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Abstract. The Brocard–Ramanujan problem, which is an unsolved problem
in number theory, is to find integer solutions (x, �) of x2−1 = �!. Many analogs
of this problem are currently being considered. As one example, it is known
that there are at most only finitely many algebraic integer solutions (x, �), up
to a unit factor, to the equations NK(x) = �!, where NK are the norms of
number fields K/Q. In this paper, we construct infinitely many number fields
K such that NK(x) = �! has at least 22 solutions for positive integers �.

1. Introduction

Brocard and Ramanujan independently considered the problem of determining
all integer solutions (x, �) of x2− 1 = �! and conjectured that the only solutions are
(x, �) = (5, 4), (11, 5), and (71, 7) [3,4,15]. As a generalization, it has been proposed
that there are only finitely many solutions of the polynomial-factorial Diophantine
equation

(1.1) P (x) = �!,

where P (x) is a polynomial of degree 2 or more with integer coefficients. The
generalized Brocard–Ramanujan problem excludes the case degP = 1. In that
case, we can observe that if a1|a0, then equation a1x+ a0 = �! has infinitely many
solutions (x, �), and otherwise has only finitely many solutions.

The Oesterlé–Masser conjecture, also known as the abc-conjecture, implies that
polynomial-factorial equations (1.1) have only finitely many solutions. To explain
the statement of the Oesterlé–Masser conjecture, we define the algebraic radical.
For any nonzero integer n, the algebraic radical rad(n) is defined by

rad(n) =
∏
p|n

p,

where p runs through the prime factors of n. The Oesterlé-Masser conjecture states
that for any ε > 0, there exists a positive constant β(ε) such that

max{|a|, |b|, |c|} < β(ε)rad(abc)1+ε
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for any triple (a, b, c) of non-zero coprime integers with a + b = c [11, 12]. In
the following, we summarize results from applying this conjecture to polynomial-
factorial Diophantine equations.

First, Overholt showed that the weak form of Szpiro’s conjecture implies that
x2 − 1 = �! has only finitely many solutions [13]. We note that the Oesterlé-
Masser conjecture implies the weak form of Szpiro’s conjecture. More generally,
D ↪abrowski showed that if the weak form of Szpiro’s conjecture is true, then for
any integer A, the equation x2 − A = �! has only finitely many integer solutions
(x, �) [6]. He also showed that when A is not the square of an integer, this result
becomes unconditional. As a generalization of these results, Luca showed that
for any polynomial P (x) ∈ Z[x] with degree ≥ 2, the Oesterlé–Masser conjecture
implies that the equation P (x) = �! has only finitely many solutions (x, �) [10].

Assuming an effective version of the Oesterlé–Masser conjecture, Browkin found
that all the solutions to x2 − 1 = �! are the three conjectured ones given above.
More precisely, if

max{|a|, |b|, |c|} < rad(abc)1.8

for any triple (a, b, c) of nonzero coprime integers with a+ b = c, then the complete
list of solutions to x2 − 1 = �! are the conjectured ones, (x, �) = (5, 4), (11, 5), and
(71, 7) [5].

There are many unconditional results. It is known that for m ≥ 3, the equation
xm + ym = �! has no solution with gcd(x, y) = 1 except for (x, y, �) = (1, 1, 2) and
the equation xm − ym = �! has no solution with gcd(x, y) = 1 except when m = 4
[7]. In 1973, Pollack and Shapiro showed that x4 − 1 = �! also has no solution [14].
We note that there are infinitely many solutions (x, y, �) of x2 − y2 = �!. Indeed,
for any a ≥ 4, (x, y, �) = (a!4 + 1, a!4 − 1, a) is a solution of x2 − y2 = �!.

Berend and Osgood showed that for any polynomial P (x) ∈ Z of degree 2 or
more with integer coefficients, the equation P (x) = �! has only a density 0 set of
solutions � [2], that is,

lim
n→∞

|{� ≤ n | there exists x ∈ Z such that P (x) = �!}|
n

= 0.

In 2006, Berend and Harmse considered several related problems. They showed
that for any polynomial P (x) ∈ Z which is an irreducible polynomial or satisfies
certain technical conditions, there exist only finitely many solutions of P (x) = �!
[1].

In a previous paper [17], we considered the number of solutions to the equation

n∑
i=0

aix
iyn−i = �!,

where ai ∈ Z. We dealt more generally with equations involving norm NK of K/Q
and the factorial operation. Let OK be the ring of integers in number field K. Let
G(K) be the set of all complex embeddings σ from K to C, that is, σ sending αj

to their conjugates and σ(a) = a for all a ∈ Q. Then the norm NK is defined by

NK(x) =
∏

σ∈G(K)

σ (x) .

