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ABSTRACT. This paper concerns the problem of determining the optimal con-
stant in the Montgomery—Vaughan weighted generalization of Hilbert’s in-
equality. We consider an approach pursued by previous authors via a para-
metric family of inequalities. We obtain upper and lower bounds for the con-
stants in inequalities in this family. A lower bound indicates that the method
in its current form cannot achieve any value below 3.19497, so cannot achieve
the conjectured constant . The problem of determining the optimal constant
remains open.

1. INTRODUCTION

In this paper, we study a parametric family of inequalities, given in (L), that
can yield an upper bound on the optimal constant in the Montgomery—Vaughan
weighted generalization of Hilbert’s inequality (I3]). This inequality is important
in the theory of the large sieve; see [§] and [5].

1.1. History of the problem. Let N denote a positive integer, and let zq, .
zn denote complex numbers. Hilbert’s inequality states that
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where C is the absolute constant 2w. Hilbert’s proof was published by Weyl
[15, § 15]. In 1911, Schur [13] obtained (Il with Cy = 7 and demonstrated that
this absolute constant is best possible. Hardy, Littlewood, and Pdélya [3, pp. 235
236] gave an account of Hilbert’s proof. Schur’s proof is also reproduced in [3]
Theorem 294].

In 1974, Montgomery and Vaughan [9] established a generalization: If § > 0 and
()\k)ZO:,OO is a sequence of real numbers such that Ag11 — Ax > § for all k, then
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Schur’s bound is included in ([[2) as the case Agy1 — Ap = . In the same paper,
Montgomery and Vaughan also established a weighted form:

N

N P N
(1.3) > _omn Z

m=1 n:l
n#

where Apy1 > Ag for all k& and &g := min{A\y — Ag—1, A\g+1 — A\i} and Cy is the
absolute constant 37“ Denote by C the minimum of all absolute constants C; for
which (L3)) holds. Montgomery and Vaughan [9] have raised the

Problem. Determine C.
By setting A\ = k in (L3 and comparing with Schur’s result, we see that
(14) 61 Z .

If C; =, then (L3) would contain (L2)), and it is widely believed to be the case.
In 1984, Preissmann [I1] proved that

— 2 /6 4rm
. <o 14 24/2 < =
(1.5) Ci<m 1+3\/;< 3

Preissmann’s proof is based on that of Montgomery and Vaughan. Selberg (unpub-
lished) said that he had shown that C'; < 3.2 (which is < %), but it seems that
no trace remains of his argument; cf. [5 p. 557] and [6l p. 145]

In 1981, Graham and Vaaler [I] constructed extreme majorants and minorants

of the functions
e PT ifx>0
EB,x):= -7
(B;) {O if z <0,

where (3 is an arbitrary positive real number, and used them to prove that
(1.6)

N
eﬁ/fs Z|Z"‘ < Z_ Z 5_,_2 Zmzn An) < 65/5 Z|Zn|

The inequality (L8] includes (L2) as the limiting case 3 — 0*. In 1999, Mont-
gomery and Vaaler [7] established a generalization of (L3):

N N 2 N 12 2
(1.7) R < Cy
glgﬂm+ﬂn+l(Am_AvL) 7; On
n#m
where 1, ..., By are nonnegative real numbers and Cs is the absolute constant

84, which is not optimal. Their proof involves the theory of H? functions in a
half-plane and a maximal theorem of Hardy and Littlewood.

In 2005, Li [4] posed a question about the finite Hilbert transformation associated
with a polynomial and proved that if the question always has an affirmative answer,
then Cq = 7.
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1.2. Main results. We study the following parametric family of inequalities. For
0 < a <2, let C'(«) be the minimum of all constants C (a) for which the inequality

2—afa
(1.8) Zzé 0%t mitn Z

m=1 n=1 n) n=1
n#m

holds for all choices of a positive integer N, a strictly increasing sequence (Ak)?;
of real numbers,

—0o0

5k := min {>\k - )‘kflv >\k+1 - )\k},
and nonnegative real numbers ¢y, ..., tx. Let C(a) = oo if there is no such real

number C(a).
The value C (%) is relevant to the generalized Hilbert inequality (L3). In Sec-
tion Bl we shall prove the following inequality between C; and C (%)

