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K-THEORY OF MULTIPARAMETER PERSISTENCE MODULES:

ADDITIVITY

RYAN GRADY AND ANNA SCHENFISCH

(Communicated by Julie Bergner)

Abstract. Persistence modules stratify their underlying parameter space, a
quality that makes persistence modules amenable to study via invariants of
stratified spaces. In this article, we extend a result previously known only for
one-parameter persistence modules to grid multiparameter persistence mod-
ules. Namely, we show the K-theory of grid multiparameter persistence mod-
ules is additive over strata. This is true for both standard monotone multi-
parameter persistence as well as multiparameter notions of zig-zag persistence.
We compare our calculations for the specific group K0 with the recent work of
Botnan, Oppermann, and Oudot, highlighting and explaining the differences
between our results through an explicit projection map between computed

groups.
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1. Introduction

Persistent homology has become a central tool in topological data analysis (TDA).
It has also been added to the toolbox of symplectic geometers, see for instance
[PRSZ20]. The typical setting for persistent homology is that of a filtered topologi-
cal space, Y•, and a field of coefficients, F. The sequence of vector spaces and linear
maps encoded by H∗(Y•;F) are then used to analyze the space Y• and/or a dataset
from which Y• has been constructed. Persistence modules are a generalization of
persistent homology in that they are simply a functorial assignment—say from
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filtered spaces—to a “reasonable” category V . Typical examples of “reasonable”
categories include no condition, Abelian, or exact categories.

The filtered spaces, Y•, of persistence theory often arise by considering a dataset,
fixing a parameter space, and deciding on a scheme which associates a space to each
parameter value, e.g., the Čech or Vietoris–Rips complexes associated to a point
cloud and a real number. In practice, our parameter space, X, is a manifold. If our
parameter space is equipped with an embedding X ↪→ R, we are in the setting of
one-parameter persistence. If our parameter space is embedded in R

d, then we are
in the setting of multiparameter persistence. Although d-dimensional Euclidean
space is perhaps the typical embedding target, in general, an embedding into any
manifold of dimension d is a setting for d-parameter persistence.

One-parameter persistence is well understood and under reasonable hypotheses,
there are complete, discrete, computable invariants. Multiparameter persistence is
more subtle, and it is a charge of the community to find computable, descriptive
invariants. See the original work of Carlsson and Zomorodian [CZ09] or the more
recent survey [BL22].

Inspired by the works of Botnan, Oppermann, and Oudot [BOO21], and our
previous work [GS21], we study the universal additive invariant of persistence mod-
ules: their algebraic K-theory. In the present, we use the same setup as in [GS21],
defining persistence modules as constructible cosheaves over the parameter space,
which itself has been stratified by an “event stratification.” By imposing some mild
hypotheses on our stratified parameter spaces, the category of such constructible
cosheaves is equivalent to the category representations of the (combinatorial) en-
trance path category of our space. (See [CP20] for a nice overview of this corre-
spondence.) This category of representations—a functor category—has well-defined
algebraic K-theory for nice target categories, e.g., modules over a commutative ring
on pointed sets.

Note that, while persistence modules are most typically defined as representa-
tions of partially ordered sets (posets), we define stratified parameter spaces in a
direction-free way. Roughly speaking, we keep track of “event times” as zero strata,
but the data of how event times relate to one another is not explicitly stored in the
stratification of a parameter space. Instead, we incorporate the poset structure of
a persistence module into the assignments of morphisms out of the stratified pa-
rameter space; see [GS21] for further insights into this perspective. One utility of
this formalism is that it puts monotone persistence, zig-zag persistence, and their
multiparameter generalizations on common footing.

Our main contributions in the present article are to:

(1) Prove that the K-theory of multiparameter persistence (grid) modules is
additive over the strata of the parameter space. This main result is Theo-
rem 3.0.7. As an immediate corollary, we obtain the groups K0 and K1 for
persistence modules valued in finite dimensional vector spaces over a field.
Our result is a generalization of Theorem 4.1.6 of [GS21] to the multipa-
rameter setting.

(2) For the groups K0, compare our results with those of [BOO21]. In particu-
lar, while our K0 is not isomorphic to the Grothendieck group of rank-exact
persistence modules of Botnan, Oppermann, and Oudot, we do obtain an
explicit comparison homomorphism. This comparison is the content of Sec-
tion 4.1.
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2. Background and conventions

2.1. Stratified spaces and entrance paths.

Definition 2.1.1. A stratified topological space is a triple (Y
φ−→ P) consisting of

• a paracompact, Hausdorff topological space, Y ,
• a poset P, equipped with the upward closed topology, and

• a continuous map Y
φ−→ P.

