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Abstract. We consider linear cocycles taking values in SLd(R) driven by
homeomorphic transformations of a smooth manifold, in discrete and contin-
uous time. We show that any discrete-time cocycle can be extended to a
continuous-time cocycle, while preserving its characteristic properties. We
provide a necessary and sufficient condition under which this extension is
canonical in the sense that the base is extended to an associated suspension
flow and that the discrete-time cocycle is recovered as the time-1 map of the
continuous-time cocycle. Further, we refine our general result for the case of
(quasi-)periodic driving. We use our findings to construct a non-uniformly
hyperbolic continuous-time cocycle in SL2(R) over a uniquely ergodic driving.

1. Introduction

Some of the most commonly studied types of linear cocycles are those taking
values in the special linear group SLd(R). Motivated by questions from random
matrix, spectral and non-uniformly hyperbolic theory, there has been considerable
effort to understand and categorise their Lyapunov exponents and Oseledets split-
tings [1,2,9,12,14,15,18]. Classically, these cocycles are studied over a discrete-time
driving while continuous-time cocycles in SLd(R) have received much less attention
in the past, even though they are of high interest for the study of nonautonomous
ODEs. In particular, continuous-time cocycles are often studied in terms of their
time-1 maps. We address the question which discrete-time cocycles can occur as
the time-1 map of a continuous-time cocycle.

In our setting the discrete-time driving is given by a homeomorphism on a com-
pact, smooth manifold. Such a map can be extended to continuous time via the
classical suspension flow construction [10, §1.3]. Although one could extend the
whole skew-product associated with a discrete-time cocycle by creating an associ-
ated suspension flow, the cocycle property would be lost in this process. Given
a discrete-time cocycle we study the question whether there is a continuous-time
cocycle over a suspension flow whose time-1 map coincides with the discrete-time
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cocycle. We call such a continuous-time cocycle a canonical extension, cf. Def-
inition 3.1. The “autonomous” but infinite-dimensional version of our question,
namely where bounded linear operators are extended to C0-semigroups, was con-
sidered in [4]. A special case that yields particularly interesting results is that of an
(irrational) circle rotation as the driving system. For these systems, we study not
only whether a given discrete-time cocycle has a canonical extension but also how
cocycles without canonical extensions need to be modified such that a canonical
extension is possible. Our main results are as follows:

(1) Theorem 3.3 provides an equivalent, homotopy-based characterisation of
the canonical extendability of discrete-time cocycles in SLd(R) over arbi-
trary driving.

(2) Corollary 3.5 shows that for (quasi-)periodic driving and fibre-dimension
d ≥ 3, a canonical extension is always possible, after possibly modifying
the base space.

(3) Corollary 3.6 paves the way to extend any discrete-time cocycle over (quasi-
)periodic driving in SL2(R) to continuous time upon adding an auxiliary
dimension.

The statement of Theorem 3.3 is of interest in both directions. Not only does the
theorem show which discrete-time cocycles can be extended to continuous time,
but also provides a characterisation of which discrete-time cocycles can occur as
time-1 maps of continuous-time cocycles. We would like to emphasise that while in
autonomous dynamical system theory an extension from discrete time to continuous
time requires in general an added auxiliary dimension, our results show that for a
(quasi-)periodically driven system an additional dimension is only needed in the
case of fibre-dimension d = 2. For d ≥ 3, any discrete-time cocycle can be extended
to a continuous-time cocycle of the same dimensionality, after possibly modifying
the base space. We note that this modification leaves the dynamical characteristics
of the cocycle, like its Lyapunov exponents, Oseledets spaces and (non-)uniform
hyperbolicity unchanged, cf. Remark 3.7.

In addition to the general theory, we will construct a discrete-time cocycle in
SL2(R) over an irrational circle rotation that is non-uniformly hyperbolic and has
a canonical extension to continuous time. This shows that there is a continuous-
time cocycle in SL2(R) over a uniquely ergodic driving (i.e. with unique invariant
probability measure) which is non-uniformly hyperbolic. Prior to the present work,
the authors were not aware of any continuous-time cocycle with these properties.
The existence of such a cocycle stands in contrast to the uniform ergodic theorem
of Oxtoby [13], which states that the Birkhoff ergodic theorem for continuous func-
tions and a uniquely ergodic system holds uniformly. Hence, there is no analogous
uniform multiplicative ergodic theorem for cocycles with uniquely ergodic driving,
neither in discrete nor in continuous time.

