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ON THE MONTGOMERY–VAUGHAN WEIGHTED

GENERALIZATION OF HILBERT’S INEQUALITY

WIJIT YANGJIT

(Communicated by Ariel Barton)

Abstract. This paper concerns the problem of determining the optimal con-
stant in the Montgomery–Vaughan weighted generalization of Hilbert’s in-
equality. We consider an approach pursued by previous authors via a para-
metric family of inequalities. We obtain upper and lower bounds for the con-
stants in inequalities in this family. A lower bound indicates that the method
in its current form cannot achieve any value below 3.19497, so cannot achieve
the conjectured constant π. The problem of determining the optimal constant
remains open.

1. Introduction

In this paper, we study a parametric family of inequalities, given in (1.8), that
can yield an upper bound on the optimal constant in the Montgomery–Vaughan
weighted generalization of Hilbert’s inequality (1.3). This inequality is important
in the theory of the large sieve; see [8] and [5].

1.1. History of the problem. Let N denote a positive integer, and let z1, . . . ,
zN denote complex numbers. Hilbert’s inequality states that

(1.1)

∣∣∣∣∣∣∣
N∑

m=1

N∑
n=1
n�=m

zmzn
m− n

∣∣∣∣∣∣∣ ≤ C0

N∑
n=1

|zn|2 ,

where C0 is the absolute constant 2π. Hilbert’s proof was published by Weyl
[15, § 15]. In 1911, Schur [13] obtained (1.1) with C0 = π and demonstrated that
this absolute constant is best possible. Hardy, Littlewood, and Pólya [3, pp. 235–
236] gave an account of Hilbert’s proof. Schur’s proof is also reproduced in [3,
Theorem 294].

In 1974, Montgomery and Vaughan [9] established a generalization: If δ > 0 and
(λk)

∞
k=−∞ is a sequence of real numbers such that λk+1 − λk ≥ δ for all k, then

(1.2)
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Schur’s bound is included in (1.2) as the case λk+1 − λk = δ. In the same paper,
Montgomery and Vaughan also established a weighted form:

(1.3)

∣∣∣∣∣∣∣
N∑

m=1

N∑
n=1
n�=m

zmzn
λm − λn

∣∣∣∣∣∣∣ ≤ C1

N∑
n=1

|zn|2

δn
,

where λk+1 > λk for all k and δk := min {λk − λk−1, λk+1 − λk} and C1 is the
absolute constant 3π

2 . Denote by C1 the minimum of all absolute constants C1 for
which (1.3) holds. Montgomery and Vaughan [9] have raised the

Problem. Determine C1.

By setting λk = k in (1.3) and comparing with Schur’s result, we see that

(1.4) C1 ≥ π.

If C1 = π, then (1.3) would contain (1.2), and it is widely believed to be the case.
In 1984, Preissmann [11] proved that

(1.5) C1 ≤ π

√
1 +

2

3

√
6

5
<

4π

3
.

Preissmann’s proof is based on that of Montgomery and Vaughan. Selberg (unpub-
lished) said that he had shown that C1 ≤ 3.2 (which is < 54π

53 ), but it seems that
no trace remains of his argument; cf. [5, p. 557] and [6, p. 145].

In 1981, Graham and Vaaler [1] constructed extreme majorants and minorants
of the functions

E(β, x) :=

{
e−βx if x ≥ 0,

0 if x < 0,

where β is an arbitrary positive real number, and used them to prove that
(1.6)

1

δ
(
eβ/δ − 1

) N∑
n=1

|zn|2 ≤
N∑

m=1

N∑
n=1

zmzn
β + 2πi (λm − λn)

≤ eβ/δ

δ
(
eβ/δ − 1

) N∑
n=1

|zn|2 .

The inequality (1.6) includes (1.2) as the limiting case β → 0+. In 1999, Mont-
gomery and Vaaler [7] established a generalization of (1.3):

(1.7)

∣∣∣∣∣∣∣
N∑

m=1

N∑
n=1
n�=m

zmzn
βm + βn + i (λm − λn)

∣∣∣∣∣∣∣ ≤ C2

N∑
n=1

|zn|2

δn
,

where β1, . . . , βN are nonnegative real numbers and C2 is the absolute constant
84, which is not optimal. Their proof involves the theory of H2 functions in a
half-plane and a maximal theorem of Hardy and Littlewood.

In 2005, Li [4] posed a question about the finite Hilbert transformation associated
with a polynomial and proved that if the question always has an affirmative answer,
then C1 = π.
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1.2. Main results. We study the following parametric family of inequalities. For
0 ≤ α ≤ 2, let C(α) be the minimum of all constants C(α) for which the inequality

(1.8)
N∑

m=1

N∑
n=1
n�=m

δ2−α
m δαntmtn

(λm − λn)
2 ≤ C(α)

N∑
n=1

t2n

holds for all choices of a positive integer N , a strictly increasing sequence (λk)
∞
k=−∞

of real numbers,

δk := min {λk − λk−1, λk+1 − λk} ,
and nonnegative real numbers t1, . . . , tN . Let C(α) = ∞ if there is no such real
number C(α).