Note that any topological space is stratified by the terminal poset consisting of
a singleton set. Moreover, the simplices of a simplicial complex, K, come equipped
with the structure of a poset, and we call the resulting stratification of K the face
stratification, which we denote by Face(K) [Sta91].

Definition 2.1.2. Given a stratified topological space φ : Y → P, and any p ∈ P,
the p-stratum, Yp, is defined as

Yp := φ−1(p)

Definition 2.1.3. Let X be a manifold with corners. A cubulation of X is a cov-
ering by embedded cubes such that their interiors are disjoint and every nontrivial
intersection of cubes consists of their common lower-dimensional (closed) face. A
cubical manifold is a manifold (with corners) equipped with a (fixed) cubulation.

Analogous to simplicial complexes/combinatorial manifolds, cubical manifolds
are naturally stratified by the face poset of the cubulation and we denote the re-
sulting stratification by Face(X).

Definition 2.1.4. Let X be a cubical manifold stratified by Face(X). The com-
binatorial entrance path category EntΔ(X) has as objects the strata of X and a
morphism σ → τ whenever τ is a face of σ.

2.2. Grid modules. As noted above, we define our persistence modules as repre-
sentations of the (combinatorial) entrance path category associated to a stratified
parameter space.

Definition 2.2.1. LetX be a cubical manifold with its face stratification, EntΔ(X)
its combinatorial entrance path category, and V any category. The category of V -
valued persistence modules parameterized by X, pModV (X), is given by

pModV (X) := Fun(EntΔ(X), V ).

Hence, the K-theory of V -valued persistence modules (parametrized by X) is the

K-theory spectrum (whenever it exists) of the category above: K(pModV (X)).

In what follows, we are interested in grid modules, i.e., those persistence modules
parametrized by subspaces of cubulated R

d. To that end, we need a few preliminary
definitions.

Given a stratified space A, Z, and an embedding A ↪→ Z, there is a stratifica-
tion of Z extending that on A called the connected ambient stratification and the
resulting stratified space is denoted (Z,A)∧∧. See Definition 2.1.11 of [GS21] for
details.
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Definition 2.2.2 (Stratified d-parameter space and its entrance path category).
Let I = {Ii}i=d

i=1 be a collection of finite subsets of R, so Ii ⊂ R is finite. Define the
stratified space

(Rd; I) :=
d∏

n=1

(R, In)
∧∧.

Example 2.2.3 (Stratified two-parameter space and its stratifying set). Consider
the set of subsets I = {{0, 1, . . . , 6}, {0, 1, . . . , 4}}. These subsets then define a
stratified space, (R2; I), shown in Figure 2.1 as the large rectangular grid. This
stratified space has 35 zero strata, 58 one-strata, and 24 two-strata corresponding
to vertices, edges, and faces, respectively. Note that this means the stratifying
poset of (Rd; I) then has 35 + 58 + 24 = 117 objects.

Figure 2.1. A cubical two-manifold (shaded) appearing as a sub-
stratified space of the stratified parameter space
(R2; {{0, 1, . . . , 6}, {0, 1, . . . , 4}}).

Note that any closed and bounded substratified space of (Rd; I) is naturally
cubulated.

Definition 2.2.4 (Cubical grid manifold). A cubical grid d-manifold is a cubical
manifold of dimension d that is embedded as a substratified space of (Rd; I) for
some I.

See Figure 2.1 for an instance of a cubical grid manifold.

2.3. Waldhausen K-theory. Dan Quillen, justifiably, received much recognition
for defining higher algebraic K-theory via Abelian and exact categories. Some
twenty years later, FriedhelmWaldhausen found a further generalization of Quillen’s
setting in his work on the algebraic K-theory of spaces [Wal85]. Today, this setting
is that of Waldhausen categories and exact functors between them. Here we recall,
tersely, some key notions leading to Waldhausen’s Additivity Theorem. A modern
introduction to this material can be found in [FP19] or the encyclopedic [Wei13].