The remainder of the paper is structured as follows. Section 2 introduces con-
tinuous cocycles in discrete and continuous time, the MET and homotopies. In
Section 3, we study continuous-time extensions of discrete-time cocycles and char-
acterise under which assumptions they exist. In Section 4, these results are applied
to construct a continuous-time cocycle on SL2(R) over a uniquely ergodic driving
that is non-uniformly hyperbolic.
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2. Preliminaries

2.1. Cocycles in SLd(R). We briefly introduce continuous cocycles in SLd(R)
in discrete time for which we aim to find continuous-time extensions. Let Θ ⊂
Rn be a compact, smooth manifold with or without boundary [11]. Consider a
homeomorphism φ : Θ → Θ. Let μ be a φ-ergodic probability measure on Θ. By
the theorem of Krylov–Bogolyubov, such a measure μ exists but is in general not
unique.

A continuous (not to be confused with continuous-time) cocycle in SLd(R) over
φ is generated by a continuous map

(2.1) A : Θ → SLd(R),

where SLd(R) denotes the special linear group of degree d, i.e. the group of d × d
matrices with determinant 1. We also use the notation A ∈ C(Θ, SLd(R)). The
values of A are denoted by Aθ. For simplicity, we restrict ourselves to cocycles
in SLd(R), since any cocycle in GLd(R) with positive determinant can be reduced
to one in SLd(R) via rescaling. Since the driving φ is invertible, we can define the
n-step map of A in two-sided time, i.e. for n ∈ Z

(2.2) An
θ :=

⎧⎪⎨
⎪⎩
Aφn−1θ · . . . ·Aφθ ·Aθ, n > 0,

Id, n = 0,

A−1
φnθ · . . . ·A

−1
φ−2θ ·A

−1
φ−1θ, n < 0.

With this definition, A satisfies the cocycle property

(2.3) Am+n
θ = An

φmθ ·Am
θ , ∀n,m ∈ Z,

for all θ ∈ Θ. In particular, we have the identity

(2.4) A−n
θ = (An

φ−nθ)
−1, ∀n ∈ N.

Since a discrete-time cocycle is uniquely represented by its generator, we use the
same symbol A for both. Note that An

θ never refers to the matrix power.
The canonical way of extending a discrete-time map φ : Θ → Θ to continuous

time is via a suspension flow construction [3]. Consider the so-called mapping torus

(2.5) Θ1 = (Θ× [0, 1])/∼,

over the equivalence relation (θ, 1) ∼ (φ(θ), 0). On this space, we define the
continuous-time flow

φt : Θ1 → Θ1

(θ, r) �→ (φ�r+t�θ, r + t mod 1),
(2.6)

where φ�r+t� : Θ → Θ is the discrete time map φ applied 	r + t
 times. The
flow φt moves points in Θ1 up in the second coordinate until they hit the ceiling
Θ × {1}. Since the ceiling of Θ1 is associated to the bottom Θ1 × {0} via the
equivalence relation, this defines the flow φt for all times t ≥ 0. The flow (2.6)
is well-defined for all t ∈ R such that φt is an invertible flow. Note that the
time-1 map of φt coincides with the discrete-time map φ : Θ → Θ in the sense
that φ1(θ, r) = (φ(θ), r). Naturally, φt is ergodic with respect to the measure μ⊗λ,
where λ denotes the Lebesgue measure on [0, 1].
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We define a continuous-time cocycle via a generator represented by a continuous
map

(2.7) G : Θ1 → sld(R),

where sld(R) is the special linear Lie algebra of real d × d matrices with trace 0.
For each (θ, r) ∈ Θ1 this generator defines a nonautonomous ordinary differential
equation (ODE) in Rd

(2.8) ∂tx(t) = G(φt(θ, r))x(t).

We denote the fundamental solution to this ODE by Φt
(θ,r), i.e.

(2.9) Φt
(θ,r)x(0) = x(t), ∀t ≥ 0.

Equivalently, Φ is described as the unique solution to the nonautonomous ODE in
SLd(R)

(2.10) Φ0
(θ,r) = Id, ∂tΦ

t
(θ,r) = G(φt(θ, r)) · Φt

(θ,r).