The value C
(
1
2

)
is relevant to the generalized Hilbert inequality (1.3). In Sec-

tion 3, we shall prove the following inequality between C1 and C
(
1
2

)
.

Theorem 1.1. We have C1 ≤
√

π2

3 + 2C
(
1
2

)
.

The previous approaches to get an upper bound for C1 in [9], [11], and [14] rely
on an upper bound for C

(
1
2

)
and Theorem 1.1. Montgomery and Vaughan [9] first

showed that C
(
1
2

)
is finite. Specifically, they proved C

(
1
2

)
≤ 17

2 . The same bound

has been used in [7] to prove (1.7), but the best known upper bound for C
(
1
2

)
is

due to Preissmann [11].

Theorem 1.2 (Preissmann). We have C
(
1
2

)
≤ π2

3 + π2

3

√
6
5 .

By means of Theorem 1.1, Theorem 1.2 implies (1.5). Another immediate con-

sequence of Theorem 1.1 is that (1.4) implies C
(
1
2

)
≥ π2

3 . (This lower bound has

been pointed out in [7, p. 36].) Moreover, the conjecture that C1 = π would follow

if C
(
1
2

)
= π2

3 .

In Section 4, we shall prove the following properties of C(α).

Theorem 1.3.

(1) For real numbers 0 ≤ α ≤ 2, we have C(α) = C(2− α) > 0.
(2) For real numbers 0 ≤ α1 < α2 ≤ 2 and 0 < θ < 1, we have

C (θα1 + (1− θ)α2) ≤ C (α1)
θ
C (α2)

1−θ
.

(3) For real numbers 0 ≤ α1 < α2 ≤ 1, we have C (α1) ≥ C (α2). Therefore the
minimum of C(α) for 0 ≤ α ≤ 2 is attained at α = 1.

(4) For real numbers 0 ≤ α < 1
2 , we have C(α) = ∞.

Also in Section 4, we determine the minimum value.

Theorem 1.4. We have C(1) = π2

3 .

In Section 5, we shall prove a new lower bound for C
(
1
2

)
.

Theorem 1.5. We have C
(
1
2

)
≥ 0.35047π2.

From Theorem 1.5, we deduce that any upper bound for C1 obtainable by The-
orem 1.1 cannot be smaller than 3.19497. This method of using Theorem 1.1 is
incapable of proving C1 = π.
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2. Preliminaries

2.1. Eigenvalues of generalized weighted Hilbert matrices. Let us consider
N ×N matrices H = [hmn] with entries given by

(2.1) hmn :=

⎧⎨
⎩

cmcn
λm−λn

if m �= n,

0 if m = n,

where (λk)
∞
k=−∞ is a strictly increasing sequence of real numbers and c1, . . . , cN

are positive real numbers. Since H is skew-Hermitian (i.e., iH is Hermitian), all

its eigenvalues are purely imaginary. Let [u1, . . . , uN ]� be an eigenvector of H, and
let iμ be its associated eigenvalue. That is,

N∑
n=1
n�=m

cmcnun

λm − λn
= iμum

for all m = 1, . . . , N .
It is well known (see, e.g., [6, § 7.4]) that the numerical radius of a normal matrix

is the same as its spectral radius (and its operator norm). Thus, if iμ has the largest
modulus among all eigenvalues of H, then

(2.2)

∣∣∣∣∣∣∣
N∑

m=1

N∑
n=1
n�=m

cmcnzmzn
λm − λn

∣∣∣∣∣∣∣ ≤ |μ|
N∑

n=1

|zn|2

for all complex numbers z1, . . . , zN . On replacing zn by zn
cn
, we see that (2.2) is

equivalent to

(2.3)

∣∣∣∣∣∣∣
N∑

m=1

N∑
n=1
n�=m

zmzn
λm − λn

∣∣∣∣∣∣∣ ≤ |μ|
N∑

n=1

|zn|2

c2n
.

One may obtain the generalized Hilbert inequality (1.3) with some constant C1

from (2.3) by giving an upper bound for the sizes of eigenvalues of H in the case
that c2n = δn = min {λn − λn−1, λn+1 − λn}. A key result to that end is:

Lemma 2.1. Let [u1, . . . , uN ]
�
be an eigenvector of H, and let iμ be its associated

eigenvalue. Then the identity

(2.4) μ2 |um|2 =
N∑

n=1
n�=m

c2mc2n |un|2

(λm − λn)
2 + 2

N∑
n=1
n�=m

c3mcn� (umun)

(λm − λn)
2

holds for all m = 1, . . . , N .

