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Abstract. Let K be a local field with perfect residue field and let L/K be

a finite Galois extension. The Hasse-Arf theorem says that if Gal(L/K) is
abelian then the upper ramification breaks of L/K must be integers. We prove
the following converse to the Hasse-Arf theorem: Let G be a nonabelian group
which is isomorphic to the Galois group of some totally ramified extension
E/F of local fields with residue characteristic p > 2. Then there is a totally
ramified extension L/K of local fields with residue characteristic p such that
Gal(L/K) ∼= G and L/K has at least one nonintegral upper ramification break.

1. Introduction

Let K be a local field, that is, a complete discrete valuation field with perfect
residue field of characteristic p > 0. Let L/K be a finite Galois extension. As-
sociated to L/K are rational numbers u1 ≤ u2 ≤ · · · ≤ un known as the upper
ramification breaks of L/K. The upper ramification breaks provide arithmetic in-
formation about the extension L/K. For instance, L/K is a nontrivial unramified
extension if and only if −1 is the only upper ramification break of L/K, and L/K is
at most tamely ramified if and only if the set of upper ramification breaks of L/K
is contained in {−1, 0}. It is a classical problem to determine the possibilities for
sequences of upper breaks. The Hasse-Arf theorem [2,9] says that if G = Gal(L/K)
is abelian then every upper break of L/K is an integer. The Hasse-Arf theorem
plays an important role in several areas of number theory. For instance, it is used
in the construction of the Artin representation [3] and in Lubin’s proof of the local
Kronecker-Weber theorem [11].

The purpose of this paper is to prove a converse to the Hasse-Arf theorem. A
full converse to the Hasse-Arf theorem would state that if G is a finite nonabelian
group then there exists a G-extension of local fields which has a nonintegral upper
ramification break. In fact the converse to Hasse-Arf does not hold in such general-
ity. For instance, if G is a nonabelian simple group and L/K is a G-extension then
K has infinite residue field and L/K is unramified, so the only upper ramification
break of L/K is −1. In addition, if G is a nonabelian group of order prime to p
then every G-extension L/K of local fields with residue characteristic p is at most
tamely ramified, and hence has upper ramification breaks contained in {−1, 0}. To
rule out examples like these we restrict our attention to totally ramified extensions.
Furthermore, to avoid vacuous cases we only consider those nonabelian groups G
which can actually occur as the Galois group of a totally ramified extension of local
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fields with residue characteristic p > 2. In Theorem 6.3 we prove that if G is a such
a group then there exists a local field K with residue characteristic p and a totally
ramified G-extension L/K which has a nonintegral upper ramification break.

In Section 2 we outline higher ramification theory for Galois extensions of local
fields. Our approach to proving the converse to Hasse-Arf is based on constructing
Galois extensions of local fields in characteristic p which have nonintegral upper
ramification breaks. A benefit of working in characteristic p is that one can solve
embedding problems for p-extensions, as explained in Section 3. This means that
it’s enough to construct extensions whose Galois groups are minimal in a certain
sense. Therefore in Section 4 we classify minimal p-groups. In Section 5 we use
the results of Sections 3 and 4 to prove the converse to the Hasse-Arf theorem for
totally ramified p-extensions. In Section 6 we extend the proof to cover arbitrary
totally ramified extensions.

Throughout the paper we let K be a field which is complete with respect to a
discrete valuation, with perfect residue field of characteristic p > 2. Let Ksep be a
separable closure of K, and for each finite subextension L/K of Ksep/K let vL be
the valuation on Ksep normalized so that vL(L

×) = Z. Let OL denote the ring of
integers of L, let ML denote the maximal ideal of OL, and let πL be a uniformizer
for L.

2. Ramification in extensions of local fields

Let L/K be a finite totally ramified Galois extension. In this section we define
the lower and upper ramification breaks of L/K, and the ramification subgroups of
Gal(L/K). For more information on these topics see Chapter IV of [12].

Let L/K be a totally ramified Galois extension of degree mpn, with p � m. Set
G = Gal(L/K). For σ ∈ G with σ �= idL define the ramification number of σ
to be i(σ) = vL(σ(πL) − πL) − 1; also define i(idL) = ∞. (Beware that i(σ) is
related to iG(σ) as defined in [12, IV] by iG(σ) = i(σ) + 1.) One easily sees that if
σ, τ ∈ G� {idL} with i(σ) > 0 then

(2.1) i(σp) > i(σ), i([σ, τ ]) > i(τ ).

For real x ≥ 0 set Gx = {σ ∈ G : i(σ) ≥ x}. Then Gx is a normal subgroup
of G, known as the xth lower ramification subgroup of G. Say b ≥ 0 is a lower
ramification break of L/K (or simply a lower break) if Gb+ε � Gb for all ε > 0.
Thus b is a lower break of L/K if and only if b = i(σ) for some σ ∈ G with σ �= idL.
It follows that every lower break of L/K is a nonnegative integer. Furthermore, a
nonnegative integer b is a lower ramification break if and only if Gb+1 � Gb.

We have i(σ) = 0 if and only if |σ| is not a power of p. Hence b0 = 0 is a lower
ramification break of L/K if and only if m > 1. If b is a positive lower break of
L/K then |Gb : Gb+1| = pd for some d ≥ 1. In this case we say that b is a lower
break with multiplicity d. The positive lower ramification breaks of L/K, counted
with multiplicities, form a multiset with cardinality n. We denote the positive lower
breaks of L/K by b1 ≤ b2 ≤ · · · ≤ bn.

Let M/K be a subextension of L/K and set H = Gal(L/M). It follows from
the definitions that Hx = H ∩ Gx for all x ≥ 0. Therefore the multiset of lower
ramification breaks of L/M is contained in the multiset of lower ramification breaks
of L/K. In other words, the ramification groups Gx and the lower ramification
breaks are compatible with passage to subgroups of Galois groups.
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There is a different numbering system for the ramification groups of G =
Gal(L/K) which is compatible with passage to quotients G/H of G by a normal
subgroup H. The upper ramification breaks (or upper breaks) of L/K are defined
in terms of the lower breaks as follows: First, u0 = 0 is an upper break of L/K if
and only if b0 = 0 is a lower break. The positive upper breaks u1 ≤ u2 ≤ · · · ≤ un

of L/K are then defined recursively by u1 = b1/m and ui+1 − ui = (bi+1 − bi)/mpi

for 1 ≤ i ≤ n− 1. We may view ui as the upper ramification break of L/K which
corresponds to bi. The upper ramification breaks of L/K, counted with multiplic-
ities, form a multiset, which we denote by UL/K . Note that if L/K is a ramified
Cp-extension then L/K has a single upper and lower ramification break u1 = b1.
Thus we may refer simply to the ramification break of L/K.