Since φt is invertible, we can solve the ODE for both positive and negative time.
This defines a continuous map

Φ : Θ1 ×R → SLd(R),

((θ, r), t) �→ Φt
(θ,r).

(2.11)

Liouville’s formula guarantees that Φt
(θ,r) ∈ SLd(R) since G(θ, r) ∈ sld(R) for all

(θ, r) ∈ Θ1. We call Φ the cocycle generated by G. Indeed, one can check that Φ
satisfies the cocycle property

(2.12) Φs+t
(θ,r) = Φt

φs(θ,r) · Φs
(θ,r), ∀s, t ∈ R,

for all (θ, r) ∈ Θ1.

2.2. The multiplicative ergodic theorem. The central tool in the study of
linear cocycles is the multiplicative ergodic theorem (MET) which characterises
Lyapunov exponents and Oseledets spaces. All notions and theorems introduced in
this section hold for discrete and continuous time alike. Hence, let T be either Z or
R, and Ω be Θ or Θ1 respectively. The driving φt : Ω → Ω for t ∈ T is well-defined
for both the discrete and continuous-time case.

Consider a continuous cocycle

Φ : Ω× T → SLd(R),

(ω, t) �→ Φt
ω.

(2.13)

A classical result is the existence of the so-called Furstenberg–Kesten limit [5],

(2.14) Λ(ω) = lim
t→∞

1

t
log

∥∥Φt
ω

∥∥ .
There is a φ-invariant set Ω′ of full μ-measure on which this limit exists and takes
a constant value Λ∗.

For ω ∈ Ω and x ∈ Rd, we define the upper Lyapunov exponent of x in ω

(2.15) λ(ω, x) = lim sup
t→∞

1

t
log

∥∥Φt
ωx

∥∥ .
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In the case that the limit is exact we write λ(ω, x) and call it an exact Lyapunov
exponent or simply Lyapunov exponent. We also define the lower backwards Lya-
punov exponent of x in ω

(2.16) λ−(ω, x) = lim inf
t→−∞

1

t
log

∥∥Φt
ωx

∥∥ .
We note that the fraction 1

t is negative. In the case that the limit is exact we
write λ−(ω, x). We formulate a version of the multiplicative ergodic theorem for
continuous cocycles over an ergodic base (cf. e.g. [16]).

Theorem 2.1. There are a φ-invariant set Ω′ ⊂ Ω of full μ-measure and numbers
λ1 > . . . > λk, where λ1 = Λ∗, such that for every ω ∈ Ω′ there is a measurable
decomposition

(2.17) Rd = E1(ω)⊕ · · · ⊕ Ek(ω),

called Oseledets splitting, with the following properties

(i) Φt
ωEi(ω) = Ei(φ

tω), t ∈ T;
(ii) λ(ω, x) = λ−(ω, x) = λi, x ∈ Ei(ω).

The MET is usually stated for measurable cocycles without the assumption of
continuity. In that case, one needs the additional assumption

(2.18) log
∥∥Φ±1

∥∥ ∈ L1(Ω).

Since continuous functions on a compact space, like Ω, are bounded, this condition
is fulfilled for continuous cocycles.

Lastly, we define the concept of (non-)uniform hyperbolicity. A cocycle in SLd(R)
is called hyperbolic, if λ1 = Λ∗ > 0. In Definition 2.2, continuity of subspaces is
meant with respect to the Grassmanian topology (cf. e.g. [11, Example 1.15]).

Definition 2.2. A cocycle is called uniformly hyperbolic if there are constants
C > 0, λ > 0 and for each ω ∈ Ω there is a continuous splitting

(2.19) Rd = U(ω)⊕ S(ω),

with the following properties

(i) Φt
ωU(ω) = U(φtω) and Φt

ωS(ω) = S(φtω), t ∈ T;
(ii) ‖Φt

ωu‖ ≥ Ceλt, u ∈ U(ω), t ∈ T≥0;
(iii) ‖Φt

ωs‖ ≤ C−1e−λt, s ∈ S(ω), t ∈ T≥0.

A cocycle that is hyperbolic but not uniformly hyperbolic is called non-uniformly
hyperbolic.

