
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY, SERIES B
Volume 10, Pages 48–85 (January 23, 2023)
https://doi.org/10.1090/btran/134

LAWVERE-TIERNEY TOPOLOGIES FOR COMPUTABILITY

THEORISTS

TAKAYUKI KIHARA

Abstract. In this article, we study the lattice of Lawvere-Tierney topologies
on Hyland’s effective topos. For this purpose, we introduce a new computability-
theoretic reducibility notion, which is a common extension of the notions of
Turing reducibility and generalized Weihrauch reducibility. Based on the work
by Lee and van Oosten [Ann. Pure Appl. Logic 164 (2013), pp. 866-883], we
utilize this reducibility notion for providing a concrete description of the lattice
of the Lawvere-Tierney topologies on the effective topos. As an application, we
solve several open problems proposed by Lee and van Oosten. For instance, we
show that there exists no minimal Lawvere-Tierney topology which is strictly
above the identity topology on the effective topos.

1. Introduction

1.1. Summary. Our goal in this article is to accomplish a detailed analysis of the
entire structure of “intermediate worlds” between “the world of computable math-
ematics” and “the world of set-theoretic mathematics.” In [22], Hyland discovered
the effective topos Eff , and proposed it as the world of computable mathematics.
In topos theory, there is a notion called a Lawvere-Tierney topology (also known
as a local operator or a geometric modality), and any topology j on a topos E
yields a new subtopos Ej ↪→ E (see e.g. [29]). Indeed, Lawvere-Tierney topologies
on E are in one-to-one correspondence with subtoposes of E . The least topology is
the identity topology Id that does not cause any change to the base topos. The
largest topology is the indiscrete topology that contracts all truth-values to a sin-
gle value, and the resulting degenerated topos may be thought of as the world of
inconsistent mathematics. In the effective topos, the next largest topology is the
double negation ¬¬. The new topos Eff¬¬ created from ¬¬ is exactly the world
of set-theoretic mathematics; that is, Eff¬¬ � Set. What this suggests is that an-
alyzing the intermediate topologies between Id and ¬¬ on the effective topos may
correspond to exploring the intermediate worlds between computable mathematics
and set-theoretic mathematics.

Under this perspective, a topology on the effective topos is a kind of data that
indicate how much non-computability to add to the world. In other words, a
topology plays the same role as an oracle. Indeed, Hyland [22] noticed that each
Turing degree d has a corresponding topology jd on the effective topos, which
yields the world of d-relatively computable mathematics. However, this does not
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mean that we have exhausted all the topologies, and of course, there may be other
topologies besides them. For instance, instead of a subset of N or a total function
on N, one can use a partial function as an oracle. Not only that, but even a
partial multi-valued function can be used as an oracle, and has a corresponding
topology on the effective topos as we observe in this article. As another example,
Pitts [38] found an intermediate topology that is not bounded by any Turing degree
topology. This topology has properties that are far from any of the other topologies
mentioned above. Remarkably, Lee-van Oosten [27] gave a concrete presentation of
all topologies on the effective topos.

The first step of our work in this article is to capture the presentation of Lee-
van Oosten [27] within the framework of generalized Weihrauch reducibility [21].
However, generalized Weihrauch reducibility (which involves a perfect information
game) itself is insufficient to deal with all topologies, so we introduce an imperfect
information game that incorporates some sort of nonuniform computation with
advices. Coincidentally, it turns out that our notion is heavily related to another
notion called extended Weihrauch reducibility, which is introduced in Bauer [2]. By
viewing topologies in this way, it is possible, for example, to position the study of
the structure of Lawvere-Tierney topologies on (equivalently, that of subtoposes of)
a relative realizability topos as an extension of the Weihrauch-style analogue [6] of
reverse mathematics (note, however, that this is by no means an extension of the
standard reverse mathematics [12, 13, 43] at all; reverse mathematics has more to
do with the internal logic, and more finitary aspects). By bringing the arguments
on topologies/subtoposes into pure computability theory in this way, we solve some
problems proposed in [26, 27].