The upper ramification subgroups of G are defined for real x ≥ 0 by G0 = G0 =
G, Gx = Gb1 for 0 < x ≤ u1, G

x = Gbi for ui−1 < x ≤ ui, and Gx = {idL} for
x > un. Thus u ≥ 0 is an upper ramification break of L/K if and only if Gu+ε � Gu

for all ε > 0. Theorem 2.1 shows that the groups Gx and the upper ramification
breaks are compatible with passage to quotients of Galois groups:

Theorem 2.1 (Herbrand). Let L/K be a finite totally ramified Galois extension
and let M/K be a Galois subextension of L/K. Set G = Gal(L/K) and H =
Gal(L/M).

(a) For x ≥ 0 we have (G/H)x = GxH/H.
(b) UM/K ⊂ UL/K .

Proof. Statement (a) is proved as Proposition 14 in [12, IV]. Statement (b) follows
easily from (a). �
Corollary 2.2. Let x ≥ 0. Then x �∈ UM/K if and only if Gx ≤ Gx+εH for all
sufficiently small ε > 0.

Proof. This follows from (a) since GxH = Gx+εH if and only if Gx ≤ Gx+εH. �
We will make frequent use of the following (presumably well-known) fact:

Lemma 2.3. Let N/K be a finite totally ramified Galois extension and set G =
Gal(N/K). Assume that Z(G) contains a subgroup H such that H ∼= C2

p , and let

M = NH be the fixed field of H. Suppose there are u < v such that u, v �∈ UM/K

and UN/K = UM/K ∪{u, v}. Let b < c be the lower ramification breaks of N/K that
correspond to u, v and let S denote the set of fields L such that M ⊂ L ⊂ N and
[L : M ] = p. Then there is L0 ∈ S with the following properties:

(a) UL0/K = UM/K ∪ {u} and N/L0 has ramification break c.
(b) For all L ∈ S such that L �= L0 we have UL/K = UM/K ∪ {v} and N/L has

ramification break b.

Proof. First we prove that the lower ramification breaks of N/M are b, c. Since b
is a lower ramification break of L/K there exists g ∈ Gb �Gb+1. Since u �∈ UM/K ,

it follows from Corollary 2.2 that Gu ≤ Gu+εH for sufficiently small ε > 0. Since
Gu = Gb and Gu+ε = Gb+1 we get Gb ≤ Gb+1H. Hence there are g′ ∈ Gb+1 and
h ∈ H such that g = g′h. It follows that h = (g′)−1g ∈ Gb � Gb+1, so we have
i(h) = b. Thus b is a lower ramification break of N/M . A similar argument shows
that c is a lower ramification break of N/M . Now since the lower ramification
breaks of N/M are b, c, for each L ∈ S the ramification break of N/L is either b or
c. Let L0 = NHc be the fixed field of Hc = Hb+ε. Since the ramification break of
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N/L is ≥ c if and only if Gal(N/L) ≤ Hc we see that N/L0 has ramification break
c, and N/L has ramification break b for all L ∈ S with L �= L0.

To complete the proof let L ∈ S and set A = Gal(N/L) ≤ H. Since c is the
largest lower break of N/M , for sufficiently small ε > 0 we have

Gv+ε ∩H = Gc+1 ∩H = Hc+1 = {idL}.
It follows that Gv+ε ∩ A = {idL}, so we get |Gv+εA : Gv+ε| = |A| = p. Since v
is an upper break of N/K with multiplicity 1 we have |Gv : Gv+ε| = p. Hence
the statements Gv+εA = Gv, Gv+εA ≤ Gv, and Gv ≤ Gv+εA are equivalent. It
follows that Gv ≤ Gv+εA if and only if A ≤ Gv. By Corollary 2.2 we deduce
that v �∈ UL/K if and only if A ≤ Gv = Gc. Hence v �∈ UL/K if and only if
A ≤ Gc ∩H = Hc. Since UL/K is equal to either UM/K ∪ {u} or UM/K ∪ {v}, we
conclude that UL/K = UM/K∪{u} if L = L0 and UL/K = UM/K∪{v} if L �= L0. �

3. Embedding problems in characteristic p

Let K be a field, let L/K be a finite Galois extension, and set G = Gal(L/K).

Let G̃ be a finite group and let φ : G̃ → G be an onto homomorphism. A solution

to the embedding problem associated to (L/K, G̃, φ) is a finite extension M/L such
that M is Galois over K and there is an isomorphism of exact sequences

1 −−−−→ Gal(M/L) −−−−→ Gal(M/K) −−−−→ Gal(L/K) −−−−→ 1⏐⏐⏐�
⏐⏐⏐� ‖

1 −−−−→ kerφ −−−−→ G̃
φ−−−−→ G −−−−→ 1.

In this section we use a theorem of Witt to show that certain embedding problems
for local fields of characteristic p always admit totally ramified solutions.

Recall that the rank of a finite p-group G is the minimum size of a generating set
for G. Let Φ(G) denote the Frattini subgroup of G. It follows from the Burnside
basis theorem that the Frattini quotient G/Φ(G) is an elementary abelian p-group
such that rank(G) is equal to rank(G/Φ(G)). In [14, III], Witt proved the following:

Theorem 3.1. Let K be a field of characteristic p and let L/K be a finite Galois

extension such that G = Gal(L/K) is a p-group. Let G̃ be a finite p-group such that

rank(G̃) = rank(G) and let φ : G̃ → G be an onto homomorphism. Then there is

an extension M/L which solves the embedding problem associated to (L/K, G̃, φ).