For d = 2, the (non-)uniform hyperbolicity of a cocycle in SL2(R) is directly
linked to its Oseledets splitting. If λ1 > 0 (and thereby λ2 = −λ1 < 0), Theorem
2.1 provides a splitting R2 = E1(ω) ⊕ E2(ω) for μ-a.e. ω ∈ Ω. If the cocycle is
uniformly hyperbolic, the stable and unstable bundles U(ω) and S(ω) are given by
E1(ω) and E2(ω). Hence, a hyperbolic cocycle in SL2(R) is uniformly hyperbolic
if and only if the Oseledets splitting is defined everywhere, it is continuous and
satisfy the uniform growth/decay condition of Definition 2.2. In the case of uniquely
ergodic driving, the last condition is redundant.
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2.3. Homotopies. In Section 3, we need some tools from topology which we briefly
recap. For a formal introduction to homotopies and the fundamental group we refer
to [7].

Given two topological spaces Θ and M , we study continuous maps ψ ∈ C(Θ,M).
Given two maps ψ0, ψ1 ∈ C(Θ,M), a homotopy h from ψ0 to ψ1 is a continuous
map h : Θ× [0, 1] → M with

h(θ, 0) = ψ0(θ),

h(θ, 1) = ψ1(θ).
(2.20)

If such a map exists, we say that ψ0 and ψ1 are homotopic, written ψ0 � ψ1. When
M is a smooth manifold and h is smooth, we call h a smooth homotopy. If h is only
smooth in the second variable, i.e. t �→ h(θ, t) is smooth for every θ ∈ Θ, we say that
h is smooth in t. A homotopy can be expressed as a map h : [0, 1] → C(Θ,M) with
h(0) = ψ0 and h(1) = ψ1. When Θ is a compact metric space and M is a metric
space, this map is continuous with respect to the supremum norm on C(Θ,M).
The homotopy relation � defines an equivalence relation. For ψ ∈ C(Θ,M) we
denote its equivalence class by [ψ].

Let us assume that M is connected. Let x0 ∈ M be any point and consider the
constant map ψ0 ∈ C(Θ,M) defined by ψ0(θ) = x0. We call the equivalence class
[ψ0] the null-class. Note that any constant map lies in this equivalence class. We
call maps ψ ∈ [ψ0] that are elements of the null-class nullhomotopic. Hence, a map
ψ ∈ C(Θ,M) is nullhomotopic if and only if it is homotopic to a constant map.

A special case, which is the most well-known application of homotopy, is Θ = S1.
In that case, one can equip the set of equivalence classes with a group structure
forming the so-called fundamental group of M . For Θ = Sn, for any n ∈ N,
the equivalence classes can be equipped with a group structure as well, yielding
the higher order homotopy groups of M (cf. e.g. [7]). We call continuous maps
ψ ∈ C(S1,M) loops. Assume that M is connected and fix a basepoint x0 ∈ M . For
each equivalence class [ψ], we can choose a representative ψ∗ ∈ [ψ] which satisfies
ψ∗(0) = x0. This allows us to define a group operation on the space of equivalence
classes via concatenation. For two equivalence classes [ψ1], [ψ2], define the group
operation by

(2.21) [ψ1] ◦ [ψ2] = [ψ], ψ(θ) =

{
ψ1(2θ), θ ∈ [0, 1

2 ),

ψ2(2θ − 1), θ ∈ [ 12 , 1].

This operation is indeed a group operation of the space of equivalence classes with
the null-class as the neutral element. The resulting group is called the fundamental
group of M and is denoted by π1(M).

3. Continuous-time extensions

3.1. General driving. Given a continuous-time cocycle Φ over the driving φt :
Θ1 → Θ1, the time-1 map defines a discrete-time cocycle A over the driving φ :
Θ → Θ via

(3.1) Aθ = Φ1
(θ,0).
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Due to the identity φn(θ, 0) = (φnθ, 0), the n-step map of A for n ∈ N is given by

An
θ = Aφn−1θ · . . . ·Aφθ ·Aθ

= Φ1
φn−1(θ,0) · . . . · Φ1

φ1(θ,0) · Φ1
(θ,0)

= Φn
(θ,0).

(3.2)

For negative time, we can use the cocycle property of Φ and A, in particular identity
(2.4), to compute

(3.3) A−n
θ = (An

φ−nθ)
−1 = (Φn

φ−n(θ,0))
−1 = Φ−n

(θ,0).