Theorem 1.1. We have Cq < %2 +2C (%)

The previous approaches to get an upper bound for C in [9], [11], and [14] rely
on an upper bound for C'(3) and Theorem [Tl Montgomery and Vaughan [9] first
showed that C (%) is finite. Specifically, they proved C (%) < 177 The same bound
has been used in [7] to prove (1), but the best known upper bound for C' (%) is

due to Preissmann [11].
Theorem 1.2 (Preissmann). We have C (3) < ”— + 5 \/7

By means of Theorem [[LT] Theorem [[2] implies (LH]). Another immediate con-
sequence of Theorem [Tlis that (L) implies C (3) > 7'3—2 (This lower bound has
been pointed out in [7| p. 36].) Moreover, the conjecture that C'; = 7 would follow
if C(3) = %2

In Section H, we shall prove the following properties of C(c).

Theorem 1.3.
(1) For real numbers 0 < a < 2, we have C(a) = C(2 — a) > 0.
(2) For real numbers 0 < oy < @z <2 and 0 < 6 < 1, we have
C By + (1 —0)az) < C (1)’ C(az) 7.

(3) For real numbers 0 < a1 < as < 1, we have C (a1) > C (az). Therefore the
minimum of C(a) for 0 < a <2 is attained at o = 1.
(4) For real numbers 0 < a < 5, we have C(a) = .

Also in Section ] we determine the minimum value.

Theorem 1.4. We have C(1) = %2

In Section [, we shall prove a new lower bound for C' (%)
Theorem 1.5. We have C (3) > 0.3504772.

From Theorem [[[5] we deduce that any upper bound for C; obtainable by The-
orem [LI] cannot be smaller than 3.19497. This method of using Theorem [L]] is
incapable of proving C, = 7.



442 WILJIT YANGJIT

2. PRELIMINARIES

2.1. Eigenvalues of generalized weighted Hilbert matrices. Let us consider
N x N matrices H = [hy,,,] with entries given by

Cm C. :
p——— if m # n,

(2.1) B =4
0 if m=n,

where (Ag)jo. . Is a strictly increasing sequence of real numbers and c1, ..., cn
are positive real numbers. Since H is skew-Hermitian (i.e., ¢H is Hermitian), all
. . . T .

its eigenvalues are purely imaginary. Let [ug,...,uny]| be an eigenvector of H, and
let 1 be its associated eigenvalue. That is,

CmCnlUn

— =ipu
Am - )\n "

n=1
n#m

foralm=1,..., N.

It is well known (see, e.g., [0l § 7.4]) that the numerical radius of a normal matrix
is the same as its spectral radius (and its operator norm). Thus, if ip has the largest
modulus among all eigenvalues of H, then

N XL enenzmZa ol
22) 33 ainT| S P
m=1 n=1 m n n=1
n#m
for all complex numbers 21, ..., zy. On replacing 2, by £, we see that ([2.2) is

equivalent to

Y& o |20

One may obtain the generalized Hilbert inequality (3] with some constant C4
from (23)) by giving an upper bound for the sizes of eigenvalues of H in the case
that ¢2 = J,, = min {\, — An_1, \ns1 — An}. A key result to that end is:

Lemma 2.1. Let [ug,... ,uN]T be an eigenvector of H, and let iy be its associated
etgenvalue. Then the identity

N
(2.4) MQ‘um‘QZ Z 22 |un| Z c? cn umun)

n=1 (/\ n)
n#m n;ﬁm
holds for allm=1, ..., N.
Proof. See Preissmann and Lévéque [12, Lemma 5 (b)]. O

2.2. A weighted spacing lemma and Shan’s method. The goal of this sub-
section is to prove:

Lemma 2.2. Let (Ak)ii_oo be a strictly increasing sequence of real numbers. De-
note by dy, the minimum between A\, — A\g_1 and Apy1 — A\, Then for real numbers
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o > 1 and integers ¢, we have

Ok 2¢(o)
2.5 E = < .
( ) P |/\k — )\g| 55_1

kAl
One can show that equality holds in ([Z3]) if and only if the sequence

()‘k-i-l - /\k)zozfoo

is constant, but we shall not treat it here.

