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Abstract. We consider damped s-fractional Klein–Gordon equations on R
d,

where s denotes the order of the fractional Laplacian. In the one-dimensional
case d = 1, Green (2020) established that the exponential decay for s ≥ 2 and
the polynomial decay of order s/(4−2s) hold if and only if the damping coeffi-

cient function satisfies the so-called geometric control condition. In this note,
we show that the o(1) energy decay is also equivalent to these conditions in
the case d = 1. Furthermore, we extend this result to the higher-dimensional
case: the logarithmic decay, the o(1) decay, and the thickness of the damp-
ing coefficient are equivalent for s ≥ 2. In addition, we also prove that the
exponential decay holds for 0 < s < 2 if and only if the damping coefficient
function has a positive lower bound, so in particular, we cannot expect the
exponential decay under the geometric control condition.

1. Introduction

We consider the following fractional damped Klein–Gordon equations on R
d:

(1.1) utt(t, x) + γ(x)ut(t, x) + (−Δ+ 1)s/2u(t, x) = 0, (t, x) ∈ R≥0 × R
d,

where s > 0, and 0 ≤ γ ∈ L∞(Rd). Here we note that γut represents the damping
force and the operator (−Δ+ 1)s/2 is defined by the Fourier transform on L2(Rd);

(−Δ+ 1)s/2u := F−1(|ξ|2 + 1)s/2Fu, ξ ∈ R
d.

We recast equation (1.1) as an abstract first-order equation for U = (u, ut):

Ut = AγU, Aγ =

(
0 I

−(−Δ+ 1)s/2 −γ(x)

)
,(1.2)

then Aγ generates a C0-semigroup (etAγ )t≥0 on Hs/2(Rd)×L2(Rd) (see [4]). Here
the Sobolev space Hr(Rd) is defined by

Hr(Rd) :=

{
u ∈ L2(Rd) : ‖u‖2Hr =

∫
Rd

(|ξ|2 + 1)r|Fu(ξ)|2 dξ < ∞
}
.
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In this paper, we discuss the decay rate of the energy

E(t) := ‖etAγ (u(0), ut(0))‖Hs/2×L2

=

(∫
Rd

(|(−Δ+ 1)s/4u(t, x)|2 + |ut(t, x)|2) dx
)1/2

.

By standard calculus, we have E(t) = E(0) if γ ≡ 0 and the exponential energy
decay if γ ≡ C > 0. In recent works, the intermediate case, that is, the case that
γ = 0 on a large set is studied:

Definition 1.1. We say that Ω ⊂ R
d satisfies the Geometric Control Condition

(GCC) if there exist L > 0 and 0 < c ≤ 1 such that for any line segments l ∈ R
d of

length L, the inequality

H1(Ω ∩ l) ≥ cL

holds, where H1 denotes the one-dimensional Hausdorff measure.

Burq and Joly [2] proved that if γ is uniformly continuous and {γ ≥ ε} satisfies
(GCC) for some ε > 0, then we have the exponential energy decay in the non-
fractional case s = 2. After that, Malhi and Stanislavova [6] pointed out that
(GCC) is also necessary for the exponential decay in the one-dimensional case
d = 1:

Theorem 1.2 ([6, Theorem 1]). Let d = 1, let s = 2, and let 0 ≤ γ ∈ L∞(R) be
continuous. Then the following conditions are equivalent:

(1.3) There exists ε > 0 such that the upper level set {γ ≥ ε} satisfies (GCC).
(1.4) There exist C, ω > 0 such that whenever (u(0), ut(0)) ∈ H1(R)× L2(R),

E(t) ≤ C exp(−ωt)E(0)

holds for any t ≥ 0.1

(1.5) lim
t→+∞

‖etAγ‖H2×H1→H1×L2 = 0.

Note that for 0 ≤ γ ∈ L∞(R), condition (1.3) is also equivalent to that there
exists R > 0 such that

inf
a∈R

∫ a+R

a−R

γ(x) dx > 0.

In another paper [7], Malhi and Stanislavova introduced the fractional equation
(1.1) and showed that if γ is periodic, continuous and not identically zero, then
we have the exponential decay for any s ≥ 2 and the polynomial decay of order
s/(4− 2s) for any 0 < s < 2 in the case d = 1.

