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FAILURE OF THE WELL-ROUNDED RETRACT FOR OUTER

SPACE AND TEICHMÜLLER SPACE
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Abstract. The well-rounded retract for SLn(Z) is defined as the set of flat tori
of unit volume and dimension n whose systoles generate a finite-index subgroup
in homology. This set forms an equivariant spine of minimal dimension for the
space of flat tori.

For both the Outer space Xn of metric graphs of rank n and the Teichmüller
space Tg of closed hyperbolic surfaces of genus g, we show that the literal ana-
logue of the well-rounded retract does not contain an equivariant spine. We
also prove that the sets of graphs whose systoles fill either topologically or geo-
metrically (two analogues of a set proposed as a spine for Tg by Thurston) are
spines for Xn but that their dimension is larger than the virtual cohomological
dimension of Out(Fn) in general.

1. Introduction

A systole in a compact metric space is a non-contractible closed curve of minimal
length among such curves. Ash [Ash77] defined the well-rounded retract Wn of the
space Tn of marked flat tori of unit volume and dimension n as the set of tori
T whose systoles generate a finite-index subgroup in H1(T,Z), following work of
Soulé [Sou75] in the case n = 3. He proved that there is an SLn(Z)-equivariant
deformation retraction of Tn onto Wn, i.e., that Wn is an equivariant spine for
Tn. Furthermore, the quotient Wn/ SLn(Z) is compact and the dimension of Wn is
equal to the virtual cohomological dimension (vcd) of SLn(Z), the smallest possible
for a spine.

Motivated by this, Thurston [Thu85] considered the set Vg of marked closed
hyperbolic surfaces of genus g whose systoles fill, meaning that each component
of the complement of their union is contractible (hence the interior of a polygon).
Equivalently, a set C of curves on a surface S fills if every non-contractible closed
curve in S intersects some element of C. Thurston sketched a proof that there is
a mapping class group equivariant deformation retract of the Teichmüller space Tg
onto Vg, but his argument had gaps [Ji14]. Furthermore, the dimension of Vg is
larger than the vcd of the mapping class group Modg in general [FB23].

The third character in this story is the Culler–Vogtmann Outer space Xn of
marked metric graphs of unit volume and rank equal to n, upon which the group
Out(Fn) of outer automorphisms of the free group of rank n acts. Culler and
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Vogtmann [CV86] found a cocompact equivariant spine Kn for Xn of dimension
2n− 3, equal to the vcd of Out(Fn) (which was determined using Kn). This spine
Kn is not defined in terms of systoles.

If (E,G) is equal to either (Tn, SLn(Z)), (Tg,Modg), or (Xn,Out(Fn)), and
x ∈ E, then

dim(E) = vcd(G) + rank(H1(x,Z))− 1,

which suggests that one should use homology to define spines of minimal dimension.
A naive approach is to simply transpose the definition of the well-rounded retract
Wn in the other two settings. That is, we can define the set Wn ⊂ Xn of graphs
whose systoles generate a finite-index subgroup in integral homology and the set
Wg ⊂ Tg of hyperbolic surfaces whose systoles generate a finite-index subgroup in
integral homology. In his PhD thesis [Bak11], Baker proved that W3 is a spine of
minimal dimension for X3 different from K3. However, these analogues Wn and
Wg of the well-rounded retract fail to achieve their goal in general.

Theorem 1.1. There exist infinitely many n ≥ 2 such that Wn does not contain
any Out(Fn)-equivariant spine for Xn.

Theorem 1.2. There exist infinitely many g ≥ 2 such that Wg does not contain
any Modg-equivariant spine for Tg.

Note that the dimension of Wn (resp. Wg) is equal to the vcd of Out(Fn) (resp.
Modg). The obstruction comes instead from the fact that these sets miss certain
loci of fixed points of finite subgroups that have to intersect any spine.