We will use the following applications of Witt’s theorem:

Corollary 3.2. Let K be a local field of characteristic p with perfect residue field
and let L/K be a finite totally ramified Galois extension whose Galois group G =

Gal(L/K) is a p-group. Let G̃ be a finite p-group and let φ : G̃ → G be an onto
group homomorphism. Then there is a totally ramified field extension M/L which

solves the embedding problem associated to (L/K, G̃, φ).

Proof. Let N = kerφ. It suffices to consider the case where N ∼= Cp, and hence

N ≤ Z(G). If the extension G̃ of G by N is split then G̃ ∼= Cp × G. In this case
choose a ramified Cp-extension F/K whose ramification break is greater than all
the upper breaks of L/K. Then L and F are linearly disjoint over K, so M = LF

is a totally ramified Galois extension of K with Gal(M/K) ∼= Cp ×G ∼= G̃. Hence
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M solves the given embedding problem. If the extension G̃ of G by N is not split

we claim that rank(G̃) = rank(G). We clearly have rank(G̃) ≥ rank(G). Let A be

a generating set for G such that |A| = rank(G) and let Ã ⊂ G̃ satisfy |Ã| = |A|
and φ(Ã) = A. If 〈Ã〉 �= G̃ then since Cp

∼= N ≤ Z(G) we get 〈Ã〉 ∼= G and

G̃ = N × 〈Ã〉. This contradicts the assumption that our extension is not split, so

we must have 〈Ã〉 = G̃. Hence rank(G̃) = rank(G). It follows by Theorem 3.1 that
there is a field extension M/L which solves the given embedding problem. If M/L
is unramified then there is an unramified Cp-extension F/K such that M = LF .
It follows that Gal(M/K) ∼= Cp ×G, which is a contradiction. Therefore M/L is a
totally ramified extension. �
Corollary 3.3. Let K be a local field of characteristic p with perfect residue field

and let G̃ be a p-group. Then there is a totally ramified G̃-extension L/K.

Proof. Take G = {1} in Corollary 3.3. �

4. Minimal nonabelian p-groups

We put a partial order on finite p-groups by H � G if H is isomorphic to
a quotient of G. We are interested in the groups which are �-minimal among
nonabelian p-groups. We call such a group a minimal nonabelian p-group.

Proposition 4.1. Let p > 2 and let G be a p-group. Then G is a minimal non-
abelian p-group if and only if G satisfies the following conditions:

(i) G is nilpotent of class 2.
(ii) Z(G) is cyclic of order pd for some d ≥ 1.
(iii) [G,G] is the subgroup of Z(G) of order p.
(iv) G := G/Z(G) is an elementary abelian p-group of rank 2n for some n ≥ 1,

and [ , ] induces a nondegenerate skew-symmetric Fp-bilinear form ( , )G
on G with values in [G,G].

Proof. Suppose G is a minimal nonabelian p-group. Since Z(G) is nontrivial, G is
abelian by the minimality of G. Hence G is nilpotent of class 2, which gives (i). Let
N be a nontrivial normal subgroup of G. Then G/N is abelian by the minimality
of G, so [G,G] ≤ N . Hence [G,G] is contained in all nontrivial subgroups of Z(G),
so Z(G) is cyclic and [G,G] is the unique subgroup of Z(G) of order p. This proves
(ii) and (iii).

Let z be a generator for Z(G) ∼= Cpd and set w = zp
d−1

. Then [G,G] = 〈w〉. For
x, y ∈ G we have xyx−1 = ywa for some a ∈ Z. Hence xypx−1 = ypwpa = yp, so
yp ∈ Z(G). It follows that G is an elementary abelian p-group. Let x, y1, y2 ∈ G.
Then there are aj ∈ Z such that xyjx

−1 = yjw
aj for j = 1, 2. It follows that

xy1y2x
−1 = y1y2w

a1+a2 , and hence that [x, y1y2] = [x, y1][x, y2]. Since [y, x] =
[x, y]−1, we deduce that [ , ] induces a skew-symmetric Fp-bilinear pairing ( , )G
on G. If [x, y] = 1 for all y ∈ G then x ∈ Z(G), so the pairing is nondegenerate.
Therefore G has even Fp-rank. This proves (iv).

Conversely, suppose (i)–(iv) hold. Then G is nonabelian by (i) or (iii). Let N
be a nontrivial normal subgroup of G. Then N ∩Z(G) is nontrivial, so [G,G] ≤ N
by (ii) and (iii). Hence G/N is abelian, so G is a minimal nonabelian p-group. �

The minimal nonabelian p-groups can be described more explicitly. For n, d ≥ 1
we define a group H(n, d) of order p2n+d generated by x1, . . . , xn, y1, . . . , yn, z, with
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|xi| = |yi| = p and |z| = pd. All these generators commute with each other, except

for xi and yi, which satisfy [xi, yi] = zp
d−1

for 1 ≤ i ≤ n. Thus H(1, 1) is the
Heisenberg p-group, and H(n, 1) is an extraspecial p-group.

For n, d ≥ 1 we also define a group A(n, d), which has order p2n+d and generators
x1, . . . , xn, y1, . . . , yn, z. In A(n, d) we have |xi| = p for 2 ≤ i ≤ n, |yi| = p for
1 ≤ i ≤ n, and xp

1 = z with |z| = pd. As with H(n, d), all generators commute with

each other except for xi and yi, which satisfy [xi, yi] = zp
d−1

for 1 ≤ i ≤ n. Thus
A(1, 1) is the metacyclic group of order p3, and A(n, 1) is an extraspecial p-group.

It is clear from the constructions that the groups H(n, d) and A(n, d) satisfy
conditions (i)–(iv) of Proposition 4.1. We now prove the converse, which states
that every minimal nonabelian p-group is isomorphic to one of these groups.

Proposition 4.2. Let p > 2 and let G be a minimal nonabelian p-group. Then
either G ∼= H(n, d) or G ∼= A(n, d) for some n, d ≥ 1.

Proof. Since G is a minimal nonabelian p-group, G satisfies conditions (i)–(iv) of
Proposition 4.1. Let z be a generator for Z(G); then |z| = pd for some d ≥ 1. Set

w = zp
d−1

, so that 〈w〉 = [G,G]. It follows from (iv) that xp ∈ Z(G) for all x ∈ G.
For x ∈ G set x = xZ(G) ∈ G.

