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ASYMPTOTICS IN FINITE MONOIDAL CATEGORIES

ABEL LACABANNE, DANIEL TUBBENHAUER, AND PEDRO VAZ

(Communicated by Sarah Witherspoon)

Abstract. We give explicit formulas for the asymptotic growth rate of the
number of summands in tensor powers in certain monoidal categories with
finitely many indecomposable objects, and related structures.

Contents

1. Introduction 398
2. Examples 401
3. Generalizations and proofs 407
Acknowledgments 410
References 410

1. Introduction

Let R = (R,C) be a finite based R≥0-algebra with basis C = {1 = c0, . . . , cr−1}
(recalled in Section 3 together with some other notions used in this introduction).
Recall that we thus have

(1A.1) cicj =
∑
k

mk
i,j · ck with mk

i,j ∈ R≥0.

Iterating this gives us coefficientsmk
i,j,...,l ∈ R≥0. Similarly, for c = a0·c0+· · ·+ar−1·

cr−1, d = d0 ·c0+ · · ·+dr−1 ·cr−1 ∈ R≥0C we get, for example, cd =
∑

k aidjm
k
i,j ·ck

with aidjm
k
i,j ∈ R≥0.

Fix c ∈ R≥0C. We write m∗
n(c) for these coefficients as they appear in cn where

∗ ∈ {0, . . . , r − 1}. Define

bR,c
n :=

∑
∗

m∗
n(c) = total sum of the coefficients m∗

n(c).

Moreover, we define the function

bR,c : Z≥0 → R≥0, n �→ bR,c(n) := bR,c
n .
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We are interested in the asymptotic behavior of the function bR,c(n). The main
question we address is:

Question 1. Find an explicit formula a(n) such that

bR,c(n) ∼ a(n),

where we write ∼ for asymptotically equal.

We answer Question 1 as follows.
The (transposed) action matrix of c = a0 · c0 + · · · + ar−1 · cr−1 ∈ R≥0C is

the matrix (
∑

i aim
k
i,j)k,j . Abusing language, we will call the submatrix of it cor-

responding to the connected component of 1 also the action matrix and use this
below.

Assume that the Perron–Frobenius theorem holds, that is the action matrix of
c ∈ R≥0C has a leading eigenvalue λ0 = PFdim c of multiplicity one that we call
the Perron–Frobenius dimension of c. Moreover, the action matrix has some period
h ∈ Z≥0 such that λk = ζkPFdim c, where ζ = exp(2πi/h) and k ∈ {1, . . . , h− 1},
are precisely the other eigenvalues of absolute value PFdim c. We will drop this
assumption in Section 3.

Let us denote the right (the one with Mvi = λi · vi) and left (the one with
wT

i M = λi · wT
i ) eigenvectors by vi and wi, normalized such that wT

i vi = 1. Let

viw
T
i [1] denote taking the sum of the first column of the matrix viw

T
i , and let Z

denote the algebraic integers. Define

a(n) =
(
v0w

T
0 [1] · 1 + v1w

T
1 [1] · ζn + v2w

T
2 [1] · (ζ2)n + · · ·+ vh−1w

T
h−1[1] · (ζh−1)n

)(1A.2)

· (PFdim c)n ∈ Z.

Let λsec be any second largest eigenvalue of the action matrix of c. We will prove
(see Section 3):

Theorem 1. We have

bR,c(n) ∼ a(n),

and the convergence is geometric with ratio |λsec/PFdim c|. In particular,

βR,c := lim
n→∞

n

√
bR,c
n = PFdim c.

The reason why Theorem 1 is interesting from the categorical point of view is
the following. For us a finite monoidal category is a category such that:

(i) It is monoidal.

(ii) It is additive Krull–Schmidt.

(iii) It has finitely many (isomorphism classes of) indecomposable objects.

Example 1. Here are a few examples:

(a) Let G be a finite group and consider Rep(G) = Rep(G,C) the category
of finite dimensional complex representations of G. This is a prototypical
example of a finite monoidal category.

(b) More generally, all fusion categories are finite monoidal.
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(c) For a finite group G, and arbitrary field, we can consider finite dimensional
projective Proj(G) or injective Inj(G) representations. These are finite
monoidal categories. More generally, one can take any finite dimensional
Hopf algebra instead of a finite group.

(d) If we assume that a Hopf algebra H is of finite type, then we can even
consider Rep(H) (finite dimensional H-representations). An explicit and
nonsemisimple example over C is the Taft algebra by [CVOZ14, Theorem
2.5].

(e) In any additive Krull–Schmidt monoidal category one can take {X⊗d|d ∈
Z≥0}⊕,⊂⊕ , the additive idempotent completion of the full subcategory gen-
erated by an object X, as long as this has finitely many indecomposable
objects. Explicitly, for a finite group G one can take any two dimensional
G-representation for X, which follows from [Alp79]. There are many more
examples, see e.g. [Cra13].