We proved Theorem 1.1.

Theorem 1.1 ([17]). The following hold.
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(1) Let F (x, y) be a homogeneous polynomial with degF ≥ 2. If F is an irre-
ducible polynomial or satisfies certain technical conditions, then there exist
at most only finitely many � such that �! is represented by F (x, y).

(2) There exist at most only finitely many � such that �! is represented by NK(x)
with x ∈ OK .

In this article, we study whether the set of all integer solutions to NK(x) = �! is
empty. Let S(K) be the set of all integers � ≥ 2 such that there exists an element
x ∈ OK with NK(x) = �!. For any number field K, we have NK(1) = 1!. Therefore,
we remove this from S(K).

An outline for the rest of this article is as follows. In Section 2, we make some
observations and prove that for a fixed integer n ≥ 2, there are infinitely many
number fields K with [K : Q] = n such that S(K) �= ∅. In Section 3, we focus on
radical extensions and compose solutions, and show that there are infinitely many
number fields K with #S(K) ≥ 21. More precisely, we prove Theorem 1.2.

Theorem 1.2. [Theorem 3.1] Let K = Q( n
√
2). For any positive odd integers n

relatively prime to 30, it holds that

{� | 2 ≤ � ≤ 22} ⊂ S(K).

After we prove Theorem 1.2, we observe that there may exist many solutions to
NK(x) = �! for radical fields K = Q( n

√
a). In the appendix, we note that one can

improve the upper bound of solutions to our equations by using the effective version
of the Chebotarev density theorem shown by [18]. This improves a Bertrand-type
estimate for prime ideals used to prove Theorem 1.1 in [17]. By following the proof
of Theorem 1.1 in [17], we give an improvement for the upper bound of solutions
to NK(x) = �!.

2. Infiniteness

In this section, we deal with specific number fields and prove that for fixed integer
n ≥ 2, there are infinitely many number fields K with [K : Q] = n and S(K) �= ∅.

Theorem 2.1. For fixed integer n, there exist infinitely many number fields K
such that [K : Q] = n and S(K) �= ∅.

Proof. For positive integer � ≥ 2, we consider the prime factorization �! = mnk,
where k is the n-th power-free part of �!. By the Bertrand-Chebyshev theorem,
for x ≥ 2, there exists a prime p in the interval (x, 2x). Therefore, �! is not a
powerful number and k > 1. Let K = Q( n

√
−k). Then we have m n

√
−k ∈ OK

and NK((−1)nm n
√
−k) = �!. Therefore, S(K) �= ∅. One can verify that there are

infinitely many k appearing as the n-th power-free part of some �!. This ensures that
there exist infinitely many number fields K such that [K : Q]=n and S(K) �=∅. �

The above theorem shows that there are infinitely many number fields K with
S(K) �= ∅. Subsequently, we consider the number of solutions #S(K). From the
norm being multiplicative, the greater the class number is, the less the number of
solutions is. The following examples describe S(K) for imaginary quadratic fields
K with class numbers 1 and 3.
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Example 2.2 (Imaginary quadratic fields with class number 1).

d S(Q(
√
−d)) d S(Q(

√
−d))

1 {2, 6} 7 {10, 11}
2 {3, 4} 11 {6}
3 {10} 19 {6, 7, 10, 11}

If d = 43, 67, or 163, then S(Q(
√
−d)) = ∅.

Example 2.3 (Imaginary quadratic fields with class number 3).

d S(Q(
√
−d)) d S(Q(

√
−d))

23 {3, 4} 139 {7, 10, 11}
31 {6, 7, 8, 9, 10} 283 {11}
59 {6, 7, 10} 307 {11}
83 {10, 11, 12}

If d = 107, 211, 331, 379, 499, 547, 643, 883, or 907, then S(Q(
√
−d)) = ∅.

Theorem 2.4. There exist infinitely many real quadratic fields K = Q(
√
d) such

that 2 ∈ S(K).