Suppose that xp ∈ Z(G)p for all x ∈ G. Since [ , ] induces a nondegenerate Fp-

linear pairing ( , )G on G, there is an Fp-basis {x1, . . . , xn, y1, . . . , yn} for G such

that (xi, xj)G = (yi, yj)G = w0 and (xi, yj)G = wδij for all 1 ≤ i, j ≤ n. Let x′
i ∈ G

be such that xi = x′
iZ(G). Then there is ai ∈ Z such that (x′

i)
p = zpai . Therefore

xi = x′
iz

−ai satisfies xiZ(G) = xi and |xi| = p. Similarly, there are yi ∈ G with
yiZ(G) = yi and |yi| = p. It follows that G ∼= H(n, d).

Now assume that there exists y ∈ G such that yp �∈ Z(G)p. Define φ : G →
Z(G)/Z(G)p by φ(xZ(G)) = xpZ(G)p. Then φ is clearly well-defined. We claim
that φ is a group homomorphism, and hence an Fp-linear map. Let x, y ∈ G; then
[x, y] = za for some integer a. Thus yx = xyz−a, so we get (xy)p = xpypzpb with
b = − 1

2 (p − 1)a. Hence φ(xy) = φ(x)φ(y). By our assumption, φ is nontrivial,

so φ(G) = Z(G)/Z(G)p is cyclic of order p. Set V = kerφ and let V ⊥ be the
orthogonal complement of V with respect to the pairing ( , )G. Then V and V ⊥

are Fp-subspaces of G, with dimFp
(V ) = 2n−1 and dimFp

(V ⊥) = 1. Let y′1 ∈ G be

such that y′1 = y′1Z(G) generates V ⊥. Since [y′1, y
′
1] = w0 we have y′1 ∈ (V ⊥)⊥ =

V = kerφ. Hence there is a ∈ Z such that (y′1)
p = zap. Then y1 = y′1z

−a satisfies
y1 = y′1 and |y1| = p. Now let x1 ∈ G be such that (x1, y1)G = w1. Then x1 �∈ V ,
so xp

1 is a generator for Z(G). Therefore we may assume that xp
1 = z. Let W denote

the span of {x1, y1} in G. Then the restriction of ( , )G to W is nondegenerate, so

V = W⊕W⊥ and the restriction of ( , )G toW⊥ is a nondegenerate skew-symmetric

Fp-bilinear form. Hence there is a basis {x2, . . . , xn, y2, . . . , yn} for W⊥ such that
(xi, xj)G = (yi, yj)G = w0 and (xi, yj)G = wδij for 2 ≤ i, j ≤ n. Let x′

i ∈ G be

such that xi = x′
iZ(G), and let ai ∈ Z satisfy (x′

i)
p = zai . Since xi ∈ W⊥ ⊂ V

we have ai = pbi for some bi ∈ Z. Hence xi = x′
iz

−bi satisfies xiZ(G) = xi and
|xi| = p. Similarly for 2 ≤ i ≤ n there are yi ∈ G such that yiZ(G) = yi and
|yi| = p. Therefore G ∼= A(n, d). �

Remark 4.3. A p-group G is said to be of symplectic type if every abelian charac-
teristic subgroup of G is cyclic. Philip Hall, in unpublished notes, showed that for
p > 2 the nonabelian p-groups of symplectic type are precisely the groups H(n, d)
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and A(n, d) for n, d ≥ 1. Therefore for p > 2 the minimal nonabelian p-groups are
the same as the nonabelian p-groups of symplectic type. A proof of Hall’s result
can be found in [8, 5.4.9]. We thank Peter Sin for pointing us to this reference.

Let G be a group and let N1, N2 be subgroups of G. Say that G is a central
product of N1 and N2 if N1 ∪N2 generates G and every element of N1 commutes
with every element of N2. In that case there is a subgroup A of Z(N1) × Z(N2)
such that G ∼= (N1 ×N2)/A.

We wish to express minimal nonabelian p-groups as central products, with
H(1, 1) as one of the factors. For convenience we extend the definition of H(n, d)
by setting H(0, d) = Cpd .

Proposition 4.4.

(a) Let n, d ≥ 1. Then H(n, d) is a central product of subgroups N1 and N2,
with N1

∼= H(n− 1, d) and N2
∼= H(1, 1). More precisely,

(4.1) H(n, d) ∼= (H(n− 1, d)×H(1, 1))/B

for some subgroup B of Z(H(n− 1, d))× Z(H(1, 1)) of order p.
(b) Let n ≥ 2 and d ≥ 1. Then A(n, d) is a central product of subgroups N1

and N2, with N1
∼= A(n− 1, d) and N2

∼= H(1, 1). More precisely,

(4.2) A(n, d) ∼= (A(n− 1, d)×H(1, 1))/B

for some subgroup B of Z(A(n− 1, d))× Z(H(1, 1)) of order p.

Proof.

(a) Let N1 ≤ H(n, d) be generated by x1, . . . , xn−1, y1, . . . , yn−1, z and let N2 ≤
H(n, d) be generated by xn, yn, z

pd−1

. Then N1
∼= H(n − 1, d), N2

∼= H(1, 1), and
N1, N2 satisfy the conditions for a central product. Therefore there is a subgroup
B of Z(H(n− 1, d))×Z(H(1, 1)) satisfying (4.1). Since |H(n, d)| = p2n+d, |H(n−
1, d)| = p2n+d−2, and |H(1, 1)| = p3, we must have |B| = p.

(b) Let N1 be the subgroup of A(n, d) generated by x1, . . . , xn−1, y1, . . . , yn−1, z

and let N2 be the subgroup of A(n, d) generated by xn, yn, z
pd−1

. Then N1
∼=

A(n− 1, d), N2
∼= H(1, 1), and N1, N2 satisfy the conditions for a central product.

Therefore there is a subgroup B of Z(A(n − 1, d)) × Z(H(1, 1)) satisfying (4.2).
Since |A(n, d)| = p2n+d, |A(n− 1, d)| = p2n+d−2, and |H(1, 1)| = p3, we must have
|B| = p. �

Proposition 4.4(b) does not apply to groups of the form A(1, d). Instead, we use
the following description:

Proposition 4.5. Let d ≥ 1, and write H(1, 1) = 〈x1, y1, z〉, Cpd+1 = 〈w〉. Define
a subgroup Gd of H(1, 1)× Cpd+1 by Gd = 〈x1w, y1, z〉, and set

Gd = Gd/〈(x1w)
pd

z−1〉 = Gd/〈wpd

z−1〉.