Remark. Nonzero periodic functions satisfy (GCC) in the case d = 1, but it is not
true in the higher-dimensional case d ≥ 2. Wunsch [10] showed that continuous
periodic damping gives the polynomial energy decay of order 1/2 for the non-
fractional equation in the case d ≥ 2. In addition, recently another proof and
an extension to fractional equations of Wunsch’s result were obtained by Täufer
[9] and Suzuki [8], respectively. Note that these results for periodic damping are

1To be precise, the exponential decay estimate given in [6, Theorem 1] is a little weaker:
E(t) ≤ C exp(−ωt)‖(u(0), ut(0))‖H2×H1 . However, this is because the Gearhart–Prüss theorem

in their paper ([6, Theorem 2]) is stated incorrectly. Using the theorem correctly (see Theorem

3.1), one can obtain the exponential decay estimate E(t) ≤ C exp(−ωt)E(0) as in (1.4).
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established by reducing to estimates on the torus Td. Indeed, there are numerous
studies on bounded domains; see references in [2] and [3], for example.

Green [4] improved results of Malhi and Stanislavova as follows:

Theorem 1.3 ([4, Theorem 1]). Let d = 1, let s > 0 and let 0 ≤ γ ∈ L∞(R). Then
the following conditions are equivalent:

(1.3) There exists ε > 0 such that the upper level set {γ ≥ ε} satisfies (GCC).
(1.6) There exist C, ω > 0 such that whenever (u(0), ut(0)) ∈ Hs(R)×Hs/2(R),

E(t) ≤
{
(1 + t)−

s
4−2s ‖(u(0), ut(0))‖Hs×Hs/2 if 0 < s < 2,

C exp(−ωt)E(0) if s ≥ 2

holds for any t ≥ 0.

In comparison with the result of [7], which states that (1.6) holds if γ is peri-
odic, continuous and not identically zero, Theorem 1.3 refines this result by giving
a necessary and sufficient condition for (1.6). Furthermore, Theorem 1.3 also im-
proves the (1.3) ⇐⇒ (1.4) part of Theorem 1.2 by extending it to fractional
equations and removing the continuity of γ, but on the other hand, it lacks the
(1.5) =⇒ (1.3), (1.4) part. One of our goal is to recover this part for fractional
equations:

Theorem 1.4. Let d = 1, let s > 0, and let 0 ≤ γ ∈ L∞(R). Then the following
conditions are equivalent:

(1.3) There exists ε > 0 such that the upper level set {γ ≥ ε} satisfies (GCC).
(1.6) There exist C, ω > 0 such that whenever (u(0), ut(0)) ∈ Hs(R)×Hs/2(R),

E(t) ≤
{
C(1 + t)

−s
4−2s ‖(u(0), ut(0))‖Hs×Hs/2 if 0 < s < 2,

C exp(−ωt)E(0) if s ≥ 2

holds for any t ≥ 0.
(1.7) lim

t→+∞
‖etAγ‖Hs×Hs/2→Hs/2×L2 = 0.

We also give the following result, which says that we cannot expect the expo-
nential decay for 0 < s < 2 under (GCC).

Theorem 1.5. Let d ≥ 1, let 0 < s < 2, and let 0 ≤ γ ∈ L∞(Rd). Then there exist
C, ω > 0 such that whenever (u(0), ut(0)) ∈ Hs/2(Rd)× L2(Rd),

E(t) ≤ C exp(−ωt)E(0)

holds for any t ≥ 0 if and only if ess infRd γ > 0.

Note that the “if” part easily follows by reducing to the constant damping case,
so we will prove the “only if” part. Furthermore, we extend Theorem 1.4 to the
higher-dimensional case d ≥ 2 using a notion of thickness, which is equivalent to
(GCC) in the case d = 1:

Definition 1.6. We say that a set Ω ⊂ R
d is thick if there exists R > 0 such that

inf
a∈Rd

md(Ω ∩ (a+ [−R,R]d)) > 0

holds, where md denotes the d-dimensional Lebesgue measure.

Then we have the following result:
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Theorem 1.7. Let d ≥ 2, let s ≥ 2, and let 0 ≤ γ ∈ L∞(Rd). Then the following
conditions are equivalent:

(1.8) There exists ε > 0 such that the upper level set {γ ≥ ε} is thick.
(1.9) There exists C > 0 such that whenever (u(0), ut(0)) ∈ Hs(Rd)×Hs/2(Rd),

E(t) ≤ C

log(e+ t)
‖(u(0), ut(0))‖Hs×Hs/2

holds for any t ≥ 0.
(1.10) lim

t→+∞
‖etAγ‖Hs×Hs/2→Hs/2×L2 = 0.