Hence, every continuous-time cocycle defines a discrete-time cocycle. The question
arises which discrete-time cocycles can occur as the time-1 maps of a continuous-
time cocycle. Equivalently, for which discrete-time cocycles A over Θ can we find
a continuous-time cocycle Φ over Θ1 that has A as its time-1 map?

Definition 3.1. Given a discrete-time cocycle A over the driving φ : Θ → Θ, we
say that Φ, a continuous-time cocycle over the suspension flow φt : Θ1 → Θ1, is a
canonical extension of A if

(3.4) Φn
(θ,0) = An

θ , ∀n ∈ Z,

for all θ ∈ Θ.

Remark 3.2. The two computations (3.2) and (3.3) show that, in order to find a
canonical extension Φ of A, it suffices to find a continuous-time cocycle Φ that
satisfies Φ1

(θ,0) = Aθ for all θ ∈ Θ. Since the flows Φt
(θ,0), for t ∈ (0, 1), can be

rescaled in time arbitrarily, canonical extensions are, given they exist, not unique.

Theorem 3.3 characterises precisely under which condition a canonical extension
of a discrete-time cocycle exists.

Theorem 3.3. A discrete-time cocycle A has a canonical extension if and only if
the map

(3.5) A : Θ → SLd(R)

is nullhomotopic.

Proof. “⇒” Assume that A has a canonical extension Φ. Define a map by

h : Θ× [0, 1] → SLd(R),

(θ, t) �→ Φt
(θ,0).

(3.6)

Since Φ is continuous in both variables, so is h. Hence, h is a homotopy with

(3.7) h(θ, 0) = Φ0
(θ,0) = Id, h(θ, 1) = Φ1

(θ,0) = Aθ.

This shows that A is nullhomotopic.
“⇐” Assume that A is nullhomotopic. We show that there is a homotopy h from

Id to A, with the following properties:

(1) h is smooth in t;
(2) ∂th(θ, t) is continuous in both variables;
(3) ∂th(θ, t)

∣∣
t=0,1

= 0.
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To show the existence of such a homotopy, we use Whitney’s Approximation The-
orem [11, Theorem 6.26]. The theorem implies that any continuous map A : Θ →
SLd(R) is homotopic to a smooth map B ∈ C∞(Θ, SLd(R)) via a homotopy H2. To
have an explicit construction of H2, we briefly sketch Lee’s proof in [11]: SLd(R) is a
smooth submanifold of Rd×d without boundary. Let U be a tubular neighbourhood
of SLd(R) in Rd×d and let r : U → SLd(R) be a smooth retraction. By Whitney’s
Approximation Theorem for Functions [11, Theorem 6.21] there is a smooth map
A∗ ∈ C∞(Θ, U) that is sufficiently close to A such that (1 − t)A(θ) + tA∗(θ) ∈ U
for all θ and t ∈ [0, 1]. Define B = r ◦ A∗ ∈ C∞(Θ, SLd(R)). The homotopy H2

from B to A is given by

(3.8) H2(θ, t) = r ((1− t)A∗(θ) + tA(θ)) .

As a combination of continuous maps, H2 is continuous. Since r is smooth, H2 is
smooth in t. The t-derivative of H2 is given by

(3.9) ∂tH2(θ, t) = r′((1− t)A∗(θ) + tA(θ)) · (A(θ)−A∗(θ)).

This shows that the t-derivative of H2 is continuous in both variables.
Naturally, B is still nullhomotopic. Since both B and Id are smooth maps from

Θ to SLd(R), [11, Theorem 6.29] states that there is a smooth homotopy H1 from
Id to B. Concatenating H1 and H2 yields a homotopy H from Id to A that is
smooth in t. Since the t-derivatives of H1 and H2 are continuous in both variables,
so is the t-derivative of H.

Let σ : [0, 1] → [0, 1] be a smooth function with σ(0) = 0, σ(1) = 1 and
σ′(0) = σ′(1) = 0. We define a homotopy h by

(3.10) h(θ, t) = H(θ, σ(t)).

By construction, h is a homotopy from Id to A. Since σ is smooth and H is smooth
in t, the homotopy h is smooth in t. We compute the t-derivative of h as

(3.11) ∂th(θ, t) = σ′(t)∂tH(θ, σ(t)).

