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Abstract. For a complex Borel measure μ on the open unit disk, and for a
weighted Dirichlet space Hs with 0 < s < 1, we characterize the boundedness
of the measure induced Hankel type operator Hμ,s : Hs → Hs, extending
the results of Xiao [Bull. Austral. Math. Soc. 62 (2000), pp. 135–140] for the
classical Hardy space H2 = H1, and of Arcozzi, Rochberg, Sawyer, and Wick

[J. Lond. Math. Soc. (2) 83 (2011), pp. 1–18] for the classical Dirichlet space
D = H0. Our approach relies on some recent results about weak products of
complete Nevanlinna-Pick reproducing kernel Hilbert spaces. We also include
some related results on Hankel measures, Carleson measures, and Toeplitz type
operators on weighted Dirichlet spaces Hs, 0 < s < 1.

1. Introduction

Toeplitz and Hankel operators are two classes of widely researched operators,
acting on a variety of spaces of holomorphic functions. The exploration of their
operator theoretic properties and the connections to the behaviour of their inducing
symbols have provided a deeper understanding of operator theory, complex analysis,
measure theory, and other related areas of mathematics.

The goal of this paper is to determine the boundedness of measure induced
Hankel type operators acting on a specific range of weighted Dirichlet spaces, and
to provide some further related results on Hankel measures, Carleson measures,
and measure induced Toeplitz type operators. Along the way, we use some more
recent results on complete Nevanlinna-Pick reproducing kernel Hilbert spaces and
their weak products, thus contributing to the already existing connections between
these topics.

We start with some basic notation, a few definitions, and some known facts which
we need in the presentation of our results.

In what follows, the open unit disk in the complex plane is denoted by D and
Hol(D) stands for the space of holomorphic, complex valued functions on D.

For s ∈ R, and f(z) =
∑∞

n=0 anz
n in Hol(D), we say that f belongs to the

weighted Hardy space Hs if

Σ∞
n=0(n+ 1)1−s|an|2 < ∞.
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The class of spaces Hs contains the classical Hardy space H2 when s = 0, H2

is the Bergman space A2, and H0 is the Dirichlet space D. Each space Hs is a
separable (function) Hilbert space, thus also a reproducing kernel Hilbert space
(RKHS), with the set Hol(D) being dense in Hs. For s < 0, Hs is also a Banach
algebra contained in the disk algebra A(D).

We denote the normalized Lebesgue area measure on the unit disk by dA, and
for s > −1, we write dAs(z) = (1− |z|2)sdA(z).

When s > 1, the standard norm of the space Hs is given by:

‖f‖2s =

∫
D

|f(z)|2(1− |z|2)s−2dA(z) = ‖f‖2L2(dAs−2)
.

We will also refer to this range of spaces as weighted Bergman spaces.
Recall that for s = 1, the norm of f in the Hardy space H1 = H2 is

‖f‖21 = sup
0<r<1

∫
T

|f(rζ)|2dm(ζ),

where dm is the normalized Lebesgue length measure on the unit circle T.
When −1 < s < 1, we have that Hs ⊂ H1 = H2, and we use the norm:

‖f‖2s = |f(0)|2 +
∫
D

|f ′(z)|2(1− |z|2)sdA(z) = |f(0)|2 + ‖f ′‖2L2(dAs)
.

When s = 1 we can also use an equivalent norm for the Hardy space H2, namely

‖f‖21 ≈ |f(0)|2 +
∫
D

|f ′(z)|2(1− |z|2)dA(z).

Furthermore, since for any s > −1, and any f such that f(0) = 0, we have that
‖f‖L2(dAs) ≈ ‖f ′‖L2(dAs+2), f ∈ Hs if and only if f ′ ∈ Hs+2. Thus, for any s > −1,
and any f with f(0) = 0, we get an equivalent Hs norm, namely

‖f‖2s ≈
∫
D

|f ′(z)|2(1− |z|2)sdA(z) = ‖f ′‖2L2(dAs)
.

In this paper we are mostly concerned with the range 0 < s < 1, and we refer to
these Hs spaces as weighted Dirichlet spaces. Of course, as mentioned before, when
s = 0 we have that H0 is the classical Dirichlet space D.