Proof. See Preissmann and Lévêque [12, Lemma 5 (b)]. �

2.2. A weighted spacing lemma and Shan’s method. The goal of this sub-
section is to prove:

Lemma 2.2. Let (λk)
∞
k=−∞ be a strictly increasing sequence of real numbers. De-

note by δk the minimum between λk − λk−1 and λk+1 − λk. Then for real numbers
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σ > 1 and integers 	, we have

(2.5)

∞∑
k=−∞
k �=�

δk
|λk − λ�|σ

≤ 2ζ(σ)

δσ−1
�

.

One can show that equality holds in (2.5) if and only if the sequence

(λk+1 − λk)
∞
k=−∞

is constant, but we shall not treat it here.
Lemma 2.2 is a direct consequence of Preissmann [11, Lemme 1]. We present

a proof using a method of Shan [14], who independently derived Lemma 2.2. The
work of Shan, done at the same time as that of Preissmann, is obscure and hard
to obtain. Peng Gao (private communication) translated Shan’s argument, which
appears in [10, pp. 590–595]. Lemmas 2.3–2.5 are an exposition of Shan’s method.

Let f be a real-valued function, defined on the interval [1,∞). We will assume
that f satisfies some (or all) of the following four conditions:

(a) f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) for all 0 ≤ θ ≤ 1 and 1 ≤ x ≤ y.
(b) f(x) ≥ f(y) for all 1 ≤ x ≤ y.
(c) f(x) ≥ 0 for all x ≥ 1.
(d) The series

∑∞
j=1 f(j) converges.

We note that (c) follows from (b) and (d), since (b) implies f(x) ≥ limk→∞ f(k)
and (d) implies limk→∞ f(k) = 0.

Lemma 2.3. Assume that f : [1,∞) → R satisfies (a) and (b). Let (an)
∞
n=1 be a

sequence of real numbers such that an ≥ 1 for all n. Set λn :=
∑n

m=1 am. Then
for positive integers N , we have

N∑
n=1

anf (λn) ≤
�λN�∑
j=1

f(j) + {λN} f (�λN	+ 1) ,

where {x} = x− �x	 denotes the fractional part of x.

Proof. By the convexity of f , we have

(2.6) f (λn) ≤ (1− {λn}) f (�λn	) + {λn} f (�λn	+ 1) .

Moreover, since an ≥ 1 and f is weakly decreasing, it follows that

(2.7) (an − 1) f (λn) ≤ (an − 1) f (�λn	) .
On summing (2.6) and (2.7), we obtain

(2.8) anf (λn) ≤ (an − {λn}) f (�λn	) + {λn} f (�λn	+ 1) .

Now, we consider the first term on the right side of (2.8) and note that λn =
λn−1 + an ≥ λn−1 + 1:

(an − {λn}) f (�λn	) = (�λn	 − �λn−1	 − 1) f (�λn	) + (1− {λn−1}) f (�λn	)

≤
�λn�∑

j=�λn−1�+2

f(j) + (1− {λn−1}) f (�λn−1	+ 1)

=

�λn�∑
j=�λn−1�+1

f(j)− {λn−1} f (�λn−1	+ 1) .
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On inserting this in (2.8), we get

(2.9) anf (λn) ≤
�λn�∑

j=�λn−1�+1

f(j)− {λn−1} f (�λn−1	+ 1) + {λn} f (�λn	+ 1) .

The result follows by summing (2.9) over n = 1, . . . , N ; the resulting sum on the
right side is a telescoping sum. �

In what follows, we consider

(2.10) FN (x) :=
N∑

n=1

min {xn, xn+1} f
(

n∑
m=1

xm

)
,

where x = (xn)
∞
n=1 is a sequence of positive real numbers with x1 ≥ 1.

Lemma 2.4. Assume that f : [1,∞) → R satisfies (a)–(c). Let a = (an)
∞
n=1 be

a sequence of positive real numbers with a1 ≥ 1. Suppose that ν ≥ 2 is an integer
such that aν−1 > aν . Let 0 < ε ≤ aν−1 − aν . Define b = (bn)

∞
n=1 by

bn :=

{
an for n �= ν,

aν + ε for n = ν.

Then for positive integers N , we have

(2.11) FN (a) ≤ FN (b).

Proof. If N ≤ ν − 2, then (2.11) is an identity. So let us assume that N ≥ ν − 1.
Put λn :=

∑n
m=1 am. It follows from the definition of bn that

min {bn, bn+1} −min {an, an+1}

⎧⎪⎨
⎪⎩
= ε if n = ν − 1,

≥ 0 if n = ν,

= 0 otherwise,

n∑
m=1

bm =

{
λn for n ≤ ν − 1,

λn + ε for n ≥ ν.