(f) Consider Soergel bimodules SBim(W ) as in [Soe92]. These are finite
monoidal categories if W = (W,S) is of finite Coxeter type.

There are of course many more examples.

The following is very easy and omitted:

Lemma 1. The additive Grothendieck ring of a finite monoidal category is a finite
based R≥0-algebra with basis given by the classes of indecomposable objects. �

Fix a finite monoidal category C and an object X ∈ C. Following [COT23], we
define

bC,X
n := #indecomposable summands in X⊗n counted with multiplicities.

Note that a(n) has an analog in this context, denoted by the same symbol, obtained
for the (transposed) action matrix for left tensoring. Similarly as before we also
have λsec. We then get:

Theorem 2. Under the same assumption as in Theorem 1, we have

bC,X(n) ∼ a(n),

and the convergence is geometric with ratio |λsec/PFdim X|. In particular,

βC,X := lim
n→∞

n

√
bC,X
n = PFdim X.

Proof. From Theorem 1 and Lemma 1. �

In the next section we will discuss examples of Theorem 2, and then we will prove
Theorem 1. We also generalize these two theorems in Section 3 by getting rid of
the assumption on the action matrix. Before that, let us finish the introduction
with some (historical) remarks.

Remark 1.

(a) To study asymptotic properties of tensor powers is a rather new subject
and most things are still quite mysterious. Let us mention a few facts that
are known. An early reference we know is [Bia93], which studies questions
similar to the one in this note but for Lie algebras, and this was carried
on in several works such as [PR20]. As another example, the paper [BS20]
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studies the growth rate of the dimensions of the non-projective part of ten-
sor powers of a representation of a finite group. More generally, the paper
[CEO23b] studies, working in certain tensor categories, the growth rates of
summands of categorical dimension prime to the underlying characteristic.
The paper [COT23] studies the growth rate of all summands, while [KST22]
studies the Schur–Weyl dual question.

(b) Theorem 1 and Theorem 2 generalize [CEO23a, Proposition 2.1]. And for
us one of the main features of that proposition is its simplicity, having a
simple statement and proof. As we will see, the same is true for Theorem 1
and Theorem 2 as well: Clearly, the statements themselves are (surpris-
ingly) simple yet general. Moreover, the proof of Theorem 1, and therefore
the proof of Theorem 2 as well, is rather straightforward as soon as the key
ideas are in place.

(c) The second statements in Theorem 1 and Theorem 2 were already observed
in [COT23] (in the setting of [COT23] the Perron–Frobenius dimension
agrees with the usual dimension), but the (finer) asymptotic behavior ap-
pears to be new.

Finally, let us mention that similar questions have been studied much earlier, see
for example [AE81] for a related notion involving length of projective resolutions,
or [LS77] for counting and Young diagrams.

2. Examples

Let us call Theorem 1 and Theorem 2 our main theorem(s) or MT for short. To
underpin the explicit nature of these theorems, we now list examples MT applies.
We also add that all the below can be double checked using the code on [LTV23].
That page also contains a (potentially empty) Erratum.

Let us briefly explain why MT can be used in all the examples discussed below:
For Section 2A this follows since our assumption on V implies that the action matrix
is irreducible. For all other examples a direct calculation verifies that the action
matrices satisfy the Perron–Frobenius theorem.

2A. Finite groups. Let G be a finite group. Given a finite dimensional complex
G-representation V , denote by ZV (G) ⊂ G the subgroup consisting of elements of
g that acts as a scalar on V and by ωV (g) ∈ C the corresponding scalar. If V is
simple, then ωV is known as the central character of V .

Suppose that V is a faithful G-representation. Since V is faithful we get that
ZV (G) is a subgroup of Z(G) and also that the action graph of tensoring with V
is connected (in the oriented sense). Then MT implies:

(2A.1) a(n) =

⎛
⎝ 1

#G

∑
g∈ZV (G)

( ∑
L∈S(G)

ωL(g) dimC L
)
· ωV (g)

n

⎞
⎠ · (dimC V )n,

where S(G) = {simple G-representations}/ ∼=. This follows directly from MT af-
ter recalling the connection from Perron–Frobenius theory to character theory as
explained in e.g. [EGNO15, Chapter 3 and Example 4.5.5]. To elaborate a bit,
the Perron–Frobenius dimension in this case is just the dimension, and the leading
eigenvector corresponds to the regular G-representation.
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Remark 2. If V is not faithful, then the action graph of tensoring with V needs not
to be connected, but that is not an issue in MT . Thus, the assumption that V is
faithful can be easily relaxed.