A special feature of the weighted Hardy spaces Hs with 0 < s ≤ 1 is that these
spaces are RKHS with a complete Nevanlinna-Pick kernel (see [1]), and this will
be an essential property used in the proof of our results below. In such a case
we will also say that the space is a complete Nevanlinna-Pick (CNP) space. Note
that when s = 0, H0 = D is also a CNP space, but only when we use a suitable,
equivalent norm. The kernel formula for s = 0 below is with respect to that norm.
More specifically, the positive definite kernels Ks : D× D → C for the range of Hs

spaces with s ≥ 0 are given by:

Ks(w, z) =

⎧⎪⎨
⎪⎩

1
(1−zw)s , s > 0

1
zw log 1

1−zw , s = 0.

A complex Borel measure μ on D is a Carleson measure for a Hilbert space H
of functions on D if there exists C > 0 such that for all f in H∫

D

|f(z)|2d|μ|(z) ≤ C‖f‖2H,
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where |μ| is the total variation of μ. The smallest such constant C will be denoted
by ‖μ‖CM(H).

We will say that a complex Borel measure μ on D is a Hankel measure for H if
there exists C > 0 such that for all f in H∣∣∣∣

∫
D

f2(z)dμ(z)

∣∣∣∣ ≤ C‖f‖2H,

and we denote the smallest such constant C with ‖μ‖HM(H).
If a complex Borel measure μ on D is Carleson measure for H, then it is also a

Hankel measure for H. That is easy to see, since for f ∈ H,∣∣∣∣
∫
D

f2(z)dμ(z)

∣∣∣∣ ≤
∫
D

|f(z)|2d|μ|(z) ≤ ‖μ‖CM(H)‖f‖2H.

For a complex Borel measure μ on D, s > 0, and f ∈ Hol(D), a measure induced
Toeplitz type operator Tμ,s is defined by

Tμ,sf(z) =

∫
D

f(w)

(1− wz)s
dμ(w).

If μ is such that Tμ,sf ∈ Hs we have that for any g ∈ Hs,

〈Tμ,sf, g〉s =
∫
D

f(z)g(z)dμ(z).

The measure induced Toeplitz type operators on the Hs spaces were introduced
by Luecking in [11]. The paper contains more details on the claims we make here,
and much more. For example, when μ is a finite positive Borel measure on D,
the Toeplitz type operator Tμ,s is a positive operator, and so Tμ,s is bounded on
Hs if and only if μ is Carleson measure for Hs. When the measure μ is complex,
the Carleson measure condition is in general only a sufficient condition for the
boundedness of the corresponding Toeplitz type operator.

For s > 1, i.e. when Hs is a weighted Bergman space, the measure induced
Toeplitz type operators are generalizations of the classical Toeplitz operators.
Namely, if the complex measure μ is absolutely continuos with respect to the
weighted area Lebesgue measure, i.e. if dμ(z) = φ(z)dAs(z), for some φ ∈
L1(dAs(z)), the Toeplitz type operator Tμ,s is just the classical Topelitz opera-
tor Tφ,s on Hs. This is not anymore the case when s ≤ 1.

Similarly, for a complex Borel measure μ on D, s > 0 and f ∈ Hol(D), we define
the measure induced Hankel type operator Hμ,s by

Hμ,sf(z) =

∫
D

f(w)

(1− zw)s
dμ(w).

Note that Hμ,sf is a conjugate analytic function, i.e. the range of the Hankel type

operator acting on Hs will eventually be in Hs, where Hs = {f : f ∈ Hs} is a
Hilbert space with the inner product 〈f, g〉Hs

= 〈g, f〉s. It is not too hard to see

that if μ and f are such that Hμ,sf ∈ Hs, and g ∈ Hs, then

〈Hμ,sf, g〉Hs
=

∫
D

f(z)g(z)dμ(z).

The measure induced Hankel type operators on the Hs spaces were also introduced
by Luecking in [11], but with a slightly different definition, so that the operator’s
range is instead contained in Hol(D). They are generalizations of the classical
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(small) Hankel operators, and are also related to the so called Hankel forms. For
more details on this see [11], [14], [12], [2].