By the nonnegativity of f , min {bν , bν+1} f (λν + ε) ≥ min {aν , aν+1} f (λν + ε).
So

(2.12) FN (b)− FN (a) ≥ εf (λν−1) +
N∑

n=ν

min {an, an+1} (f (λn + ε)− f (λn)) .

By the convexity of f , it follows that

f (λn + ε)− f (λn)

ε
≥ f (λn)− f (λn−1)

an

for all n ≥ 2. So (2.12) implies that

FN (b)− FN (a) ≥ εf (λν−1) + ε
N∑

n=ν

min {an, an+1}
an

(f (λn)− f (λn−1))

≥ εf (λν−1) + ε

N∑
n=ν

(f (λn)− f (λn−1))

= εf (λN ) ≥ 0.

Hence FN (a) ≤ FN (b). �
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We now prove an upper bound for FN (a) that depends only on f .

Lemma 2.5. Assume that f : [1,∞) → R satisfies (a)–(d). Let a = (an)
∞
n=1 be

a sequence of positive real numbers with a1 ≥ 1. Then for positive integers N , we
have

(2.13) FN (a) ≤
∞∑
j=1

f(j).

By taking an = 1 for all n and letting N → ∞, we see that (2.13) is sharp.

Proof. Define a sequence a = (an)
∞
n=1 by an := max {am : m = 1, . . . , n}. Then

an+1 ≥ an for all n and a1 = a1 ≥ 1. Let N be a positive integer. By applying
Lemma 2.4, with ε = aν−1 − aν , as many times as we need, we see that

(2.14) FN (a) ≤ FN (a) =
N∑

n=1

anf
(
λn

)
,

where λn :=
∑n

m=1 am.
By Lemma 2.3 and the nonnegativity of f , the right side of (2.14) is

(2.15)
N∑

n=1

anf
(
λn

)
≤

�λN	∑
j=1

f(j) +
{
λN

}
f
(⌊
λN

⌋
+ 1

)
≤

∞∑
j=1

f(j).

The result (2.13) follows by combining (2.14) and (2.15). �

We are now ready to prove Lemma 2.2.

Proof of Lemma 2.2. Let 	 be an integer. Define sequences a = (an)
∞
n=1 and b =

(bn)
∞
n=1 by

an :=
λ�+n − λ�+n−1

δ�
and bn :=

λ�−n+1 − λ�−n

δ�
,

for all n. Then a and b are sequences of positive real numbers with

a1 =
λ�+1 − λ�

δ�
≥ 1 and b1 =

λ� − λ�−1

δ�
≥ 1.

We have

min {an, an+1} =
δ�+n

δ�
and min {bn, bn+1} =

δ�−n

δ�
,

n∑
m=1

am =
λ�+n − λ�

δ�
and

n∑
m=1

bm =
λ� − λ�−n

δ�
.

Let σ > 1. Applying Lemma 2.5 with f(x) = 1
xσ , we obtain

δσ−1
�

�+N∑
k=�−N
k �=�

δk
|λk − λ�|σ

= δσ−1
�

N∑
n=1

(
δ�+n

(λ�+n − λ�)
σ +

δ�−n

(λ� − λ�−n)
σ

)

= FN (a) + FN (b)

≤ 2

∞∑
j=1

f(j) = 2ζ(σ).

The result (2.5) follows by letting N → ∞. �
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3. Proofs of Theorems 1.1 and 1.2

3.1. Proof of Theorem 1.1.

Proposition 3.1. Let N be a positive integer. Let (λk)
∞
k=−∞ be a strictly increasing

sequence of real numbers. Denote by δk the minimum between λk−λk−1 and λk+1−
λk. Assume that C3 is a positive constant such that the inequality

(3.1)
N∑

m=1

N∑
n=1
n�=m

δ
3
2
mδ

1
2
n tmtn

(λm − λn)
2 ≤ C3

N∑
n=1

t2n

holds for all nonnegative real numbers t1, . . . , tN . Then the inequality (1.3) holds

for all complex numbers z1, . . . , zN with the constant C1 =
√

π2

3 + 2C3.

Proof. Suppose that (3.1) holds. Let [u1, . . . , uN ]
�

be a unit eigenvector of H =
[hmn], where hmn are given by (2.1) with cn =

√
δn, and let iμ be the eigenvalue

associated with this eigenvector. On applying Lemma 2.1 and summing (2.4) over
m, we get

(3.2) μ2 =

N∑
m=1

N∑
n=1
n�=m

δmδn |un|2

(λm − λn)
2 + 2

N∑
m=1

N∑
n=1
n�=m

δ
3
2
mδ

1
2
n� (umun)

(λm − λn)
2 ≤ S + 2T,

where S and T are given by

S :=

N∑
m=1

N∑
n=1
n�=m

δmδn |un|2

(λm − λn)
2 and T :=

N∑
m=1

N∑
n=1
n�=m

δ
3
2
mδ

1
2
n |um| |un|

(λm − λn)
2 .