This shows that the t-derivative of h is continuous in both variables and is equal to
zero for t = 0, 1. Hence, h is a homotopy from Id to A with the desired properties.

Based on the homotopy h, we define a generator G : Θ1 → sld(R). Define

(3.12) G(θ, r) := ∂rh(θ, r) · h(θ, r)−1,

where h(θ, r)−1 is the inverse to h(θ, r) ∈ SLd(R). To see that G(θ, r) ∈ sld(R) we
rewrite (3.12) as

(3.13) ∂rh(θ, r) = G(θ, r) · h(θ, r).

Since h maps to SLd(R), Liouville’s formula guarantees G(θ, r) ∈ sld(R). From
definition (3.12), we get that G is continuous on Θ × (0, 1) ⊂ Θ1 by continuity of
∂rh(θ, r) and h(θ, r)−1. We check that G is also continuous at Θ×{0, 1} ⊂ Θ1. For
(θ, r) ∈ Θ1 approaching Θ× {0, 1}, the value r is approaching 0 or 1. From (3.12)
and (3.11) we can derive that G(θ, r) → 0 as r approaches 0 or 1 since σ′(r) → 0
while all other terms are bounded. Hence, G is continuous on all of Θ1.

Let Φ be the continuous-time cocycle generated by G. In particular, for fixed
θ ∈ Θ, the map t �→ Φt

(θ,0) is the unique solution to the ODE, recall (2.10),

(3.14) Φ0
(θ,0) = Id, ∂tΦ

t
(θ,0) = G(φt(θ, 0)) · Φt

(θ,0).
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For t ∈ [0, 1], we find G(φt(θ, 0)) = G(θ, t). Hence, (3.13) together with the fact
that h(θ, 0) = Id shows that t �→ h(θ, t) solves (3.14) as well for t ∈ [0, 1]. By
uniqueness, we find

(3.15) Φt
(θ,0) = h(θ, t),

for all t ∈ [0, 1]. In particular, we find

(3.16) Φ1
(θ,0) = h(θ, 1) = Aθ.

Based on Remark 3.2, this shows that Φ is a canonical extension of A, which
completes the proof. �

Remark 3.4. Given any nullhomotopic cocycle A ∈ C(Θ, SLd(R)), the existence of
a tubular neighborhood U and a smooth retraction r : U → SLd(R) shows that
any sufficiently small perturbation of A in C(Θ, SLd(R)) is still nullhomotopic.
With Theorem 3.3 this implies that the existence of a canonical extension is a
robust property under small perturbations in C(Θ, SLd(R)). Conversely, a cocycle
not being nullhomotopic and not having a canonical extension is robust under
perturbations as well.

3.2. (Quasi-)periodic driving. A particularly interesting case to study the ex-
istence of canonical extensions to continuous time of discrete-time cocycles is that
of (quasi-)periodic driving over a circle or torus, respectively. The unit circle S1

will always be identified with the interval [0, 1] with connected endpoints. A circle
rotation is defined by the transformation

φ : S1 → S1

θ �→ θ + α mod 1
(3.17)

where α ∈ R is the rotation constant. It is well-known that for α ∈ R\Q, the circle
rotation is uniquely ergodic with respect to Lebesgue measure on S1. In that case
we call φ an irrational circle rotation or quasi-periodic driving. In the case that
α = p

q ∈ Q, the map φ is periodic with period q and we call φ periodic driving.

There are infinitely many ergodic measures for periodic φ, each of which consists
of q equally weighted delta measures in discrete points which form an orbit of φ.
For the rest of this section, we work with general α ∈ R.

The flow φt on the mapping torus Θ1 of S1 constructed from a circle rotation φ
by α is given by

φt : Θ1 → Θ1

(θ, r) �→ (θ + 	r + t
α, r + t), mod 1.
(3.18)

We call φt the suspension flow by α. The mapping torus Θ1 is homeomorphic to
the 2-torus T2 = S1 × S1. Hence, the suspension flow by α is simply a coordinate
transform of a torus rotation by α, also known as Kronecker flow or quasi-periodic
flow,

φt : T2 → T2

(θ, r) �→ (θ + αt, r + t).
(3.19)

For α ∈ R \ Q, both of these flows are uniquely ergodic with respect to Lebesgue
measure on Θ1 and T2 respectively. While the flow over T2 might be easier to
grasp, the suspension flow is easier to work with and aligns with Section 3.1 on
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continuous-time extensions. Hence, we will work with the latter and leave the
torus rotation as a remark.

