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SEPARATION OF HOMOGENEOUS CONNECTED LOCALLY

COMPACT SPACES

VESKO VALOV

(Communicated by Julie Bergner)

Abstract. We prove that any region Γ in a homogeneous n-dimensional and
locally compact separable metric space X, where n ≥ 2, cannot be irreducibly
separated by a closed (n−1)-dimensional subset C with the following property:
C is acyclic in dimension n− 1 and there is a point b ∈ C ∩Γ having a special
local base Bb

C in C such that the boundary of each U ∈ Bb
C is acyclic in

dimension n− 2. In case X is strongly locally homogeneous, it suffices to have

a point b ∈ C∩Γ with an ordinary base Bb
C satisfying the above condition. The

acyclicity means triviality of the corresponding Čech cohomology groups. This
implies all known results concerning the separation of regions in homogeneous
connected locally compact spaces.

1. Introduction

By a space we mean a locally compact separable metric space, and maps are
continuous mappings. We also consider reduced in dimension zero Čech cohomology
groups Hn(X;G) with coefficients from an Abelian group G. If G is the group of
the integers Z, we simply write Hn(X). Recall that a space X is separated by a
set C ⊂ X if C is closed in X and X\C is the union of two disjoint open subsets
G1, G2 of X. When C is the intersection of the closures G1 and G2, we say that C
is an irreducible separator. A partition between two disjoint closed sets A,B in X
is a closed set P such that X\P is the union of two open disjoint sets U, V in X
such that A ⊂ U and B ⊂ V . In such a case we say that P separates X between A
and B, or A and B are separated in X by P . A region in X is an open connected
subset of X. By dimX we denote the covering dimension of X, and dimG X stands
for the cohomological dimension of X with respect to a group G. The boundary of
a given set U ⊂ X in X is denoted by bdU ; if U ⊂ C ⊂ X, then bdCU denotes
the boundary of U in C. We say that a point x ∈ X has a special base Bx if for
any neighborhoods U, V of x in X with U ⊂ V there is W ∈ Bx such that bdW
separates V \U between bdV and bdU .

One of the first results concerning the separation of homogenous metric spaces
is the celebrated theorem of Krupski [11], [12] stating that every region in an
n-dimensional homogeneous space cannot be separated by a subset of dimension
≤ n−2. Kallipoliti and Papasoglu [9] established that any locally connected, simply
connected, homogeneous metric continuum cannot be separated by arcs (according
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to Krupski’s theorem, mentioned above, the Kallipoliti-Papasoglu result is inter-
esting for spaces of dimension two). van Mill and the author [14] proved that the
Kallipoliti-Papasoglu theorem remains true without simply connectedness, but re-
quiring strong local homogeneity instead of homogeneity. Recall that a space X is
strongly locally homogeneous if every point x ∈ X has a base of open neighborhoods
U such that for every y, z ∈ U there is a homeomorphism h on X with h(y) = z
and h is the identity on X \U . We say that such a homeomorphism h is supported
by U . If for every x, y ∈ X there is a homeomorphism h on X with h(x) = y, the
spaces X is homogeneous.

In the present paper we establish Theorem 1.1 which captures all above-men-
tioned results:

Theorem 1.1. Let Γ be a region in a homogeneous space X with dimX = n ≥ 2.
Then Γ cannot be irreducibly separated by any closed set C ⊂ X with the following
property:

(i) dimC ≤ n− 1 and Hn−1(C) = 0;
(ii) There is a point b ∈ C∩Γ having a special base Bb

C in C with Hn−2(bdCU) =
0 for every U ∈ Bb

C .

If X is strongly locally homogeneous, condition (ii) can be weakened to the following
one:

(iii) There is b ∈ C∩Γ having an ordinary base Bb
C in C with Hn−2(bdCU) = 0,

U ∈ Bb
C .

Remark 1.2. According to [18, Corollary 1.6], if X in Theorem 1.1 is a compactum
with Hn(X) �= 0, then X is not separated by any C satisfying condition (i).

Since Hk+1(Y ) = 0 for any k-dimensional space Y , we have the following fact:
If dimY ≤ n − 2, then Hn−1(Y ) = 0 and every x ∈ Y has a special base of
neighborhoods U with Hn−2(bdU) = 0 because every two closed subsets of Y can
be separated by set A with dimA ≤ n − 3. Moreover, any (n − 2)-dimensional
separator contains a closed subset which is an irreducible (n− 2)-dimensional sep-
arator. Therefore, Theorem 1.1 implies directly that any region in a homogeneous
n-dimensional space cannot be separated by a subset of dimension ≤ n−2. Similar
arguments show that if G is any countable Abelian group, then any homogeneous
connected space of cohomological dimension dimG X ≤ n cannot be separated by
a closed subset of dimension dimG ≤ n − 2 (this fact was established by different
methods in [10]).