On one hand, by Lemma 2.2, we obtain

(3.3) S =
N∑

n=1

δn |un|2

⎛
⎜⎝ N∑

m=1
m �=n

δm

(λm − λn)
2

⎞
⎟⎠ ≤

N∑
n=1

δn |un|2
(

π2

3δn

)
=

π2

3
.

On the other hand, substituting tn = |un| in (3.1) gives

(3.4) T ≤ C3.

It follows from (3.2), (3.3), and (3.4) that

(3.5) |μ| ≤
√
S + 2T ≤

√
π2

3
+ 2C3.

By the argument preceding (2.3), we deduce from (2.3) and (3.5) that (1.3) holds

with C1 =
√

π2

3 + 2C3. �

One weak point in the proof of Proposition 3.1 is the bound in (3.2), where we
disregard cancellation between terms.

Proof of Theorem 1.1. Since (3.1) holds with C3 = C
(
1
2

)
, it follows by Proposi-

tion 3.1 that (1.3) holds with C1 =
√

π2

3 + 2C
(
1
2

)
. Hence the result follows. �



HILBERT’S INEQUALITY 447

3.2. Proof of Theorem 1.2.

Lemma 3.2. Let (λk)
∞
k=−∞ be a strictly increasing sequence of real numbers. De-

note by δk the minimum between λk−λk−1 and λk+1−λk. Then for distinct integers
	 and m, we have

(3.6)
∞∑

k=−∞
k �=�
k �=m

δk

(λk − λ�)
2
(λk − λm)

2 ≤ π2 (δ� + δm)

3δ�δm (λ� − λm)
2 − 3 (δ� + δm)

(λ� − λm)
4 .

Proof. See Preissmann [11, Lemme 6]. �

Proof of Theorem 1.2. Let

U :=
N∑

m=1

N∑
n=1
n�=m

δ
3
2
mδ

1
2
n tmtn

(λm − λn)
2 and V :=

N∑
n=1

t2n.

By Cauchy’s inequality,

U2 =

⎛
⎜⎝ N∑

n=1

tn

N∑
m=1
m �=n

δ
3
2
mδ

1
2
n tm

(λm − λn)
2

⎞
⎟⎠

2

≤
(

N∑
n=1

t2n

)⎛
⎜⎝ N∑

n=1

⎛
⎜⎝ N∑

m=1
m �=n

δ
3
2
mδ

1
2
n tm

(λm − λn)
2

⎞
⎟⎠

2⎞
⎟⎠ = V (S + T ),

where

S :=

N∑
n=1

N∑
m=1
m �=n

δ3mδnt
2
m

(λm − λn)
4 and T :=

N∑
n=1

N∑
�=1
� �=n

N∑
m=1
m �=n
m �=�

δ
3
2

� δ
3
2
mδnt�tm

(λ� − λn)
2
(λm − λn)

2 .

Applying Lemma 2.2 with σ = 4, we obtain

S =

N∑
m=1

δ3mt2m

⎛
⎜⎝ N∑

n=1
n�=m

δn

(λn − λm)
4

⎞
⎟⎠ ≤

N∑
m=1

δ3mt2m

(
π4

45δ3m

)
=

π4

45
V.

Applying Lemma 3.2, we obtain

T =

N∑
�=1

N∑
m=1
m �=�

δ
3
2

� δ
3
2
mt�tm

⎛
⎜⎜⎜⎜⎝

N∑
n=1
n�=�
n�=m

δn

(λn − λ�)
2 (λn − λm)2

⎞
⎟⎟⎟⎟⎠

≤
N∑
�=1

N∑
m=1
m �=�

δ
3
2

� δ
3
2
mt�tm

(
π2 (δ� + δm)

3δ�δm (λ� − λm)
2

)
=

2π2

3
U.

So U2 ≤ V
(

π4

45V + 2π2

3 U
)
. Solving this gives U ≤

(
π2

3 + π2

3

√
6
5

)
V . �
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4. Proofs of Theorems 1.3 and 1.4

4.1. Proof of Theorem 1.3. For real numbers 0 ≤ α ≤ 2 and positive integers
N , let C(α,N) be the minimum of all constants C(α,N) for which the inequality

(4.1)
N∑

m=1

N∑
n=1
n�=m

δ2−α
m δαn tmtn

(λm − λn)
2 ≤ C(α,N)

N∑
n=1

t2n

holds for all choices of a strictly increasing sequence (λk)
∞
k=−∞ of real numbers,

δk := min {λk − λk−1, λk+1 − λk} ,
and nonnegative real numbers t1, . . . , tN .

Proposition 4.1.

