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Abstract. We give a characterization of Whitney forms on an n-simplex σ
and prove that for every real valued simplicial k-cochain c on σ, the form Wc is
the unique differential k-form ϕ on σ with affine coefficients that pulls back to
a constant form of degree k on every k-face τ of σ, and satisfies

∫
τ ϕ =< c, τ >.

1. Introduction

Whitney forms have been extraordinarily useful in several areas of mathematics:
algebraic topology [8], [6]; global analysis and spectral geometry [4], [3]; numerical
electromagnetism[1], [2]; vibrations of thin plates [7]. Their definition in Whitney’s
book [9, p. 140] appears somewhat mysterious. Attempts to gain a better insight
into the definition have continued up to now. For example, the recent paper of
Lohi and Kettunen [5] contains three different equivalent definitions. In this note
we give a conceptual, easily stated characterization of Whitney forms.

We consider a triangulated differentiable manifold M of n dimensions with a
triangulation h : K −→ M , cf. [9, p. 124]. We use Whitney’s terminology exactly.
Thus h is a homeomorphism of a simplicial complexK onto the manifoldM with the
additional property that for every closed n-simplex σ of K there exists a coordinate
system χσ defined in an open neighborgood Uσ of the image h(σ) so that the
composition χσ ◦ (h |σ) is an affine map of σ into Rn. One often identifies K with
M via h which usually does not lead to any confusion. We will do so here as well
and regard a simplex σ as a subset of K, M or Rn without explicitly mentioning
identifications given by h or χσ.

Now the Whitney form Wc corresponding to the cochain c ∈ Ck(K) is an as-
signment of a smooth k-form ωσ s to each closed n-simplex σ that satisfies certain
compatibility conditions. Namely, if τ is a common face of two top dimensional faces
σ1 and σ2, then the pull-backs to τ of ωσ1

and ωσ2
coincide. Thus to describe the

Whitney form Wc it suffices to give a description of Wc |σ = ωσ for every simplex
σ of top dimension. Note that the homeomorphism h defines an affine structure
on σ and the induced affine structures on common faces of two n-simplexes agree.
Thus the concept of an affine function on a simplex is well-defined and so is a notion
of a “constant” form of degree k on a k-simplex.

From now on we work on a fixed n-simplex σ. Our characterization of Wc is
stated precisely in the Theorem below. It asserts that Wc restricted to σ is the
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unique k-form on σ with affine coefficients and constant pull-backs to k-faces whose
integrals over k-faces τ are prescribed by the values 〈c, τ 〉 of c on τ .

2. Proof of the Theorem

A simplex τ = [p0, p1, . . . , pk] of k dimensions is a convex hull of k + 1 points
in general position in Rn. In particular, every simplex is closed. We will consider
a fixed n-simplex σ together with all its k-faces τ with 0 ≤ k ≤ n. Thus a point
q ∈ σ is a convex linear combination

q = m0p0 +m1p1 + . . .+mnpn

mi ≥ 0 for i = 0, 1 . . . , n

m0 +m1 . . .+mn = 1

and the barycentric coordinate functions νi(q) are defined by

νi(q) = mi.

We observe that, if q = (x1, x2, . . . , xn) the barycentric coordinates are affine func-
tions of x1, x2, . . . , xn i.e. are of the form a1x

1+a2x
2+ . . .+anx

n+b. We regard all
simplices as oriented with the orientation determined by the order of vertices with
the usual convention that −τ is τ with the opposite orientation and that under
a permutation of vertices the orientation changes by the sign of the permutation.
A cochain c of degree k is then defined as a formal linear combination with real
coefficients of duals τ∗ of the k-faces τ of σ and we denote by Ck(σ) = Ck the
space of all such cochains. If c =

∑
τ aτ τ

∗ we will write aτ = 〈c, τ 〉. Finally, we will
denote by Λk(σ) = Λk the space of all smooth exterior differential forms of degree
k on the simplex σ. With this notation, one defines the Whitney mapping