The key advantage of specifically considering Θ=S1 in the context of continuous-
time extensions is that the homotopy classes of C(S1, SLd(R)) are well studied (cf.
Section 2.3). In particular, the homotopy classes form the fundamental group
π1(SLd(R)). The fundamental group of SLd(R) can be characterised by the follow-
ing isomorphic relationships:

(3.20) π1(SL2(R)) ∼= Z, π1(SLd(R)) ∼= Z/2Z, d ≥ 3,

see [6, Chapter 1]. Since a map S1 → SLd(R) is nullhomotopic if and only if it is
homotopic to a constant map, it suffices to check whether a continuous, discrete-
time cocycle A : S1 → SLd(R) is homotopic to the constant identity map Id : S1 →
SLd(R) to determine whether A is nullhomotopic.

While Theorem 3.3 shows that discrete-time cocycles which are not nullhomo-
topic cannot be canonically extended to continuous time, a corollary of Theorem
3.3 shows that for any discrete-time cocycle A in at least 3 dimensions there is a
continuous-time cocycle extension Φ upon halving the rotation constant α.

Corollary 3.5. Let d ≥ 3. Let A be a discrete-time cocycle in SLd(R) over a circle
rotation by α. There is a continuous-time cocycle Φ over the suspension flow by 1

2α
that satisfies

(3.21) Φn
(θ,0) = An

2θ, ∀n ∈ Z,

for all θ ∈ S1.

Proof. From A we construct another discrete-time cocycle B over a circle rotation
by 1

2α via

(3.22) Bθ = A2θ.

Since the rotation speed of the driving of B is half of that of A we find

Bn
θ = Bθ+(n−1) 1

2α
· . . . ·Bθ+ 1

2α
·Bθ

= A2θ+(n−1)α · . . . ·A2θ+α ·A2θ

= An
2θ.

(3.23)

Observe that, as a loop, B is the concatenation of A with itself (cf. (2.21)). We
find

(3.24) [B] = [A] ◦ [A].

For d ≥ 3, the fundamental group of SLd(R) is isomorphic to Z/2Z. Hence,
(3.24) shows that B is nullhomotopic. Theorem 3.3 guarantees the existence of
a continuous-time cocycle Φ over a suspension flow by 1

2α that satisfies

(3.25) Φn
(θ,0) = Bn

θ , ∀n ∈ Z.

This, together with (3.23), completes the proof. �

In the case of d = 2, we can add an auxiliary neutral dimension to represent any
discrete-time cocycle in continuous-time. To distinguish the behaviour in different
dimensions, we write an element x ∈ R3 as x = (v, w) where v ∈ R2 and w ∈ R.
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Corollary 3.6. Let A be a discrete-time cocycle in SL2(R) over a circle rotation
by α. There is a continuous-time cocycle Φ in SL3(R) over a suspension flow by
1
2α that satisfies

(3.26) Φn
(θ,0)(v, w) = (An

2θv, w), ∀n ∈ Z,

for all θ ∈ S1, where v ∈ R2 and w ∈ R.

Proof. Define the discrete-time cocycle B over a circle rotation by α via

(3.27) Bθ =

⎛
⎝ Aθ

0
0

0 0 1

⎞
⎠ ∈ SL3(R).

Applying Corollary 3.5 to B yields a continuous-time cocycle Φ over a suspension
flow by 1

2α that satisfies

(3.28) Φn
(θ,0) = Bn

2θ =

⎛
⎝An

2θ

0
0

0 0 1

⎞
⎠ , ∀n ∈ Z.

This completes the proof. �

Remark 3.7. Canonical extensions as well as the non-canonical extensions of Corol-
lary 3.5 and Corollary 3.6 of a discrete-time cocycle A preserve the Furstenberg–
Kesten limits and the Lyapunov exponents of A. In the case of canonical extensions,
as well as the case d ≥ 3, this can be verified by a straightforward computation. The
case d = 2 requires a little bit more effort due to the added dimension, which con-
tributes an additional zero Lyapunov exponent. Additionally, a canonical extension
Φ is (non-)uniformly hyperbolic if and only if A is (non-)uniformly hyperbolic.