Proof. Using k2 − 2, we construct infinitely many real quadratic fields K = Q(
√
d)

such that 2 ∈ S(K). We decompose k2 − 2 = m2n, with n being the square-free
part of k2 − 2. As k2 − 2 ≡ 2, 3 mod 4, we note that m2 ≡ 1 mod 4 and n ≡ 2, 3
mod 4. Also, the norm of Q(

√
n) is NK(x + y

√
n) = x2 − ny2. We confirm that

NK(k + m
√
n) = 2 = 2!. Therefore, it suffices to show that there are infinitely

many n appearing as the square-free part of k2 − 2 for some k.
The quadratic reciprocity law implies that if a power of an odd prime p is a

divisor of k2−2, then p ≡ 1, 7 mod 8. Now, we denote by g a primitive root for p2.
Let r be an integer such that g2r ≡ 2 mod p2. Then we have that g2r+(p−1) ≡ 2

mod p and g2r+(p−1) �≡ 2 mod p2. Thus, when k = gr+
p−1
2 , the prime p divides

k2 − 2 exactly once and p|n. This shows the desired conclusion. �

Theorem 2.4 shows that there are infinitely many quadratic fields K such that
the equation NK(x) = 2! has an algebraic integer solution. Applying a similar
argument for odd n and kn − �! in the proof of Theorem 2.4, we can prove that
there are infinitely many fields K with [K : Q] = n such that the equations of the
form NK(x) = �! have an algebraic integer solution. We note that if �! is large,
kn − �! may be an n-powerful number for small k. For example, 172 − 5! = 132 and
312 − 5! = 292.

3. Norm for radical extension fields

The finite extension L/K is said to be a radical extension if L is obtained by
adjoining a root of a polynomial xn − a ∈ K[x]. In this section, we study S(K) for

radical extension fields K. First, we focus on the fields Q( n
√
2).

Theorem 3.1. Let K = Q( n
√
2). For any positive odd integers n relatively prime

to 30, it holds that

{� | 2 ≤ � ≤ 22} ⊂ S(K).
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Proof. From the norm being multiplicative, it suffices to show that for any prime
p ≤ 19, there exists an x ∈ OK with NK(x) = p. We can first find that NK( n

√
2) =

2. Since NK(x +
n
√
2k) = xk + 2k, we have NK(1 + n

√
2) = 3, NK(1 + n

√
4) =

5, NK(−1+ n
√
8) = 7, and NK(1+ n

√
16) = 17. Combining NK(1+ n

√
2
5
) = 33 with

NK(1 + n
√
2) = 3, we obtain NK(1 − n

√
2 + n

√
4 − n

√
8 + n

√
16) = 11. Similarly, it

holds that NK(1 − n
√
4 + n

√
16) = 13 by NK(1 + n

√
4
3
) = 65 and NK(1 + n

√
4) =

5. From NK(1 + n
√
8
3
) = 513 and NK(1 + n

√
8) = 9, we finally confirm that

NK(1 − n
√
8 + n

√
64) = 57 = 3 · 19. Therefore, we verify that for any integer

2 ≤ � ≤ 22, the factorial �! is represented as NK . We conclude the assertion. �
Theorem 3.1 implies that there are infinitely many number fields K with #S(K)

≥ 21. For K = Q( 7
√
2), we confirm that NK(1 + 7

√
4 + 7

√
32) = 23. From the norm

being multiplicative and Theorem 3.1, we obtain Theorem 3.2.

Theorem 3.2. Let K = Q( 7
√
2). Then

{� | 2 ≤ � ≤ 28} ⊂ S(K)

and 29 /∈ S(K).

We will consider Theorem 3.1 and Theorem 3.2 in detail, but before that we
revisit a basic result of Dedekind about the prime ideal factorization.

Theorem 3.3 (Dedekind). Let K = Q(α) be a number field with α ∈ OK . We
denote by f(x) ∈ Z[x] the minimal polynomial of α. For any prime p � [OK : Z[α]],
we decompose f into irreducible factors

f(x) =

r∏
i=1

fi(x)
ei mod p,

where the fi are distinct monic irreducible polynomials in Fp[x]. Then the prime
ideal factorization of pOK is

(3.1) pOK =

r∏
i=1

p
ei
i .

In particular, if OK = Z[α], the above factorization (3.1) holds for all p.

Let K = Q( n
√
a) with [K : Q] = n and D(a, n) = [OK : Z[ n

√
a]]. For any prime

p with gcd(p− 1, n) = 1, there exists b ∈ Z with

bn − a ≡ 0 mod p.

We can check this by applying #(Z/pZ)× = p−1. From Theorem 3.3, for any prime
p � D(a, n), there exists a prime ideal p lying above p with ideal norm Np = p. Since
the absolute value of discriminant of Z[ n

√
a] is an−1nn, if p|D(a, n), then p|an. Thus,

we conclude Theorem 3.4.