While the notion of Lawvere-Tierney topology is originally studied in an abstract
context, we develop our theory in the most intuitive and elementary way possible.
We believe that it is important for the development of a theory to present it in a way
that reduces prior knowledge of the theory as much as possible. For this purpose,
we maintain appropriate notations and keep the discussion moving forward with
concrete ideas. In Section 2, we introduce certain kinds of computable reduction
games with imperfect information. By using these games, we also define a notion
of computability-theoretic reduction for certain extended functions. In Section
3, we see that this reducibility notion characterizes the notion of Lawvere-Tierney
topology on the effective topos, based on the idea in Lee-van Oosten [27]. In Section
4, by using the characterization, we solve some problems on topologies proposed
in [26, 27]. For instance, we show that there exists no minimal Lawvere-Tierney
topology which is strictly above the identity topology on the effective topos. Thus,
in a certain sense, there is no world of non-computable mathematics which is closest
to computable mathematics. In Section 5, we discuss a few other topologies, which
have not been studied in the past. One corresponds to the world of computable
mathematics with error probability ε, and the other to computable mathematics
with error density ε (in the sense of lower asymptotic density).

1.2. Notations. In this article, we assume that the reader is familiar with elemen-
tary facts about computability theory. For the basics of computability theory, we
refer the reader to [11, 34, 40, 44]. We use the following notations on strings: Let
N

<N be the set of all finite strings. For finite strings σ, τ ∈ N
<N, we write σ � τ

if σ is an initial segment of τ , and write σ ≺ τ if σ is a proper initial segment of
τ . We also use the same notation even if τ is an infinite string, i.e., τ ∈ N

N. For
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σ ∈ N
<N ∪ N

N and � ∈ N, define σ � � as the initial segment of σ of length �. For
finite strings σ, τ ∈ N

<N, let σ�τ be the concatenation of σ and τ . If τ is a string
of length 1, i.e., τ is of the form 〈n〉 for some n ∈ N, then σ�〈n〉 is abbreviated to
σ�n. Similarly, 〈n〉�τ is abbreviated as n�τ .

A tree is a set T ⊆ N
<N which is downward closed under �. An element of

a tree T is often called a node. The �-least node (i.e., the empty string) of T is
called the root, and a �-maximal node of T is called a leaf. We always assume that
N

N is equipped with the standard Baire topology, that is, the countable product of
the discrete topology on N. For σ ∈ N

<N, let [σ] be the clopen set generated by
σ, i.e., [σ] = {x ∈ N

N : σ ≺ x}. For e ∈ N, let ϕe be the eth partial computable
function on N, and ϕα

e be the eth partial computable function relative to an oracle
α. For a partial function ϕ, we write ϕ(n) ↓ if ϕ(n) is defined, and ϕ(n) ↑ if ϕ(n)
is undefined.

As usual, for n ∈ N, we often use n to denote {0, 1, . . . , n − 1}. We denote a
partial function from X to Y as f :⊆ X → Y . We use the symbol P(Y ) to denote
the power set of a set Y . In this article, a partial function f :⊆ X → P(Y ) is often
called a partial multi-valued function (abbreviated as a multifunction), and written
as f :⊆ X ⇒ Y . In computable mathematics, we often view a ∀∃-formula S as a
partial multifunction. Informally speaking, a (possibly false) statement S ≡ ∀x ∈
X [Q(x) → ∃yP (x, y)] is transformed into a partial multifunction fS : ⊆ X ⇒ Y
such that dom(fS) = {x ∈ X : Q(x)} and fS(x) = {y ∈ Y : P (x, y)}. Here,
we consider formulas as partial multifunctions rather than relations in order to
distinguish a hardest instance fS(x) = ∅ (corresponding to a false sentence) and
an easiest instance x ∈ X \ dom(fS) (corresponding to a vacuous truth). In this
sense, a relation does not correspond to a partial multifunction. More to the point,
even if we exclude the hardest instances, the category of partial multifunctions and
that of relations have different morphism compositions, so they have very different
structures; see [36].