These theorems go in the same direction as results of Pettet and Souto showing
that Wn is a minimal spine [PS08a] and slightly modifying its definition can yield
sets of the same dimension that are not spines anymore [PS08b]. In other words,
spines are sensitive and thus tricky to find.

There is also an analogue of the Thurston set Vg in Xn. Indeed, consider the set
Vn ⊂ Xn of graphs whose systoles topologically fill, meaning that each component
of the complement of their union is contractible. Equivalently, a set C of closed
geodesics in a metric graph Γ topologically fills if every non-contractible curve in Γ
intersects some element of C. One could also consider the set V ′

n of graphs whose
systoles geometrically fill in the sense that their union is equal to the whole graph.
It is easy to see that

Wn ⊆ Vn and V ′
n ⊆ Vn.

Furthermore, V ′
2 coincides with K2, the dual to the Farey triangulation, but W2 =

V2 is strictly larger (it contains the dumbbells with two loops of equal length, which
form spikes emanating from the midpoints of the edges in K2).

In contrast with Wn, the sets Vn and V ′
n are always spines.

Theorem 1.3. For every n ≥ 2, the set Vn is an Out(Fn)-equivariant spine for
Xn and V ′

n is an equivariant spine for Vn.

However, their dimension is too large in general.

Theorem 1.4. For every ε ∈ (0, 1), there exists an n such that the dimension of
V ′
n is at least (3− ε)n, hence larger than the vcd of Out(Fn).

Note that there is also a dynamically-defined notion of filling currents for free
groups due to Kapovich and Lustig [KL10]. We do not know whether the set of
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graphs whose systoles fill in that sense forms a spine and if so, what its dimension
is.

One may wonder if there is a spine of the minimal dimension 2n − 3 contained
in V ′

n. However, it seems difficult to push the deformation retraction defined in
the proof of Theorem 1.3 much further. One can continue until there is a systole
passing through any pair of edges that are adjacent to a vertex of degree 3 by
folding these edges gradually otherwise, but the proof of Theorem 1.4 implies that
the dimension of the resulting set is still too large in general.

2. Outer space

We start by proving the negative results regarding Outer space. The proof of
both Theorem 1.1 and Theorem 1.4 is based on the same family of graphs that have
a large automorphism group and few systoles that cover the whole graph. These
graphs were used in [FB20] to construct hyperbolic surfaces with similar properties.

Given integers p, q ≥ 2, a map of type {p, q} is a connected graph of constant
valence (degree) q embedded in an oriented surface such that each complementary
region (whose closure is called a face) is a topological disk whose boundary consists
of p edges. This can also be phrased in terms of a ribbon structure on the graph. A
flag is a triple (v, e, f) where v is a vertex, e is an edge, f is a face, and v ⊂ e ⊂ f . A
map is flag-transitive if for any two flags there is a homeomorphism of the underlying
surface which sends the map to itself and the first flag to the second. For now we
consider our maps as combinatorial graphs where each edge has length 1. The girth
of a combinatorial graph is the same as its systole, namely, the minimal length of
a cycle that is not contractible.

We will require a small variation of a result of Evans [Eva79, Theorem 11] about
the existence of flag-transitive maps of large girth. The difference here is that we
want to make sure that only the obvious cycles have length equal to the girth.

Lemma 2.1. For any q ≥ 3 and p ≥ 7, there exists a finite flag-transitive map M
of type {p, q} and girth p such that the only non-trivial cycles of length p in M are
the face boundaries.

Proof. There is an infinite flag-transitive map Mp,q of type {p, q} embedded in the
hyperbolic plane H

2 coming from the tiling by regular p-gons with interior angles
2π/q. The automorphisms of Mp,q are realized by a finitely-generated discrete
group G of isometries of the hyperbolic plane. By Mal’cev’s theorem [Mal65], G is
residually finite, so there is a sequence of normal subgroups Gk � G of finite index
such that

⋂
Gk = {id}. This implies that Gk is eventually torsion-free and the

closed hyperbolic surfaces Sk = H
2/Gk have injectivity radius going to infinity as

k → ∞. If k is large enough, then the projection Mk of Mp,q to Sk has type {p, q}
because the map H

2 → Sk is a covering map. Furthermore, Mk is finite since
Mp,q/G is a half-edge and Gk has finite index in G. Lastly, Mk is flag-transitive
via the quotient group G/Gk acting on Sk.