Remark 3. Alternatively one can prove (2A.1) using character theory, similarly to
[CEO23a, Proposition 2.1]. (2A.1) still generalizes [CEO23a, Proposition 2.1].

Let us give a few explicit examples.

Example 2 (Dihedral groups). Let m ∈ Z≥3 and let G be the dihedral group of
order 2m. Let m′ = m/2, if m is even, and m′ = (m − 1)/2, if m is odd. Choose
V any faithful representation of dimension 2 of G. Then (2A.1) gives the formulas

a(n) =

⎧⎪⎪⎨
⎪⎪⎩

m+1
2m · 2n if m is odd,
m+2
2m · 2n if m is even and m′ is odd,(
(m+2)
2m · 1 + 1

m · (−1)n
)
· 2n if m is even and m′ is even.

Two explicit examples are m ∈ {4, 5} and V is the G-representation corresponding
to rotation by 2π/m. Then:

m = 4: , m = 5: .

Here and throughout, we display the graphs of b(n)/a(n) in the usual way but log
plotted (on the y-axis). Moreover, for m = 4 we have b(n) = a(n) and we will omit
plots in case that happens.

The next example can be seen as a p > 2 version of Example 2.

Example 3 (Extraspecial groups). Let p be a prime and m ∈ Z≥1. Recall that
a p-group of order p1+2m is called extraspecial if its center Z(G) is of order p
and the quotient G/Z(G) is a p-elementary abelian group. For each p and m, there
exists two isomorphism classes of extraspecial groups of order p1+2m, and they have
the same character table. Thus, by (2A.1) we can take any of these two without
difference. In the special case p = 2 and m = 1 we recover the dihedral group and
the quaternion group of order 8.

Fix now an extraspecial group G of order p1+2m. The simple G-representations
are given as follows:

(i) There are p2m nonisomorphic one dimensional representations that arise
from the representations of G/Z(G).

(ii) There are p−1 nonisomorphic simple representations of dimension pm which
are characterized by their central character.

Choose V any of the simple G-representation of dimension pm. Then ZV (G) =
Z(G) and (2A.1) gives

a(n) =

{
(pm)n if p | n,
(pm)n−1 otherwise.
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It turns out that this formula is not only asymptotic: we have b(n) = a(n). This is
due to the fact that the character of V vanishes outside of Z(G).

Example 4 (Imprimitive complex reflection groups). Let d and m be integers in
Z≥1 and consider the imprimitive complex reflection group G = G(d, 1,m). This
group can be seen as the group of m-by-m monomial matrices with entries being
dth roots of unity. For d = 1 we recover the symmetric group, covered by [CEO23a,
Example 2.3], and if d = 2 we recover the Weyl group of type Bm.

Choose V the standard representation given by the matrix description of G.
Then (2A.1) gives a formula akin to [CEO23a, Example 2.3] which we decided not
to write down as it’s a bit tedious.

In any case, for the special cases d ∈ {1, 2} and m = 2, or d = 2 and m = 4 we
get

{
d = 1,
m = 3 : a(n) =

2

3
· 3n,

{
d = 2,
m = 3 : a(n) =

5

12
· 3n,{

d = 2,
m = 4 : a(n) =

(
19

96
· 1 + 1

32
· (−1)n

)
· 4n.

We get the plots

{
d = 2,
m = 3 : ,

{
d = 2,
m = 4 : .

Moreover, the formula a(n) = 2
3 · 3n is exact for d = 1 and m = 3.

2B. Fusion categories. This section discusses fusion categories over C different
from Rep(G).

Example 5 (Fibonacci category). Let F be the Fibonacci category, see for example
[EGNO15, Exercise 8.18.7] where F is denoted by YL+ (or YL−, depending on
conventions). All we need to know is that F is ⊗-generated by one object X with
action matrix M(X) = ( 0 1

1 1 ).
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We want to estimate bF ,X(n). To this end, the eigenvalues of M(X) are the two
roots of x2 = x + 1, in particular, PFdim X = φ, the golden ratio. Its Perron–
Frobenius eigenvectors are v = w =

( √
5−1√

10−2
√
5
,
√

1
10 (

√
5 + 5)

)T and we therefore get

a(n) =
1

10
(
√
5 + 5) · φn =

1√
5
φn−1, ,

from MT . Note that the classical asymptotic for the Fibonacci numbers is 1√
5
φn

and not 1√
5
φn−1, but bF ,X(n) is equal to the (n+1)th Fibonacci number and hence

the off-by-one-error in the exponent.