2. Generalized Turing reducibility

2.1. Perfect information game. The notion of relative computation (or Turing
reducibility) has been first introduced by Turing in 1939. From that time to the
present, its structure has been investigated to an extremely deep level. As a result,
a vast amount of research results are known (see e.g. [14, 20, 44] for the tip of the
iceberg). Traditionally, Turing reducibility is usually considered for sets A ⊆ N or
total functions f : N→ N. However, a slight extension of this, the notion of Turing
reducibility for partial functions f : ⊆ N → N, has also long been considered; see
[11, Section 11.3]. Indeed, the concept of relative computability can be extended to
even larger classes of functions. As one such class, we first deal with partial multi-
valued functions (abbreviated as multifunctions) on N. In recent years, the notion of
partial multifunction has received a great deal of attention in computability theory
and related fields; see e.g. [6].

Relative Computation Model. Let us introduce the notion of computation relative
to a partial multifunction on N. Our computation model is the same as that of
an ordinary programming language, except that a program P can contain a special
instruction of the form b := [?](a). The computation model accepts a number n
and a partial multifunction f as inputs. The instruction b := [?](a) assigns one of
the values of f(a) to the variable b. So far, it is exactly the same as an oracle Turing
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machine. However, if f(a) is undefined, the computation will never terminate.
Moreover, if f is multi-valued, i.e., if there are more than one possible values for
the output of f(a), this generally produces a nondeterministic computation.

We write Pf for the partial multifunction defined by the above relative compu-
tation. To be precise, for an input n, if the program P terminates along any path of
nondeterministic computation, we declare that n is contained in the domain of Pf ,
i.e., Pf (n) ↓. Furthermore, if the program P along some path of nondeterministic
computation returns m, then we declare m ∈ Pf (n).

Definition 2.1. We say that g is Turing reducible to f (written g ≤T f) if there
exists a program P such that Pf refines g. Here, for partial multifunctions g and
h, we say that h refines g if, for any n, n ∈ dom(g) implies n ∈ dom(h) and
h(n) ⊆ g(n).

This notion coincides with ordinary Turing reducibility when restricted to total
single-valued functions. One may think that this programming definition is too
vague, so we give a mathematically rigorous description of this. Formally, the
process of Turing reduction for partial multifunctions can also be described as
a perfect information two-player game. However, since the players’ abilities are
asymmetric, we will describe it as a game between Merlin and Arthur.

Definition 2.2 (Perfect information game). For partial multifunctions f, g :⊆ N ⇒
N, let us consider the following perfect information two-player game G(f, g):

Merlin : x0 x1 x2 . . .
Arthur : y0 y1 y2 . . .

Game rules: Each player chooses a natural number at each round. Here, Merlin
and Arthur need to obey the following rules.

• First, Merlin chooses x0 ∈ dom(f).
• At the nth round, Arthur reacts with yn = 〈j, un〉.

– The choice j = 0 indicates that Arthur makes a new query un to g.
In this case, we require un ∈ dom(g).

– The choice j = 1 indicates that Arthur declares termination of the
game with un.

• At the (n+ 1)st round, Merlin responds to the query made by Arthur at
the previous stage. This means that xn+1 ∈ g(un).

Then, Arthur wins the game G(f, g) if either Merlin violates the rule before
Arthur violates the rule or Arthur obeys the rule and declares termination with
un ∈ f(x0).

Strategies. Hereafter, we require that Arthur’s moves are chosen in a computable
manner. In other words, Arthur’s strategy is a code τ of a partial computable
function hτ : ⊆ N

<N → N. On the other hand, Merlin’s strategy is any partial
function σ :⊆ N

<N → N (which is not necessarily computable). Arthur’s strategy
τ is winning if, as long as Arthur follows the strategy τ , Arthur wins the game, no
matter what Merlin’s strategy σ is.

Observation 2.3. Let f and g be partial multifunctions. Then, f is Turing re-
ducible to g if and only if Arthur has a computable winning strategy for G(f, g).
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Remark 2.4. A similar notion for partial multifunctions on N
N has been exten-

sively studied, e.g. in [16, 18, 21, 23, 33, 48], and is known as generalized Weihrauch
reducibility. Indeed, Turing reducibility in the above sense is exactly the restriction
of generalized Weihrauch reducibility to functions on N.

Arthur’s winning strategy τ is a one-query strategy if, for any play following τ ,
either Merlin violates the rule or Arthur’s second move y1 is of the form 〈1, u〉,
i.e., Arthur declares termination at the second round.