If a region Γ in a two-dimensional strongly locally homogeneous space is sepa-
rated by an arc C, then there is a closed C ′ ⊂ C irreducibly separating Γ, see [14].
Then H1(C ′) = 0 and the point b = max{x : x ∈ C ′} has a base BC′ such that
bdC′U is a point for all U ∈ BC′ . Therefore, Theorem 1.1 also implies our result
[14] with van Mill.

Theorem 1.1 is a particular case of Theorem 1.3 when G = Z:

Theorem 1.3. Let Γ be a region in a finite-dimensional homogeneous space X
with dimG X = n ≥ 2, where G is a countable Abelian group. Then Γ cannot be
irreducibly separated by any closed set C ⊂ X with the following property:

(i) dimG C ≤ n− 1 and Hn−1(C;G) = 0;
(ii) There is a point b ∈ C ∩ Γ having a special local base Bb

C in C with
Hn−2(bdCU ;G) = 0 for every U ∈ Bb

C .
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If X is strongly locally homogeneous, the finite-dimensionality of X can be omitted
and condition (ii) can be weakened to the following one:

(iii) There is b ∈ C∩Γ having an ordinary base Bb
C in C with Hn−2(bdCU) = 0,

U ∈ Bb
C .

Theorem 1.3 is established in Section 3. Section 2 contains some definitions and
preliminary results.

2. Definitions and preliminary results

Recall that for any nontrivial Abelian group G the Čech cohomology group
Hn(X;G) is isomorphic to the group [X,K(G,n)] of pointed homotopy classes of
maps from X to K(G,n), where K(G,n) is a CW -complex of type (G,n), see
[7]. It is also well known that the circle group S

1 is a space of type (Z, 1). The
cohomological dimension dimG(X) is the largest number n such that there exists a
closed subset A ⊂ X with Hn(X,A;G) �= 0. Equivalently, for a metric space X we
have dimG X ≤ n if and only if for any closed pair A ⊂ B in X the homomorphism
jnB,A : Hn(B;G) → Hn(A;G), generated by the inclusion A ↪→ B, is surjective,

see [3]. This means that every map from A to K(G,n) can be extended over B.
For every G we have dimG X ≤ dimZ X ≤ dimX, and dimZ X = dimX in case
dimX < ∞ [13] (on the other hand, there is an infinite-dimensional compactum X
with dimZ X = 3, see [2]).

Suppose (K,A) is a pair of compact sets in a space X with ∅ �= A ⊂ K. We say
that K is an k-cohomology membrane spanned on A for an element γ ∈ Hk(A;G)
if γ is not extendable over K, but it is extendable over every proper closed subset
of K containing A. Here, γ ∈ Hk(A;G) is extendable over K means that γ is
contained in the image jkK,A

(
Hk(K;G)

)
. Concerning extendability, we are using

the following simple fact:

Lemma 2.1. Let A,B be closed sets in X with X = A ∪ B. Then γ ∈ Hk(A;G)
is extendable over X if and only if jkA,Γ(γ) is extendable over B, where Γ = A∩B.

Proof. This follows from the Mayer-Vietoris exact sequence

Hk(X;G)
ϕk

−−−−→ Hk(A;G)⊕Hk(B;G)
ψk

−−−−→ Hk(Γ;G),

where ϕk(γ) = (jkX,A(γ), j
k
X,B(γ)) and ψk(γ1, γ2) = jkA,Γ(γ1) − jkB,Γ(γ2). Indeed,

suppose γΓ = jkA,Γ(γ) is extendable over B. So, there is α ∈ Hk(B;G) with

jkB,Γ(α) = γΓ. Then, ψk(γ, α) = 0, which implies the existence of β ∈ Hk(X;G)

such that ϕk(β) = (γ, α). This yields jkX,A(β) = γ. Hence, γ is extendable over X.

To prove the other implication, suppose jkX,A(β) = γ for some β ∈ Hk(X;G),

and let α = jkX,B(β). Then ψk(γ, α) = 0, which means that jkB,Γ(α) = jkA,Γ(γ).

Therefore, jkA,Γ(γ) is extendable over B. �
Lemma 2.2. Let X be a homogeneous space with dimG X = n > 1. For every
x ∈ X there exists a compactum M containing x such that all sufficiently small
neighborhoods W of x in X have the following property: For every open neighbor-
hood V of x with V ⊂ W there exist a nontrivial γV ∈ Hn−1(M ∩ bdV ;G) and an
(n− 1)-cohomology membrane KV ⊂ M ∩ V for γV spanned on M ∩ bdV .