Since the face boundaries in Mk have combinatorial length p, the girth of Mk is
at most p. Since the injectivity radius of Sk tends to infinity, any cycle in Mk which
is not contractible in Sk becomes arbitrarily long (with respect to the hyperbolic
metric and therefore also in terms of its number of edges) as k tends to infinity.
In particular, a cycle in Mk that is not contractible in Sk has combinatorial length
strictly larger than p if k is large enough. It is also true that any cycle in Mk which
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is contractible in Sk (and hence lifts to the universal cover) has combinatorial length
at least p with equality only if it is the boundary of a face. We can prove this as
follows. Suppose that γ is an embedded cycle of combinatorial length at most p in
Mp,q. Let A be the hyperbolic area of any face in the tiling, let N be the number
of faces enclosed by γ, and for a vertex v ∈ γ let kv be the geodesic curvature of γ
at v, that is, π minus the interior angle. Then the Gauss–Bonnet formula yields

2π =
∑
v∈γ

kv −N ·A ≤ p

(
1− 2

q

)
π − A = 2π

so that in fact N = 1 and γ is the boundary of a face. �

To prove our results, we use this construction with q = 3 and p ≥ 7 arbitrarily
large. Let M be a map satisfying the conclusions of Lemma 2.1 with these param-
eters and let V , E, and F be its number of vertices, edges, and faces respectively.
Then

3V = 2E = pF.

The rank n of M is such that its Euler characteristic is

1− n = V − E = −V/2

so that n = 1 + V/2. By the lemma, the systoles in M are the face boundaries,
so there are F = 3V/p = 6

p (n − 1) of them. In particular, the number of systoles

divided by the rank n is arbitrarily small if p is large enough.

Proof of Theorem 1.4. Given ε ∈ (0, 1), choose p ≥ 7 such that 6/p < ε, then let
M be a finite map of type {p, 3} as above whose combinatorial systoles are the face
boundaries.

Let n be the rank ofM , pick an arbitrary homotopy equivalence from the bouquet
on n circles to M to get a marking, and make all edges of M of equal length 1/E
so that its volume is 1. We can now consider M as an element in the Outer space
Xn. Since the systoles in M are the face boundaries, they cover the whole graph
so that M ∈ V ′

n.
We now want to deform M (i.e., vary the lengths on its edges) in such a way

that the systoles stay the same curves and thus still cover the whole graph. Since
competing curves are longer by a definite amount, near M these curves will remain
systoles as long as they stay of equal length.

If γ1, . . . , γF are the systoles, then this requires F − 1 equations, namely,

�(γ1) = �(γ2), �(γ2) = �(γ3), . . . , �(γF−1) = �(γF ).

In turn, each �(γj) is equal to the sum of the lengths of the edges traversed by γj ,
so this gives us F −1 linear equations for the edge lengths. The subspace of RE cut
out by these equations has codimension at most F − 1 and then we intersect this
with the hyperplane where the sum of the lengths is equal to 1. The dimension of
the intersection I is at least

E − F =

(
3− 6

p

)
(n− 1)

and this is larger than (3− ε)n provided that p (and hence n) is large enough.
As explained above, there is a neighborhood U of M in I where the face bound-

aries will remain systoles and hence U ⊂ V ′
n. This shows that the dimension of
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V ′
n is at least (3 − ε)n. Since ε < 1, this is strictly larger than 2n − 3, the vcd of

Out(Fn). �

To prove that the well-rounded set Wn does not contain an equivariant spine, we
will use the above construction together with the following elementary observation,
in which Fix(H) denotes the set of all points fixed by all the elements in H.