Definition 2.5. Let f and g be partial multifunctions. We say that f is one-query
Turing reducible to g (written f ≤1

T g) if there exists Arthur’s one-query winning
strategy τ for G(f, g).

Equivalently, f is a one-query Turing reducible to g if and only if there exist
computable functions H and K such that for any n and m,

m ∈ g(H(n)) =⇒ K(n,m) ∈ f(n).

Such an H is called an inner reduction, and K is called an outer reduction.

Remark 2.6. A similar notion for partial multifunctions on N
N has been extensively

studied under the name Weihrauch reducibility; see e.g. Brattka-Gherardi-Pauly
[6]. Indeed, one-query Turing reducibility is exactly the restriction of Weihrauch
reducibility to functions on N. This reducibility is also called many-one reducibility
in [36].

Remark 2.7. As is well known, it is very difficult to find a natural computably
enumerable (c.e.) set whose Turing degree lies strictly between computable ones
and the halting problem; see e.g. [31]. As one way to solve this problem of the lack
of natural intermediate c.e. degrees, Simpson [42] proposed to study the Muchnik
degrees of Π0

1 subsets of Cantor space. Here, however, we present an alternative
solution, which is to consider the Turing degrees of multifunctions on N. Observe
that the Turing degree of a c.e. set A ⊆ N is determined by its enumeration time
function ηA, where ηA(n) is the stage when n is enumerated into A if such a stage
exists; otherwise ηA(n) = 0. One can easily see that the graph of ηA is always co-c.e.,
i.e., Π0

1. In this light, one can consider that the counterpart of the Turing degrees
of c.e. sets in the multi-valued context is the Turing degrees of multifunctions with
Π0

1 graphs. In Example 2.8, we give a natural intermediate Π0
1 degree between

computable problems and the halting problem.
To point out the relevance of the Π0

1 multifunctions on N to the Π0
1 subsets of

N
N, note that if f : N ⇒ N is a Π0

1 multifunction, then the product
∏

n∈N
f(n)

forms a Π0
1 subset of NN. However, be careful about that Turing reducibility for

multifunctions is entirely different from Muchnik reducibility for their product sets.

Example 2.8 (Intermediate Turing degree). The following is the N-version of a
well-studied principle, called the lesser limited principle of omniscience.

dom(LLPO) = {e ∈ N : |{j < 2 : ϕe(j) ↓}| ≤ 1},
LLPO(e) = {0, 1} \ {j < 2 : ϕe(j) ↓}.

There are a huge number of mathematical principles which are equivalent to
LLPO; see Diener [12], Diener-Ishihara [13] and also Brattka-Gherardi-Pauly [6].
The principle LLPO may also be called de Morgan’s law for Σ0

1 formulas. In the
realizability context, this is closely related to Lifschitz realizability [28, 46]. It is
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not hard to see that the Turing degree of LLPO strictly lies between the computable
problems and the halting problem. This also follows from our results in later
sections (see Propositions 4.3 and 4.5).

Note that LLPO is one-query Turing equivalent to a multifunction with a Π0
1

graph. Given e ∈ N, define ψe as follows:

ψe(0) ↓ ⇐⇒ (∃s ∈ N) [ϕe(0)[s] ↓ ∧ (∀t < s) ϕe(1)[t] ↑],
ψe(1) ↓ ⇐⇒ (∃s ∈ N) [ϕe(1)[s] ↓ ∧ ϕe(0)[s] ↑],

where ϕe(j)[s] is the stage s approximation of ϕe(j). Note that it is not possible for
both ψe(0) and ψe(1) to terminate; that is, we always have |{j < 2 : ψe(j) ↓}| ≤ 1.
Then we define L(e) = {0, 1} \ {j < 2 : ψe(j) ↓}. Obviously, the graph of the
multifunction L : N ⇒ N is Π0

1, and L ≡1
LT LLPO.

2.2. Imperfect information game. There are various forms of computation, one
of which is the notion of probabilistic computation. As a simple example, let us
consider the situation where a program P is given an oracle α at random, and for
an input n, the oracle computation Pα(n) halts with probability at least 1− ε. In
other words, this is the situation where

μ(A) ≥ 1− ε ∧ (∀α ∈ A) Pα(n) ↓,

for some set A ⊆ 2N. Here, μ is the uniform probability measure on 2N (i.e., the
probability measure by infinite fair coin flips). This probabilistic computation yields
a multifunction such that the value Pα(n) for each α ∈ A is a possible output. This
computation has two parameters, n and A. Of course, n is an input given by us,
while A is a witness that the computation halts except for probability at most ε.
It is only guaranteed that such an A exists mathematically, but the computer does
not know what exactly A is.