Proof. Since X is a countable union of compact sets, there exists a compactum
Y ⊂ X with dimG Y = n (otherwise, by the countable sum theorem for dimG,
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dimG X ≤ n − 1). Since dimG Y = n there exists a proper closed subset F ⊂ Y
and γ ∈ Hn−1(F ;G) such that γ is not extendable over Y . Using the continuity
of Čech cohomology [17], we can apply Zorn’s lemma to conclude there exists a
minimal compact set M ⊂ Y containing F such that γ is not extendable over M ,
but it is extendable over every proper closed subset of M containing F . Since
X is homogeneous, we can assume that x ∈ M\F . Now, let us show that any
neighborhood W of x with W ⊂ X\F is as required. Indeed, suppose V is an
open neighborhood of x with V ⊂ W . Then M\V is a proper closed subset of
M containing F . Hence, there exists γ′ ∈ Hn−1(M\V ;G) extending γ such that
γ′ is not extendable over M ∩ V . Let γV = jM\V,M∩bdV (γ

′). Observe that M =

(M\V )∪(M∩V ) with (M\V )∩((M∩V ) = M ∩bdV . So, by Lemma 2.1, M∩bdV
is nonempty, otherwise γ′ would be extendable over M . By the same reason, γV is
nontrivial and not extendable over M ∩V . Therefore, there is a minimal closed set
KV ⊂ M ∩ V containing M ∩ bdV such that γV is not extendable over KV . Then
KV is an (n− 1)-cohomology membrane for γV spanned on M ∩ bdV . �

Proposition 2.3. Let A ⊂ P be a compact pair and γ be a nontrivial element of
Hn−1(A;G). Suppose there are closed subsets P1, P2 of P satisfying the following
conditions:

• P1 ∪ P2 = P and P1 ∩ P2 = C �= ∅;
• γ is extendable over Pi ∪ A for each i = 1, 2, but γ is not extendable over
P .

Then Hn−1(C,C ∩ A;G) �= 0.

Proof. Consider the commutative diagram below whose rows are parts of Mayer-
Vietoris exact sequences, while the columns are exact sequences for the correspond-
ing couples:

Hn−1(P ;G)
ϕn−1

P−−−−→ Hn−1(P1;G)⊕Hn−1(P2;G)⏐⏐�jn−1
P,A

⏐⏐�jn−1
P1⊕P2

Hn−1(A;G)
ϕn−1

A−−−−→ Hn−1(A ∩ P1;G)⊕Hn−1(A ∩ P2;G)⏐⏐�∂P,A

⏐⏐�∂P1⊕P2

Hn(P,A;G)
ϕn

P,A−−−−→ Hn(P1, P1 ∩ A;G)⊕Hn(P2, P2 ∩A;G)

Here, the maps jn−1
P1⊕P2

and ∂P1⊕P2
are defined by

jn−1
P1,A∩P1

⊕ jn−1
P2,A∩P2

,

∂P1⊕P2
= ∂P1,P1∩A ⊕ ∂P2,P2∩A.

Recall also that ϕn−1
P = (jn−1

P,P1
, jn−1

P,P2
), the maps ϕn−1

A , ϕn
P,A and ϕn

P are defined
similarly.

Denote αi = jn−1
A,A∩Pi

(γ), i = 1, 2. Since γ is extendable over A ∪ Pi, there exist

γi ∈ Hn−1(A ∪ Pi) extending γ, i.e., jn−1
A∪Pi,A

(γi) = γ. Let βi = jn−1
A∪Pi,Pi

(γi). It
follows from the Mayer-Vietoris exact sequence

Hn−1(A ∪ Pi;G) → Hn−1(A;G)⊕Hn−1(Pi;G) → Hn−1(A ∩ Pi;G) → . . .
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that jn−1
Pi,A∩Pi

(βi) = αi for every i = 1, 2. This implies jn−1
P1⊕P2

((β1, β2)) = (α1, α2).
Since the second column is a part of an exact sequence, the last equality yields
∂P1⊕P2

(ϕn−1
A (γ)) = 0. Hence, ϕn

P,A(∂P,A(γ)) = 0. Note that γ̃ = ∂P,A(γ) �= 0
because the first column is exact and γ is not extendable over P .

Finally, since ϕn
P,A(γ̃) = 0, Proposition 2.3 follows from the Mayer-Vietoris exact

sequence

Hn−1(C,C ∩ A;G)
�−→ Hn(P,A;G)

ϕn
P,A−−−→ Hn(P1, P1 ∩ A;G)⊕Hn(P2, P2 ∩ A;G).

�

Corollary 2.4. Let X be a space with dimG X = n and C ⊂ X be a nonempty sepa-
rator of X. If there is an open set U such that C ⊂ U and U is an (n−1)-cohomology
membrane for some γ ∈ Hn−1(bdU ;G) spanned on bdU , then Hn−1(C;G) �= 0.