The implication (1.8) =⇒ (1.9) is a generalization of the result given by Burq
and Joly [2]. They established (1.9) under the so-called network control condition,
which is stronger than (1.8). Also, similar to the case d = 1, condition (1.8) is
equivalent to that there exists R > 0 such that

inf
a∈R

∫
a+[−R,R]d

γ(x) dx > 0.

Finally, we explain the organization of this paper. In Sections 2, 3, and 4, we will
give proofs of Theorems 1.4, 1.5, and 1.7, respectively. To prove these theorems,
we use a kind of uncertainty principle and results of the C0 semigroup theory.

2. Proof of Theorem 1.4

To prove this theorem, we use the following result by Batty, Borichev, and
Tomilov [1]:

Theorem 2.1 ([1, Theorem 1.4]). Let A be a generator of a bounded C0-semigroup
(etA)t≥0 on a Banach space X, and λ ∈ ρ(A). Then the following are equivalent:

(2.1) σ(A) ∩ iR = ∅,
(2.2) limt→∞ ‖etA(λ−A)−1‖B(X) = 0.

In the case A = Aγ , for λ ∈ ρ(Aγ), the map (λ − Aγ)
−1 : Hs/2(R) × L2(R) →

Hs(R)×Hs/2(R) is surjective. Thus, we have:

Lemma 2.2 ([6, Corollary 2]). For the semigroup etAγ of the Cauchy problem
(1.2), the following are equivalent:

(2.3) σ(Aγ) ∩ iR = ∅,
(2.4) limt→∞ ‖etAγ‖Hs×Hs/2→Hs/2×L2 = 0.

Proof of Theorem 1.4. It is enough to show that (1.7) =⇒ (1.3), since (1.3) ⇐⇒
(1.6) is already known by Green [4] (Theorem 1.3) and (1.6) =⇒ (1.7) is triv-
ial. Suppose that (1.7) holds, that is, limt→+∞ ‖etAγ‖Hs×Hs/2→Hs/2×L2 = 0. By
Lemma 2.2, we have iR ⊂ ρ(Aγ). This implies that for each λ ∈ R, there exists
some c0 > 0 such that

c0‖U‖Hs/2×L2 ≤ ‖(Aγ − iλI)U‖Hs/2×L2

holds for any U ∈ Hs(R) × Hs/2(R). Letting u ∈ L2(Rd) and U = ((−Δ +
1)−s/4u, iu), we obtain

2c0‖u‖2L2 ≤ ‖((−∂xx + 1)s/4 − λ)u‖2L2 + ‖((−∂xx + 1)s/4 − λ+ iγ)u‖2L2

≤ 3‖((−∂xx + 1)s/4 − λ)u‖2L2 + 2‖γu‖2L2 .
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Now we consider the case λ = 1. Let u ∈ Hs/2(R) satisfy supp û ⊂ [−D,D] for
some D > 0, which is chosen later. For such u, we have

‖((−∂xx + 1)s/4 − 1)u‖2L2 =

∫ D

−D

[
(|ξ|2 + 1)s/4 − 1

]2
|û(ξ)|2dξ

≤
[
(D2 + 1)s/4 − 1

]2
‖u‖2L2 .

Hence, taking D > 0 small enough, we get some c > 0 such that

c‖u‖L2 ≤ ‖γu‖L2

holds for any u ∈ Hs/2(R) satisfying supp û ⊂ [−D,D]. Fix f ∈ S(R) \ {0}
such that supp f̂ ⊂ [−D,D] and write fa(x) := f(x − a) for each a ∈ R, so that

f̂a(ξ) = eiaξ f̂(ξ). Then, for each a ∈ R and R > 0, we have

0 < c‖f‖L2 = c‖fa‖L2 ≤ ‖γfa‖L2 =

(∫
[a−R,a+R]

+

∫
[a−R,a+R]c

)
|γ(x)fa(x)|2 dx.