Example 6 (Verlinde category). We now consider the Verlinde category Verk(SL2)
for k ∈ Z≥2, see for example [EGNO15, Section 8.18.2] (denoted differently therein).
This fusion category has k simple objects, and we take the generating object X of
categorical dimension 2 cos

(
π/(k + 1)

)
. The case k = 2 compares to super vector

spaces.
The action matrix for X has the type A Dynkin diagram as its associated graph,

and the eigenvalues and eigenvectors of this graph are well-known, see for example
[Smi70]. In particular, PFdim X = 2 cos

(
π/(k+1)

)
. Let q = exp

(
πi/(k+1)

)
. Then

MT gives us

a(n) =

⎧⎪⎪⎨
⎪⎪⎩

[1]q+···+[k]q
[1]2q+···+[k]2q

·
(
2 cos(π/(k + 1))

)n
if k is even,(

[1]q+···+[k]q
[1]2q+···+[k]2q

· 1 + [1]q−[2]q+···−[k−1]q+[k]q
[1]2q+···+[k]2q

· (−1)n
)

·
(
2 cos(π/(k + 1))

)n
if k is odd.

Here [a]q denotes the ath quantum number evaluated at q. We get, for example:

k = 4: , k = 6: ,

k = 7: , k = 9: .

Moreover, for k ∈ {3, 5} the formula a(n) is spot on.

Example 7 (Higher rank Verlinde categories). Verlinde categories can be defined
for all simple Lie algebras as quotients of representations of quantum groups at a
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root of unity as explained in [AP95]. Let us focus in this example onVerk(SL3), the
one for the special linear group of rank three (with k determined as e in [MMMT20,
Section 2]).

For Verk(SL3) we take the generating object X corresponding to the vector
representation of SL3(C). Its action matrix is the oriented version of the graph
displayed in [MMMT20, Fig. A1] with the orientation as in [MMMT20, (3-1)].
Using this, and omitting k = 1 since this is trivial, MT gives

k = 2: a(n) =
1

10
(
√
5 + 5) · φk, k = 3: a(n) = 1/2 · 2n,

k = 4: a(n) =
1

7

(
2 + 2 cos

(3π
7

))
·
(
1 + 2 cos

(2π
7

))n

,

k = 2: ,

k = 4: .

For k = 3 the displayed formulas are exact. Moreover, one can find a(n) explicitly
in general using the formulas in [Zub98] or [MMMT20, Section 2].

2C. Nonsemisimple examples. We now discuss two nonsemisimple examples.

Example 8 (SL2(Fp) in defining characteristic). Let our ground field be Fp for
some prime p > 2. We consider the finite group SL2(Fp) and its representations
over Fp. Take V = F

2
p to be the vector representation of SL2(Fp). In this case the

action matrices are exemplified by

p = 3:

(
0 1 0 0 0
1 0 0 0 0
0 1 0 3 0
0 0 1 0 1
0 0 0 1 0

)
, p = 5:

⎛
⎜⎜⎝

0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 2 0 1 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎠, p = 7:

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 2 0 0 0 1 0
0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

These can be described as follows. The matrix is the one obtained as a (2p−1)-by-
(2p−1) cut-off of the matrix for the infinite group over Fp that can be obtained from
[STWZ23, Proposition 4.4], together with an extra entry 1 in position (p, 2p− 2).

Then MT gives

a(n) =

(
1

2p− 2
· 1 + 1

2p2 − 2p
· (−1)n

)
· 2n.
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Explicitly, for p ∈ {3, 5} we get

p = 3: ,

p = 5: .

The convergence is rather slow (but still geometric).

Example 9 (Dihedral Soergel bimodules). We now look at the category of dihedral
Soergel bimodules as studied in details in, for example, [Eli16], [MT19] or [Tub22].
In particular, [Tub22, Section 3C] lists all the formulas relevant for MT . To get
a finite based R≥0-algebra we collapse the grading, meaning we specialize [Tub22,
Section 3C] at q = 1.

Fix 〈s, t|s2 = t2 = (st)m〉 as the presentation for the dihedral group of order 2m
where m ∈ Z≥3. Let us take X to be the Bott–Samelson generator for st. By the
explicit formulas in [Tub22, Section 3C], the action graph of X is almost the same
as the action graph of tensoring with C3 as a SO3(C)-representation. The first ones
are (read in two columns):

m ∈ {3, 5, 7} m ∈ {4, 6, 8}

The pattern generalizes. It is then easy to show that the leading eigenvalues
are always 4 and the absolute values of all other eigenvalues are strictly smaller.
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Moreover, MT gives:

a(n) =
1

2m
· 4n,

m = 3: ,

m = 7: .

The rate of convergence is rather slow for m � 0.

3. Generalizations and proofs

We will prove several versions of Theorem 1.

