪ {±∞} such that
J =
⋃

i∈N
(qi, ri), the intervals pairwise disjoint.

Moreover, De+
n+1

f(ζ, y) is constant on riζ0
(C) for every C ∈ C. As locally

constant functions are constant on connected components, De+
n+1

f(ζ, y) is constant

on {ζ0} × (qi, ri) for all i ∈ N. By Equation 10, for all m ∈ N,

(11)

∫
Lζ0(qi+

1
m ,ri− 1

m )

1√
1 + ‖ξ‖2

dμ ◦ ϕ−1 (ξ, v) = 0.

Thus, define Em :=
⋃

i∈N
Lζ0

(
qi +

1
m , ri − 1

m

)
for m ∈ N. By construction, this is

a disjoint union. Therefore, by Equation 11, for all m ∈ N,∫
Em

1√
1 + ‖ξ‖2

dμ ◦ ϕ−1 (ξ, v) = 0.

To extend the integral over all of {(ξ, v) ∈ Ξ× V | v > y0 + ξ · ζ0}, we must also
address integrating over Lζ0(y1) for y1 where (ζ0, y1) lies on a boundary of an affine
piece.

We will show
∣∣μ ◦ ϕ−1

∣∣ (⋃
b∈(y0,∞)\J Lζ0

(b)
)
= 0.

Consider C ∈ C. Suppose y1 ∈ R is such that (ζ0, y1) ∈ C and (ζ0, y1) is not on
a defining supporting hyperplane of C in H1 ∩Hsupp. In particular, either (ζ0, y1)
is on the interior of C or it lies only on defining supporting hyperplanes of C with
normal vector orthogonal to en+1. As C has only finitely many defining supporting
hyperplanes, it follows there is δ > 0 such that (ζ0, y1 + ε) ∈ C whenever |ε| < δ.
Therefore, (ζ0, y1) ∈ riζ0

(C).

Thus, (y0,∞) \ J ⊆
{
y ∈ R | (ζ0, y) ∈

⋃
h∈H1∩Hsupp

h

}
. Further, for every h ∈

H1∩Hsupp, |h∩ ({ζ0}× (y0,∞))| ≤ 1. Therefore, as Hsupp is countable, (y0,∞)\J
is countable.

Suppose b0 ∈ (y0,∞) \ J . Then, (ζ0, b0) ∈
⋃

h∈H1∩Hsupp
h. As ζ0 ∈ S′, by

Equation 9,

(12)
∣∣μ ◦ ϕ−1

∣∣ (Lζ0
(b0)
)
=
∣∣μ ◦ ϕ−1

∣∣ ({(ξ, v) ∈ Ξ× V | v = b0 + ξ · ζ0}) = 0.

Thus, as (y0,∞) \ J is countable,
∣∣μ ◦ ϕ−1

∣∣ (⋃
b∈(y0,∞)\J Lζ0

(b)
)
= 0.

It follows for all m ∈ N,∫
Em∪

⋃
b∈(y0,∞)\J Lζ0

(b)

1√
1 + ‖ξ‖2

dμ ◦ ϕ−1 (ξ, v) = 0.

Further, Em ∪
⋃

b∈(y0,∞)\J Lζ0
(b) → {(ξ, v) ∈ Ξ× V | v > y0 + ξ · ζ0} as m → ∞.

By the Dominated Convergence Theorem, as μ ◦ ϕ−1 is finite,∫
{(ξ,v)∈Ξ×V | v>y0+ξ·ζ0}

1√
1 + ‖ξ‖2

dμ ◦ ϕ−1 (ξ, v) = 0.

Similarly, ∫
{(ξ,v)∈Ξ×V | v<y0+ξ·ζ0}

1√
1 + ‖ξ‖2

dμ ◦ ϕ−1 (ξ, v) = 0.

The equation v = y0 + ξ · ζ0 is equivalent to (ζ0,−1) · (ξ, v) = −y0. Therefore,
for all ζ0 ∈ S′ and y0 ∈ R, when considering an open half-space H in Ξ× V with a
boundary defined by (ζ0,−1) · (ξ, v) = −y0,

∫
H

1√
1+‖ξ‖2

dμ ◦ ϕ−1 (ξ, v) = 0.
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Conclusion with Cramer–Wold and Radon–Nikodym. On the Borel sets
of Ξ × V , define the measure ν(E) =

∫
E

1√
1+‖ξ‖2

dμ ◦ ϕ−1 (ξ, v). Given a Hahn

decomposition of μ ◦ϕ−1 with positive set P and negative set N , ν(E) =
∫
E
(χP −