Then Gd
∼= A(1, d).

Proof. We have [x1w, y1] = [x1, y1] = z and (x1w)
p = wp. Let x1, y1, z denote the

images in Gd of x1w, y1, z. Then |x1| = pd+1, |y1| = p, and [x1, y1] = z = xpd

1 .
Hence Gd

∼= A(1, d). �
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5. p-extensions with a nonintegral upper break

Let p > 2, let G be a nonabelian p-group, and let K be a local field of char-
acteristic p with perfect residue field k. In this section we prove that there exists
a totally ramified Galois extension L/K with Galois group G such that L/K has
an upper ramification break which is not an integer. It follows from Theorem 3.1
that every embedding problem over K which only involves p-groups can be solved
with a totally ramified extension. Therefore we only need to give an example of a
G-extension with a nonintegral upper break for each G which is �-minimal among
nonabelian p-groups. These groups are classified in Proposition 4.2.

Our proof uses a bootstrap argument, based on constructing H(1, 1)-extensions
with a nonintegral upper ramification break. As a first step, we give an easy method
for buildingH(1, 1)-extensions using Artin-Schreier extensions. Recall that if β ∈ K
satisfies vK(β) = −b with b ≥ 1 and p � b then the roots of Xp −X − β generate a
Cp-extension of K with ramification break b (see [6, III, Proposition 2.5]).

Lemma 5.1. Let a, b be positive integers with a > b, p � a, and p � b. Let α, β ∈ K
satisfy vK(α) = −a and vK(β) = −b and let x, y ∈ Ksep satisfy xp − x = α and
yp − y = β. Set M = K(x, y) and let γ ∈ K. Let z ∈ Ksep satisfy zp − z = αy + γ
and set L = M(z). Then L/K is a totally ramified H(1, 1)-extension.

Proof. By construction M/K is a totally ramified C2
p -extension. Let σ, τ ∈

Gal(M/K) satisfy σ(x) = x+ 1, σ(y) = y, τ (x) = x, and τ (y) = y + 1. Then

(σ − 1)(αy + γ) = 0,

(τ − 1)(αy + γ) = α = ℘(x).

Since x ∈ M it follows that L/K is Galois. Furthermore, we may extend σ, τ
to σ̃, τ̃ ∈ Gal(L/K) by setting σ̃(z) = z and τ̃(z) = z + x. We easily find that
|σ̃| = |τ̃ | = p, [σ̃, τ̃ ] ∈ Gal(L/M), and [σ̃, τ̃ ](z) = z + 1. The last formula implies
that [σ̃, τ̃ ] generates Gal(L/M). Therefore Gal(L/K) ∼= H(1, 1). �

Proposition 5.2. Let K be local field of characteristic p > 2 with perfect residue
field and let F/K be a ramified Cp-extension. Let b be the ramification break of
F/K, and let a be an integer such that a > b and a �≡ 0,−b (mod p). Then there
is a totally ramified extension L/F such that L/K is an H(1, 1)-extension with
UL/K = {b, a, a+ p−1b}. In particular, L/K has an upper ramification break which
is not an integer.

Proof. It follows from Proposition 2.4 in [6, III] that there is y ∈ F such that
F = K(y), vF (y) = −b, and β := yp − y ∈ K. Since p � b we can write a = bt+ ps

with 0 ≤ t < p; by our assumptions on a we get 1 ≤ t ≤ p − 2. Set α = π−ps
K βt;

then vK(α) = −a. Let x ∈ Ksep satisfy xp − x = α. Then M := F (x) = K(x, y)
is a C2

p -extension of K with upper ramification breaks b, a. Let r be the inverse

of t + 1 in F×
p , let z ∈ Ksep satisfy zp − z = αy + rαβ, and set L = M(z).

Then L/K is an H(1, 1)-extension by Lemma 5.1. Furthermore, Gal(L/M) ∼=
Cp is the commutator subgroup of Gal(L/K). Hence by (2.1), Gal(L/M) is the
smallest nontrivial ramification subgroup of Gal(L/K). Therefore by the corollary
to Proposition 3 in [12, IV], the lower ramification breaks of M/K are also lower
ramification breaks of L/K.

Let E = F (z). We can’t directly compute the ramification break of the Cp-
extension E/F , since vF (αy + rαβ) = vF (rαβ) is divisible by p. So instead we
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consider the Artin-Schreier equation

Xp −X = αy + rαβ − ℘(rπ−s
K yt+1).

Since rπ−s
K yt+1 ∈ F , the roots of this equation generate E over F . Furthermore,

we have

αy + rαβ − ℘(rπ−s
K yt+1) = αy + rαβ + rπ−s

K yt+1 − (rπ−s
K yt+1)p

= αy + rαβ + rπ−s
K yt+1 − rπ−ps

K (y + β)t+1

= αy + rαβ + rπ−s
K yt+1 − rπ−ps

K

t+1∑
i=0

(
t+ 1

i

)
βt+1−iyi.

Since α = π−ps
K βt, the i = 0 term in the sum is −rαβ and the i = 1 term is −αy.

It follows that

αy + rαβ − ℘(rπ−s
K yt+1) = rπ−s

K yt+1 − rπ−ps
K

t+1∑
i=2

(
t+ 1

i

)
βt+1−iyi.

Since 1 ≤ t ≤ p− 2 we get

vF

(
rπ−ps

K

(
t+ 1

2

)
βt−1y2

)
= −p2s− (t− 1)pb− 2b

= −pa+ pb− 2b.

Since a > b we have

vF (rπ
−s
K yt+1) = −ps− (t+ 1)b = −a− b > −pa+ pb− 2b.