Lemma 2.2. Let G be a group acting on a topological space E and let S ⊆ E be
a G-equivariant spine for E. If H is a subgroup of G, then S ∩ Fix(H) is a G-
equivariant spine for Fix(H). In particular, if Fix(H) 
= ∅ then S ∩ Fix(H) 
= ∅.

Proof. Let (x, t) �→ ft(x) be a continuous map from E × [0, 1] to E such that f0 is
the identity on E, f1(E) = S, ft(x) = x for every x ∈ S and every t ∈ [0, 1], and
ft(g(x)) = g(ft(x)) for every g ∈ G, every x ∈ X, and every t ∈ [0, 1]. Then for
every t ∈ [0, 1], every h ∈ H, and every x ∈ Fix(H), we have

h(ft(x)) = ft(h(x)) = ft(x)

so that ft(x) ∈ Fix(H). This shows that ft restricts to a map from Fix(H) to
Fix(H) for all t ∈ [0, 1]. This restriction is still G-equivariant and equal to the
identity on S ∩ Fix(H). Finally, we have

f1(Fix(H)) ⊆ f1(E) ∩ Fix(H) = S ∩ Fix(H) = f1(S ∩ Fix(H)) ⊆ f1(Fix(H))

so that f1(Fix(H)) = S ∩ Fix(H). In particular, if Fix(H) 
= ∅ then

S ∩ Fix(H) = f1(Fix(H)) 
= ∅. �

We can now prove that Wn does not contain any spine.

Proof of Theorem 1.1. Take any p ≥ 7 and let M be a finite flag-transitive map
of type {3, p} such that its systoles are the face boundaries. Recall that there are
6
p (n − 1) < (n − 1) systoles in M where n is the rank. In particular, the systoles

in M do not generate a finite-index subgroup in H1(M,Z) ∼= Z
n. Considering M

as a point in Xn after taking a marking and rescaling the metric, this means that
M /∈ Wn.

On the other hand, the stabilizer H of M in Out(Fn) is isomorphic to the au-
tomorphism group of M via the homotopy equivalences between the bouquet on
n circles and M . Since the quotient M/Aut(M) is a half-edge whose deforma-
tion space is a point, M is the unique fixed point of the group H. If there is an
equivariant spine S contained in Wn, then we have M ∈ S ⊆ Wn by Lemma 2.2,
contradicting M /∈ Wn. We conclude that Wn does not contain a spine. �

Remark 2.3. By taking p sufficiently large in the above proof, we see that for any
ρ > 0, there exists some n such that the set of graphs in Xn that have at least ρ n
systoles does not contain an equivariant spine.

We end this section by proving the positive result that the sets Vn and V ′
n are

spines for Xn. The proof is the same as for Ash’s well-rounded retract Wn. Recall
that Vn is the set of metric graphs (of volume 1 and rank n) whose systoles are
such that every component of the complement of their union is contractible (hence
a finite tree without its leaves) and V ′

n is the set of graphs whose systoles cover the
whole graph.
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Proof of Theorem 1.3. The deformation retract is performed in stages. Let Uk be
the set of metric graphs such that the union of the systoles is a (possibly discon-
nected) graph with first Betti number at least k. Note that U1 = Xn, Un = Vn,
and Uk ⊃ Uk+1 for every k. It thus suffices to construct an equivariant deformation
retraction of Uk onto Uk+1 for every k and then a deformation retraction of Vn onto
V ′
n.
Let Γ ∈ Uk \ Uk+1 for some k ≥ 1, let SΓ be the set of edges that belong to

some systole and let TΓ be the set of remaining edges. Let s = s(Γ) < 1 be the
total length of SΓ so that the total length of TΓ is 1− s > 0. For 0 ≤ t ≤ log(1/s),
we define Γt by rescaling the edges in SΓ by a factor of et and those in TΓ by a