Proof. Let A = bdU and P1, P2 be closed subsets of X with P1 ∩ P2 = C and
P1 ∪ P2 = U . Since Hn−1(C;G) = Hn−1(C,C ∩ bdU ;G), the proof follows from
Proposition 2.3. �

Corollary 2.4 implies the well-known fact [8] that Hn−1(C;G) �= 0 for any com-
pact separator C of Rn. Indeed, take any ball Bn with C ⊂ intBn.

By X∗ = X ∪ {∞} we denote the one-point compactification of a space X. By
a metric on X inherited from X∗ we mean the restriction of dist to X, where dist
is any metric on X∗.

The following version of Effros’ theorem [6] is folklore. For the sake of complete-
ness we include a proof.

Theorem 2.5. Let X be a homogeneous locally compact space and ρ be a metric
on X∗. Then for any a ∈ X and ε > 0 there exists δ > 0 such that for every
x ∈ X with ρ(x, a) < δ there exists a homeomorphism h : X → X with h(a) = x
and ρ(h(y), y) < ε for all y ∈ X.

Proof. Let H(X∗) be the space of all homeomorphism of X∗, endowed with the
compact-open topology. Note that H(X∗) is a Polish group and its topology is
generated by the metric ρ̂(f, g) = sup{ρ(f(x), g(x)) : x ∈ X∗}. Therefore the set
HX consisting of all h ∈ H(X∗) with h(∞) = ∞ is a closed subgroup of H(X∗),
so HX is also a Polish group. Recall that every homeomorphism h on X can be

extended to a homeomorphism h̃ ∈ HX , so HX �= ∅. Since the action T ∗ : H(X∗)×
X∗ → X∗, T ∗(g, x) = g(x), is continuous, so is the action T : HX × X → X,
T (h, x) = h(x). Moreover, T is transitive becauseX is homogeneous. Hence, by [15,
Theorem 1.1], T is micro-transitive, i.e., for every x ∈ X and every neighbourhood
U of the identity in HX the set Ux = {h(x) : h ∈ U} is a neighbourhood of x. This
implies the statement of the theorem. �

3. Proof of Theorem 1.3

First, consider the case when X is homogeneous. Suppose C ⊂ X is closed such
that C ∩Γ irreducibly separates Γ and satisfies conditions (i)–(ii). We are going to
obtain a contradiction. To this end, fix a metric ρ onX inherited from the one-point
compactification X∗ of X. Then Γ\C = G1∪G2 with C ′ = G1∩G2∩Γ ⊂ C, where
G1, G2 are disjoint open subsets of Γ. By Lemma 2.2, there exists a compactum
M containing b such that all sufficiently small neighborhoods W of b satisfy the
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thesis of that lemma. We fix such a neighborhood W having a compact closure
with W ⊂ Γ.

Claim 1. Following the notations from Lemma 2.2, there exist sufficiently small
neighborhoods V of b in X such that V ⊂ W , dimG bdV ≤ n − 1 and KV \bdV
meets both sets G1 and G2.

Indeed, let ε = min{ρ(W,X\Γ), ρ(b,X\W )} and δ > 0 be a number from The-
orem 2.5 corresponding to ε and the point b. Take any neighborhood V of b such
that V ⊂ W and the diameter of V is less than δ. Since X is finite-dimensional,
according to [4] and [5] we can suppose also that dimG bdV ≤ n− 1. Then there is

a ε-small homeomorphism h on X so that h(V ) ⊂ W and h(b) ∈ KV \bdV . Hence,
considering the sets h−1(V ) and h−1(KV ) instead of V and KV , we can assume that
b ∈ KV \bdV . Moreover, dimG(KV \bdV ) = n, otherwise γV would be extendable
over KV .

Further, since dimG C ≤ n − 1 and dimG(KV \bdV ) = n, KV \bdV is not con-
tained in C. So, KV \bdV meets at least one Gi, i = 1, 2. If KV \bdV intersects
only G1, then Theorem 2.5 allows us to push KV towards G2 by a small homeo-
morphism h : X → X such that h(b) ∈ G2, h(KV \bdV ) ∩ G1 �= ∅ and h(V ) still
contains b. This completes the proof of Claim 1.

Claim 2. Let V be a neighborhood of b satisfying Claim 1. If Hn−2(C ′ ∩ M ∩
bdV ;G) = 0, we are done.