Therefore

vF (αy + rαβ − ℘(rπ−s
K yt+1)) = vF

(
rπ−ps

K

(
t+ 1

2

)
βt−1y2

)
= −pa+ pb− 2b,

which is not divisible by p. Hence the ramification break of E/F is 2b+ p(a− b).
Since the upper breaks of the C2

p -extension M/K are b, a, with b < a, the lower
breaks of this extension are b, b + p(a − b). By assumption, b is the ramification
break of the Cp-subextension F/K of M/K. Hence by Lemma 2.3 the ramification
break of M/F is b+ p(a− b). Therefore the upper breaks of the C2

p -extension L/F
are b + p(a − b), 2b + p(a − b), and the lower breaks are b + p(a − b), b + pa. As
noted above, the lower breaks b, b+ p(a− b) of M/K are also lower breaks of L/K.
Hence the lower breaks of L/K are b, b + p(a − b), b + pa. We conclude that the
upper ramification breaks of L/K are b, a, and

a+ p−2((b+ pa)− (b+ p(a− b))) = a+ p−1b. �

Lemma 5.3. Let N/K be a totally ramified Galois extension such that Gal(N/K)
is isomorphic to either H(n, d) (with n ≥ 0 and d ≥ 1) or A(n, d) (with n, d ≥ 1).
Let G = Gal(N/K), let H be the unique subgroup of Z(G) of order p, and let
M ⊂ N be the fixed field of H. Then UN/K = UM/K ∪ {v} for some v ∈ Q such
that v > w for all w ∈ UM/K . Furthermore, H = Gv is the smallest nontrivial
ramification subgroup of G.
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Proof. Let σ ∈ G with σ �∈ Z(G). Then there is τ ∈ G such that [σ, τ ] generates
H ∼= Cp. Hence by (2.1), for ρ ∈ H we have i(ρ) > i(σ). Suppose σ ∈ Z(G) but σ �∈
H. Then there is 1 ≤ i ≤ d− 1 such that σpi

generates H. Once again by (2.1) we
get i(ρ) > i(σ) for all ρ ∈ H. It follows thatH is the smallest nontrivial ramification
subgroup of G. Therefore H = Gv, with v the largest upper ramification break of
N/K. Using Theorem 2.1(b) we deduce that UN/K = UM/K ∪ {v}. �

We now construct H(n, d)-extensions and A(n, d)-extensions which have at least
one nonintegral upper break.

Proposition 5.4. Let K be a local field of characteristic p > 2 and let n, d ≥ 1.

(a) There is a totally ramified Galois extension L/K such that Gal(L/K) ∼=
H(n, d) and the largest upper ramification break of L/K is not an integer.

(b) There is a totally ramified Galois extension L/K such that Gal(L/K) ∼=
A(n, d) and the largest upper ramification break of L/K is not an integer.

Proof.

(a) Recall that H(0, d) is the cyclic group of order pd. By Corollary 3.3 there
exists a totally ramified H(n − 1, d)-extension N1/K. Let v be the largest upper
ramification break of N1/K and let a, b be integers such that a > b > v, p � b, and
a �≡ 0,−b (mod p). Then by Proposition 5.2 there is an H(1, 1)-extension N2/K
such that UN2/K = {b, a, a + p−1b}. Set N = N1N2. Since UN1/K and UN2/K are
disjoint we have UN/K = UN1/K ∪ UN2/K , and N1 ∩N2 = K. It follows that

Gal(N/K) ∼= Gal(N1/K)×Gal(N2/K)

∼= H(n− 1, d)×H(1, 1).

For i=1, 2 letMi be the subfield ofNi fixed by the unique subgroup of Z(Gal(Ni/K))
with order p. Set M = M1M2; then Gal(N/M) ∼= C2

p . It follows from Lemma 5.3

that UN1/K = UM1/K ∪ {v} and UN2/K = UM2/K ∪ {a + p−1b}. Since UM/K =

UM1/K ∪ UM2/K this implies UN/K = UM/K ∪ {v, a+ p−1b}. By Proposition 4.4(a)
there is a subgroup B ≤ Gal(N/M) such that Gal(N/M)/B ∼= H(n, d). Let
L = NB be the fixed field of B; then L/K is a totally ramified H(n, d)-extension.
Since

Gal(N1M2/K) ∼= H(n− 1, d)× C2
p �∼= H(n, d),

we have L �= N1M2. Since a+p−1b > v and v is the largest upper ramification break
of N1M2/K it follows from Lemma 2.3 that a+ p−1b �∈ Z is an upper ramification
break of L/K.

(b) If n ≥ 2 then we proceed as in case (a): Let N1/K be a totally ramified
A(n−1, d)-extension whose largest upper ramification break is v. By Proposition 5.2
there is anH(1, 1)-extensionN2/K such that UN2/K = {b, a, a+p−1b}, with a > b >
v, p � b, and a �≡ 0,−b (mod p). Setting N = N1N2, we get UN/K = UN1/K∪UN2/K ,
N1 ∩N2 = K, and

Gal(N/K) ∼= Gal(N1/K)×Gal(N2/K)

∼= A(n− 1, d)×H(1, 1).

Defining Mi and M as in the proof of (a) we get Gal(N/M) ∼= C2
p and UN/K =

UM/K∪{v, a+p−1b}. Hence by Proposition 4.4(b) there is B ≤ Gal(N/M) such that

Gal(N/K)/B ∼= A(n, d). Setting L = NB we get Gal(L/K) ∼= A(n, d). Since N1M2
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is a Cp-extension ofM such that v is an upper ramification break of N1M2/K, using
Lemma 2.3 we deduce that a+ p−1b is an upper ramification break of L/K.