(1) For real numbers 0 ≤ α ≤ 2, we have C(α, 1) = 0 and C(α, 2) = 1.
(2) For real numbers 0 ≤ α ≤ 2 and positive integers N , we have C(α,N) ≤

C(α,N + 1).
(3) For real numbers 0 ≤ α ≤ 2 and positive integers N , we have 0 ≤ C(α,N) ≤

N − 1.
(4) For real numbers 0 ≤ α ≤ 2, we have C(α) = limN→∞ C(α,N).

Proof.

(1) If N = 1, the left side of (4.1) is 0. So C(α, 1) = 0. If N = 2, the left side
of (4.1) is 2t1t2. So C(α, 2) = 1.

(2) Let t1, . . . , tN be nonnegative real numbers, and let tN+1 = 0. Then

N∑
m=1

N∑
n=1
n�=m

δ2−α
m δαntmtn

(λm − λn)
2 =

N+1∑
m=1

N+1∑
n=1
n�=m

δ2−α
m δαntmtn

(λm − λn)
2

≤ C(α,N + 1)

N+1∑
n=1

t2n

= C(α,N + 1)
N∑

n=1

t2n.

So C(α,N) ≤ C(α,N + 1).
(3) We have

N∑
m=1

N∑
n=1
n�=m

δ2−α
m δαn tmtn

(λm − λn)
2 ≤

N∑
m=1

N∑
n=1
n�=m

tmtn ≤
N∑

m=1

N∑
n=1
n�=m

t2m + t2n
2

= (N − 1)

N∑
n=1

t2n.

So C(α,N) ≤ N − 1. On the other hand, from (2) and (1), we have C(α,N) ≥
C(α, 1) = 0.

(4) Since (4.1) holds with C(α,N) = C(α), it follows that C(α,N) ≤ C(α) for all
N . Hence limN→∞ C(α,N)≤C(α). On the other hand, by (2), limN→∞ C(α,N)=
supN C(α,N). So (1.8) holds with C(α) = limN→∞ C(α,N). Hence C(α) ≤
limN→∞ C(α,N). �

Proposition 4.2.
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(1) For real numbers 0 ≤ α ≤ 2 and integers N ≥ 2, we have C(α,N) =
C(2− α,N) ≥ 1.

(2) For real numbers 0 ≤ α1 < α2 ≤ 2 and 0 < θ < 1, and for positive integers
N , we have

C (θα1 + (1− θ)α2, N) ≤ C (α1, N)
θ
C (α2, N)

1−θ
.

(3) For real numbers 0 ≤ α1 < α2 ≤ 1 and positive integers N , we have
C (α1, N) ≥ C (α2, N).

(4) For real numbers 0 ≤ α < 1
2 and integers N ≥ 2, we have C(α,N) � N

1
2−α.

Proof.

(1) The left side of (4.1) is unchanged on replacing α by 2 − α. It follows that
C(α,N) = C(2 − α,N). In addition, by Proposition 4.1, we see that C(α,N) ≥
C(α, 2) = 1.

(2) Let α = θα1 + (1− θ)α2. Apply Hölder’s inequality:

N∑
m=1

N∑
n=1
n�=m

δ2−α
m δαn tmtn

(λm − λn)
2

≤

⎛
⎜⎝ N∑

m=1

N∑
n=1
n�=m

δ2−α1
m δα1

n tmtn

(λm − λn)
2

⎞
⎟⎠

θ ⎛
⎜⎝ N∑

m=1

N∑
n=1
n�=m

δ2−α2
m δα2

n tmtn

(λm − λn)
2

⎞
⎟⎠

1−θ

≤ C (α1, N)
θ
C (α2, N)

1−θ
N∑

n=1

t2n.

So C(α,N) ≤ C (α1, N)θ C (α2, N)1−θ.
(3) Let θ = 2−α1−α2

2(1−α1)
. Then 0 < θ < 1 and α2 = θα1 + (1− θ) (2− α1). By (2),

we have

C (α2, N) = C (θα1 + (1− θ) (2− α1) , N) ≤ C (α1, N)
θ
C (2− α1, N)

1−θ
.

The last quantity is equal to C (α1, N) by (1).
(4) We choose λk = k for k ≤ 1 and λ2+� = 2 + �

N for 	 ≥ 0. Then δk = 1 for

k ≤ 1 and δ2+� =
1
N for 	 ≥ 0. Choose t1 =

√
N+1
2N and tn = 1√

2N
for 2 ≤ n ≤ N .

So
∑N

n=1 t
2
n = 1, and (4.1) yields

C(α,N) ≥
N∑

m=1

N∑
n=1
n�=m

δ2−α
m δαn tmtn

(λm − λn)
2 ≥

N∑
n=2

δ2−α
1 δαn t1tn

(λ1 − λn)
2 =

N∑
n=2

√
N + 1

2Nα+1
(
1 + n−2

N

)2 .
The last quantity is � N

1
2−α for N ≥ 2. Hence C(α,N) � N

1
2−α for N ≥ 2. �

Proof of Theorem 1.3. The result follows as we let N → ∞ in Proposition 4.2. �

4.2. Proof of Theorem 1.4.

Proposition 4.3. Let (λk)
∞
k=−∞ be a strictly increasing sequence of real numbers.