Indeed, let A = M ∩ bdV , P = KV and Pi = P ∩ Gi, i = 1, 2. Clearly, then
P1 ∪ P2 = P and P1 ∩ P2 = KV ∩ C ′. Hence, A ∩ P1 ∩ P2 = C ′ ∩ M ∩ bdV .
Therefore, γV is a nontrivial element of Hn−1(A;G) which is not extendable over
P . Because KV \bdV meets both sets G1 and G2, each A∪Pi is a proper subset of
KV containing A. So, γV is extendable over each A∪Pi. Therefore, by Proposition
2.3, Hn−1(C ′, C ′ ∩A) �= 0. On the other hand, we have the exact sequence

Hn−2(C ′ ∩ A;G) −−−−→ Hn−1(C ′, C ′ ∩ A;G) −−−−→ Hn−1(C ′;G),

where Hn−2(C ′∩A;G) = 0. Since C ′ is a closed subset of C, dimG C ′ ≤ n−1. The
last inequality together with Hn−1(C;G) = 0 implies Hn−1(C ′;G) = 0. Hence,
Hn−1(C ′, C ′ ∩ A;G) = 0, a contradiction. This completes the proof of Claim 2.

We use below the following notation: Suppose Π is partition in a space Z between
two closed disjoint sets P,Q ⊂ Z. Then there are two open disjoint subset WP ,WQ

of Z containing P and Q, respectively, such that Z\Π = WP ∪WQ. Then we denote
ΛP = WP ∪ Π and ΛQ = WQ ∪ Π.

Claim 3. Suppose that V is a neighborhood of b satisfying Claim 1. Then there is
another neighborhood U of b with U ⊂ V such that:

(i) The element γV is extendable to an element γV,U ∈ Hn−1(M(V, U);G),

where M(V, U) = V \U ;
(ii) The element γU = jM(V,U),bdU (γV,U ) is not extendable over the set KU =

bdU ∪ (KV ∩ U), but γU is extendable over each of the sets KU,i = bdU ∪
(KU ∩Gi), i = 1, 2;

(iii) If Π separates M(V, U) between bdU and bdV , then there is γΠ ∈
Hn−1(Π;G) such that γΠ is not extendable over ΛbdU ∪ (KV ∩ U), but

it is extendable over each set ΛbdU ∪ (KV ∩ U ∩Gi), i = 1, 2.
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Take points xi ∈ (KV \bdV ) ∩ Gi, i = 1, 2. Since KV is an (n− 1)-cohomology
membrane for γV spanned on M ∩ bdV and each KV,i = (M ∩ bdV ) ∪ (KV ∩Gi),

i = 1, 2, is a proper closed subset of KV containing M ∩ bdV , γV can be extended
to γi ∈ Hn−1(KV,i;G), i = 1, 2. Using that dimG bdV ≤ n − 1, we can extend

γV to an element γ∗
V ∈ Hn−1(bdV ;G). Then γ∗

V and γi provide elements γ∗
i ∈

Hn−1(K∗
V,i;G), i = 1, 2, where K∗

V,i = bdV ∪ (KV ∩Gi), such that jK∗
V,1,bdV

(γ∗
1) =

jK∗
V,2,bdV

(γ∗
2) = γ∗

V .

Let K be a CW -complex of type K(G,n − 1) and the maps fV : bdV → K,
gV,i : K∗

V,i → K represent γ∗
V and γ∗

i , respectively, such that both restrictions

gV,1|bdV and gV,2|bdV coincide with fV . Since G is countable, K is also countable
and homotopy equivalent to a metrizable simplicial complex. So, we can suppose
that K is a metrizable simplicial complex, and let d be a metric on K. Because
K is a neighborhood extensor for the class of metrizable spaces, there is an open
cover ω of K such that any two ω-close maps from a given space Z into K are
homotopic. Moreover, there is an open set Ωi, i = 1, 2, in X containing K∗

V,i and a

map gi : Ωi → K extending gV,i such that Ωi is compact. By the same reason, there

is an open set Ω0 ⊂ X with a compact closure and a map g0 : Ω0 → K extending
fV such that bdV ⊂ Ω0. We may assume that each Ωi, i = 0, 1, 2, is contained in

W . Since Θ =
⋃i=2

i=0 gi(Ωi) is a compact subset of K, we can find η > 0 such that
any two points z1, z2 ∈ Θ are contained in an element of ω provided d(z1, z2) < η.
Then for every i = 0, 1, 2 there exist δi > 0 such that d(gi(x), gi(y)) < η/2 for any
x, y ∈ Ωi with ρ(x, y) ≤ δi. Since the points x1, x2 and b belong to V \bdV and
bdV ⊂ Ωi for each i = 0, 1, 2, the number