The connection between Hankel type operators and Hankel measures was es-
tablished for the Hardy space H2 = H1, and for the weighted Bergman spaces
Hs, s > 1, by Xiao in [16] and [17], correspondingly. Hankel measures for H1 were
also explored further in the more recent work [6]. The Hankel measures for the
Dirichlet space D = H0 were classified in [4], by using explicitlly the connections
to the weak product D �D, and to their further results on its dual.

2. Main results

Before presenting our main results, we need to define two more notions: weak
products of RKHS, and the special Banach spaces that represent their duals. We
use [12] and [2] as sources for these topics. The interested reader can find more
details and a further list of references there.

For H a RKHS of holomorphic functions on D, define the weak product of H as

H�H =

{
h =

∞∑
i=1

figi : fi, gi ∈ H,
∞∑
i=1

‖fi‖‖gi‖ < ∞
}
,

and

‖h‖H�H = inf

{ ∞∑
i=1

‖fi‖‖gi‖ : h =

∞∑
i=1

figi

}
.

The space H �H is a Banach space of holomorphic functions on D such that the
point evaluations are continuous. For example, it is well known that H2�H2 = H1,
and that A2 �A2 = A1.

Weak products, and in particular their duals, are closely related to bilinear
forms and Hankel operators. Namely, when Hol(D) is dense in H, one can define
a set X (H) ⊂ H, of symbols of Hankel operators, characterized via densely defined
bilinear forms, which can be extended boundedly toH⊕H. In many cases, including
the ones that we are interested in, one can identify X (H) with the dual of H�H.

Motivated by these examples, it is natural to look more closely at the weak
products of Hs spaces and their duals, and to explore their connections not only to
classical Hankel operators, but also to measure induced Hankel type operators on
the Hs spaces. For this particular class of Hilbert spaces, the space X (Hs) can be
described via special type of Carleson measures.

For s ≥ 0 and f in Hs, define the positive finite Borel measure μf,s by

dμf,s(z) = |f ′(z)|2dAs(z),

and let Xs be a subset of Hs of functions that induce Carleson measures for Hs,
namely

Xs = {f ∈ Hs : ‖μf,s‖CM(Hs) < ∞}.
It was shown in [14] and [12] that the Hankel operator Hb,s with a holomorphic

symbol b, densely defined on Hs for f ∈ Hol(D) and g ∈ Hs by

〈Hb,sf, g〉Hs
= 〈g, fb〉s,

can be boundedly extended to Hs if and only if b ∈ Xs. Namely, Xs is exactly the
space X (Hs) described above, and furthermore, (Hs �Hs)

∗ = Xs.
For example, it is well known that the dual of H1 is BMOA, the space of holo-

morphic functions of bounded mean oscillation, and the dual of A1 is the Bloch
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space B, i.e. X1 = BMOA, and X2 = B. Correspondingly, a Hankel operator
with holomorphic symbol b is bounded on H2 if and only if b ∈ BMOA, and it is
bounded on A2 if and only if b ∈ B. Actually, it turns out that Xs = B, for all
s > 1. For a direct proof of the last claim, and for other equivalent definitions of
the spaces BMOA and B, see also [18].

In the result that follows we determine the boundedness of measure induced
Hankel type operators on the weighted Dirichlet spaces, and give equivalent char-
acterizations of Hankel measures, extending the results from [16] for the Hardy
space H2 = H1, and from [4] for the Dirichlet space D = H0. The core of the
proof relies on the properties of weak products of normalized CNP spaces and their
duals, developed in [4], [12], [10], [9], [2].

Theorem 1. Let μ be a complex Borel measure on D, and let 0 < s < 1. Then the
following are equivalent:

(i) The Hankel type operator Hμ,s is bounded on Hs.
(ii) ∃C > 0 such that

∣∣ ∫
D
f(z)g(z)dμ(z)

∣∣ ≤ C‖f‖s‖g‖s, ∀f, g ∈ Hs.
(iii) μ is a Hankel measure for Hs.
(iv) ∃C > 0 such that

∣∣ ∫
D
h(z)dμ(z)

∣∣ ≤ C‖h‖Hs�Hs
, ∀h ∈ Hs �Hs.