4. A continuous-time non-uniformly hyperbolic cocycle

In this section we construct an example of a continuous-time cocycle in SL2(R)
over a quasi-periodic torus rotation, which is non-uniformly hyperbolic. We con-
struct such an example as the canonical extension of a nullhomotopic discrete-time
cocycle in SL2(R) which is non-uniformly hyperbolic. Let φt be an irrational circle
rotation by α. The discrete-time cocycle we construct is of the form

(4.1) Aθ = Λ ·Rf(θ),

where f : S1 → S1 is differentiable, Λ is the diagonal matrix with entries λ, λ−1

and Rf(θ) ∈ SL2(R) is the rotation matrix by angle 2πf(θ), i.e.

(4.2) Λ =

(
λ 0
0 λ−1

)
, Rf(θ) =

(
cos(2πf(θ)) sin(2πf(θ))
− sin(2πf(θ)) cos(2πf(θ))

)
.

For the identity function f(θ) = θ, the resulting cocycle Aθ has been studied by
Herman [8]. It was shown that for suited rotation constants α, this cocycle is non-
uniformly hyperbolic. However, Lemma 4.1 shows that for f the identity function,
the resulting cocycle is not nullhomotopic and, hence, does not have a canonical
extension.

Lemma 4.1. The cocycle Aθ as defined in (4.1) is nullhomotopic if and only if the
map f is homotopic to a constant.
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Proof. Assume that f : S1 → S1 is homotopic to a constant, i.e. there is a homotopy
h : S1 × [0, 1] → S1 such that

(4.3) h(θ, 0) = 0, h(θ, 1) = f(θ).

Then, A : S1 → SL2(R) is nullhomotopic via the homotopy

H : S1 × [0, 1] → SL2(R),

(θ, t) �→ Λ ·Rh(θ,t).
(4.4)

Now, assume that the cocycle A is nullhomotopic, i.e. that A is homotopic to
the identity via a homotopy H. For v ∈ R2 \{0}, let v ∈ P1 be the projectivisation
of v. Let e1, e2 ∈ R2 be the unit vectors. We identify the projective space P1 with
S1 such that e1 = 0 and e2 = 1

2 . We construct a map

h : S1 × [0, 1] → S1,

(θ, t) �→ H(θ, t)e1.
(4.5)

Since H(θ, 0) = Id, we get h(θ, 0) = 0. On the other hand H(θ, 1) = Aθ = Λ ·Rf(θ).

Noting that rotation numbers expressed in the projective-space P1 are doubled
from those in R2, we find Rf(θ)e1 = 2f(θ), while Λ cannot rotate any element in

P1 by more than 1
2 . We conclude that Λ has no influence on the winding number

of h(·, 1). Hence, the winding number of h(·, 1) is twice the winding number of f .
Since h(·, 1) is homotopic to a constant, it has winding number 0. Therefore, f
must also have winding number 0, which is equivalent to f being homotopic to a
constant. This completes the proof. �

It remains to find a map f that is homotopic to a constant and a rotation
constant α, such that the cocycle, as defined in (4.1), is non-uniformly hyperbolic.
We choose a map f with the following properties

(i) f is nullhomopic;
(ii) f−1( 12 ) is non-empty;

(iii) ∂θf(θ) �= 0 for all θ ∈ f−1( 12 ).

Let A be the cocycle as defined in (4.1) with a map f that has the three properties
listed above, e.g. f(θ) = 1

2 + ε sin(2πθ) for ε ∈ (0, 1). Given that λ is sufficiently
large, a result by Young [17, Theorem 1] states that there is α ∈ R \ Q such that
A has positive Lyapunov exponent as a cocycle over a circle rotation by α. We
note that properties (ii) and (iii) are equivalent to condition (T1) in the paper by
Young. Additionally, [17, Remark 1] states that the cocycle A cannot be uniformly
hyperbolic. Hence, A must be non-uniformly hyperbolic. Lemma 4.1 shows that A
is nullhomotopic and, therefore, has a canonical extension Φ, as shown by Theorem
3.3. By Remark 3.7, the continuous-time cocycle Φ is non-uniformly hyperbolic.

Note that for f(θ) = 1
2 + ε sin(2πθ) and ε approaching 0, we can find non-

uniformly hyperbolic and nullhomotopic discrete-time cocycles that are arbitrarily
close to an autonomous cocycle.
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