Lemma is a direct consequence of Preissmann [I1, Lemme 1]. We present
a proof using a method of Shan [I4], who independently derived Lemma The
work of Shan, done at the same time as that of Preissmann, is obscure and hard
to obtain. Peng Gao (private communication) translated Shan’s argument, which
appears in [I0, pp. 590-595]. Lemmas are an exposition of Shan’s method.

Let f be a real-valued function, defined on the interval [1,00). We will assume
that f satisfies some (or all) of the following four conditions:
flz+(1—-0)y) <O0f(x)+(1—-0)f(y) forall0<f<land 1<z <y.
f(z) > f(y) forall 1< o <.
(¢) f(x) >0 forall z > 1.
(d) The series 372, f(j) converges.

We note that (c) follows from (b) and (d), since (b) implies f(z) > limy_,o0 f(k)
and (d) implies limy_, o f(k) = 0.

Lemma 2.3. Assume that f : [1,00) — R satisfies (a) and (b). Let (a,),~, be a
sequence of real numbers such that a, > 1 for all n. Set A\, :== >_"" _| ay,. Then
for positive integers N, we have

(a
(b
a

—_ T

[An]

N
Y anf (M) < Z FG)+{AnF(AN] +1),

where {x} = x — |x] denotes the fractional part of x.
Proof. By the convexity of f, we have

(2.6) Fn) <@ ={2}) £ () {2} £ (M) +1).

Moreover, since a, > 1 and f is weakly decreasing, it follows that

On summing (20 and (Z71), we obtain

(2.8) anf (An) < (an —{An}) £ ([An]) +{An} f ([An] + 1)
Now, we consider the first term on the right side of (2:8) and note that A, =
>\n71 + an > )\nfl + 1

(@n = {Aa}) [ (An]) = (n] = [Ana) = D) F (A ]) + (1= {An1}) F ([An))
L)‘HJ
Y. O+ (D] + D)

J=lAn—1]+2
[An]
= > =P F (Pl + 1)

J=[An-1]+1

IN
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On inserting this in (2.8]), we get
[An ]

j:L)\n71j+1
The result follows by summing ([29) over n = 1, ..., N; the resulting sum on the
right side is a telescoping sum. |

In what follows, we consider

N n
(2.10) Fy(x) =Y min{zn, 2ps1} f (Z xm> :
n=1 m=1

where x = (z,,),., is a sequence of positive real numbers with z; > 1.
Lemma 2.4. Assume that f : [1,00) — R satisfies (a)—(c). Let a = (a,).—, be

n=1
a sequence of positive real numbers with a1 > 1. Suppose that v > 2 is an integer
such that a,_1 > a,. Let 0 <e < a,_1 —a,. Defineb = (bn)zo=1 by

{an forn # v,
by, =
ay,+¢e forn=uv.

Then for positive integers N, we have
(2.11) Fn(a) < Fy(b).

Proof. It N < v — 2, then (ZT1J) is an identity. So let us assume that N > v — 1.
Put A\, = Ezzl am. It follows from the definition of b,, that

=e¢ ifn=v-1,
min {b,, byy1} — min{an,an11} ¢ >0 ifn =y,
=0 otherwise,
zn:b _{)\n forn<v-—1,
= A +e forn>w.
By the nonnegativity of f, min{b,,b,41} f (A, +¢) > min{a,,a,+1} f (A +€).

So
N

(212) Fn(b) = Fx(a) > ef (Av—1) + > min{an, ans1} (f (Ao +2) = f (An)).-

By the convexity of f, it follows that
f()‘n +5) — f()‘n) > f()‘n) — f(>\n71)
£ - anp

for all n > 2. So (2I2) implies that

N .
Fa(b) = F(a) = ef () + S0 20w tned 0y pn )

v
>ef (A1) +e Z (f (An) = f (An=1))

=ef (An) > 0.
Hence Fy(a) < Fy(b). O
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We now prove an upper bound for Fiy(a) that depends only on f.