(v) The function bμ,s = Hμ,s�, where � denotes the constant function 1, is in
Xs.

Proof. The equivalence of (i) and (ii) is obvious, and follows by the definition of
boundedness of an operator on a general Hilbert space.

Clearly, (ii) implies (iii) by taking g = f . To prove that (iii) implies (ii), we use
an idea from [4] to represent fg for f, g ∈ Hs as a difference of squares,

fg =
1

4

[
(f + g)2 − (f − g)2

]
.

If one of f or g is zero, the inequality in (ii) turns into 0 = 0. If both f and g
are nonzero, we start with the case when ‖f‖s = ‖g‖s = 1. Then∣∣∣

∫
D

f(z)g(z)dμ(z)
∣∣∣ = 1

4

∣∣∣
∫
D

[
(f + g)2 − (f − g)2

]
dμ(z)

∣∣∣
≤ 1

4

[∣∣∣
∫
D

(f + g)2dμ(z)
∣∣∣+

∣∣∣
∫
D

(f − g)2 dμ(z)
∣∣∣
]

≤ 1

4
‖μ‖HM(Hs)

(
‖f + g‖2s + ‖f − g‖2s

)

=
1

2
‖μ‖HM(Hs)

(
‖f‖2s + ‖g‖2s

)
= ‖μ‖HM(Hs),

where the second inequality follows by using that μ is a Hankel measure, and the
first equal sign in the last line follows by the parallelogram law.

For general nonzero f, g ∈ Hs, replacing f by f
‖f‖s

, and g by g
‖g‖s

in the equations

above, we get that ∣∣∣
∫
D

f(z)g(z)dμ(z)
∣∣∣ ≤ ‖μ‖HM(Hs)‖f‖s‖g‖s,

which shows that (iii) implies (ii).
That (iv) implies (ii) follows easily, since for f, g in Hs, fg ∈ Hs�Hs, and since

by the definition of the Hs �Hs norm,

‖fg‖Hs�Hs
≤ ‖f‖Hs

‖g‖Hs
.
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To show that (ii) implies (iv) we use recent results on weak products of particular
CNP spaces of holomorphic function, sometimes referred to as “first order weighted
Besov spaces”. Namely, since for 0 < s < 1 each RKHS Hs is a normalized
CNP space [1]. Hence, by result in [9], each Hs has the column-raw property
with constant 1. Thus, by [10, Theorem 1.3], for each h ∈ Hs � Hs, we can
find f and g in Hs, and C > 0 independent of f and g, such that h = fg and
‖f‖Hs

‖g‖Hs
≤ C‖h‖Hs�Hs

, and so (ii) implies (iv).
Before we show the equivalence of (iv) and (v), recall that a complex Borel

measure μ on D is by definition a finite measure, i.e. |μ(D)| < ∞. Applying the
Hankel operator Hμ,s to the constant function � gives

Hμ,s�(w) = 〈Hμ,s�,Kw,s〉Hs
=

∫
D

Ks(z, w)dμ(z).

Since for 0 < s < 1, Ks(z, 0) = �, we get that Hμ,s�(0) = ∫
D
dμ(z) = μ(D). We

will use this fact in one of the equations below.
The main idea in the proof of the equivalence of (iv) and (v) relies on the char-

acterization of the dual of the weak product space Hs �Hs. By the results in [12]
on the so called weighted Besov spaces with admmisable radial weights, or by using
the more recent general results in [2] on first order weighted Besov spaces, we know
that

(Hs �Hs)
∗ = Xs.

More specifically, this was achieved by showing that for f ∈ Xs and h ∈ Hs, the
liner map Lf (h) = 〈h, f〉s extends boundedly to Hs �Hs.