Denote by δk the minimum between λk−λk−1 and λk+1−λk. Then for any sequence
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(t1, . . . , tN ) of nonnegative real numbers,

(4.2)

N∑
m=1

N∑
n=1
n�=m

δmδntmtn

(λm − λn)
2 ≤ π2

3

N∑
n=1

t2n.

Proof. By the inequality of arithmetic and geometric means,

N∑
m=1

N∑
n=1
n�=m

δmδntmtn

(λm − λn)
2 ≤

N∑
m=1

N∑
n=1
n�=m

δmδn
(
t2m + t2n

)
2 (λm − λn)

2 =
N∑

n=1

δnt
2
n

⎛
⎜⎝ N∑

m=1
m �=n

δm

(λm − λn)
2

⎞
⎟⎠ .

By Lemma 2.2, the right side above is ≤
∑N

n=1 δnt
2
n

(
π2

3δn

)
= π2

3

∑N
n=1 t

2
n. �

Proof of Theorem 1.4. Proposition 4.3 shows C(1) ≤ π2

3 . Now taking λn = n and

tn = 1√
N

in (4.1) yields

C(α,N) ≥ 2

N

N−1∑
n=1

N − n

n2
= 2

N−1∑
n=1

1

n2
− 2

N

N−1∑
n=1

1

n
.

Letting N → ∞ gives C(α) ≥ π2

3 for all 0 ≤ α ≤ 2. Hence C(1) = π2

3 . �

5. Proof of Theorem 1.5

LetM denote a positive integer, and let x1, . . . , xM denote real numbers, distinct
modulo 1. Put

dm := min
n�=m

‖xn − xm‖ ,

where ‖x‖ = mink∈Z|x − k| denotes the distance between x and a nearest integer.
In the case that M = 1, we let d1 := 1. Let τ1, . . . , τM denote nonnegative real
numbers.

Lemma 5.1. The inequality (3.1) holds (for all N , λn, δn, and tn) if and only if
the inequality

(5.1)
1

3

M∑
m=1

d2mτ2m +
M∑

m=1

M∑
n=1
n�=m

d
3
2
md

1
2
n τmτn

sin2 (π (xm − xn))
≤ C3

π2

M∑
m=1

τ2m

holds for all positive integer M , distinct real numbers x1, . . . , xM modulo 1,

(5.2) dm := min {|xn − xm − k| : k ∈ Z} \{0},
and nonnegative real numbers τ1, . . . , τM .

Proof. (⇒) Suppose that (3.1) holds. Let x1, . . . , xM be real numbers, distinct
modulo 1. By symmetry in x1, . . . , xM , we may assume without loss of generality
that x1 < · · · < xM < x1 + 1. Let dm be given by (5.2). Let τ1, . . . , τM be
nonnegative real numbers. Let K be a positive integer. We apply (3.1) with
N = KM . For integers k and m with 1 ≤ m ≤ M , put λkM+m = k + xm. Then
δkM+m = dm. If 0 ≤ k < K, put tkM+m = τm. On inserting into (3.1), we obtain
(5.3)

2
M∑

m=1

K−1∑
k=1

(K − k)d2mτ2m
k2

+
M∑

m=1

M∑
n=1
n�=m

∑
k∈Z

|k|<K

(K − |k|)d
3
2
md

1
2
n τmτn

(xm − xn − k)2
≤ C3K

M∑
m=1

τ2m.
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Now, since the series

∞∑
k=1

1

k2
=

π2

6
and

∑
k∈Z

1

(x− k)2
=

π2

sin2(πx)

converge, it follows that they are (C, 1) summable to the same values (see, e.g.,
[2, p. 10]), which is to say that

lim
K→∞

1

K

K−1∑
k=1

K − k

k2
=

π2

6
and lim

K→∞

1

K

∑
k∈Z

|k|<K

K − |k|
(x− k)2

=
π2

sin2(πx)
.

Hence, dividing (5.3) by π2K and letting K → ∞ gives (5.1).
(⇐) Suppose that (5.1) holds. Let (λk)

∞
k=−∞ be a strictly increasing sequence

of real numbers, and let δk := min {λk − λk−1, λk+1 − λk}. Let t1, . . . , tN be
nonnegative real numbers. Let 0 < ε < 1

2(λN−λ0)
. We apply (5.1) with M = N .

For positive integers n ≤ N , put xn = ελn and τn = tn. Then dn ≥ εδn, and (5.1)
implies

ε2

3

N∑
n=1

δ2nt
2
n +

N∑
m=1

N∑
n=1
n�=m

ε2δ
3
2
mδ

1
2
n tmtn

sin2 (πε (λm − λn))
≤ C3

π2

N∑
n=1

t2n.