Lemma 2.5. Assume that f : [1,00) — R satisfies (a)~(d). Let a = (an),—, be

a sequence of positive real numbers with a1 > 1. Then for positive integers N, we
have

(2.13) Fy(a) <> £())
j=1

By taking a,, = 1 for all n and letting N — oo, we see that ([2I3)) is sharp.

Proof. Define a sequence a = (a,),., by @, := max{a, :m=1,...,n}. Then
Ap+1 > ay for all n and @; = a3 > 1 Let N be a positive integer. By applying
Lemma 24 with € = a,_1 — a,, as many times as we need, we see that

N
(2.14) Fy(a) < Fy (@)=Y anf (An)
n=1

where A, := >0 | Gy
By Lemma 2.3 and the nonnegativity of f, the right side of (214 is

L/\N 0o
(2.15) Zanf Zf )+ (] + <Zf
The result (ZI3) follows by combmmg EI2) and 2TH). O

We are now ready to prove Lemma
Proof of Lemma 22l Let ¢ be an integer. Define sequences a = (a,,),.; and b =

(bn)zozl by
Aot — Avgn—1 At—nt1 = Ae—n
ni=———o70o0o— and b, = ——W——,
“ 5@ 5@
for all n. Then a and b are sequences of positive real numbers with
Aog1 — A Ao — Ao
a1:M21 and b1:£4“21.
5@ 5(
We have
5Z+n 65771

min {a,, apy1} = and  min {b,,bp41} =

(Sg 6@ ’

Zam_AZ+n_ i _ )\Z n
L

Let o > 1. Applying Lemma 23l with f(z) = =, we obtain
¢+N N
- 5k - 5Z+n 5£7n
57 T =0 ( 4 _
‘ k—lZ;N Ak = Al ! 7; (Aen = A0)" (Ao = Apn)
Py =

= Fy(a) + Fn(b)

<2) f(h) =
j=1

The result (28] follows by letting N — oo. O
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3. PrROOFS oF THEOREMS [[.I] AND

1. Proof of Theorem [1.11

Proposition 3.1. Let N be a positive integer. Let (\)pe. . be a strictly increasing
sequence of real numbers. Denote by dy the minimum between A\, —Ap—1 and Agy1—
Ak. Assume that Cs is a positive constant such that the inequality

N N

(3.1) IDIF o ‘5_t;2 _cjzt

m=1 n=1
n;ém

holds for all nonnegative real numbers ti, ..., tny. Then the inequality (L3]) holds
for all complex numbers z1, ..., zx with the constant C7 = \/%2 + 2C5.

Proof. Suppose that () holds. Let [u1,...,uy]' be a unit eigenvector of H =
[hmn], where Ry, are given by (ZI) with ¢, = /0, and let iu be the eigenvalue
associated with this eigenvector. On applying Lemma 2] and summing (24)) over
m, we get

N N
(3.2) f—ZZ% 225(5%1171;0 S+or

where S and T are given by

N N

S |un| ARNERF P Ium\lunl
5305 bl o 3 S SRl el
m=1 n=1 m=1 n=1 n

n#m

On one hand, by Lemma [2.2] we obtain

N N 5 N 2 2
3.3 S=> bulunl’ | Y —"— | < 5nun2(_>__,
(3.3) 2 |t PoNrwswil n§=1 [t 3. 3
m#n

On the other hand, substituting ¢, = |u,| in BI) gives
(3.4) T <y
It follows from [B2), B3), and (B4) that

(3.5) || < VS +2T < \/ + 2C5.

By the argument preceding (23], we deduce from (23] and 3] that (L3]) holds
with C1 = /% + 2C5. O

One weak point in the proof of Proposition Blis the bound in (3:2), where we
disregard cancellation between terms.