On the other hand, if 0 < s < 1, μ is a complex Borel measure on D, and h ∈ Hs,
we have that∫

D

h(z)dμ(z) =

∫
D

〈h,Kz,s〉sdμ(z)

=

∫
D

(
h(0)Kz,s(0) +

∫
D

h′(w)
∂

∂w
Kz,s(w)dAs(w)

)
dμ(z)

= h(0)

∫
D

dμ(z) +

∫
D

h′(w)

(∫
D

∂

∂w
Kz,s(w)dμ(z)

)
dAs(w)

= h(0)μ(D) +

∫
D

h′(w)

(
∂

∂w

∫
D

Kw,s(z)dμ(z)

)
dAs(w)

= h(0)Hμ,s�(0) +
∫
D

h′(w)
∂

∂w

(
Hμ,s�(w)

)
dAs(w)

= h(0)bμ,s(0) +

∫
D

h′(w)b′μ,s(w)dAs(w)

= 〈h, bμ,s〉s.

Thus, (iv) is true if and only if the linear map Lμ,s defined on Hs by

Lμ,s(h) =

∫
D

h(z)dμ(z) = 〈h, bμ,s〉s

can be extended boundedly to Hs�Hs. But by [12], this is equivalent to bμ,s ∈ Xs,
and so we have that (iv) is equivalent to (v). �
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Another important subset of a function Hilbert spaces H is its set of multipliers,
i.e. the multiplier algebra Mult(H) = {φ ∈ H : φf ∈ H, ∀f ∈ H}. For the Hs

spaces with s ≥ 0, Stegenga’s results in [15] determine that

Mult(Hs) = H∞ ∩ Xs.

Thus, any b ∈ Mult(Hs) generates a bounded Hankel operator Hb,s on Hs, and
a bounded Toeplitz operator Tb,s, which in this case is often also referred to as a
multiplication operator. It is well known that for s ≥ 1, Mult(Hs) = H∞. This
can also be seen by noting that H∞ ⊂ X1 = BMOA ⊂ X2 = B. We also have that

Hol(D) ⊂ Mult(Hs) ⊂ Xs ⊂ Hs,

and so Mult(Hs) is dense in Hs, which plays an important role in many results on
RKHS, and in particular on CNP spaces.

The next theorem shows that for measure induced Hankel and Toeplitz operators,
the boundedness of the special “determining” function bμ,s implies the boundedness
of the corresponding operators, and furthermore implies that bμ,s ∈ Mult(Hs). It
is known that a similar situation occurs also for special measures supported on the
unit circle T, and we will discuss this further in Section 3.

Theorem 2. Let 0 < s < 1, and let μ be a finite positive Borel measure on D. If the
holomorphic function bμ,s = Hμ,s� = Tμ,s� is bounded on D, then the Toeplitz type
operator Tμ,s and the Hankel type operator Hμ,s are bounded on Hs. Furthermore,
bμ,s is in the multiplier algebra for Hs.

Proof. The kernel function Ks is conjugate symmetric, and when 0 < s < 1, ReKs

is comparable to |Ks|. Thus, by a result from [3, Lemma 24], a finite positive Borel
measure μ is Carleson measure for Hs if and only if

sup
‖g‖L2(dμ)≤1

∫
D

∫
D

|Ks(z, w)g(z)g(w)|dμ(z)dμ(w) < ∞.

Using that |Ks(z, w)| = |Ks(w, z)| and the Cauchy–Schwatrz inequality, it is
easy to see that the condition

sup
z∈D

∫
D

|Ks(z, w)|dμ(w) < ∞

implies the finiteness of the supremum above. Moreover, since

bμ,s(z) =

∫
D

Ks(z, w)dμ(w),

and since Ks is conjugate symmetric and ReKs is comparable to |Ks|, the bound-
edness of bμ,s(z) on D is equivalent to the boundedness of

∫
D
|Ks(z, w)|dμ(w) on D

as a function in z. Thus, the assumption that bμ,s is bounded implies that μ is a
Carleson measure for Hs, and so the Toeplitz type operator Tμ,s is bounded on Hs.

As noted before, if the measure μ is Carleson measure for Hs, it is also a Hankel
mesure for Hs. Thus, using Theorem 1, we have that the Hankel type operator
Hμ,s is bounded from Hs into Hs.