It remains to construct an A(1, d)-extension with a nonintegral upper ramifi-
cation break for each d ≥ 1. By Corollary 3.3 there exists a totally ramified
Cpd+1 -extension N1/K. Let v be the largest upper ramification break of N1/K and
let F/K be the Cp-subextension of N1/K. Let b be the ramification break of F/K
and let a be an integer such that a > v and a �≡ 0,−b (mod p). Then by Proposi-
tion 5.2 there is a totally ramified H(1, 1)-extension N2/K such that N1 ∩N2 = F
and UN2/K = {b, a, a+ p−1b}. Set N = N1N2. Then

Gal(N/K) ∼= {(σ1, σ2) ∈ Gal(N1/K)×Gal(N2/K) : σ1|F = σ2|F }

is isomorphic to the group Gd defined in Proposition 4.5. Let M1/K be the Cpd -

subextension of N1/K and let M2/K be the C2
p -subextension of N2/K. Then

M1 ∩M2 = F . Set M = M1M2; then N/M is a C2
p -extension. By Proposition 4.5

there is a Cp-subextension L/M ofN/M such that L/K is a totally ramified A(1, d)-
extension. On the other hand, N1M2/M is a Cp-subextension of N/M such that
N1M2/K has v as an upper ramification break. Since

Gal(N1M2/K) ∼= Cpd+1 × Cp �∼= A(1, d),

we have L �= N1M2. Hence by Lemma 2.3 we see that a + p−1b is an upper
ramification break of L/K. This completes the proof. �

We now prove the converse of the Hasse-Arf theorem for totally ramified p-
extensions.

Theorem 5.5. Let K be a local field of characteristic p > 2 with perfect residue
field and let G be a finite nonabelian p-group. Then there is a totally ramified
G-extension L/K which has an upper ramification break which is not an integer.

Proof. By Proposition 4.2 there is a quotient G = G/H of G which is isomorphic
to either H(n, d) or A(n, d) for some n, d ≥ 1. By Proposition 5.4 there is a to-
tally ramified G-extension M/K which has a nonintegral upper ramification break.
By Corollary 3.2 there is an extension L/M such that L/K is a totally ramified
G-extension. Since UM/K ⊂ UL/K it follows that L/K has a nonintegral upper
ramification break. �

6. G-extensions with a nonintegral upper break

Let G be a nonabelian group which is the Galois group of some totally ramified
extension of local fields with residue characteristic p > 2. In this section we prove
the converse to the Hasse-Arf theorem for totally ramified extensions by showing
that there exists a totally ramified G-extension of local fields with residue charac-
teristic p which has a nonintegral upper ramification break.

Let K be a local field with perfect residue field of characteristic p and let L/K be
a totally ramified Galois extension of degree mpn, with p � m. Set G = Gal(L/K)
and let P be the wild ramification subgroup of G. Then P � G and G/P ∼= Cm,
so G ∼= P �ψ Cm for some homomorphism ψ : Cm → Aut(P ). The following result
gives a large class of groups G such that every totally ramified G-extension has a
nonintegral upper ramification break.
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Proposition 6.1. Let K be a local field with perfect residue field of characteristic
p and let L/K be a totally ramified Galois extension of degree mpn, with p � m. Set
G = Gal(L/K) and write G ∼= P �ψ Cm as above. If the action of Cm on P is
nontrivial then L/K has a nonintegral upper ramification break.

Proof. Let Φ(P ) be the Frattini subgroup of P and let M = LΦ(P ) be the fixed field
of Φ(P ). Then Φ(P ) � G, so M/K is a Galois extension. Set P = P/Φ(P ) and let
ψ : Cm → Aut(P ) be the homomorphism induced by ψ. Then ψ is nontrivial by a
theorem of Burnside (see Theorem 1.4 in Chapter 5 of [8]). Hence

Gal(M/K) ∼= G/Φ(P ) ∼= P �ψ Cm

is nonabelian. Since p � m, P is a direct sum of Fp[Cm]-submodules. Hence there

is a simple Fp[Cm]-submodule W ⊂ P on which Cm acts nontrivially. Since W

is a direct summand of P there is a Galois subextension E/K of M/K such that
Gal(E/K) ∼= W � Cm. Let T/K be the maximal tamely ramified subextension
of L/K; then T ⊂ E. Since W is a simple Fp[Cm]-module, and the ramification
subgroups of Gal(E/T ) are normal in Gal(E/K), E/T has a unique upper and
lower ramification break b.

Let F/T be a Cp-subextension of E/T . Then F/T has upper and lower ramifica-
tion break b. Hence there is α ∈ T such that vT (α) = −b and F is generated over T
by the roots of Xp −X −α (see Proposition 2.4 in [6, III]). Let σ be a generator of
Gal(T/K) ∼= Cm. Since E/K is Galois, the splitting field over T of Xp −X − σ(α)
is a Cp-subextension of E/T . Hence Xp −X − (σ(α)− α) splits over E.

Suppose m | b. There is a uniformizer πT of T and a primitive mth root of unity
ζ ∈ K such that σ(πT ) = ζπT . Since vT (α) = −b there is c ∈ O×

K such that α ≡
cπ−b

T (mod M−b+1
T ). Hence vT (σ(α)−α) > −b. IfXp−X−(σ(α)−α) is irreducible

over T then the splitting field of this polynomial is a Cp-subextension of E/T whose
unique upper ramification break is less than b. Since b is the only upper ramification
break of E/T , this is a contradiction. Hence Xp − X − (σ(α) − α) splits over T .
Extending σ to σ̃ ∈ Gal(E/K), we get σ̃(F ) = F . It follows by the simplicity
of W that E = F . Let χα : Gal(T sep/T ) → Fp and χσ(α) : Gal(T sep/T ) → Fp

be the Galois characters associated to α and σ(α) by Artin-Schreier theory. Since
Xp −X − (σ(α)− α) splits over T we get χα = χσ(α). It follows that σ̃τ σ̃−1 = τ
for every τ ∈ Gal(E/T ). This contradicts the nontriviality of the action of Cm on
W , so we must have m � b.

Since b is a lower ramification break of E/T , it is also a lower ramification
break of E/K. Therefore b/m is an upper ramification break of E/K. Hence by
Theorem 2.1(b), b/m is a nonintegral upper ramification break of L/K. �
Remark 6.2. Proposition 6.1 could also be proved using Remark 1 in [7].

We now prove our converse of the Hasse-Arf theorem:

Theorem 6.3. Let k be a perfect field of characteristic p > 2. Let E/F be a totally
ramified Galois extension of local fields with residue field k and set G = Gal(E/F ).
Then there is a local field K with residue field k and a totally ramified G-extension
L/K which has a nonintegral upper ramification break.