Proof of Theorem [L1l. Since [BI) holds with C3 = C (3), it follows by Proposi-
tion Bl that (T3] holds with Cy = %2 +2C (3). Hence the result follows. [
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3.2. Proof of Theorem

Lemma 3.2. Let (A\y)re_ ., be a strictly increasing sequence of real numbers. De-
note by & the minimum between A\, —Ap—1 and A1 —A,. Then for distinct integers
£ and m, we have

- 5 72 (8¢ + Om 3(6¢+ Om
(3.6) 3 L < (0 )2_ (d 4);-
k=—o00 (/\k - /\5) (/\k - )\m) 30¢0m ()\f - )\m) (/\( - /\m)
k£
k#m
Proof. See Preissmann [I1, Lemme 6]. O

Proof of Theorem [L.2. Let

N N N
U—ZzééttQ and V::Zti.
m= 1#757}1 n=1

By Cauchy’s inequality,

NN sisEe,
=Y nY VW

2

N 3 1

A 52,02t
() ([ e | | -visen
n=1 m=1 m n

m#n

IN

where

NN 5862 NN 8268 8ntet
=2 > e ad =33 3
n=1 ; m n

(/\K - /\n)Q ()\m - /\H)Q'

Applying Lemma with o = 4, we obtain

N N N
s=y ey <y e (”_4>_7T_4V
m=1 e n=1 ()\n - Am)4 B m=1 " 456?" 45
n#m

Applying Lemma [3.2] we obtain

{=1m=1 n=1
m#L n#l
n#m
<SS shsbun (i) 2
> ¢ OmUlelm 5 | = 3 Y-
e 3600m (A¢ — Am) 3
m#£L

So UQSV(Z—;V—FQ% ) Solving this gives U < ( —|—%2 g) V. O
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4. PrROOFS OoF THEOREMS [[L3] AND [4]

4.1. PIl)Of of Theorem [I.3l For real numbers 0 < o < 2 and positive integers
N, let C(a, N) be the minimum of all constants C'(«, N) for which the inequality

2—a fa N
(4.1) 225 5” <Cla,N)Y t2

m=1 n=1 "
n#m

holds for all choices of a strictly increasing sequence () - of real numbers,

k=—o00
O = min { A\ — A1, Aeg1 — A},
and nonnegative real numbers ¢1, ..., tn.

Proposition 4.1.

(1) For real numbers 0 < a < 2, we have C(a,1) = 0 and C(a,2) = 1.

(2) For real numbers 0 < a < 2 and positive integers N, we have C(a, N) <
C(a, N +1).

(3 ) For real numbers 0 < o < 2 and positive integers N, we have 0 < C(a, N) <
N —

4 ) For real numbers 0 < a < 2, we have C(a) = limy o, C(a, N).

Proof.

(1) If N = 1, the left side of (@) is 0. So C(a,1) = 0. If N = 2, the left side
of @) is 2t1t2. So C(a,2) = 1.

(2) Let tq, ..., ty be nonnegative real numbers, and let ¢y11 = 0. Then
Sy e, Ny S
m=1 n=1 m=1 n=1
n#EmM n#Em
N+1
<Cla,N+1)) 2
n=1

N
“nye
n=1

] =
M) =
goIn
34
I %
e Fy
=
IA
] =
NE
N
s
IA
M) =
NE
T
o[+
o

m=1 n=1 m=1 n=1 m=1 n=1
n#m n#m n#m
So C(a,N) < N — 1. On the other hand, from (2) and (1), we have C(a, N) >
C(a,1) = 0. B B B
(4) Since (@I) holds with C(a, N) = C(«), it follows that C'(e, N) < C'(«) for all

N. Hence limy o, C(a, N)<C(c). On the other hand, by (2), thﬁoo C(a,
supy C(a, N). So (I:IEI) holds with C(a) = limy_,o C(a, N). Hence C(a
limN_mo U(Q,N).

N)=
)

OIA

Proposition 4.2.
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(1) For real numbers 0 < a < 2 and integers N > 2, we have C(a, N) =
C(2—-a,N)>1.

(2) For real numbers 0 < ay < as <2 and 0 < 0 < 1, and for positive integers
N, we have

C (b1 + (1 —0)as, N) < C (az, N)? C (az, N)' 7.
<

(3) For real numbers 0 < a1 < «g 1 and positive integers N, we have

U(alv ) Z C(a27 ) .
4) For real numbers 0 < o < L and integers N > 2, we have C(a, N) > Nz,
3 g

Proof.