Furthermore, Theorem 1, part (iv), says that then bμ,s ∈ Xs. By the result from
[15] for the multiplier algebra ofHs, 0 < s < 1, we know thatMult(Hs) = H∞∩Xs.
Hence, using the assumption that bμ,s ∈ H∞, we get that bμ,s ∈ Mult(Hs). �
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In the last part of this section we consider a special class of positive finite Borel
measures with support in the interval [0, 1). They are sometimes also referred to
as radial measures. Their behaviour is much more regular than for general positive
measures, in particular when we are interested in Hankel and Carleson measures
for the Hs spaces. For example, as we will see in Lemma 1, a measure μ on [0, 1)
is a Carleson measure for Hs if and only if it is an s-Carleson measure. We define
s-Carleson measures next.

Let I ⊂ T be an arc with a normalized arc length |I|, and let

S(I) = {z ∈ D : 1− |I| < |z| < 1, z/|z| ∈ I}
be the Carleson box determined by I. For s > 0 and for a finite positive Borel
measure μ on D, we say that μ is an s-Carleson measure if there exists a positive
constant C, such that for all I ⊂ T,

μ(S(I)) ≤ C|I|s.
It is well known that when s ≥ 1, μ is an s-Carleson measure if and only if μ is
a Carleson measure for Hs. When 0 < s < 1, then μ is Carleson measure for Hs

implies that μ is an s-Carleson measure, but the converse is not true in general.
The geometric condition that characterizes Carleson measures for the Hs spaces
when 0 < s < 1 involves Bessel capacities, and is much more complicated than the
condition characterizing the s-Carleson measures. For more details on this see [15].

When μ is a positive finite Borel measure on [0, 1), the results in [13, Lemma
3] provide a simpler characterization of such Carleson measures for Hs, even when
0 < s < 1. This characterization can be used to show the equivalence between such
Carleson measures and s-Carleson measures. We state the details in Lemma 1.

Lemma 1 ([15], [13]). Let s > 0 and let μ be a positive finite Borel measure on
[0, 1). Then the following are equivalent:

(i) μ is an s-Carleson measure.
(ii) μ([1− t, 1)) = O(ts) for all 0 < t < 1.
(iii) μ is a Carleson measure for Hs.

Proof. That (ii) is equivalent to (iii) is Lemma 3 in [13], proven by using the char-
acterization of Carleson measures for Hs in [15].

The equivalence of (i) and (ii) follows from the observation that for any arc
I ⊂ T, either 1 ∈ I and then S(I) ∩ [0, 1) = [1− t, 1), where |I| = t and 0 < t < 1,
or 1 /∈ I and then S(I) ∩ [0, 1) = ∅. �

For the proof of the next result we will need to mention yet another type of
spaces related to Carleson measures, namely the so-called Qs spaces. These spaces
are related to s-Carleson measures, the same way the Xs spaces are related to
Carleson measures for Hs spaces. For s > 0, f ∈ Hol(D), and the corresponding
positive Borel measure dμf,s as defined previously,

Qs = {f ∈ Hol(D) : μf,s is an s-Carleson measure}.
As mentioned before for general finite positive Borel measures, every Carleson

measures for Hs is an s-Carleson measure. Thus, Xs ⊂ Qs for all s > 0. For s ≥ 1,
Carleson measures for Hs are also s-Carleson measure, and so Xs = Qs, namely
X1 = BMOA = Q1, and for s > 1, Xs = B = Qs. For more details about the Qs

spaces, see [18].
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We also recall that for a finite positive Borel measure μ with support in [0, 1),
and each n ∈ Z+, the n-th moment of μ is defined by

μ[n] =

∫ 1

0

tndμ(t).

Naturally, the properties of the moment sequence are closely related to the prop-
erties of the measure, and our next result shows how that relation plays out in our
context. The equivalence of (ii) and (iii) below is a combination of Lemma 1 and a
result from [5, Theorem 2.1].

Theorem 3. Let 0 < s < 1 and let μ be a positive finite Borel measure on [0, 1).
Then the following are equivalent:

(i) μ is a Hankel measure for Hs.
(ii) μ is a Carleson measure for Hs.
(iii) μ[n] = O( 1

ns ).

Proof. It was already mentioned in Section 1 that (ii) implies (i) in general, i.e. for
any complex Borel measure μ on D.