δ = min{δi, ρ(bdV ,X\Ωi)/2, ρ(b, bdV )/2, ρ({x1} ∪ {x2}, bdV )/2 : i = 0, 1, 2}

is positive, and let U = {x ∈ V : ρ(x, bdV ) > δ}. Clearly, U contains the points
x1, x2, b. Moreover U ⊂ V . Indeed, since U ⊂ V , if there is x ∈ U\V then x ∈ bdV .
So, ρ(x, bdV ) = 0 which means that x �∈ U . Because δ ≤ ρ(bdV ,X\Ωi)/2 for
each i = 0, 1, 2, the set V \U is contained in Ωi. Hence, all maps gi are well de-
fined on M(V, U) = V \U . For every x ∈ M(V, U) there exists y ∈ bdV with
ρ(x, y) ≤ δ, and since gi(y) = fV (y) for all i, we have d(gi(x), gj(x)) < η for
any i, j ∈ {0, 1, 2} and x ∈ M(V, U). This means that for all x ∈ M(V, U) and
i, j ∈ {0, 1, 2} the points gi(x), gj(x) belong to an element of ω. Therefore, for
any closed set B ⊂ M(V, U) the restrictions gB,i = gi|B, i = 0, 1, 2, are homo-
topic to each other and represent an element γB ∈ Hn−1(B;G). In particular,
all gM(V,U),i represent γV,U ∈ Hn−1(M(V, U);G). Similarly, all maps gbdU,i rep-

resent γU ∈ Hn−1(bdU ;G). Moreover, since each gM(V,U),i extends gB,i, we have
jM(V,U),B(γV,U ) = γB for all closed B ⊂ M(V, U).

So, jM(V,U),bdV (γV,U ) = γ∗
V and jM(V,U),bdU (γV,U ) = γU . This means that γ∗

V

is extendable over M(V, U). Hence, by Lemma 2.1, γ∗
V would be extendable over

M(V, U) ∪ KV provided γU is extendable over KU = bdU ∪ (KV ∩ U). In such
a case, γV would be extendable over KV , a contradiction. Therefore, γU is not
extendable over KU .

Consider the sets KU,i = bdU ∪ (KU ∩ Gi), i = 1, 2. Each KU,i is a proper

closed subset of KU because so is KV ∩ U ∩ Gi in KV ∩ U . Observe also that
K∗

V,i ∪ M(V, U) = M(V, U) ∪ (KV ∩ U ∩ Gi). On the other hand, Ωi contains

both K∗
V,i and M(V, U). So, Ωi contains KU,i, i = 1, 2. Consequently, gi|KU,i is
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well defined and extends gbdU,i. Since gbdU,i represents γU , each gi|KU,i, i = 1, 2,

represents an element μi ∈ Hn−1(KU,i;G) with jKU,i,bdU
(μi) = γU . This means

that γU is extendable over each of the sets KU,i, i = 1, 2.

Finally, let Π ⊂ M(V, U) be a closed set separating M(V, U) between bdU
and bdV . Then ΛbdV contains both Π and bdV , M(V, U) = ΛbdV ∪ ΛbdU with
Π = ΛbdV ∩ ΛbdU . On the other hand, jΛbdV ,bdV (γΛbdV

) = γ∗
V means that γ∗

V is

extendable over ΛbdV . Since jΛbdV ,Π(γΛbdV
) = γΠ, according to Lemma 2.1, the

assumption γΠ is extendable over the set ΛbdU ∪ (KV ∩U) would imply that γ∗
V is

extendable over M(V, U)∪KV , in particular γV would be extendable over KV . So,
γΠ is not extendable over ΛbdU ∪ (KV ∩ U). Let show that γΠ is extendable over

each set Λ̃bdU,i = ΛbdU ∪ (KV ∩U ∩Gi), i = 1, 2. Observe that Λ̃bdU,i is contained

in Ωi, i = 1, 2. Consequently, each hi = gi|Λ̃bdU,i is well defined and extends gΠ,i.
On the other hand, all gΠ,i, i = 0, 1, 2, are homotopic to each other and represent

γΠ. Hence, each hi, i = 1, 2, represents an element νi ∈ Hn−1(Λ̃bdU,i;G) with

j
˜ΛbdU,i,Π

(νi) = γΠ. Therefore, γΠ is extendable over each Λ̃bdU,i, i = 1, 2. This

completes the proof of Claim 3.

Claim 4. Suppose U, V are neighborhoods of b satisfying the conditions from Claim
3. If Hn−2(C ′ ∩KV ∩ bdU ;G) = 0, we are done.