Definition 2.3.1. Let A,E, and B be Waldhausen categories. A sequence of exact
functors

A
i−→ E

f−→ B

is exact if

(1) The composition f ◦ i is the zero map to B;
(2) The functor i is fully faithful; and
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(3) The functor f restricts to an equivalence between E/A and B.1

A sequence, as above, is split if there exist exact functors

A
j←− E

g←− B

that are adjoint to i and f and such that the unit of the adjunction, IdA ⇒ j ◦ i,
and the counit of the adjunction, f ◦ g ⇒ IdB, are natural isomorphisms.

Definition 2.3.2. A split short exact sequence of Waldhausen categories

A E Bi f

j g

is standard if

(1) For each e ∈ E, the component of the counit, (i◦ j)(e) → e, is a cofibration;
(2) For each cofibration e ↪→ e′ in E, the induced map

e�(i◦j)(e) (i ◦ j)(e′) → e′

is a cofibration; and
(3) If a → a′ → 0 is a cofiber sequence in A, then the first map is an isomor-

phism.

The following is one of the fundamental theorems of algebraic K-theory. It is
known as Waldhausen Additivity.

Theorem 2.3.3. Let

A E Bi f

j g

be a standard split SES of Waldhausen categories. Then the functors i and g induce
an equivalence of spectra

K(i) ∨K(g) : K(A) ∨K(B)
∼−→ K(E).

3. K-theory of grid modules

In this section we prove our main theorem, which is the multiparameter analog
of Theorem 4.1.6 of [GS21].

It is standard that the category of finitely generated, projective modules for
a commutative ring defines a Waldhausen category. So too does the category of
functors from a small category into this category of modules. (Some details are
provided in Appendix A of [GS21].)

Lemma 3.0.1. Let R be a commutative ring, M the associated Waldhausen cat-
egory of finitely generated projective modules. Furthermore, let X be a cubical
manifold and let A denote a closed sub-stratified space of X. Then the following
sequence is split short exact sequence of Waldhausen categories

Fun(EntΔ(X \A),M) Fun(EntΔ(X),M) Fun(EntΔ(A),M),
j∗ i∗

j∗ i∗

where i : A ↪→ X and j : X\A ↪→ X are the inclusion maps. Moreover, this sequence
is standard.

1Here, E/A is the full subcategory of E on objects e such that, for all a ∈ A, the hom set
E(i(a), e) is a point.
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The argument for Lemma 3.0.1 is, mutatis mutandis, as for Lemma 4.1.1 of
[GS21].

Since the sequence in Lemma 3.0.1 is a standard split short exact sequence of
Waldhausen categories, Waldhausen Additivity (Theorem 2.3.3) immediately gives
us the following key corollary, which is the main tool we will use in our argument
to“break apart and glue together” modules from submodules.

Corollary 3.0.2 (K-theory is additive over submodules). Let R be a commutative
ring, M the associated Waldhausen category of finitely generated projective modules.
Furthermore, let X be a cubical manifold and let A denote a closed sub-stratified
space of X. Then we have an equivalence of spectra

K(pModM(X)) ∼= K(pModM(X \A)) ∨K(pModM(A)).

The following is a main result of [GS21] (Lemma 4.1.4), and serves as a base
case for our induction into multiparameter modules.

Lemma 3.0.3. Let X be a cubical one-manifold with a finite set of strata. There
is an equivalence of spectra

K(pModM(X)) ∼=
∨

x0∈X0

K(pModM(x0)) ∨
∨

x1∈X1

K(pModM(x1)).

where Xi is the set of i-strata of X.

In proving the preceding result, we inducted on the number of zero-strata of X.
In our multiparameter setting, we induct on an analogous notion: height.

Definition 3.0.4. Let I = {Ii}i=d
i=1 be a collection of finite subsets of R. We say

the height of I is the maximum number of objects in any In ∈ I.

Definition 3.0.5. Given a cubical grid d-manifold X, we say the height of X is
the minimum height over all collections I such that X ⊆ (Rd; I). If the height of
X equals the number of objects in In, we say that the nth parameter realizes the
height of X.

It is clear from the definition that in the one-parameter case, the height of X is
indeed just the number of zero-strata of X. In the general d-parameter case, height
is a measure of the longest axis-aligned “slice,” although note that the height of X
may be realized in more than one parameter.

We are now ready to state our main result, the K-theory of multiparameter grid
modules. The proof uses a double induction on the number of parameters and on
the height of the module.