On multiplying by π2 and letting ε → 0+, we obtain (3.1). �

Lemma 5.2. For positive real numbers B < 1 and positive integers L, we have

(5.4)
L∑

�=1

L+ 1− 	

sin2
(
π�B
L

) =
L3

6B2
− L2 logL

π2B2
+OB

(
L2

)
.

Proof. From the identity π2

sin2(πx)
=

∑
k∈Z

1
(x−k)2 , we see that if 0 < x ≤ B, then

π2

sin2(πx)
− 1

x2
=

∞∑
n=1

(
1

(n+ x)2
+

1

(n− x)2

)
<

∞∑
n=1

(
1

n2
+

1

(n−B)2

)
.

Hence, for 0 < x ≤ B, we have 1
sin2(πx)

= 1
π2x2 +OB(1). Applying this estimate to

each term on the left side of (5.4), we obtain

L∑
�=1

L+ 1− 	

sin2
(
π�B
L

) =

L∑
�=1

L2(L+ 1− 	)

π2	2B2
+OB

(
L∑

�=1

(L+ 1− 	)

)

=
L2(L+ 1)

π2B2

L∑
�=1

1

	2
− L2

π2B2

L∑
�=1

1

	
+OB

(
L2

)
.

Since
∑L

�=1
1
�2 = π2

6 +O
(
1
L

)
and

∑L
�=1

1
� = logL+O(1), the result (5.4) follows. �

Proof of Theorem 1.5. To prove a lower bound for C
(
1
2

)
, we apply (5.1) with par-

ticular sets of values. Let K be a positive integer. Let A and B be positive real
numbers such that (K + 1)A + B = 1. Let L ≥ B

A be an integer. We apply (5.1)

with M = K+L+1. Choose xk = kA for 1 ≤ k ≤ K and xK+�+1 = (K+1)A+ �B
L

for 0 ≤ 	 ≤ L. Then dk = A for 1 ≤ k ≤ K and dK+�+1 = B
L for 0 ≤ 	 ≤ L.
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Choose τk = 1√
K

for 1 ≤ k ≤ K and τK+�+1 = u√
L+1

for 0 ≤ 	 ≤ L where u is a

nonnegative real number to be chosen later. Then (5.1) implies

A2

3
+

u2B2

3L2
+

2A2

K

K−1∑
k=1

K − k

sin2(πkA)
+

2u2B2

L2(L+ 1)

L∑
�=1

L+ 1− 	

sin2
(
π�B
L

)(5.5)

+ u

√
AB

KL(L+ 1)

(
A+

B

L

) K∑
k=1

L∑
�=0

1

sin2
(
π
(
kA+ �B

L

)) ≤ C3

π2

(
1 + u2

)
.

We observe that

lim
L→∞

1

L

K∑
k=1

L∑
�=0

1

sin2
(
π
(
kA+ �B

L

)) =

K∑
k=1

∫ 1

0

dx

sin2(π(kA+Bx))

=
1

πB

K∑
k=1

(cot(π(K + 1− k)A) + cot(πkA))

=
2

πB

K∑
k=1

cot(πkA).

Now we let L → ∞ in (5.5) and use the above estimate and Lemma 5.2, obtaining

A2

3
+

2A2

K

K−1∑
k=1

K − k

sin2(πkA)
+

u2

3
+

2u

π

√
A3

BK

K∑
k=1

cot(πkA) ≤ C3

π2

(
1 + u2

)
.

That is,

(5.6) g(u) :=
κ0 + κ1u+ u2

3

1 + u2
≤ C3

π2
,

where κ0 and κ1 depend on A, B, and K and are given by

κ0 :=
A2

3
+

2A2

K

K−1∑
k=1

K − k

sin2(πkA)
and κ1 :=

2

π

√
A3

BK

K∑
k=1

cot(πkA).

We find that g(u) is maximized on u ≥ 0 at

u = u0 :=
1

κ1

⎛
⎝1

3
− κ0 +

√(
1

3
− κ0

)2

+ κ2
1

⎞
⎠ .

On inserting u = u0 in (5.6), we get

GK(A) :=
1

2

⎛
⎝1

3
+ κ0 +

√(
1

3
− κ0

)2

+ κ2
1

⎞
⎠ ≤ C3

π2
.

Figure 1 shows the plot of GK

(
x

K+1

)
for K = 1, . . . , 25 and 0 < x < 1. We

find

G5(0.14) > 0.35047.

By Lemma 5.1, this gives the lower bound C3

π2 ≥ 0.35047 for any absolute constant

C3 such that (3.1) holds. Since (3.1) holds with C3 = C
(
1
2

)
, the result follows. �
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Figure 1. The plot of GK

(
x

K+1

)
for K = 1, . . . , 25 and 0 < x < 1
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