Let us write ProbErrorεP for the procedure of giving an oracle randomly to the
program P and having it perform a computation with error probability at most ε.
If one wants to make explicit a parameter A which witnesses that the computation
succeeds with error probability at most ε for an input n, we use the following
notation:

ProbErrorεP(n | A)

A pair (n | A) of parameters is properly accepted only if A witness that Pα(n)
halts except for probability at most ε:

ProbErrorεP(n | A) ↓ ⇐⇒ A ⊆ 2N ∧ μ(A) ≥ 1− ε ∧ (∀α ∈ A) Pα(n) ↓ .

Then, the value Pα(n) for each α ∈ A is a possible output:

y ∈ ProbErrorεP(n | A) ⇐⇒ ∃α ∈ A [Pα(n) = y].

Although the roles of n and A are entirely different, if we just treat them formally,
the above process can be regarded as a partial multifunction

ProbErrorεP :⊆ N× P(2N) ⇒ N.

In this sense, both n and A can be thought of as inputs for the above multi-
function, but n is an input that is disclosed during the computation, while A is an
unknown input that cannot be accessed during the computation. Hence, we call n
a public input, and A a secret input.
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Definition 2.9. A partial multifunction g : ⊆ N × Λ ⇒ N, where Λ is a set, is
called a bilayer function in this article (any suggestions for a better name for this
notion would be welcome). In this context, a pair (n, c) ∈ N× Λ is always written
as (n | c). For (n | c) ∈ dom(g), we call n a public input and c a secret input.
Then, the public domain dompub(g) of g is defined as the set of all n ∈ N such that
(n | c) ∈ dom(g) for some c ∈ Λ.

Henceforth, when the (public or secret) domain of a bilayer function is a single-
ton, its unique element will always be denoted as ∗.
Example 2.10. Any partial multifunction g :⊆ N ⇒ N can be identified with the
following bilayer function ĝ :⊆ N× {∗}⇒ N:

ĝ(n | ∗) = g(n).

Remark 2.11. If one wants to avoid dealing with an arbitrary set Λ, one can just
consider G(n) = {g(n | c) : c ∈ Λ and (n | c) ∈ dom(g)}, which yields G :⊆ N →
PP(N). Conversely, if a partial function of the form G : ⊆ N → PP(N) is given,
one can always assume that the elements of G(n) are indexed as G(n) = {pnc : c ∈
Λn}. Then, we consider g(n | c) to mean pnc , which yields a partial multifunction
g :⊆ N× Λ ⇒ N.

Indeed, previous studies, such as Lee-van Oosten [27], rather deal only with
PP(N)-valued functions. In the terms of Bauer [2], a PP(N)-valued function is
called an extended Weihrauch predicate, and a partial multifunction seen as an
extended Weihrauch predicate is called a modest extended Weihrauch predicate.
However, from the point of view of advised computation, there are advantages to
the way of looking at it as in Definition 2.9.

Let us consider relative computation with a bilayer function oracle. In our com-
putation model, a secret input for an oracle acts like an advice string in computa-
tional complexity theory. For the role of advice in computability theory, we refer the
reader to Brattka-Pauly [7] and Ziegler [49]. One-query computation with advice
in the context of NN-computation has also been discussed there.

Example 2.12. In the context of NN-computation, the bilayer function AdviceN :
{∗} × N → N defined by AdviceN(∗ | n) = n can be used to deal with nonuniform
computability [7, 49]. However, in the context of N-computation, AdviceN is too
strong and produces the ¬¬-topology on the effective topos [27]. Several variants
of random advice in the context of NN-computation have also been studied in [5,7].