Theorem 3.0.6 (K-theory of multiparameter zig-zag modules). Let X be a cubical
grid d-manifold with a finite number of strata. There is an equivalence of spectra

K(pModM(X)) ∼=
∨

x0∈X0

K(M) ∨
∨

x1∈X1

K(M) ∨ . . . ∨
∨

xd∈Xd

K(M)

where Xi is the set of i-strata of X.

Proof. We proceed by double induction; first on h, the height of the persistence
module, and then on d, the number of parameters. As a base case, we observe that
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Lemma 3.0.3 asserts the statement holds for d = 1 and all h. Suppose that there
exist d∗, h∗ ∈ N so that the claim holds for all 1 ≤ d ≤ d∗ and 1 < h ≤ h∗.

2

Induction on height: First, we induct on the height of X. Suppose that X
is d∗-dimensional and has height h∗ + 1. For simplicity, we first consider the case
that, for some j ∈ [1, d] only the ej parameter realizes the height h∗ + 1. Consider
the closed (d∗ − 1)-parameter sub-stratified space A corresponding to the poset
I1 × . . .× Ij−1 ×m× Ij+1 × . . . Id. Conceptually, A corresponds to a level-set of X
at height m, slicing through the parameter that realizes the maximum height. Then
the connected components of X \ A have height no more than h∗. Furthermore,
note that A has height no more than h∗. By the inductive hypothesis, the claim
holds for the connected components of X \A as well as for A, so by Corollary 3.0.2,
we see that the claim holds for all of X.

Next, consider the general case, i.e., the case that any number of parameters
realize the height h∗ + 1. We describe the process of dividing X into connected
components each with height no more than h∗ algorithmically, using a stack data
structure. Recall that, just like a stack of plates, a stack utilizes a “first on, first
off” organization, where the element that was most recently pushed onto the stack
is the element available to be popped off. Specifically, we use a stack, T , of “tall”
connected components of this division that have height h∗+1, initialized to T = X.
We keep track of a list S of “short” connected components that have height less
than h∗+1, initialized as empty. The procedure is as follows. First, we pop Xi ∈ T .
Then, we choose a closed (dim(Xi) − 1)-parameter sub-stratified space, Ai ⊂ Xi,
that is perpendicular to some parameter of Xi that realizes height h∗ + 1. Note
then that the connected components of Xi \Ai and Ai may still have height h∗+1,
but in one fewer parameter than Xi had height h∗ + 1. We push the connected
components of Xi \ Ai and Ai that have height h∗ + 1 back on the stack T and
move any connected components of this division with height less than h∗+1 to our
list S. Since each processed element of T has height h∗ + 1 in one fewer parameter
direction than before it was processed, we eventually have T empty and S a division
of X into cubical grid manifolds for modules each with height less than h∗+1. See
Figure 3.1. Noting that each time a sub-stratified space was removed, it was a
closed subspace of the cubical manifold containing it, we “glue” back the pieces
using Corollary 3.0.2, eventually showing the K-theory for persistence modules
over all of X is as claimed.

Induction on number of parameters: Next, we induct on the number of
parameters. From our preceeding inductive argument, it is sufficient to let X ′ be a
cubical grid (d∗ + 1)-manifold with height two. This means X ′ is a (d∗ + 1)-cube.
Let A′ denote the d∗-skeleton of this cube (i.e., the boundary). Since A′ is a closed
substratified space of X ′, we know by Corollary 3.0.2 that we have an equivalence
of spectra

K(pModM(X ′)) ∼= K(pModM(X ′ \A′)) ∨K(pModM(A′)).(1)

As we show below, the K-theory of X ′ \ A′, as this is a single (d∗ + 1)-strata (the
interior of the cube). It remains, then, to compute the K-theory of persistence
modules over A′. The space A′ has the geometric structure of the boundary of a
(d∗ + 1)-cube, or, equivalently, a cube with no interior. By [DDRW20, Theorem

2Here, we make the inequality h > 1 strict to avoid tautologies; a cubical manifold with height
one is simply a point.
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3], it is always possible to remove a connected collection of codimension-two faces
from such a cube so that what remains can be “unfolded.” Furthermore, such an
unfolding will not self-overlap and will lie on grid points of space in one dimension
lower3.

Thus, choose some connected collection of (d∗ − 1)-faces, denoted U , such that
A′ \ U embeds into some (Rd∗ ; I). Thus, A′ \ U may be no more than a cubical
grid d∗-manifold. Since U corresponds to a subset of the boundary of the closure
of A′ \U , U may also be no more than a cubical grid d∗-manifold (see Figure 3.2).
Thus, by the inductive hypothesis, the claim holds for A′ \ U as well as for U .
Since Corollary 3.0.2 tells us the K-theory of A′ is additive over such a partition,
we see that the claim holds for all of A′. Combining this with the equivalence in
Equation (1), we have shown the desired result holds for all of X.