χN ) 1√
1+‖ξ‖2

d|μ ◦ ϕ−1| (ξ, v).
By the previous part, if H is an open half-space with normal vector (ζ0,−1)

with ζ0 ∈ S′, then ν(H) = 0.
Since S′ is dense in Rn, ν(H) = 0 whenever the boundary of H is in a dense set

of directions. By a careful inspection of the proof of the Cramer-Wold theorem, it
follows the characteristic function of ν, cν(t) :=

∫
Rn eit·x dν(x), is zero on a dense

set of Rn [5, Equation 4]. By Dominated Convergence Theorem, in fact cν ≡ 0.
Since characteristic functions are unique, ν is the zero measure [13, Theorem 15.9].

However, the Radon-Nikodym derivative of a measure is unique up to almost
everywhere. As 0 is a Radon-Nikodym derivative for the zero measure and (χP −
χN ) 1√

1+‖ξ‖2
is never 0, it follows |μ ◦ ϕ−1| (Ξ× V ) = 0.

Since ϕ is bijective between γ−1[H1] and Ξ×V , the support of μ is contained in

(Sn × R) \ γ−1[H1] = {a ∈ Sn | a · en+1 = 0} × R.

By definition of Sn, the support of μ is contained in a copy of Sn−1 ×R embedded
into Sn × R. That is, f(x) =

∫
Sn−1×R

σ(a · x − b) − σ(−b) dμ(a, b). Moreover,
g : Rn → R defined as

g(ζ) :=

∫
Sn−1×R

σ (α · ζ − b)− σ(−b) dμSn−1×R (α, b)

=

∫
Sn−1×R

σ ((α, 0) · (ζ, 0)− b)− σ(−b) dμSn−1×R (α, b) = f(ζ, 0)

is countably piecewise linear. By the inductive hypothesis, μ is the zero measure.
�

We associate compactly supported measures in M(Rn+1 × R) and measures in
M(Sn ×R) with those in M(Sn ×R) in order to apply Theorem 1. Similar to this
procedure, Ongie et al. in [15] decomposed measures in M(Sn × R) into even and
odd components, where the odd component induced an affine function and the even
component was unique.

Lemma 4. Suppose τ is a compactly supported measure in M(Rn+1 × R). Then,
there exists μ ∈ M(Sn × R) such that for all x ∈ Rn+1,

∫
Rn+1×R

σ (a · x− b)− σ(−b) dτ (a, b) =

∫
Sn×R

σ (a · x− b)− σ(−b) dμ(a, b).

Proof. Let g :
(
Rn+1 \ {0}

)
× R → Sn × R be defined as g (a, b) =

(
a

‖a‖ ,
b

‖a‖

)
.

Let μ1 be the Borel measure defined as μ1(E) =
∫
E
‖a‖ dτ (a, b). Since τ has

compact support and is finite, |μ1||(Rn+1 × R) < ∞ and μ1 ∈ M(Rn+1 × R). Let
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μ := μ1 ◦ g−1. Then,∫
Rn+1×R

σ (a · x− b)− σ(−b) dτ (a, b)

=

∫
(Rn+1\{0})×R

‖a‖
(
σ

(
a

‖a‖ · x− b

‖a‖

)
− σ

(
− b

‖a‖

))
dτ (a, b)

+

∫
{0}×R

σ (−b)− σ(−b) dτ (a, b)

=

∫
(Rn+1\{0})×R

σ

(
a

‖a‖ · x− b

‖a‖

)
− σ

(
− b

‖a‖

)
dμ1 (a, b) + 0

=

∫
Sn×R

σ (a · x− b)− σ(−b) dμ (a, b) .

�

Lemma 5. Suppose τ ∈ M (Sn × R). Then, there exist μ ∈ M (Sn × R) and
a0 ∈ Rn+1 such that for all x ∈ Rn+1,∫
Sn×R

σ (a · x− b)−σ(−b) dτ (a, b) =

∫
Sn×R

σ (a · x− b)−σ(−b) dμ (a, b)+a0 ·x.

Proof. Let g (a, b) = (−a,−b) on Sn × R. Let μ := τ + τ ◦ g−1 and a0 :=
−
∫
Sn×R

a dτ ◦ g−1 (a, b). Note, σ (−x) = σ (x)− x. It follows∫
−Sn×R

σ (a · x− b)− σ(−b) dτ (a, b)

=

∫
Sn×R

σ (−a · x+ b)− σ(b) dτ ◦ g−1 (a, b)

=

∫
Sn×R

σ (a · x− b)− (a · x− b)− σ(−b)− b dτ ◦ g−1 (a, b)

=

∫
Sn×R

σ (a · x− b)− σ(−b) dτ ◦ g−1 (a, b)−
∫
Sn×R

a · xdτ ◦ g−1 (a, b) .