factor of 1−ets
1−s ≥ 0 so that the volume remains equal to 1. For t sufficiently small,

the set of systoles in Γt stays constant because the next shortest closed geodesics
in Γ are longer by a definite proportion. In particular, Γt ∈ Uk \ Uk+1 for all small
enough t ≥ 0. Let τ = τ (Γ) be the supremum of times t ∈ [0, log(1/s)] such that
Γt ∈ Uk \ Uk+1. Note that Γτ ∈ Uk since Uk is closed and Γt varies continuously.
On the other hand, the union of the systoles in Γτ cannot be equal to a subgraph of
rank exactly k otherwise we could continue the deformation for t > τ , so we have
Γτ ∈ Uk+1. This is unless τ = log(1/s), in which case the systoles in Γτ cover the
whole graph and thus Γτ ∈ V ′

n ⊆ Vn ⊆ Uk+1 in that case too.
The deformation retraction Uk×[0, 1] → Uk onto Uk+1 is defined by sending (Γ, t)

to Γt·τ(Γ) if Γ ∈ Uk \ Uk+1 and to Γ if Γ ∈ Uk+1. This map is clearly continuous,
Out(Fn)-equivariant, equal to the identity on Uk at t = 0 and on Uk+1 for all t,
and a retract onto Uk+1 at t = 1.

The final deformation retraction of Vn onto V ′
n can be defined similarly, by

shrinking all the edges that do not belong to any systole (and expanding the rest to
keep the volume constant) until either the complementary components have been
shrunk to points or some new systole passing through a complementary component
appears. Once again, the deformation retraction is performed in stages, ordered
according to the number of edges that do not belong to any systole (recall that the
metric graphs in Xn are not allowed to have vertices of degree 1 or 2, so there are
at most 3n− 3 edges). �

3. Teichmüller space

It remains to prove Theorem 1.2 stating that the set Wg of surfaces in Tg whose
systoles generate a finite-index subgroup in homology does not contain any equivari-
ant spine. We simply explain how this follows from results in [FB20] and [FB23].

Proof of Theorem 1.2. Theorem 1.1 in [FB20] states that for every ε > 0, there
exists some g ≥ 2 and a closed hyperbolic surface X such that the systoles in X
fill (so that X ∈ Vg) but there are fewer than εg of them. By [FB20, Proposition
5.1], the surface constructed is such that Isom(X) acts transitively on a tiling of
X by copies of a quadrilateral Q with three right angles and one angle of π/q
for some large integer q. Taking H = Isom(X) as a subgroup in the extended
mapping class group Mod±g , we see that the locus of fixed points Fix(H) in Tg
is 1-dimensional because it is isometric to the Teichmüller space of the quotient
orbifold Q = X/ Isom(X). Trigonometric identities between the side lengths of
a quadrilateral with three right angles [Bus10, p. 454] imply that this space is
1-dimensional.
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Now, varying the shape of Q has the effect of changing the right-angled regular
2q-gon P used to construct X into a semi-regular right-angled polygon with side
lengths alternating between two values t and s(t) as in [FB23, Section 2]. If we
denote the deformed surface by Xt, then the arguments in [FB23, Section 2] and
[FB20, Proposition 4.1] can be easily modified to show that the systoles in Xt are
either the red curves or the blue curves (or both) in the language of these papers.
That is to say, the systoles in Xt are a subset of those in X. In particular, there are
fewer than εg systoles in Xt for every Xt ∈ Fix(H). Since any finite-index subgroup
ofH1(X,Z) has rank 2g, we obtain that Fix(H) is disjoint fromWg as long as ε < 2.

By Lemma 2.2, it follows that Wg does not contain any Mod±g -equivariant spine,
for otherwise Wg ∩ Fix(H) would be non-empty.