Next, we observe that since we have shown that the claim holding for a cubical
grid d-manifold implies the claim holds for a cubical (d+ 1)-manifold with height
two, and since, in the first half of the proof, we showed claim holds for cubical grid
manifolds of any height, we have shown the desired result in full generality.

Finally, we identify the K-theory of components of the stratification, i.e., we
identify K(pModM(xi)) for xi ∈ Xi and i ∈ {1, . . . , d}. By Definition 2.2.1, we have
K(pModM(xi)) = K(Fun(EntΔ(xi),M)). Since EntΔ(xi) is the terminal category
(a single object and an identity morphism), Fun(EntΔ(xi),M) is isomorphic to the
category of M itself. Thus, K(pModM(xi)) = K(M). �

We end this section by discussing how Theorem 3.0.6 translates to the specific
case of Vect-valued multiparameter persistence modules.

Theorem 3.0.7 (K-theory of Vect-valued multiparameter modules). Let X be a
cubical grid d-manifold with a finite number of strata. There is an equivalence of
spectra

K(pModVectF(X)) ∼=
∨

X0

K(F) ∨
∨

X1

K(F) ∨ . . . ∨
∨

Xd

K(F)

where Xi is the set of i-strata of X and K(F) denotes the K-theory spectrum of the
field F.

Proof. Now, the category of finite dimensional vector spaces over F is exactly the
category of finitely generated projective modules over F (considered as a ring).
Hence, K(VectF) is just the algebraic K-theory of F.

Thus, we have shown the K-theory of each strata is a copy of K(F). We know by
Theorem 3.0.6 that K(pModVectF(X)) is additive over strata, so the result follows.

�

The first two K-groups of a field are well known. The following isomorphisms
are induced by the dimension and determinant maps, respectively.

Corollary 3.0.8. For X, a cubical grid d-manifold with a finite number of strata,
we have

K0(pModVectF(X)) ∼=
⊕

X0

Z⊕
⊕

X1

Z⊕ . . .⊕
⊕

Xd

Z

3In [DDRW20], this is phrased as every ridge unfolding of a finite cube will produce a net,
where the word “cube” is taken to mean a cube with empty interior.
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Figure 3.1. A cubical grid three-manifold X with height five re-
alized by parameters e1 and e3. We first choose a two-parameter
subspace A (shaded) that “cuts” the height of parameter e3. Note
that A and the connected components of X \ A still have height
five, but now only in parameter e1. Our next step will be to repeat
the process, cutting each piece once more so that each connected
component has height less than five.

Figure 3.2. The unfolding of a three-dimensional cube C with
height two in each parameter (an instance of the cube A′ discussed
in the induction on height in the proof of Theorem 3.0.6). The thick
blue submodule U is a closed connected collection of codimension-
two faces of the cube along which we can unfold (right). Since the
unfolding (left) is a net, connected components of both the A′ \U
and U cannot be more than two-parameter modules.

and

K1(pModVectF(X)) ∼=
⊕

X0

F
× ⊕

⊕

X1

F
× ⊕ . . .⊕

⊕

Xd

F
×

where Xi is the set of i-strata of X and F
× is the group of units of F.
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See Chapter IV of [Wei13] for an in-depth description of the higher K-theory of
fields.

4. Connections: Euler manifolds and rank exact K-theory

As we previously observed in the one-dimensional case [GS21], given a persistence
module, F, over a parameter space, X, the class of F in K0 is the Euler curve of
the persistence module. The same conclusion holds in the multiparameter setting
with the exception that we no longer consider the Euler curve, but rather the
Euler surface or manifold depending on the number of parameters. Indeed, the
description of K0 in terms of constructible functions goes back to Kashiwara and
Schapira [KS94], and the construction of their isomorphism uses a local Euler index.

4.1. Rank exact K-theory. Finally, we briefly discuss the relationship between
our present results and the recent work of Botnan, Oppermann, and Oudot on
Grothendieck groups, K0, in multiparameter persistence via rank-exact structures
[BOO21].