Theorem 3.4. Let a, n be integers. If the class number of K = Q( n
√
a) is 1, then

{� | 2 ≤ � ≤ P − 1} ⊂ S(K),

where P = P (n, a) is the minimum of S1(n, a) ∪ S2(n, a) ∪ S3(n, a), in which

S1(n, a) = {p : prime | gcd(p− 1, n) > 1};
S2(n, a) = {p : prime | p2|a};
S3(n, a) = {p : prime | p|n, ap−1 ≡ 1 mod p2}.
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Proof. As we remarked above, for any prime p ≤ P−1 coprime to an, there exists a
prime ideal p lying above p with Np = p. By the assumption, p is a principal ideal.
Therefore, there exists an element x ∈ OK such that p = xOK and NK(x) = p.

Next, we fix a prime p ≤ P − 1 with p|a. Since p divides a only once, the
polynomial xn − a is an Eisenstein polynomial at p and p ramifies totally in K =
Q( n

√
a) [8, Theorem 24]. Thus, there exists a prime ideal p = xOK lying above p

with NK(x) = p.
Finally, dealing only with primes p|n such that gcd(p, a) = 1 and ap−1 �≡ 1

mod p2, we fix such a prime p ≤ P − 1. We assume pr|n and pr+1 � n. Combining
these with the fact that the inertia degree is multiplicative, it suffices to show that
p ramifies totally in K = Q( pr

√
a). Since ap

r ≡ ap mod p2 and ap �≡ a mod p2,
the polynomial (x+ a)p

r − a = xn + · · ·+ ap
r − a is an Eisenstein polynomial at p.

As above, there exists a prime ideal p = xOK lying above p with NK(x) = p.
Hence, as the norm NK is multiplicative, for � ≤ P − 1, there exists an x ∈ OK

such that NK(x) = �!. �

A prime p satisfying ap−1 ≡ 1 mod p2 is called a Wieferich prime to base a. It
has been conjectured that infinitely many Wieferich primes to base a exist for each
positive integer a, but the only known Wieferich primes to base 2 are 1093 and
3511.

Example 3.5. Let K = Q( p
√
2). Then the following hold.

(1) If p = 17, then {� | 2 ≤ � ≤ 102} ⊂ S(K).
(2) If p = 19, then {� | 2 ≤ � ≤ 190} ⊂ S(K).

We note that when p = 17, 19, the class number of Q( p
√
2) is 1. Therefore, we can

apply Theorem 3.4 to deduce the above results.

Appendix A. Solution-free region

In this appendix, we improve the upper bound of solutions to NK(x) = �! given
in [17].

Theorem A.1 (cf. [17, Theorem 5.2]). Let n and D be the degree and discriminant
of Kgal. There exists an effectively computable constant c > 0 such that there is no
solution to NK(x) = �! in

� > exp(cn(log |D|)2).

This bound is due to a Bertrand–Chebyshev type estimate for prime ideals corre-
sponding to fixed conjugacy class of gal(Kgal/Q). We used effective versions of the
Chebotarev density theorem given by Lagarias and Odlyzko and obtained Bertrand-
Chebyshev type estimates by a similar argument to [9, 16]. Recently, Thorner and
Zaman improved the Lagarias-Odlyzko result in [18], and we note that one can
obtain a better upper bound of solutions to NK(x) = �! by using their result. We
first prepare some notation to explain their result. Let L/K be a Galois extension
of number fields with Galois group G. Then, for each conjugacy class C of G, we
define πC(x) by

πC(x) = #{p ⊂ OK | p is unramified in L, [(p, L/K)] = C,Np ≤ x},

where [(p, L/K)] is the conjugacy class of the Frobenius map corresponding to p.
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Theorem A.2 ([18, Theorem 1.1]). Let L/K be a Galois extension of number
fields with Galois group G and [L : Q] = nL and let DL be the absolute value of the
discriminant of L. Then there exist effectively computable positive constants c1, c2,
and c3 such that if x > (DLn

nL

L )c2 , then

|πC(x)−M(x)| ≤ M(x)E(x),

where

M(x) =
|C|
|G|

(
Li(x)− (−1)ε Li(xβ)

)
,

and

E(x) = c1

(
exp

(
− c3 log x

log(DLn
nL

L )

)
+ exp

(
−

√
c3 log x

nL

))
.

We note that Li(xβ) is only defined if there exists an exceptional real zero β of
ζL(s). Also ε = 0 or 1 depending on L,K, and C.