W : Ck −→ Λk

for all k = 0, 1, . . . n, cf. [9] or [3] for a detailed discussion. We will call forms in
the image of W the Whitney forms. It follows immediately from the definition that
the Whitney forms when expressed in terms of the coordinates of Rn have affine
coefficients. We abuse the language and say that a form η ∈ Λk(τ ) is constant if it is
a constant multiple of the Euclidean volume element on τ . For clarity, we emphsize
that by the integral of a k-form over a submanifold of k dimensions we always mean
the integral of the pull-back of the form to the submanifold via the inclusion map.
Thus, for example, in (3) below

∫
τ
ω =

∫
τ
ι∗τω. After these preliminaries we state

our theorem.

Theorem. Let σ be a simplex of n dimensions and c a cochain of degree k on σ.
Wc is the unique k-form ω on σ satisfying the following conditions.

(1) ω has affine coefficients.
(2) The pull-back ι∗τω is constant for every k-dimensional face τ of σ, where

ιτ : τ ↪→ σ denotes the inclusion map.
(3)

∫
τ
ω = 〈c, τ 〉 for every k-face τ of σ.

Proof. We first observe that without any loss of generality we can assume that σ is
the standard simplex in Rn i.e. is given by

σ =

{
(x1, x2, . . . , xn) ∈ Rn | xi ≥ 0 for i = 1, 2, . . . n ;

n∑
i=0

xi ≤ 1

}
.
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Thus σ = [0, e1, e2 . . . , en] where ei is the point on the i-th coordinate axis with
xi = 1. The barycentric coordinate functions restricted to σ are then given by

(1) ν0 = 1− (x1 + x2 + . . .+ xn) and νi = xi for i = 1, 2, . . . n.

We first do a quick dimension count that makes the theorem plausible. The
dimension of the space of k-forms with affine coefficients on σ is

(
n
k

)
(n + 1). Re-

quiring that ι∗τω is constant on a k-simplex τ imposes k conditions and the number
of k-faces of an n-simplex is

(
n+1
k+1

)
. Thus, the dimension of the space of k-forms

satisfying (1) and (2) above ought to be(
n

k

)
(n+ 1)−

(
n+ 1

k + 1

)
k =

(
n+ 1

k + 1

)
.

This last integer is the number of k-faces of σ, i.e. the dimension of the space Ck(σ)
of k-cochains.

It is instructive to consider the simplest cases k = 0 and k = n of the theorem.
A 0-cochain is a sum c =

∑
aip

∗
i and

Wc = a0ν0 + a1ν1 + . . . anνn

= a0

(
1−

n∑
i=1

xi

)
+

n∑
i=1

aix
i

= a0 +
n∑

i=1

(ai − a0)x
i

is the unique affine function f taking prescribed values f(pi) =
∫
pi
f = 〈c, pi〉,

where the integration of a form of degree 0 over a vertex is just the evaluation.
If k = n, σ is the only face of dimension n so every cochain is a multiple of σ∗.

For c = σ∗, we have

Wc = Wσ∗

=

⎛⎝n!
n∑

j=0

(−1)jνjdν0 ∧ . . . ∧ d̂νj ∧ . . . ∧ dνn

⎞⎠
= n!dx1 ∧ . . . ∧ dxn

where we used the explicit expressions of the barycentric coordinates (1) in terms of
the coordinates x1, . . . , xn and the hat over a factor means that the factor is omitted.
Since the volume of the standard n-simplex in Rn is equal to 1/n!,