Therefore,∫
Sn×R

σ (a · x− b)− σ(−b) dτ (a, b)

=

∫
Sn×R

σ (a · x− b)− σ(−b) dτ (a, b) +

∫
−Sn×R

σ (a · x− b)− σ(−b) dτ (a, b)

=

∫
Sn×R

σ (a · x− b)− σ(−b) d(τ + τ ◦ g−1) (a, b)−
∫
Sn×R

a dτ ◦ g−1 (a, b) · x

=

∫
Sn×R

σ (a · x− b)− σ(−b) dμ (a, b) + a0 · x.

�

To finish the proof of the conjecture (Corollary 3), it is necessary to split the
measure into fully atomic and atomless parts and consider them separately. By
first establishing point masses always induce nonaffineness even when dense, we
can deduce the fully atomic and atomless components of the measure must both
give rise to countably piecewise linear functions.
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Lemma 6. Let μ ∈ M(Sn × R) and f(x) :=
∫
Sn×R

σ (a · x− b)− σ(−b) dμ (a, b).

Suppose μ ({(c, d)}) �= 0. Then, f(x) is not affine on every open ball in the domain
of f intersecting hc,d.

Proof. Rotate the coordinate system of f such that c · en+1 �= 0. Define Ξ× V , ψ,
and ϕ as in Theorem 1. Let S ⊆ Rn be the set in Proposition 1.

There exists a unique function φ : Rn → R such that (ζ, φ(ζ)) ∈ hc,d for all
ζ ∈ Rn.

By way of contradiction, suppose f is affine on an open ball B0 intersecting hc,d.
Then, there is an uncountable set S′ ⊆ S such that {(ζ, φ(ζ)) | ζ ∈ S′} ⊆ B0.

For ζ ∈ S′, let Pζ = {(ξ, v) ∈ Ξ× V | v = φ(ζ) + ξ · ζ}. Now, let P ′
c,d = {Pζ \

{ψ(hc,d)} | ζ ∈ S′}.
For unique ζ1, . . . , ζn+1 ∈ S′, consider

⋂
i∈[n+1] Pζi

\ {ψ(hc,d)}.
It follows any hyperplane in ψ−1

[⋂
i∈[n+1] Pζi

\ {ψ(hc,d)}
]
intersects the points

{(ζ1, φ(ζ1)), . . . , (ζn+1, φ(ζn+1))} in the domain where each ζi ∈ S. By Corollary
1, these points do not lie on a common n − 1 dimensional affine subspace, so hc,d

is the only hyperplane intersecting {(ζ1, φ(ζ1)), . . . , (ζn+1, φ(ζn+1))}. It follows⋂
i∈[n+1] Pζi

\ {ψ(hc,d)} = ∅ and |μ ◦ ϕ−1|
(⋂

i∈[n+1] Pζi
\ {ψ(hc,d)}

)
= 0.

Therefore, by Lemma 3, there are only countably many P ′
ζ ∈ P ′

c,d such that

|μ ◦ ϕ−1|
(
P ′
ζ

)
> 0.

Since S′ is uncountable, there is ζ0 ∈ S′ such that |μ◦ϕ−1| (Pζ0
\ {ψ(hc,d)}) = 0.

As (ζ0, φ(ζ0)) ∈ B0, there is ε > 0 such that for all δ < ε, f is affine on the line
segment connecting (ζ0, φ(ζ0)− δ) and (ζ0, φ(ζ0) + δ).

By Equation 10 in Theorem 1, it follows∫
Lζ0

(φ(ζ0)−δ,φ(ζ0)+δ)

1√
1 + ‖ξ‖2

dμ ◦ ϕ−1 (ξ, v) = 0.

Since this holds for all δ ∈ (0, ε), by the Dominated Convergence Theorem,

(13)

∫
Lζ0

(φ(ζ0))

1√
1 + ‖ξ‖2

dμ ◦ ϕ−1 (ξ, v) = 0.