Let F be a field and P be an arbitrary poset. Let Rep(P) denote the category
of functors P → VectF with finite total rank. Note, we use rank, Rk, instead of
dimension (over F), as there are many other choices of target category to which the
work of [BOO21] applies. Of course, in our simplified setting Rk = dimF.

Definition 4.1.1 (Definition 4.1 [BOO21]). A short exact sequence 0 → F → G →
H → 0 in Rep(P) is rank-exact if RkG = Rk F+RkH.

Theorem 4.4 of [BOO21] states that Rep(P) equipped with rank-exact short exact
sequences is an exact category, which we denote Rep(P)Rk. Hence, K0(Rep(P)Rk)
is well-defined. The higher K-groups also exist, but following the authors of
loc. cit. we restrict our discussion to K0.

For P a poset, let Seg(P) be the collection of segments, i.e., pairs defining the
partial order on the underlying set of P, i.e.,

Seg(P) = {(p, p′) ∈ P× P : p ≤ p′}.

Theorem 4.1.2 (Theorem 4.10 [BOO21]). Let P be a finite poset. The rank map
induces an isomorphism

Rk: K0(Rep(P)Rk)
≈−−−→ Z

Seg(P).

Consider the linear order, [2] = {0 ≤ 1 ≤ 2}. Following [GS21], the poset [2]
defines a cubical one-manifold with three zero-strata and two one-strata, which
we denote by X([2]). By our previous additivity result, or the one-parameter spe-
cialization of the results above, K0(pModVect(X([2]))) ∼= Z

5. However, note that
|Seg([2])| = 6, so K0(Rep([2])Rk) ∼= Z

6. Of course, 5 �= 6, so we seek an explana-
tion/explicit comparison.

Let P be a finite poset. The order complex, ≤P
• , is the abstract simplicial complex

whose faces are chains in P. Let |P| := |≤P
• | denote the geometric realization of P,

which is a (geometric) simplicial complex. It is a standard exercise that |[n]| ∼= Δn,
i.e., the realization of the linear order {0 ≤ 1 ≤ · · · ≤ n} is the standard n-simplex.
Returning to the previous paragraph, note that the cubical one-manifold X([2]) is
a subcomplex of Δ2 = |[2]|; it sits inside as the spine of the 2-simplex. Note further
that there is a natural bijection between Seg([2]) and the set of simplices of the one
skeleton of Δ2. Indeed, this bijection is determined by considering the chains of
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length at most one in [2], i.e., the one skeleton of the order complex, sk1 ≤[2]
• . We

conclude that the inclusion

X([2]) = spineΔ2 ↪→ sk1 Δ
2

induces a projection map K0(Rep([2])Rk) ∼= Z
6 → Z

5 ∼= K0(pModVect(X([2]))).
This argument immediately generalizes to any finite linear order, and we have the
following.

Proposition 4.1.3. For each n ∈ N, the inclusion of the spine into the one skeleton
of the n-simplex induces a projection

K0(Rep([n])Rk) ∼= Z
n(n+1)

2 → Z
2n−1 ∼= K0(pModVect(X([n]))).

Similarly, we can analyze the case of a grid as well. Let G = [n1]× [n2]×· · ·× [nd]
be a finite grid equipped with the (categorical) product poset structure. Again, we
have a natural bijection Seg(G) ∼= sk1 ≤G

• . Next, note that strata of X(G) are
indexed by the Cartesian product of sets spine|[n1]| × spine|[n2]| × · · · × spine|[nd]|,
where X(G) is the d-dimensional cubical grid manifold associated to G. Now, for
each k and each edge or vertex α ∈ spine|[nk]|, there is a source s(α) ∈ G and a
target t(α) ∈ G. There is an injection of sets

ι : spine|[n1]| × spine|[n2]| × · · · × spine|[nd]| ↪→ Seg(G)

given by

ι(α1, α2, . . . , αd) = ((s(α1), s(α2), . . . , s(αd)), (t(α1), t(α2), . . . , t(αd))).

Geometrically, the map ι exhibits X(G) as a coarsening of a subcomplex of |G|. As
before we obtain a projection map at the level of K-groups.

Proposition 4.1.4. Let G be a finite grid. The map ι induces a projection

K0(Rep(G)Rk) → K0(pModVect(X(G)).

Thus, when P is of the form [n], or more generally is a finite grid, we define a pro-
jection map that allows for direct comparison between the group K0(Rep(P)Rk) of
Botnan, Oppermann, and Oudot, and the group K0(pModVect(X(P)) of the present
work.
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