One can show that M(x) is a positive increasing function for all x > 2 and E(x)
is a positive decreasing function for all x > 2. In particular, we have Corollary A.3.

Corollary A.3. With the same notation as in Theorem A.2, there exists a constant

c4 > 0 such that for x > (DLn
nL

L )c4 log log(DLn
nL
L ) we have

|πC(x)−M(x)| ≤ M(x)E(x) and E(x) � 1

(log x)2
.

By using Corollary A.3, we obtain the following Bertrand-Chebyshev type esti-
mate for a fixed conjugacy class.

Theorem A.4. Let L/Q be a Galois extension with [L : Q] = k and D be the
absolute value of the discriminant of L. For any A > 1, there exists an ef-
fectively computable constant c(A) > 0 depending only on A such that for x >

(Dkk)c(A) log log(Dkk), there is a prime corresponding to a conjugacy class C of
gal(L/Q) with p ∈ (x,Ax].

Proof. From Corollary A.3, for x > (DLn
nL

L )c4 log log(DLn
nL
L ), we get

πC(Ax)− πC(x) ≥ (M(Ax)−M(Ax)E(Ax))− (M(x) +M(x)E(x))

≥ (M(Ax)−M(x))− 2M(Ax)E(x),(A.1)

since M(x) is a positive increasing function and E(x) is a positive decreasing func-
tion for x ≥ 2. For simplicity, we assume ε = 0. Then this implies that

(A.2) M(Ax)−M(x) =
|C|
|G|

(∫ Ax

x

dt

log t
−

∫ (Ax)β

xβ

dt

log t

)
=

|C|
|G|

∫ Ax

x

1− tβ−1

log t
dt.

On the other hand, it follows that

M(Ax) ≤ |C|
|G|

(∫ Ax

2

dt

log t
−

∫ (Ax)β

2β

dt

log t
+

∫ 2

2β

dt

log t

)

≤ |C|
|G|

(∫ Ax

2

1− tβ−1

log t
dt+

2− 2β

β log 2

)
.(A.3)
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Combining (A.2) and (A.3) with inequality (A.1), we find that

|G|
|C| (πC(Ax)− πC(x)) ≥

∫ Ax

x

1− tβ−1

log t
dt− 2E(x)

(∫ Ax

2

1− tβ−1

log t
dt+

2− 2β

β log 2

)
.

(A.4)

It suffices to show that the right-hand side is positive for a sufficiently large x.
Changing the variable by t = eu, we have∫ Ax

x

1− tβ−1

log t
dt =

∫ logAx

log x

eu − eβu

u
du

≥
∫ logAx

log x

(1− β)
eu − 1

u
du

≥ (1− β)
(A− 1)x− logA

logAx

and∫ Ax

2

1− tβ−1

log t
dt =

∫ logAx

log 2

eu − eβu

u
du ≤

∫ logAx

log 2

(1− β)eudu ≤ (1− β)Ax.

As 2−2β

β log 2 ≤ 4(1 − β) for 1
2 ≤ β ≤ 1, it follows by inequality (A.4) and Corollary

A.3 that

|G|
|C| (πC(Ax)− πC(x)) ≥ (1− β)

(
(A− 1)x− logA

logAx
− 2E(x)(Ax+ 4)

)

= (1− β)

(
(A− 1)x

logAx
+OA

(
x

(log x)2

))
> 0.

This completes the proof of the theorem in the case ε = 0.
In the case ε = 1, as a similar argument as shown above and a simple calculation

lead to

|G|
|C|(πC(Ax)− πC(x)) ≥

∫ Ax

x

1 + tβ−1

log t
dt− 2E(x)

(∫ Ax

x

1 + tβ−1

log t
dt− 2− 2β

log 2

)

≥
∫ Ax

x

1− tβ−1

log t
dt− 2E(x)

(∫ Ax

x

1− tβ−1

log t
dt+

2− 2β

log 2

)

for sufficiently large x. Therefore, by applying the same argument with the case
ε = 0, we can confirm that πC(Ax)−πC(x) > 0 for sufficiently large x independent
of D and k.

This proves Theorem A.5. �

Following the proof of the finiteness of the solutions in [17, Theorem 4.1 and
Theorem 5.2], we obtain the following theorem.

Theorem A.5. Let n and D be the degree and discriminant of Kgal. There exists
an effectively computable constant c > 0 such that no solution to NK(x) = �! exists
in

� > (Dnn)c log log(Dnn).
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