3A. Perron–Frobenius theory. We start with the main player, the Perron–
Frobenius theorem. To this end, recall that one can associate an oriented and
weighted graph, its adjacency graph, to an m-by-m matrix M = (mij)1≤i,j≤m ∈
Matm(R≥0) as follows:

(i) The vertices are {1, . . . ,m}.
(ii) There is an edge with weight mij from i to j.

We call a nonzero matrix M ∈ Matm(R≥0) irreducible if its associated graph is
connected in the oriented sense (this is called strongly connected). Recall that in
this note a right eigenvector satisfies Mv = λ · v, and a left eigenvector satisfies
wTM = λ · wT .

Theorem 3 (Perron–Frobenius theorem part I). Let M ∈ Matm(R≥0) be irre-
ducible.

(a) M has a Perron–Frobenius eigenvalue, that is, λ ∈ R>0 such that λ ≥ |μ|
for all other eigenvalues μ. This eigenvalue appears with multiplicity one,
and all other eigenvalues with λ = |μ| also appear with multiplicity one.

(b) There exists h ∈ Z≥1, the period, such that all eigenvalues μ with λ = |μ|
are exp(k2πi/h)λ for k ∈ {0, . . . , h − 1}. We call these pseudo-dominant
eigenvalues.

(c) The eigenvectors, left and right, for the Perron–Frobenius eigenvalue can
be normalized to have entries in R≥0.

Proof. Well-known. See for example, Frobenius’ paper 92 in Band 3 of [Fro68].

(This is the paper “Über Matrizen aus nicht negativen Elementen”.) �
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Fix a function f : Z≥0 → Z≥0. We say that f(n) converges geometrically to
a ∈ R with ratio β ∈ [0, 1) if for all γ ∈ (β, 1) we have that {(f(n)− a)/γn}n∈Z≥0

is bounded. We, abusing language, will call the infimum of all ratios the ratio of
convergence.

For two matrices of the same size let ∼ mean that they are asymptotically equal
entrywise (note that below viw

T
i are matrices). For such matrices we apply the

definition of geometric convergence entrywise with the ratio being the maximum of
the entrywise ratios. The following accompanies Theorem 3:

Theorem 4 (Perron–Frobenius theorem part II). Let M ∈ Matm(R≥0) be ir-
reducible, λ be its Perron–Frobenius eigenvalue and h be its period. Let ζ =
exp(2πi/h). For each k ∈ {0, . . . , h − 1}, choose a left eigenvector vk and a right
eigenvector wk with eigenvalue ζkλ, normalized such that wT

k vk = 1.
Then we have:

Mn ∼ v0w
T
0 · λn + v1w

T
1 · (ζλ)n + v2w

T
2 · (ζ2λ)n + · · ·+ vh−1w

T
h−1 · (ζh−1λ)n.

Moreover, the convergence is geometric with ratio |λsec/λ|, where λsec is any second
largest (in the sense of absolute value) eigenvalue.

Proof. This is known, but proofs are a bit tricky to find in the literature, so we
give one. The proof also shows where the vectors vi and wi come from.

For any μ ∈ C, let Vμ be the generalized eigenspace of V = Cm associated to
the eigenvalue μ. Then we have

V =

h⊕
k=0

Vζkλ ⊕
⊕

μ,|μ|<λ

Vμ.

By Theorem 3, the space Vζkλ is the eigenspace associated to the eigenvalue ζkλ

and vkw
T
k is the projection onto that subspace.

This implies that we have

Mn = v0w
T
0 ·λn+ v1w

T
1 · (ζλ)n+ v2w

T
2 · (ζ2λ)n+ · · ·+ vh−1w

T
h−1 · (ζh−1λ)n+R(n),

where R(n) is the multiplication action of Mn onto the rest. Since the eigenvalues
μ of M on the rest satisfies |μ| < λ, we have R(n)/λn →n→∞ 0 geometrically with
ratio |λsec/λ|. �

For a general matrix M ∈ Matm(R≥0) things change, but not too much:

Theorem 5 (Perron–Frobenius theorem part III). Let M ∈ Matm(R≥0).

(a) M has a Perron–Frobenius eigenvalue, that is, λ ∈ R≥0 such that λ ≥ |μ|
for all other eigenvalues μ.

(b) Let s be the multiplicity of the Perron–Frobenius eigenvalue. There exists
(h1, . . . , hs) ∈ Zs

≥1, the periods, such that all eigenvalues μ with λ = |μ|
are exp(k2πi/h�)λ for k ∈ {0, . . . , h� − 1}, for some period. We call these
pseudo-dominant eigenvalues.

(c) The eigenvectors, left and right, for the Perron–Frobenius eigenvalues can
be normalized to have entries in R≥0.