Recall, Lζ0
(φ(ζ0)) = {(ξ, v) ∈ Ξ× V | v = φ(ζ0) + ξ · ζ0}. By Equation 13,

0 =

∫
Lζ0

(φ(ζ0))

1√
1 + ‖ξ‖2

dμ ◦ ϕ−1 (ξ, v)

=

∫
Pζ0

\{ψ(hc,d)}

1√
1 + ‖ξ‖2

dμ ◦ ϕ−1 (ξ, v) +

∫
{ψ(hc,d)}

1√
1 + ‖ξ‖2

dμ ◦ ϕ−1 (ξ, v)

= 0 +

∫
{(c,d)}

a · en+1 dμ (a, b) = μ ({(c, d)}) · (c · en+1) .

This is a contradiction. �

Corollary 2. Let f : Rn+1 → R be a continuous countably piecewise linear
function. Suppose there is a countable collection C of convex polyhedra covering
Rn+1 such that f is affine on each polyhedron and each polyhedron has non-empty
interior. Suppose there exist μ ∈ M(Sn × R) and c0 ∈ R such that f(x) =∫
Sn×R

σ (a · x− b)− σ(−b) dμ (a, b) + c0.
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Then, there are r0, r(c,d) ∈ R and a countable set M ⊆ Sn ×R such that f(x) =
r0 +
∑

(c,d)∈M r(c,d)σ(c · x− d).

Proof. By Lemma 5, we can assume f(x) =
∫
Sn×R

σ (a · x− b)− σ(−b) dμ (a, b) +

a0 · x + b0 for some μ ∈ M(Sn × R), a0 ∈ Rn+1, and b0 ∈ R. Decompose μ such
that μ = μC +

∑
(c,d)∈M r(c,d)δ(c,d) where μC is atomless, M is a countable subset

of Sn × R, and r(c,d) ∈ R \ {0} for all (c, d).

Let g : Rn+1 → R be

g(x) :=

∫
Sn×R

σ (a · x− b)− σ(−b) d

⎛
⎝ ∑

(c,d)∈M

r(c,d)δ(c,d)

⎞
⎠ (a, b) + a0 · x+ b0

=
∑

(c,d)∈M

r(c,d) (σ (c · x− d)− σ(−d)) + a0 · x+ b0.

Then, g is certainly affine outside of
⋃

(c,d)∈M hc,d. By Lemma 6, for every C ∈ C
and every (c, d) ∈ M , (int C)∩ hc,d = ∅. Therefore, for every C ∈ C, g is affine on

C, because g is continuous and int C = C. Thus, the cover C shows g is countably
piecewise linear.

It follows
∫
Sn×R

σ (a · x− b)−σ(−b) dμC(a, b) is also countably piecewise linear.
By Theorem 1, μC is in fact the zero measure.

Then, f(x) = g(x). Note, a0 · x = σ(a0 · x)− σ(−a0 · x). Thus,

f(x) =

⎛
⎝b0 − ∑

(c,d)∈M

r(c,d)σ(−d)

⎞
⎠+σ(a0 ·x)−σ(−a0 ·x)+

∑
(c,d)∈M

r(c,d)σ(c·x−d).

�

Corollary 3. Let f : Rn+1 → R be a continuous finitely piecewise linear function.
If there exist μ ∈ M(Sn × R) and c0 ∈ R such that f(x) =

∫
Sn×R

σ (a · x− b)

− σ(−b) dμ (a, b) + c0, then f is representable as a finite-width network as in
Equation 1.

Proof. Since f is finitely piecewise linear, by [9], there exists a finite collection C
of convex polyhedra with non-empty interior covering Rn+1 such that f is affine
on each. By Corollary 2, there are r0 ∈ R, r(c,d) ∈ R \ {0}, and a countable set
M ⊆ Sn × R, such that f(x) = r0 +

∑
(c,d)∈M r(c,d)σ(c · x − d). As f will have a

boundary at hc,d for all (c, d) ∈ M , M is a finite set. �

Corollary 4. Let f(x) =
∫
Sn×R

σ (a · x− b)−σ(−b) dμ (a, b)+c0 with μ ∈ M(Sn×
R) and c0 ∈ R. If f �≡ 0, then f is not a compactly supported finitely piecewise
linear function.

Proof. Suppose f �≡ 0. By Corollary 3, there are r0 ∈ R, r(c,d) ∈ R \ {0}, and
a finite set M ⊆ Sn × R such that f(x) = r0 +

∑
(c,d)∈M r(c,d)σ(c · x − d). If

M is empty, f(x) = r0 �= 0. Otherwise, f will not be affine along hc,d for some
(c, d) ∈ M . Since n ≥ 2, hc,d will extend infinitely and f cannot be compactly
supported. �
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