(1) The left side of (&) is unchanged on replacing a by 2 — a. It follows that
(a,N) = 0(2 — a, N). In addition, by Proposition ] we see that C'(a, N) >

6 1-60
N XL 20t N QL g2reegoat, t,
< (Z Z ()\m_/\n)Q Z Z (/\m_)\n)Q

So C(a, N) < C (a1, N)? C (g, N)' 7.

(3) Let 6 = 52292 Then 0 < § < 1 and az = fa; + (1 - 6) (2 — a1). By (2),

we have

C(az,N)=C(far +(1-6)(2—a1),N) <C(a1,N)’C(2—a1,N)"".
The last quantity is equal to C (ay, N) by (1).

(4) We choose A\ = k for k < 1 and )\2+g—2+ for £ > 0. Then §, = 1 for
k<1and5g+g:—for£>0 Choosetlz\/rﬁlandtn— mforQSnSN.

So Zn 112 =1, and (@) yields
N

82050 b On 520 ¢, VN +1
w233 s S L

) =2 ()‘1 n=2 2Na+1 (1 + "_1;2)2 '

The last quantity is > Nz~ for N > 2. Hence C(a,N) > Nz=%for N >2. 0O
Proof of Theorem [[L3. The result follows as we let N — co in Proposition O

4.2. Proof of Theorem [1.4l

Proposition 4.3. Let ()\k)ioz—oo be a strictly increasing sequence of real numbers.
Denote by 6, the minimum between A\, —Ag—1 and Ag11—Ai. Then for any sequence
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(t1,...,tN) of nonnegative real numbers,
N N N
OmOntmtn 72
42 DD DRI LA W
m=1 n;"é 1 n n=1

Proof. By the inequality of arithmetic and geometric means,

N N N N N
OmOntmtn mbn (17, +t2 5
> E <> min \m T on) § :5 2y
m=1 n=1 71) m=1 n=1 ()\m m=1 ()\m — /\n)2
n;ﬁm n#m m#n
By Lemma 22} the right side above is < 3> 6,12 (;:) = %2 SN 2. O

Proof of Theorem [L4. Proposition B3 shows C(1) < %2 Now taking A\, = n and
t, = \/—% in @I yields

2
L

2 =1 =
Cla,N) > — — - —
@M=L F zn
n=1 n=1 n=1
Letting N — oo gives C(a) > %2 for all 0 < a < 2. Hence C(1) = O
5. PROOF OF THEOREM
Let M denote a positive integer, and let x1, ..., s denote real numbers, distinct
modulo 1. Put
dp, = min ||z, — x|,
n#m
where ||z|| = mingez|x — k| denotes the distance between z and a nearest integer.
In the case that M = 1, we let d; := 1. Let 7y, ..., Ty denote nonnegative real

numbers.

Lemma 5.1. The inequality BJ)) holds (for all N, A\, 6., and t,,) if and only if
the inequality

1 XX dhdirr Oy &

3 2
(5.1) = d2, 2+ — R < = T,
52 T o W - 7

n#Fm

holds for all positive integer M , distinct real numbers x1, ..., Ty modulo 1,
(5.2) dp, == min {|z, — 2, — k| : k € Z}\{0},
and nonnegative real numbers T, ..., Ta-
Proof. (=) Suppose that ([B1) holds. Let x1, ..., xa be real numbers, distinct
modulo 1. By symmetry in z1, ..., s, we may assume without loss of generality
that ©1 < -+ < zp < x1 + 1. Let d,,, be given by (B2)). Let 7y, ..., Tas be

nonnegative real numbers. Let K be a positive integer. We apply BI) with
N = KM. For integers k and m with 1 <m < M, put Agpr4m = k+ x,. Then
OpMam = dm. 0 <k < K, put tipr4m = Tm- On inserting into [BI)), we obtain
(5.3)

M K-1 M M 3 1 M
K — k)d? 12 K — |k|)dpda mmTn
2y o ey s s S oy
m=1 k=1 =t w1 her (@m —@a—F) m=1
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Now, since the series
2 2

ikizﬂ— and Z il
k=1

2
keZ ~ sin®(mz)

converge, it follows that they are (C, 1) summable to the same values (see, e.g.,
[2, p. 10]), which is to say that

2

K—1
1 K-k 7? \k| ™
Ay T~ Jim Z RIS

|k\<K

Hence, dividing (5.3)) by 72K and letting K — oo gives (5.1).