Next we show that if μ is positive finite Borel measure supported on [0, 1), then
(i) implies (iii). We know from Theorem 1 that μ is a Hankel measure for Hs if and
only if the function bμ,s = Hμ,s� is in Xs. Using the binomial expansion formula

1

(1− x)s
=

∞∑
n=0

Γ(n+ s)

Γ(s)n!
xn,

we have that

bμ,s(z) =

∫ 1

0

1

(1− tz)s
dμ(t) =

∞∑
n=0

Γ(n+ s)

Γ(s)n!

(∫ 1

0

tndμ(t)

)
zn

=

∞∑
n=0

Γ(n+ s)

Γ(s)n!
μ[n]zn =

∞∑
n=0

anz
n.

The Taylor coefficients an of the holomorphic function bμ,s are non-negative, and
it is easy to see that the sequence (an) is a decreasing. In that case, since bμ,s ∈
Xs ⊂ Qs, we can use Corolarry 3.3.1 in [18] which says that bμ,s ∈ Qs if and only if
an = O( 1n ). By Stirling’s formula for the gamma function, an ≈ 1

n1−sμ[n], and so

μ[n] = O( 1
ns ), which proves that (ii) implies (iii).

To prove (iii) implies (ii), we first use a result from [5, Theorem 2.1] saying that
if μ is a positive finite Borel measure on [0, 1) and s > 0, then μ is an s-Carleson
measure if and only if μ[n] = O( 1

ns ). But then by Lemma 1, μ is also a Carleson
measure for Hs.

Thus, we have shown that (ii) ⇒ (i) ⇒ (iii) ⇒ (ii), and we are done with the
proof. �

As a corollary to Theorem 3, we also get an interesting T1 type boundedness
characterization of the corresponding special class of Toeplitz operators.

Corollary 1. Let 0 < s < 1 and let μ be a positive finite Borel measure on [0, 1).
Then the Toeplitz type operator Tμ,s is bounded on Hs if and only if Tμ,s� is in Xs.

Proof. Since μ is a finite positive Borel measure, Tμ,s is bounded on Hs if and
only if μ is a Carleson measure for Hs. But since μ is also a measure on [0, 1), by
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Theorem 2, μ is a Carleson measure for Hs if and only if μ is a Hankel measure
for Hs. By Theorem 1, this is equivalent to bμ,s = Hμ,s� is in Xs. It is easy to see

that when μ is a measure on [0, 1), we also have that Hμ,s� = Tμ,s�, and so the
claim follows. �
2.1. Further remarks.

Remark 1. Our first remark is about the boundedness of the determining function
bμ,s. Recall that, for example, on the Hardy space H2 = H1, the classical Toeplitz
operator Tφ is bounded if and only if the symbol φ is bounded. As we can see from

Theorem 2, for 0 < s < 1, and a positive Borel measure μ on D, if bμ,s = Hμ,s� =
Tμ,s� is bounded on D, then the Toeplitz type operator Tμ,s and the Hankel type
operator Hμ,s are bounded on Hs.

Even though Theorem 1 and Corollary 1 say that the operator boundedness
is equivalent to bμ,s ∈ Xs, one may wonder if the boundedness of bμ,s is also a
necessary condition in case of some special measures, such as the measures on
[0, 1). The following example provides a negative answer to this question. The idea
for the example comes from a similar example in [8], given while considering the
one-box condition for Carleson measures on the classical Dirichlet space.

Example 1. Let 0 < s < 1 and let μ be the finite positive Borel measure on [0, 1)
defined by μ([1− t, 1)) = ts, for 0 < t < 1. By Lemma 1, μ is a Carleson measure
for Hs, and so the operators Tμ,s and Hμ,s are bounded on Hs.