(d) Let h = lcm(h1, . . . , hs), and let ν be the maximal dimension of the Jor-
dan blocks of M containing λ. There exist matrices Si(n) with polynomial
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entries of degree ≤ (ν − 1) for i ∈ {0, . . . , h− 1} such that

lim
n→∞

| (M/λ)hn+i − Si(n)| → 0 ∀i ∈ {0, . . . , h− 1},

and the convergence is geometric with ratio |λsec/λ|h. There are also ex-
plicit formulas for the matrices Si(n), see [Rot81, Section 5].

Proof. This can be found in [Rot81]. See also [Hog07, Section I.10] (in the second
version) for a useful list of properties of nonnegative matrices. �
3B. Three versions of the MT . We recall based algebras. These algebras origi-
nate in work of Lusztig on so-called special representations of Weyl groups [Lus79].
We follow [KM16, Section 2] with our definition.

Let K ⊂ C be a unital subring. A K-algebra R with a finite K-basis C = {1 =
c0, . . . , cr−1} is called a finite based R≥0-algebra if all structure constants are in
R≥0 with respect to the basis C. That is, (1A.1) holds.

The underlying ring K is allowed to be different from R or C, but it needs to
contain the structure constants of course. When the structure constants are in
Z≥0 ⊂ R≥0 a popular choice for the ground ring is K = Z.

Example 10. Examples include:

(a) The Grothendieck rings of all the examples in Example 1. In these examples
one often takes K = Z, but other rings are allowed as well.

(b) Group or more general semigroup algebras for finite groups or semigroups.

(c) There are many interesting infinite examples coming from skein theory, see
e.g. [Thu14].

Decategorifications are our main examples where R≥0 can be replaced by Z≥0.

A finite based R≥0-algebra is actually a pair (R,C), but we will write R for
short. Next, fix such an R and c ∈ R≥0C. In this setting we can define the (pre)
action matrix M ′(c)k,j =

∑
i aim

k
i,j ∈ R≥0. The action matrix M(c) is then the

adjacency matrix for the connected component, in the nonoriented sense, of the
identity 1 ∈ C in the adjacency graph of M ′(c). Note that M(c) ∈ Matm(R≥0) is
a submatrix of M ′(c) ∈ Matr(R≥0) for some 1 ≤ m ≤ r.

We give three versions of MT , stated in terms of finite based R≥0-algebras. The
categorical version then follows immediately from Lemma 1.

Theorem 6 (Version 1). Fix a finite based R≥0-algebra R, and c a R≥0-linear com-
bination of elements from C. Assume that the action matrix M(c) is irreducible.
Then Theorem 1 holds with a(n) as in (1A.2).

Proof. Consider the following matrix equation:

M(c)c(n− 1) = c(n),

where c(k) =
(
c0(k), . . . , cr−1(k)

)
∈ Rr

≥0 are vectors such that their ith entry is

the multiplicity of ci in ck, and c(0) = (1, 0, . . . , 0)T with the one is in the slot of
c0 = 1. This equation holds by the definition of the action matrix. Iterating this
process, we get

M(c)nc(0) = c(n).

Note that M(c)nc(0) is the same as taking the first column of M(c)n. Hence,

bR,c(n) = M(c)n[1]
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in the notation of the introduction. Thus, Theorem 4 implies the result. �

Remark 4. Theorem 6 is sufficient for many example. Explicitly, Theorem 6 works
for all transitive finite based R≥0-algebras. Examples include all finite monoidal
categories that are rigid by [EGNO15, Proposition 4.5.4].

We say that M ∈ Matm(R≥0) has the Perron–Frobenius property if its Perron–
Frobenius eigenvalue has multiplicity one.

Theorem 7 (Version 2). Fix a finite based R≥0-algebra R, and c an R≥0-linear
combination of elements from C. Assume that the action matrix M(c) has the
Perron–Frobenius property. Then Theorem 1 holds with a(n) as in (1A.2).

Proof. The iteration works as in the proof of Theorem 6, so let us focus on the
growth rate. We will use Theorem 5 for s = 1. This implies that ν = 1, by its
definition. In particular, we only have Si(n) with entries of degree zero, so these
are matrices that do not depend on n, so we can simply write Si. We will argue
that they are essentially the matrices viw

T
i .

Precisely, as follows from [Rot81, Section 5], we have

Si = v0w
T
0 + v1w

T
1 · ζi + v2w

T
2 · ζ2i + · · ·+ vh−1w

T
h−1 · ζ(h−1)i

= v0w
T
0 + v1w

T
1 · ζnh+i + v2w

T
2 · ζ2(nh+i) + · · ·+ vh−1w

T
h−1 · ζ(h−1)(nh+i)i.

Now we apply Theorem 5.(c). �

Remark 5. Theorem 7 is the version we used in Section 2.