The second integral goes to 0 as R → +∞ since γ is bounded and |fa|2 is integrable,
and this convergence is uniform with respect to a. Furthermore, for the first integral,
we have ∫ a+R

a−R

|γ(x)fa(x)|2 dx ≤ ‖γ‖L∞‖f‖2L∞

∫ a+R

a−R

γ(x) dx,

since γ and f are bounded and ‖fa‖L∞ = ‖f‖L∞ . Thus, there exists R > 0 such
that

inf
a∈R

∫ a+R

a−R

γ(x) dx > 0

holds, which is equivalent to (1.3). �

3. Proof of Theorem 1.5

This section is based on the proof of Theorem 2 in Green [4]. To prove this
theorem, we use the classical semigroup result by Gearhart, Prüss, and Huang:

Theorem 3.1 (Gearhart–Prüss–Huang). Let X be a complex Hilbert space and let
(etA)t≥0 be a bounded C0-semigroup on X with infinitesimal generator A. Then
there exist C, ω > 0 such that

‖etA‖ ≤ C exp(−ωt)

holds for any t ≥ 0 if and only if iR ⊂ ρ(A) and supλ∈R
‖(iλ−A)−1‖B(X) < ∞.

Proof of Theorem 1.5. We will prove the contraposition of the “only if” part of
Theorem 1.5, that is, if the energy decays exponentially and ess infx∈Rd γ(x) = 0
holds, then s ≥ 2. By the Gearhart–Prüss–Huang theorem and the exponential
decay, there exists c0 > 0 such that

c0‖U‖2Hs/2×L2 ≤ ‖(Aγ − iλI)U‖2Hs/2×L2

holds for any U ∈ Hs/2(Rd) × L2(Rd) and any λ ∈ R. Letting u ∈ L2(Rd) and
U = ((−Δ+ 1)−s/4u, iu), we obtain

2c0‖u‖2L2 ≤ ‖((−Δ+ 1)s/4 − λ)u‖2L2 + ‖((−Δ+ 1)s/4 − λ+ iγ)u‖2L2

≤ 3‖(−Δ+ 1)s/4 − λ‖2L2 + 2‖γu‖2L2 .
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Now let u ∈ L2(Rd) satisfy

supp û ⊂ {ξ ∈ R
d : |(|ξ|2 + 1)s/4 − λ| ≤ K} =: Aλ(K)

for some K, which is chosen later. For such u, we have

‖((−Δ+ 1)s/4 − λ)u‖2L2 =

∫
Aλ(K)

[(|ξ|2 + 1)s/4 − λ]2|û(ξ)|2 dξ

≤ K2‖u‖2L2 .

Hence, taking K > 0 small enough, we get some c > 0 such that

(3.1) c‖u‖2L2 ≤ ‖γu‖2L2

holds for any u ∈ L2(Rd) satisfying supp û ⊂ Aλ(K) with some λ ∈ R.
We prove s ≥ 2 by contradiction. Assume that s < 2. In this case, the thickness

of the annulus Aλ(K) is unbounded with respect to λ:

lim
λ→∞

∣∣∣∣√(λ+K)4/s − 1−
√
(λ−K)4/s − 1

∣∣∣∣ = lim
λ→∞

λ4/s−1

λ2/s
= ∞.

Thus, inequality (3.1) holds for any u ∈ L2(Rd) such that supp û is compact. To
see this, notice that there exist a ∈ R

d and λ ∈ R satisfying a + supp û ⊂ Aλ(K)
for such u. Therefore, letting ua(x) := eia·xu(x), we have

c‖u‖2L2 = c‖ua‖2L2 ≤ ‖γua‖2L2 = ‖γu‖2L2

since supp ûa = a+ supp û ⊂ Aλ(K).
Now note that Eε := {x ∈ R

d : γ(x) < ε} has a positive measure for any ε > 0,
since ess infx∈Rd γ(x) = 0. For each ε > 0, we take a subset Fε ⊂ Eε such that
0 < md(Fε) < ∞. Take R, ε > 0 arbitrarily and set

fε := χFε
/
√
md(fε), gR,ε := F−1χB(0,R)Ffε,

where χΩ denotes the indicator function of Ω ⊂ R
d. By the definition, we have

supp ĝR,ε ⊂ B(0, R) and gR,ε → fε as R → ∞ in L2(Rd). Therefore, applying
inequality (3.1) to gR,ε, we get

c‖gR,ε‖L2 ≤ ‖γgR,ε‖L2

≤ ‖γfε‖L2 + ‖γ(gR,ε − fε)‖L2

=

(
1

md(Fε)

∫
Fε

|γ(x)|2dx
)1/2

+ ‖γ(gR,ε − fε)‖L2

≤ ε+ ‖γ(gR,ε − fε)‖L2 .