Following the notations from Claim 3, denote A = KV ∩ bdU , P = KV ∩U and
Pi = KV ∩U∩Gi, i = 1, 2. Then P1∪P2 = P , A∩P1∩P2 = C ′∩KV ∩bdU . According
to Claim 3, γU ∈ Hn−1(bdU ;G) is not extendable over KU = bdU∪(KV ∩U). This
means that the element μU = jbdU,KV ∩bdU (γU ) ∈ Hn−1(A;G) is not extendable

over P . On the other hand, γU is extendable over each KU,i = bdU ∪(KV ∩U ∩Gi),

i = 1, 2. Consequently, μU is extendable over each KV ∩ U ∩Gi. To complete the
proof of Claim 4, we can apply Proposition 2.3 as we did in Claim 2. This completes
the proof of Claim 4.

Therefore, we can suppose everywhere below that there are two neighborhoods
U, V of b satisfying the conditions of Claim 3 with Hn−2(C ′ ∩ M ∩ bdV ;G) �= 0
and Hn−2(C ′ ∩KV ∩ bdU ;G) �= 0. In particular, both C ∩ bdV and C ∩ bdU are
nonempty.

Claim 5. Let V, U be neighborhoods of b satisfying the conditions from Claim 3
with C ∩ bdV �= ∅ �= C ∩ bdU . Then there exists a partition Π in M(V, U) = V \U
between bdV and bdU such that Hn−2(Π ∩ C ′;G) = 0.

Consider the set C∩M(V, U) and its closed disjoint subsets C∩bdV and C∩bdU .
Since b has a special local base Bb

C in C, there isW ∗ ∈ Bb
C withHn−2(bdCW

∗;G) =

0 such that bdCW
∗ separates C ∩ M(V, U) between C ∩ bdU and C ∩ bdV . By

[16, Corollary 3.1.5], there exists a partition T in M(V, V ) between bdV and bdU
such that T ∩ C ⊂ bdCW

∗. Hence, Π = T ∪ bdCW
∗ is a partition in M(U, V )

between bdV and bdU with Π ∩ C = bdCW
∗ and Hn−2(Π ∩ C;G) = 0. Finally,

since Π ⊂ Γ, we have Π ∩ C = Π ∩ C ′. This completes the proof of Claim 5.
Now, we can complete the proof of Theorem 1.3 when X is homogeneous. Ac-

cording to Claims 1–5, the proof is reduced to the assumption that there are two
neighborhoods V, U of b and a partition Π of M(V, U) between bdV and bdU such
that Hn−2(Π ∩ C ′;G) = 0. Then, by Claim 3, there is γΠ ∈ Hn−1(Π;G) such
that γΠ is not extendable over ΛbdU ∪ (KV ∩U), but it is extendable over each set
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ΛbdU ∪ (KV ∩ U ∩ Gi), i = 1, 2. In particular, γΠ is extendable over each of the

sets
(
ΛbdU ∪ (KV ∩ U)

)
∩ Gi. We can apply Proposition 2.3 to obtain a contra-

diction. Indeed, denote P = ΛbdU ∪ (KV ∩ U) and Pi = P ∩ Gi, i = 1, 2. Clearly

P1∪P2 = P and P1∩P2 =
(
ΛbdU ∪(KV ∩U)

)
∩C ′. Since Π ⊂ ΛbdU and Π∩U = ∅,

P1 ∩ P2 ∩ Π = Π ∩ C ′. Finally, the exact sequence

Hn−2(C ′ ∩ Π;G) −−−−→ Hn−1(C ′, C ′ ∩ Π;G) −−−−→ Hn−1(C ′;G)

shows that Hn−1(C ′, C ′ ∩ Π;G) = 0 which contradicts Proposition 2.3. Therefore,
the homogeneous case of Theorem 1.3 is established.

Consider now the case when X is strongly locally homogeneous.

Claim 6. The point b has a local base inX consisting of open sets V withHn−2(C ′∩
bdV ;G) = 0.

Let W be an arbitrary neighborhood of b with W ⊂ Γ. Since b has a base Bb
C

in C consisting of sets U with Hn−2(bdCU ;G) = 0, there is U ∈ Bb
C such that

U ⊂ W . Now, we use the following well-known fact [1]: If F is a closed subset of
a metric space Z, then there is a correspondence e : T (F ) → T (Z) between the
topologies of F and Z such that

e(Ω) ∩ F = Ω, e(Ω1) ∩ e(Ω2) = e(Ω1 ∩ Ω2) and e(∅) = ∅.

Such a correspondence is called a K0-function. It is easily seen that e(Ω) ∩ F = Ω
for every open Ω ⊂ F . Now, we consider a K0-function e : T (C ′ ∩ W ) → T (W )
and define e′ : T (C ′ ∩W ) → T (W ) by e′(Ω) = e(Ω) ∩W . Clearly, e′ is also a K0-
function, and let V = e′(U). Then b ∈ V and, according to the above-mentioned
properties of K0-functions, we have

V ∩ C ′ ⊂ e(U) ∩ C ′ = e(U) ∩W ∩ C ′ = U.