Recall that the polynomials Si(n) are explicitly given in [Rot81, Section 5] and
define:

(3B.1) a(n) =
1

h

h−1∑
i=0

h−1∑
j=0

Sj
(
�n/h�

)
· ζi(n−j).

Theorem 8 (Version 3). Fix a finite based R≥0-algebra R, and c an R≥0-linear
combination of elements from C. Then Theorem 1 holds with a(n) as in (3B.1).

Proof. Observing that 1 + ζi + · · ·+ ζ(h−1)i = 0 if i �≡ 0 mod h, this follows as for
the previous theorems. �

Acknowledgments

The authors would like to thank Kevin Coulembier, Pavel Etingof, and Victor
Ostrik for very helpful email exchanges, and the referee for a careful reading of our
document. The second author thanks randomness for giving the authors the key
idea underlying this note.

References

[Alp79] Jonathan L. Alperin, Projective modules for SL(2, 2n), J. Pure Appl. Algebra 15
(1979), no. 3, 219–234, DOI 10.1016/0022-4049(79)90017-3. MR537496

[AE81] Jonathan L. Alperin and Leonard Evens, Representations, resolutions and Quillen’s
dimension theorem, J. Pure Appl. Algebra 22 (1981), no. 1, 1–9, DOI 10.1016/0022-
4049(81)90079-7. MR621284

[AP95] Henning Haahr Andersen and Jan Paradowski, Fusion categories arising from
semisimple Lie algebras, Comm. Math. Phys. 169 (1995), no. 3, 563–588. MR1328736

https://mathscinet.ams.org/mathscinet-getitem?mr=537496
https://mathscinet.ams.org/mathscinet-getitem?mr=621284
https://mathscinet.ams.org/mathscinet-getitem?mr=1328736


ASYMPTOTICS IN FINITE MONOIDAL CATEGORIES 411

[BS20] Dave Benson and Peter Symonds, The non-projective part of the tensor powers of a
module, J. Lond. Math. Soc. (2) 101 (2020), no. 2, 828–856, DOI 10.1112/jlms.12288.
MR4093976

[Bia93] Philippe Biane, Estimation asymptotique des multiplicités dans les puissances ten-
sorielles d’un g-module (French, with English and French summaries), C. R. Acad.
Sci. Paris Sér. I Math. 316 (1993), no. 8, 849–852. MR1218274

[CVOZ14] Huixiang Chen, Fred Van Oystaeyen, and Yinhuo Zhang, The Green rings of Taft

algebras, Proc. Amer. Math. Soc. 142 (2014), no. 3, 765–775, DOI 10.1090/S0002-
9939-2013-11823-X. MR3148512

[CEO23a] Kevin Coulembier, Pavel Etingof, and Victor Ostrik, Asymptotic properties of ten-
sor powers in symmetric tensor categories, To appear in Pure Appl. Math. Q.,
arXiv:2301.09804, (2023).

[CEO23b] Kevin Coulembier, Pavel Etingof, and Victor Ostrik, On Frobenius exact symmetric
tensor categories, Ann. of Math. (2) 197 (2023), no. 3, 1235–1279, DOI 10.4007/an-
nals.2023.197.3.5. With Appendix A by Alexander Kleshchev. MR4564264

[COT23] Kevin Coulembier, Victor Ostrik, and Daniel Tubbenhauer. Growth rates of the
number of indecomposable summands in tensor powers, Preprint, arXiv:2301.00885,
(2023).

[Cra13] David A. Craven, On tensor products of simple modules for simple groups, Al-
gebr. Represent. Theory 16 (2013), no. 2, 377–404, DOI 10.1007/s10468-011-9311-5.
MR3035997

[Eli16] Ben Elias, The two-color Soergel calculus, Compos. Math. 152 (2016), no. 2, 327–398,
DOI 10.1112/S0010437X15007587. MR3462556

[EGNO15] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, Tensor categories,
Mathematical Surveys and Monographs, vol. 205, American Mathematical Society,
Providence, RI, 2015, DOI 10.1090/surv/205. MR3242743

[Fro68] Ferdinand Georg Frobenius, Gesammelte Abhandlungen. Bände I, II, III (German),
Springer-Verlag, Berlin-New York, 1968. Herausgegeben von J.-P. Serre. MR235974

[Hog07] Leslie Hogben (ed.), Handbook of linear algebra, Discrete Mathematics and its Ap-
plications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2007. Associate

editors: Richard Brualdi, Anne Greenbaum and Roy Mathias. MR2279160
[KM16] Tobias Kildetoft and Volodymyr Mazorchuk, Special modules over positively based

algebras, Doc. Math. 21 (2016), 1171–1192. MR3578210
[KST22] Mikhail Khovanov, Maithreya Sitaraman, and Daniel Tubbenhauer. Monoidal cate-

gories, representation gap and cryptography, To appear in Trans. Amer. Math. Soc.
arXiv:2201.01805, (2022).