We then extend this statement to the mapping class group Modg. Let H
+ ≤ H

be the index-2 subgroup of orientation-preserving isometries. Then Q+ = X/H+

is an oriented orbifold without boundary that covers Q with degree 2, hence is
equal to the double of Q across its boundary, i.e., a sphere with 4 cone points. The
set Fix(H+) is isomorphic to the Teichmüller space of Q+, which is isometric to
the hyperbolic plane, so Fix(H+) is a Teichmüller disk D containing the geodesic
L = Fix(H).

Suppose that S ⊆ Wg is a Modg-equivariant spine for Tg. Since Wg is disjoint
from L, so is S. By Lemma 2.2, S ∩ D is a deformation retract of D, so it is
connected, hence contained in one of the two half-planes bounded by L. On the
other hand, S ∩D is invariant under the action of the stabilizer K of D in Modg.
This stabilizer K contains a copy of the pure mapping class group PMod(Q+) since
all homeomorphisms of Q+ fixing the cone points lift to X. In turn, PMod(Q+)
acts on H

2 ∼= T (Q+) ∼= D as the principal congruence subgroup of level two Γ(2),
a finite-index subgroup in SL2(Z). In particular, K is a lattice in Isom+(D), hence
its limit set is all of ∂D. This contradicts the previous observation that S ∩ D is
K-invariant and contained in a half-plane. �

Remark 3.1. Similarly as for Outer space, the above argument shows that for any
ρ > 0, the set of hyperbolic surfaces that have at least ρ g systoles does not contain
an equivariant spine for infinitely many g.
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sics, Birkhäuser Boston, Ltd., Boston, MA, 2010. Reprint of the 1992 edition, DOI
10.1007/978-0-8176-4992-0. MR2742784

[CV86] M. Culler and K. Vogtmann, Moduli of graphs and automorphisms of free groups, Invent.
Math. 84 (1986), no. 1, 91–119, DOI 10.1007/BF01388734. MR830040

[Eva79] C. W. Evans, Net structure and cages, Discrete Math. 27 (1979), no. 2, 193–204, DOI
10.1016/0012-365X(79)90110-9. MR537475

https://mathscinet.ams.org/mathscinet-getitem?mr=427490
https://mathscinet.ams.org/mathscinet-getitem?mr=2742784
https://mathscinet.ams.org/mathscinet-getitem?mr=830040
https://mathscinet.ams.org/mathscinet-getitem?mr=537475


438 MAXIME FORTIER BOURQUE

[FB20] M. Fortier Bourque, Hyperbolic surfaces with sublinearly many systoles that fill, Com-
ment. Math. Helv. 95 (2020), no. 3, 515–534, DOI 10.4171/CMH/495. MR4152623

[FB23] M. Fortier Bourque, The dimension of Thurston’s spine, Int. Math. Res. Not. IMRN,
rnad211, 2023.

[Ji14] L. Ji, Well-rounded equivariant deformation retracts of Teichmüller spaces, Enseign.
Math. 60 (2014), no. 1-2, 109–129, DOI 10.4171/LEM/60-1/2-6. MR3262437

[KL10] I. Kapovich and M. Lustig, Intersection form, laminations and currents on free groups,

Geom. Funct. Anal. 19 (2010), no. 5, 1426–1467, DOI 10.1007/s00039-009-0041-3.
MR2585579

[Mal65] A. I. Mal’cev, On the faithful representation of infinite groups by matrices, Amer. Math.
Soc. Transl. (2), 45 (1965), 1–18.

[PS08a] A. Pettet and J. Souto, Minimality of the well-rounded retract, Geom. Topol. 12 (2008),
no. 3, 1543–1556, DOI 10.2140/gt.2008.12.1543. MR2421134

[PS08b] A. Pettet and J. Souto, The spine that was no spine, Enseign. Math. (2) 54 (2008),
no. 3-4, 273–285. MR2478088
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