Since U ⊂ V ∩ C ′, we obtain V ∩ C ′ = U . Similarly, V ∩ C ′ = U . Moreover,
U ∩ bdV = ∅ because U ⊂ V . So, C ′ ∩ bdV ⊂ bdC′U . On the other hand,
V ∩ C ′ = U implies that bdC′U ⊂ V \V . Therefore, C ′ ∩ bdV = bdC′U . Clearly,
bdC′U = bdCU . So, Hn−2(C ′ ∩ bdV ;G) = 0. This completes the proof of Claim
6.

Let W be as Lemma 2.2 and take another two neighborhoods V, U of b such
that U ⊂ V ⊂ V ⊂ W , Hn−2(C ′ ∩ bdV ;G) = 0 and for every two points x, y ∈
U there is a homeomorphism h on X with h(x) = y and h is supported by U .
According to the proof of Lemma 2.2, the element γ ∈ Hn−1(F ;G) is extendable
to γ′ ∈ Hn−1(M\U ;G). Let γV = jM\U,M∩bdV (γ

′) ∈ Hn−1(M ∩ bdV ;G) and

γU = jM\U,M∩bdU (γ
′) ∈ Hn−1(M ∩ bdU ;G). Then γV is not extendable over

M ∩ V (otherwise γ would be extendable over M). By the same reason, γU is
not extendable over M ∩ U . Moreover, γV = jM∩(V \U),M∩bdV (γ

′′), where γ′′ =

jM\U,M∩(V \U)(γ
′). Hence, γV is extendable over M ∩ (V \U).

Let A = (C ′ ∩ bdV ) ∪ (M ∩ bdV ). Since dimG C ′ ∩ bdV ≤ dimG C ′ ≤ n − 1,
there exists γA ∈ Hn−1(A;G) extending γV . Observe that A ∩ C ′ = C ′ ∩ bdV
and A ∩ M = M ∩ bdV . Since γV is extendable over M ∩ (V \U), so is γA over
(M ∩ (V \U)) ∪ (C ′ ∩ bdV ). On the other hand, γV being not extendable over
M ∩ V implies γA is not extendable over (C ′ ∩ bdV ) ∪ (M ∩ V ). Hence, there is
an (n− 1)-cohomology membrane KA ⊂ (M ∩ V ) ∪ (C ′ ∩ bdV ) for γA spanned on
A. Therefore, KA meets M ∩ U . We can suppose that b ∈ KA. Indeed, if b �∈ KA
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take a point y ∈ KA ∩ U and a homeomorphism h on X supported by U with
h(y) = b. Then h(KA) is an (n− 1)-cohomological membrane for γA spanned on A
and contains b.

We can suppose that dimG bdU ≤ n−1. Since KA∩U = (KA∩bdU)∪(KA∩U)
and KA ∩ U is an Fσ-set, the assumption dimG KA ∩ U ≤ n− 1 would imply that
dimG KA∩U ≤ n−1 (by the countable sum theorem for dimG). Then γU would be
extendable over KA∩U . Hence, because γA is extendable over (M ∩ (V \U))∪ (C ′∩
bdV ), we could extend γA over KA. Therefore, dimG KA ∩ U = n. Consequently,
KA ∩U meets at least one Gi, i = 1, 2. Suppose there is a point x ∈ KA ∩U ∩G1.
Then b �= x because b �∈ G1. So, there exists a neighborhood U ′ of b such that

x �∈ U
′
, U

′ ⊂ U and for every two points x′, y′ ∈ U ′ there is a homeomorphism
h′ on X supported by U ′ with h′(x′) = y′. Since U ′ ∩ G2 �= ∅, we can push b
by a homeomorphism ϕ on X supported by U ′ such that ϕ(b) ∈ U ′ ∩ G2. Then
ϕ(KA) is an (n − 1)-cohomology membrane for γA spanned on A meeting both
Gi, i = 1, 2. Hence, γA is not extendable over ϕ(KA), but it is extendable over
each ϕ(KA) ∩ Gi. Finally, let P = ϕ(KA) and Pi = ϕ(KA) ∩ Gi, i = 1, 2. Since
P1 ∪ P2 = P and A ∩ P1 ∩ P2 = A ∩C ′, we can apply Proposition 2.3 with γ = γA
to obtain that Hn−1(C ′, A ∩ C ′) �= 0. Finally, since Hn−2(A ∩ C ′;G) = 0 (recall
that A ∩ C ′ = C ′ ∩ bdV ), the exact sequence from the proof of Claim 2 implies
Hn−1(C ′, A ∩ C ′) = 0, a contradiction. This completes the proof of Theorem 1.3.
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