Taking the limit as R → +∞, we obtain

0 < c = c‖fε‖L2 ≤ ε.

This is a contradiction since ε > 0 is arbitrary. �

4. Proof of Theorem 1.7

The proof of (1.10) =⇒ (1.8) is similar to that of (1.7) =⇒ (1.3) in Section
2, and the implication (1.9) =⇒ (1.10) is trivial. Therefore, we will show that
(1.8) =⇒ (1.9). We use a kind of the uncertainty principle to obtain a certain
resolvent estimate for the fractional Laplacian:
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Theorem 4.1 ([5, Theorem 3]). Let Ω ⊂ R
d be thick. Then there exists a constant

C > 0 such that for each R > 0, the inequality

‖f‖L2(Rd) ≤ C exp(CR)‖f‖L2(Ω)

holds for any f ∈ L2(Rd) satisfying supp f̂ ⊂ B(0, R).

In order to obtain the logarithmic energy decay (1.9), we use the following result.

Theorem 4.2 ([2, Theorem 5.1]). Let A be a maximal dissipative operator (and
hence generate the C0-semigroup of contractions (etA)t≥0) in a Hilbert space X.
Assume that iR ⊂ ρ(A) and there exists C > 0 such that

‖(A− iλI)−1‖B(X) ≤ CeC|λ|

holds for any λ ∈ R. Then, for each k > 0, there exists Ck > 0 such that

‖etA(I −A)−k‖B(X) ≤
Ck

(log(e+ t))k

holds for any t ≥ 0.

4.1. Resolvent estimate. The proof of these propositions are based on [4].

Proposition 4.3. Let s ≥ 1 and Ω ⊂ R
d be thick. Then there exist C, c > 0 such

that for all f ∈ L2(Rd) and all λ ≥ 0,

c exp(−Cλ)‖f‖2L2(Rd) ≤ ‖((−Δ+ 1)s/2 − λ)f‖2L2(Rd) + ‖f‖2L2(Ω).

Proof of Proposition 4.3. Let Aλ := {ξ ∈ R
d : |(|ξ|2 + 1)1/2 − λ1/s| ≤ 1}. Since

Aλ ⊂ B(0, λ+ 2) and Ω is thick, Theorem 4.1 implies that there exists C > 0 such
that

(4.1) ‖f‖L2(Rd) ≤ C exp(Cλ)‖f‖L2(Ω)

holds for any λ ≥ 0 and any f ∈ L2(Rd) satisfying supp f̂ ⊂ Aλ. Next, we set a
projection Pλ := F−1χAλ

F , where χAλ
denotes the indicator function of Aλ. Then,

since Pλf satisfies inequality (4.1) for each f ∈ L2(Rd), we obtain

‖f‖2L2(Rd) = ‖Pλf‖2L2(Rd) + ‖(I − Pλ)f‖2L2(Rd)

≤ C exp(Cλ)‖Pλf‖2L2(Ω) + ‖(I − Pλ)f‖2L2(Rd)

= C exp(Cλ)‖f − (I − Pλ)f‖2L2(Ω) + ‖(I − Pλ)f‖2L2(Rd)

≤ 2C exp(Cλ)‖f‖2L2(Ω) + 2C exp(Cλ)‖(I − Pλ)f‖2L2(Ω)

+ ‖(I − Pλ)f‖2L2(Rd)

≤ 2C exp(Cλ)‖f‖2L2(Ω) + (2C exp(Cλ) + 1)‖(I − Pλ)f‖2L2(Rd).

Also, by Lemma 1 in [4], we have

c‖(I − Pλ)f‖2L2(Rd) ≤ ‖((−Δ+ 1)s/2 − λ)f‖2L2(Rd)

for some c > 0 independent of λ. Therefore, we conclude that

‖f‖2L2(Rd) ≤ C exp(Cλ)
[
‖((−Δ+ 1)s/2 − λ)f‖2L2(Rd) + ‖f‖2L2(Ω)

]
.