We will show that the determining function bμ,s = Hμ,s� = Tμ,s� is not bounded,
by showing that for w ∈ (0, 1), bμ,s(w) → ∞, as w → 1−. Using the Fubini’s
theorem and integration by parts, we have that

bμ,s(w) =

∫ 1

0

1

(1− wt)s
dμ(t)

≥
∫ 1

1−w

μ({t ∈ [0, 1) : 1− wt ≤ x}) s

x1+s
dx

=
s

ws

∫ 1

1−w

(x− 1 + w)s

x1+s
dx,

and it is easy to see that then bμ,s(w) goes to infinity, as w approaches 1−. ♦
Remark 2. When s ≤ 1, each space Hs is contained in H2, and so the functions in
Hs have radial limits almost everywhere on T. Hence, when looking at the measure
induced operators Tμ,s and Hμ,s on Hs, we can also consider measures with support

on D, and in particular, measures with support in T.
We recall some potential theory notions for a finite positive Borel measure μ

with support in T. Namely, for 0 < s < 1 the function

bμ,s(z) =

∫
T

1

(1− ζz)s
dμ(ζ)

is called the holomorphic Hs-potential of the measure μ, and the Hs-energy of μ is
defined as

ε(μ,Hs) =

∫
T

∫
T

1

|1− ζξ|s
dμ(ζ)dμ(ξ).

Note that since bμ,s = Hμ,s� = Tμ,s�, a necessary condition for the boundedness
of the operators Tμ,s and Hμ,s is that bμ,s ∈ Hs.
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We want to point out some interesting related ideas and results from a recent
paper [7]. For example, by Proposition 3.2 in [7], for a finite positive Borel measure
μ on T, bμ,s ∈ Hs if and only if the measure’sHs energy ε(μ,Hs) < ∞, in which case
‖bμ,s‖s ≈ ε(μ,Hs). Note that for 0 < s < 1, the s-Bessel capacities of (compact)
subsets of T, used in the Stegenga’s geometric description of Carleson measures
for Hs in [15], are equivalent to the so called Hs capacities defined via (finite) Hs-
energies of positive Borel measures on T (see [7] for the definitions, and for more
details). These connections point to interesting possible further exploration of
Carleson measures with support in T, and Topelitz type operators on the weighted
Dirichlet spaces.

Lastly, we want to mention [7, Proposition 3.6], stating that for a finite positive
Borel measure μ on T, if the holomorphic potential bμ,s is bounded, then bμ,s ∈
Mult(Hs). Recall that in Theorem 2 we have shown that this also holds true for
bμ,s with μ a finite positive Borel measure on D. ♦

Remark 3. The last comment we want to make in the case of measures μ with
support in T is about the Fourier coefficients of such measures, and their relations
to the measure induced Toeplitz and Hankel type operators. Note that the Fourier
coefficients play here a similar role as the sequence of moments, in the case when
μ is supported on the interval [0, 1).

For a complex Borel measure μ with support in T, and for n ∈ Z, the n-th
Fourier coefficient μ̂(n) of μ is defined by

μ̂(n) =

∫
T

ζndμ(ζ).

Hence, for s > 0 we get the corresponding series expansion of the function bμ,s:

bμ,s(z) =

∫
T

1

(1− ζz)s
dμ(ζ) =

∞∑
n=0

Γ(n+ s)

Γ(s)n!

(∫
T

ζndμ(ζ)

)
zn

=

∞∑
n=0

Γ(n+ s)

Γ(s)n!
μ̂(n)zn ≈

∞∑
n=0

1

n1−s
μ̂(n)zn.

Since bμ,s ∈ Hs is a necessary condition for the boundedness of the operators Tμ,s

and Hμ,s on Hs, we must have that
∑∞

n=0
|μ̂(n)|2
n1−s < ∞.

Note that when s = 1, i.e. for the Hardy space H2 = H1, the condition becomes∑∞
n=0 |μ̂(n)|2 < ∞. It is well known that, by the F. and M. Riesz theorem, this

implies that μ is absolutely continuous with respect to the Lebesgue measure dm,
i.e dμ = φdm, with φ ∈ L1(T). Thus, the Toeplitz type operator Tμ,1 is the classical
Toeplitz operator Tφ, which is bounded if and only if φ ∈ L∞(T). Note that in that
case, bμ,1 must also be bounded.

We end the remark with the following question: For 0 < s < 1, and for a complex
Borel measure μ with support in T, is the boundedness of bμ,s a necessary condition
for the boundedness of the Toeplitz type operator Tμ,s on Hs? ♦
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