(<) Suppose that (G1)) holds. Let (Ay),o. . be a strictly increasing sequence
of real numbers, and let §; := min{A\y — Ag—1, \er1 — A\x}. Let t1, ..., tx be
nonnegative real numbers. Let 0 < & < m We apply (&) with M = N.
For positive integers n < N, put x,, = ¢\, and 7, = t,,. Then d,, > €6, and (51))
implies

2 N N N 253 <3 N
€ €902,02 tt Cs
D SLTRS D g TN )
3~ == sin? (me (A, — Ap)) — 72 —
n#m
On multiplying by 72 and letting e — 07, we obtain (B.1]). O

Lemma 5.2. For positive real numbers B < 1 and positive integers L, we have

L
L+1-7¢ L3 L?log L 9
(54) 2 (7l = - _+OB (L)
; sin® (Z2) 682 m2B?
Proof. From the identity m = kez ﬁ, we see that if 0 < x < B, then
2 J R 1 1 (1 1
———— = = + < —+——=.
sin(rz) 22 7l2=:1<(n+36)2 (n—$)2> ;(nz (n—B)2>

Hence, for 0 < x < B, we have m = 7;7 + Op(1). Applying this estimate to
each term on the left side of (5.4]), we obtain

L

> “(izB ~y s 0p (Y 1-0)

=1 S =1

2(L+1) L?
7T232 ZEQ _77232

Since Z@ = %24—0 (1) and Zé 1 ¢ =log L+O(1), the result (5.4) follows. [

1
Z + 05 (L?).

Mm

~

Proof of Theorem [L5l. To prove a lower bound for C' (%), we apply (&) with par-
ticular sets of values. Let K be a positive integer. Let A and B be positive real
numbers such that (K +1)A+ B = 1. Let L > £ be an integer. We apply (5.1)
with M = K+ L+1. Choose x, = kA for 1 <k < K and 1011 = (K—l—l)A—i—ZTB
for 0 < ¢ < L. ThendszforlgkﬁKanddKHH:%forOS(ﬁL.
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ChooseTk:\/L?forl§k§KandTK+g+1:ﬁforOSZﬁLwhereuisa
nonnegative real number to be chosen later. Then (5.1 implies

K-1

A2 wu?B? 242 K-k 2u?B? ZL+1—€

= T o T 2 (B
3 3L2 K~ sin®(rkA) LQ(L+ 1) sin® (T£)

AB L C3 2
= E < — (1 .
+ u KL(L-|—1)< >k_1 :osm kA—|—£B))_7r2( +U)

(5.5)

‘We observe that
K

LILII;oZZZmn kA-i—ZB)):k /0

k=1 £=0 =1

1

dx
sin?(w(kA 4 Bz))

=

3
|-

Z(cot(w(K +1—Fk)A) + cot(nkA))

=~
Il
—

cot(rkA).

I
@l
] =

E
Il

1

Now we let L — oo in (5.5) and use the above estimate and Lemma [5.2] obtaining

A2 242 2 K-k L 2 A
— 4+ — (rkA) u?) .
3 N K sin (7rkA BK ZCOt i ( )

That is,

2
ko +r1u+ % Cy
5.6 = <
( ) g(u) 1+u2 — 7T2,

where kg and k1 depend on A, B, and K and are given by

A2 242" K-k 2 [A43 &
= — 4+ — _— d = =1/ == t(mrkA).
Ko 3 + K 2= 2 () and k1= [ o ’;co (rkA)

We find that g(u) is maximized on u > 0 at

On inserting u = up in (B.6), we get

1(1 1 2 Cs
GK(A)3:§ §+ffo+\/<§—ﬁo) +H%)S—2

Figure [1 shows the plot of Gk (K—H) for K =1, ,25and 0 <z < 1. We
find

G5(0.14) > 0.35047.

By Lemma [5.]], this gives the lower bound % > 0.35047 for any absolute constant
Cj such that (3I)) holds. Since (B holds with C3 = C (), the result follows. [
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F1cURE 1. The plot of Gk (KLH) for K=1,...,25and 0 <z <1
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