�
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Proposition 4.4. Let s ≥ 2 and assume that Ω ⊂ R
d is thick. Then there exist

C, c > 0 such that for all U = (u1, u2) ∈ Hs(Rd)×Hs/2(Rd) and all λ ∈ R,

c exp(−C|λ|)‖U‖2Hs/2(Rd)×L2(Rd) ≤ ‖(A0 − iλI)U‖2Hs/2(Rd)×L2(Rd) + ‖u2‖2L2(Ω).

Proof of Proposition 4.4. For U = (u1, u2) ∈ Hs(Rd)×Hs/2(Rd), we set(
w1

w2

)
=

(
(−Δ+ 1)s/4 −i
(−Δ+ 1)s/4 i

) (
u1

u2

)
.

By the parallelogram law, we obtain

‖w1‖2L2(Rd) + ‖w2‖2L2(Rd) = 2‖U‖2Hs/2(Rd)×L2(Rd).

Moreover, we have

‖(A0 − iλI)U‖2Hs/2×L2

= ‖(−Δ+ 1)s/2(−iλu1 + u2)‖2L2 + ‖ − (−Δ+ 1)s/2u1 − iλu2‖2L2

= ‖ − λ
w1 + w2

2
+ (−Δ+ 1)s/2

w1 − w2

2
‖2L2

+ ‖ − (−Δ+ 1)s/2
w1 + w2

2
+ λ

w1 − w2

2
‖2L2

= ‖λw1 − (−Δ+ 1)s/2w1‖2L2 + ‖λw2 + (−Δ+ 1)s/2w2‖2L2 .

For λ ≥ 0, applying Proposition 4.3 to w1 with s/2, we have

2c exp(−Cλ)‖U‖2Hs/2×L2

= c exp(−Cλ)(‖w1‖2L2 + ‖w2‖2L2)

≤ ‖((−Δ+ 1)s/4 − λ)w1‖2L2 + ‖w1‖2L2(Ω) + c exp(−Cλ)‖w2‖2L2

≤ ‖((−Δ+ 1)s/4 − λ)w1‖2L2 + 2‖w1 − w2‖2L2(Ω) + c‖w2‖2L2

≤ ‖((−Δ+ 1)s/4 − λ)w1‖2L2 + c‖((−Δ+ 1)s/4 + λ)w2‖2L2 + 8‖u2‖2L2(Ω)

≤ c‖(A0 − iλI)U‖2Hs/2×L2 + 8‖u2‖2L2(Ω).

For λ < 0, we get the same inequality replacing the role of w1 with w2. �

4.2. Energy decay. Finally we prove (1.8) =⇒ (1.9). By assumption (1.8),
Ω = {γ ≥ ε} is thick for some ε > 0. Therefore, by Proposition 4.4, we have

c exp(−C|λ|)‖U‖2Hs/2×L2 ≤ ‖(A0 − iλI)U‖2Hs/2×L2 + ‖u2‖2L2(Ω)

≤ 2‖(Aγ − iλI)U‖2Hs/2×L2 + (2 + ε−2)‖γu2‖2L2(Ω).

Since A0 is skew-adjoint, we obtain

Re〈(Aγ − iλI)U,U〉 = Re〈(A0 − iλI)U,U〉 − 〈γu2, u2〉 = −‖√γu2‖2L2 .

By the Cauchy–Schwarz inequality, we have

D‖γu2‖2L2 ≤ ‖γ‖L∞‖√γu2‖2L2 ≤
D2‖γ‖2L∞‖(Aγ − iλ)U‖2

Hs/2×L2

δ
+ δ‖U‖2Hs/2×L2
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for any D, δ > 0. Taking D = 2 + ε−2 and δ = c exp(−C|λ|)/2, we obtain

c exp(−C|λ|)‖U‖2Hs/2×L2

≤ 2‖(Aγ − iλI)U‖2Hs/2×L2 + (2 + ε−2)‖γu2‖2L2(Ω)

≤ 2‖(Aγ − iλI)U‖2Hs/2×L2 +
(2 + ε−2)2‖γ‖2L∞

c exp(−C|λ|) ‖(Aγ − iλI)U‖2Hs/2×L2

+
1

2
c exp(−C|λ|)‖U‖2Hs/2×L2 .

By this inequality, we have

c exp(−C|λ|)‖U‖2Hs/2×L2 ≤ ‖(Aγ − iλI)U‖2Hs/2×L2 ,

here the constants c, C may differ from the previous ones. Applying Theorem 4.2
with k = 1, we conclude that (1.9) holds.
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