∫
σ
W (σ∗) =

〈σ∗, σ〉 = 1, Wσ∗ is the unique constant form with prescribed integral equal to one.
We now consider the case when 1 ≤ k ≤ n− 1. We will write Λk

e for the space of
k-forms on σ with affine coefficients and with constant pull-backs to k-faces of σ.
It is obvious from the definition of Wc and from (1) that Wc has affine coefficients
on σ for every c ∈ Ck(σ). Similarly, since ι∗τW (c) is a form of maximal degree on
τ , the calculation above, with k replacing n, shows that ι∗τW (c) is constant on τ
for every k-face τ of σ. It follows that WCk ⊂ Λk

e . Now let ϕ ∈ Λk
e . We use the

restriction of the de Rham map R : Λk(σ) −→ Ck(σ),

〈Rω, τ 〉 =
∫
τ

ω,
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to Λk
e and consider the difference η = ϕ−WRϕ. Clearly, η ∈ Λk

e . Moreover basic
properties of the Whitney mapping (cf. [3, 9]) imply that Rη = Rϕ − RWRϕ =
Rϕ−Rϕ = 0, i.e. η integrates to zero on every k-face of σ. Since the pull-back ι∗η
is constant on every such face τ , ι∗τη vanishes identically on every k-face τ . Thus
to show that ϕ = WRϕ (which would prove our theorem) it suffices to show that
every form η ∈ Λk

e , whose pull-backs to all k-faces vanish, is itself identically zero
on σ. Let η be such a form. We express it in the standard coordinates of Rn as
follows.

(2) η =
∑
I

(bI + aI,1x
1 + . . .+ aI,nx

n)dxI .

Here I is a multi-index I = (i1 < i2 < . . . < ik), 1 ≤ ij ≤ n for every j and
dxI = dxi1 ∧ dxi2 ∧ . . . ∧ dxik . We will abuse the notation at times and think of
I as a set. Fix a multi-index J and consider the coordinate plane of the variables
xj1 , xj2 , . . . , xjk .

Let τJ denote the k-face of σ contained in that plane. By assumption ι∗τJ η is
identically zero. The variables xt for t �∈ J vanish in this plane so that

(3) ι∗τJ η =
∑
t∈J

(aJ,tx
t + bJ )dx

J ≡ 0.

Since J was arbitrary, bJ = 0 and aJ,t = 0 for all J and all t ∈ J . It follows that
we can rewrite (2) on σ as follows.

(4) η =
∑
I

∑
j �∈I

aI,jx
jdxI .

Again, fix the multi-index L, an integer m �∈ L, 1 ≤ m ≤ n − 1, and the simplex
τ = [em, el1 , . . . , elk ]. τ is a k-simplex in the (k + 1)-plane P with coordinates
xm, xl1 , . . . , xlk as in the figure below. Recall that on τ , xl1 , . . . , xlk can be taken
as local coordinates since

(5) xm = 1− (xl1 + . . .+ xlk).

Moreover,

(6) dxm = −(dxl1 + . . .+ dxlk).

xm

τ

xl1 , xl2 , . . . , xlk

xj , j �∈ L ∪ {m}

P

We express the pull-back ι∗τη in terms these coordinates using (5) and (6). Ob-
serve that if I ∪ {j} �= L ∪ {m} one of the indices in I ∪ {j} is not in L ∪ {m}.
The corresponding variable is identically zero on the plane P so that the summand
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aI,jx
jdxI vanishes on P and is therefore equal to zero when pulled back to τ .

Therefore

(7) ι∗τη =
∑

I∪{j}=L∪{m}
aI,jx

jdxI .

Now consider the summand with I = L and j = m. The coefficient of dxL in this
term is

aL,mxm + aL,l1x
l1 + . . .+ aL,lkx

lk

and we use (5) to eliminate xm.
Thus, on τ , the coefficient in question can be written as

aL,m − aL,m

k∑
s=1

xls + aL,l1x
l1 + . . .+ aL,lkx

lk .

Remaining terms in the sum (7) have j �= m. It follows that, for those terms, xj

is one of xl1 , . . . , xlk and xm enters only into the differential monomial dxI from
which it can be eliminated using (6). It follows that

ι∗τη = ( aL,m + linear terms ) dxL.

Since ι∗τη is assumed to be identically zero, aL,m = 0. L and m were fixed but
arbitrary so that η ≡ 0. �
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