[LTV23] Abel Lacabanne, Daniel Tubbenhauer, and Pedro Vaz. Code and erratum on GitHub
for the paper Asymptotics in finite monoidal categories, URL: https://github.com/
dtubbenhauer/growth-pfdim, (2023).

[LS77] Benjamin F. Logan and Lawrence A. Shepp, A variational problem for random
Young tableaux, Advances in Math. 26 (1977), no. 2, 206–222, DOI 10.1016/0001-
8708(77)90030-5. MR1417317

[Lus79] George Lusztig, A class of irreducible representations of a Weyl group, Nederl. Akad.
Wetensch. Indag. Math. 41 (1979), no. 3, 323–335. MR0546372

[MMMT20] Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz, and Daniel Tubben-
hauer, Trihedral Soergel bimodules, Fund. Math. 248 (2020), no. 3, 219–300, DOI
10.4064/fm566-3-2019. MR4046957

[MT19] Marco Mackaaij and Daniel Tubbenhauer, Two-color Soergel calculus and simple
transitive 2-representations, Canad. J. Math. 71 (2019), no. 6, 1523–1566, DOI
10.4153/cjm-2017-061-2. MR4028468

[PR20] Olga Postnova and Nicolai Reshetikhin, On multiplicities of irreducibles in large ten-
sor product of representations of simple Lie algebras, Lett. Math. Phys. 110 (2020),

no. 1, 147–178, DOI 10.1007/s11005-019-01217-4. MR4047148
[Rot81] Uriel G. Rothblum, Expansions of sums of matrix powers, SIAM Rev. 23 (1981),

no. 2, 143–164, DOI 10.1137/1023036. MR618637
[Smi70] John H. Smith, Some properties of the spectrum of a graph, Combinatorial Structures

and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), Gordon
and Breach, New York-London-Paris, 1970, pp. 403–406. MR266799

https://mathscinet.ams.org/mathscinet-getitem?mr=4093976
https://mathscinet.ams.org/mathscinet-getitem?mr=1218274
https://mathscinet.ams.org/mathscinet-getitem?mr=3148512
https://arxiv.org/abs/2301.09804
https://mathscinet.ams.org/mathscinet-getitem?mr=4564264
https://arxiv.org/abs/2301.00885
https://mathscinet.ams.org/mathscinet-getitem?mr=3035997
https://mathscinet.ams.org/mathscinet-getitem?mr=3462556
https://mathscinet.ams.org/mathscinet-getitem?mr=3242743
https://mathscinet.ams.org/mathscinet-getitem?mr=235974
https://mathscinet.ams.org/mathscinet-getitem?mr=2279160
https://mathscinet.ams.org/mathscinet-getitem?mr=3578210
https://arxiv.org/abs/2201.01805
https://github.com/dtubbenhauer/growth-pfdim
https://github.com/dtubbenhauer/growth-pfdim
https://mathscinet.ams.org/mathscinet-getitem?mr=1417317
https://mathscinet.ams.org/mathscinet-getitem?mr=0546372
https://mathscinet.ams.org/mathscinet-getitem?mr=4046957
https://mathscinet.ams.org/mathscinet-getitem?mr=4028468
https://mathscinet.ams.org/mathscinet-getitem?mr=4047148
https://mathscinet.ams.org/mathscinet-getitem?mr=618637
https://mathscinet.ams.org/mathscinet-getitem?mr=266799


412 A. LACABANNE, D. TUBBENHAUER, AND P. VAZ

[Soe92] Wolfgang Soergel, The combinatorics of Harish-Chandra bimodules, J. Reine Angew.
Math. 429 (1992), 49–74, DOI 10.1515/crll.1992.429.49. MR1173115

[STWZ23] Louise Sutton, Daniel Tubbenhauer, Paul Wedrich, and Jieru Zhu, SL2 tilting modules
in the mixed case, Selecta Math. (N.S.) 29 (2023), no. 3, Paper No. 39, 40, DOI
10.1007/s00029-023-00835-0. MR4587641

[Thu14] Dylan Paul Thurston, Positive basis for surface skein algebras, Proc. Natl. Acad. Sci.
USA 111 (2014), no. 27, 9725–9732, DOI 10.1073/pnas.1313070111. MR3263305

[Tub22] Daniel Tubbenhauer, Sandwich cellularity and a version of cell theory, To appear in
Rocky Mountain J. Math., arXiv:2206.06678, (2022).

[Zub98] Jean-Bernard Zuber, Generalized Dynkin diagrams and root systems and their fold-
ing, Topological field theory, primitive forms and related topics (Kyoto, 1996), Progr.
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