Proof. Since E/F is totally ramified, the wild ramification subgroup P of G =
Gal(E/F ) is a normal Sylow p-subgroup of G. Furthermore, we have G ∼= P �ψCm

for some m with p � m and some ψ : Cm → Aut(P ). If ψ(Cm) is nontrivial then
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it follows from Proposition 6.1 that the totally ramified G-extension E/F has a
nonintegral upper ramification break. On the other hand, if ψ(Cm) is trivial then
G ∼= P × Cm, so P is nonabelian. Set K = k((t)). Then by Theorem 5.5 there
is a totally ramified P -extension L1/K which has a nonintegral upper ramification
break. Since F has a totally ramified Cm-extension, k contains a primitive mth root
of unity ζm. Hence there is a totally ramified Cm-extension L2/K. Set L = L1L2.
Then L/K is a totally ramified G-extension with a nonintegral upper ramification
break. �

In many cases the G-extension L/K supplied by Theorem 6.3 is an extension of
fields of characteristic p, even when E/F is an extension of fields of characteristic
0. In these cases we can use Deligne’s theory of extensions of truncated local rings
[4] to get a G-extension of fields of characteristic 0 which satisfies the conclusion of
Theorem 6.3. A truncated local ring is defined to be a triple (A,M, ε) such that

(i) A is an Artin local ring whose maximal ideal PA is principal,
(ii) A/PA is a perfect field with positive characteristic,
(iii) M is a free A-module of rank 1,
(iv) ε : M → A is an A-module homomorphism such that ε(M) = PA.

One can define morphisms between these objects to get a category T . Let K be a
local field and let d ≥ 1. Define

Trd(K) = (OK/Md
K ,MK/Md+1

K , ε),

where ε : MK/Me+1
K → OK/Me

K is induced by the inclusion MK ↪→ OK . We say
that Tre(K) ∈ T is the truncation of K to level d.

An extension of truncated local rings is a special type of T -morphism; one can
associate upper and lower ramification breaks to these extensions. For S ∈ T and
d ≥ 1 there is a category ext(S)d whose objects are extensions of S whose largest
upper ramification break is less than d. Let ext(K)d denote the category of finite
separable extensions of K whose largest upper ramification break is less than d.

Theorem 6.4. Let K be a local field of characteristic 0 with absolute ramification
index e. Let k be the residue field of K and set F = k((t)). Then there is an equiva-
lence of categories between ext(K)e and ext(F )e. Furthermore, if L/K corresponds
to E/F under this equivalence, then L/K and E/F have the same upper and lower
ramification breaks.

Sketch of proof. Let L/K ∈ ext(K)e and let r be the ramification index of L/K.
Then the inclusion K ↪→ L induces a T -morphism fL/K : Tre(K) → Trre(L) which
is an object in ext(Tre(K))e. In Théorème 2.8 of [4] it is shown that this construc-
tion gives an equivalence of categories from ext(K)e to ext(Tre(K))e. Similarly,
there is an equivalence of categories from ext(F )e to ext(Tre(F ))e. Both of these
equivalences preserve the ramification breaks of extensions. Since Tre(K) ∼= Tre(F )
it follows that there is an equivalence of categories between ext(K)e and ext(F )e

which preserves ramification breaks. �

Corollary 6.5. Let k be a perfect field of characteristic p > 2. Let G be a finite
nonabelian group which is the Galois group of some totally ramified Galois extension
of local fields with residue field k. Then there is a local field K of characteristic
0 with residue field k and a totally ramified G-extension L/K which has an upper
ramification break which is not an integer.
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Proof. By Theorem 6.3 there is a local field F with residue field k and a totally
ramified G-extension E/F which has a nonintegral upper ramification break. If
char(F ) = 0 there is nothing to prove. If char(F ) = p let uE/F be the largest upper
ramification break of E/F . Let K be a local field of characteristic 0 with residue
field k whose absolute ramification index eK = vK(p) satisfies eK > uE/F . Then
it follows from Theorem 6.4 that there is a totally ramified G-extension L/K with
the same ramification breaks as E/F . �

Remark 6.6. Let L/K be a totally ramified Galois extension of local fields such that
for every totally ramified abelian extension E/K, the upper ramification breaks of
LE/K are all integers. In [7] Fesenko proved that Gal(L/K) must be abelian in
this case. This gives a converse to the Hasse-Arf theorem of a different sort than
the one presented here.

Remark 6.7. Let K be a local field of characteristic 2 and let L/K be a totally ram-
ified Galois extension whose Galois group is the dihedral group D4 of order 8. It is
shown in [5,13] that the upper ramification breaks of L/K must be integers. Hence
the approach that we use here to prove the converse to the Hasse-Arf theorem by
constructing extensions of local fields in characteristic p cannot be extended to the
case p = 2. When we pass to characteristic 0, however, we find that there are sev-
eral totally ramified D4-extensions of Q2 which have nonintegral upper ramification
breaks. For instance, the extension of Q2 generated by a root of the polynomial
X8 + 4X7 + 2X4 + 4X2 + 14 is a D4-extension whose upper breaks are 1, 2, 5/2
(this is the p-adic field 2.8.22.83 in [10]). It remains an open question whether
the converse to Hasse-Arf holds for totally ramified extensions of local fields with
residue characteristic 2.

Remark 6.8. It would be interesting to know for which local fields K the following
stronger converse to the Hasse-Arf theorem holds: For every nonabelian group G
such that K admits a totally ramified G-extension, there is a totally ramified G-
extension L/K which has a nonintegral upper ramification break. It follows from
the proof of Theorem 6.3 that this converse to Hasse-Arf holds for local fields of
characteristic p > 2. On the other hand, Remark 6.7 shows that this converse to
Hasse-Arf does not hold for local fields of characteristic 2. Let Q8 be the quaternion
group of order 8. There are four totally ramified Q8-extensions of the 2-adic field
Q2, each of which has upper ramification breaks 1, 2, 3 (see [10]). Therefore this
converse to Hasse-Arf does not hold for Q2. As far as we know it is an open question
whether this stronger converse to the Hasse-Arf theorem holds for local fields K of
characteristic 0 with residue characteristic p > 2.

Note: Edit in proof

While this article was in press the authors learned from Victor Abrashkin that
some of the results presented here could be proved more easily in the finite residue
field case using his paper “A ramification filtration of the Galois group of a local
field” [1]. The results in that paper and its sequels should allow one to say much
more about the possibilities for upper ramification sequences.
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