CORRIGENDUM TO "INTERMEDIATE C*-ALGEBRAS OF CARTAN EMBEDDINGS"

JONATHAN H. BROWN, RUY EXEL, ADAM H. FULLER, DAVID R. PITTS, AND SARAH A. REZNIKOFF
(Communicated by Adrian Ioana)

The statement of [1, Theorem 4.2] is correct, however there is an error in the proof. The penultimate sentence of the proof claims that the compactly supported function $m_{h_{i}}(f)$ in $C_{c}(\Sigma, G)$, which vanishes off the open subgroupoid $H \subseteq G$, must lie in $C_{c}\left(\Sigma_{H}, H\right)$. If H were closed, this statement would be correct, but it is not always true in the context of [1]. We thank Pradyut Karamakar for helping us find the error.

We provide a correct proof of Theorem 4.2. Throughout we will use the notation and terminology established in 11.

Theorem (cf. [1, Theorem 4.2]). Let $\Sigma \rightarrow G$ be a twist with G an étale, Hausdorff, amenable groupoid. Let H be an open subgroupoid of G. Then A_{H} is equal to the canonical copy of $C_{r}^{*}\left(\Sigma_{H} ; H\right)$ within $C_{r}^{*}(\Sigma ; G)$.

Proof. By the same reasoning as presented in [1] there is a net of positive-type functions $h_{i} \in C_{c}(G)$ converging uniformly to 1 on compact subsets of G, with $\sup _{\gamma \in G}\left|h_{i}(\gamma)\right| \leq 1$. The multipliers

$$
\begin{aligned}
m_{h_{i}}: C_{c}(\Sigma ; G) & \rightarrow C_{c}(\Sigma ; G) \\
f & \mapsto h_{i} f
\end{aligned}
$$

extend to completely positive maps on $C_{r}^{*}(\Sigma ; G)$ such that for all $f \in C_{r}^{*}(\Sigma ; G)$,

- the net $\left(m_{h_{i}}(f)\right)_{i}$ converges to f in $C_{r}^{*}(\Sigma ; G)$; and
- $m_{h_{i}}(f) \in C_{c}(\Sigma ; G)$.

Take any $f \in A_{H}$. We wish to show that $f \in C_{r}^{*}\left(\Sigma_{H} ; H\right)$. As $\left(m_{h_{i}}(f)\right)_{i}$ converges to f in the reduced norm, it suffices to show that each $m_{h_{i}}(f)$ is in $C_{r}^{*}\left(\Sigma_{H} ; H\right)$. Further, as $m_{h_{i}}(f)$ lies in $C_{c}(\Sigma ; G)$ and vanishes off H, we may assume that f lies in $C_{c}(\Sigma ; G)$. Let K be a compact subset of G outside of which f vanishes. Since G is étale, we may find finitely many open bisections $U_{1}, U_{2}, \ldots, U_{n}$, whose union contains K. Let $\varphi_{1}, \ldots, \varphi_{n}$ be a partition of unity for K subordinate to the open cover U_{1}, \ldots, U_{n}. That is, choose $\varphi_{1}, \ldots, \varphi_{n}$ so that each φ_{i} is a continuous, nonnegative real-valued function on G, vanishing off U_{i}, and such that for each

[^0]$\gamma \in K$,
$$
\sum_{i=1}^{n} \varphi_{i}(\gamma)=1
$$

Hence

$$
f=\sum_{i=1}^{n} f \varphi_{i}
$$

where $\varphi_{i} f$ is the pointwise product. Therefore, it is enough to show that $\varphi_{i} f \in$ $C_{r}^{*}\left(\Sigma_{H} ; H\right)$ for each i. Note that $\varphi_{i} f$ vanishes off the bisection $U_{i} \cap H$. Thus we may assume without loss of generality that our originally chosen f vanishes outside some open bisection U, with $U \subseteq H$.

Set $V=s(U)$, and let $\left(u_{j}\right)_{j}$ be an approximate unit for $C_{0}(V)$ contained in $C_{c}(V)$. Observe that, for each j, we have $\left(f * u_{j}\right)(\gamma)=f(\gamma) u_{j}(s(\gamma))$. As s establishes a homeomorphism between U and V, it follows that

$$
\left\|f * u_{j}-f\right\|_{\infty}=\left\|\left(u_{j} \circ s\right) f-f\right\|_{\infty} \longrightarrow 0
$$

As U is a bisection it follows that $f * u_{j} \rightarrow f$ in reduced norm also, see e.g. [2, Theorem 11.1.11]. Noting that $f * u_{j}$ is compactly supported in $U \subseteq H$ it follows that

$$
f * u_{j} \in C_{c}\left(\Sigma_{H} ; H\right) \subseteq C_{r}^{*}\left(\Sigma_{H} ; H\right),
$$

and hence $f \in C_{r}^{*}\left(\Sigma_{H} ; H\right)$.

References

[1] Jonathan H. Brown, Ruy Exel, Adam H. Fuller, David R. Pitts, and Sarah A. Reznikoff, Intermediate C^{*}-algebras of Cartan embeddings, Proc. Amer. Math. Soc. Ser. B 8 (2021), 27-41, DOI 10.1090/bproc/66. MR4199728
[2] Aidan Sims, Gábor Szabó, and Dana Williams, Operator algebras and dynamics: groupoids, crossed products, and Rokhlin dimension, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser/Springer, Cham, [2020] © 2020. Lecture notes from the Advanced Course held at Centre de Recerca Matemàtica (CRM) Barcelona, March 13-17, 2017; Edited by Francesc Perera, DOI 10.1007/978-3-030-39713-5. MR4321941

Department of Mathematics, University of Dayton, 300 College Park Dayton, Ohio 45469-2316

Email address: jonathan.henry.brown@gmail.com
Departamento de Matemática, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil

Email address: r@exel.com.br
Department of Mathematics, Ohio University, Athens, Ohio 45701
Email address: fullera@ohio.edu
Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0130

Email address: dpitts2@math.unl.edu
Department of Mathematics, Virginia Tech, Blacksburg, Virginia 24061-1026
Email address: reznikoff@vt.edu

[^0]: Received by the editors February 3, 2023, and, in revised form, March 20, 2023.
 2020 Mathematics Subject Classification. Primary 46L05; Secondary 22A22, 46L55.
 The fourth and fifth authors were supported by the Simons Foundation (DRP \#316952, SAR \#36563). The second author was partially supported by CNPq Brazil. The first, third, fourth, and fifth authors were supported by the American Institute of Mathematics SQuaREs Program.