Relative Computation Model. Our computation model deals not only with one-
query relative computation, but also with many-query relative computation. During
a computation with a bilayer function oracle f , when the program makes a query
n to f , the advisor chooses a parameter c. However, the information of c chosen
by the advisor is not given to the machine, but only the information of one of the
possible values of f(n | c) is given. If this process computes a partial multifunction
g when the advisor secretly makes the best choice, then we declare that g is Turing
reducible to f in the bilayered context, and write g ≤LT f .

Again, one may think that this programming definition is too vague, so we
give a mathematically rigorous description of this. Formally, this procedure can
be understood by describing it as an imperfect information game between three
players, Merlin, Arthur, and Nimue. The player Merlin makes a public input x0
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and a secret input c0 on his first move. Here, among the moves of Merlin, only the
secret input c0 is invisible to Arthur. All of Nimue’s moves are visible to Merlin,
but not to Arthur, a mere human being. The players Merlin and Nimue, who are
not mere humans, can see all the previous moves at each round.

Definition 2.13 (Imperfect information game). For bilayer functions f and g, let
us consider the following imperfect information three-player game G(f, g):

Merlin : (x0 | c0) x1 x2 . . .
Arthur : y0 y1 y2 . . .
Nimue : z0 z1 z2 . . .

Game rules: Here, the players need to obey the following rules.

• First, Merlin chooses a pair (x0 | c0) ∈ dom(f).
• At the nth round, Arthur reacts with yn = 〈j, un〉.

– The choice j = 0 indicates that Arthur makes a new query un to g.
In this case, we require un ∈ dompub(g).

– The choice j = 1 indicates that Arthur declares termination of the
game with un.

• At the nth round, Nimue makes an advice parameter zn such that (un |
zn) ∈ dom(g).

• At the (n+1)st round, Merlin responds to the query made by Arthur and
Nimue at the previous stage. This means that xn+1 ∈ g(un | zn).

Then, Arthur and Nimue win the game G(f, g) if either Merlin violates the rule
before Arthur or Nimue violates the rule, or both Arthur and Nimue obey the rule
and Arthur declares termination with un ∈ f(x0 | c0).

Strategies. As noted above, Arthur can only read the moves x0, x1, x2, . . . , and the
other players can see all the moves. Moreover, we require that Arthur’s moves
are chosen in a computable manner. In other words, Arthur’s strategy is a code
τ of a partial computable function hτ : ⊆ N

<N → N, which reads Merlin’s moves
x0, . . . , xn and then returns yn. On the other hand, Merlin and Nimue’s strategies
are any partial functions (which are not necessarily computable).

A pair (τ | η) of Arthur’s computable strategy τ and Nimue’s strategy η is called
an Arthur-Nimue strategy. An Arthur-Nimue strategy (τ | η) is winning if, as long
as Arthur and Nimue follow the strategy (τ | η), Arthur and Nimue win the game,
no matter what Merlin’s strategy σ is.

We now introduce a generalization of Turing reducibility for bilayer functions.

Definition 2.14. Let f and g be bilayer functions. We say that f is bilayered
Turing reducible (or LT-reducible) to g (written f ≤LT g) if there exists a winning
Arthur-Nimue strategy for G(f, g).

Obviously, bilayered Turing reducibility for partial multifunctions (which can be
viewed as bilayer functions as in Example 2.10) is the same as Turing reducibility.

Remark 2.15. The notion of an Arthur-Nimue strategy is strongly related to the
notion of a dedicated sight in Lee-van Oosten [27, Definition 4.3]. The statement
that S is a (z, θ, p)-dedicated sight roughly corresponds to that (z | S) is a winning
Arthur-Nimue strategy witnessing ṗ ≤LT θ, where ṗ(∗ | ∗) = p for p ⊆ N.
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Before examining bilayered Turing reducibility, we again consider one-query re-
ductions. A winning Arthur-Nimue strategy (τ | η) is a one-query strategy if, for
any play following (τ | η), either Merlin violates the rule or Arthur’s second move
y1 is of the form 〈1, u〉, i.e., Arthur declares termination at the second round.

Definition 2.16. Let f and g be bilayer functions. We say that f is one-query
bilayered Turing reducible to g (written f ≤1

LT g) if there exists a one-query winning
Arthur-Nimue strategy (τ | η) for G(f, g).

Equivalently, f is a one-query bilayered Turing reducible to g if and only if
there exist computable functions H and K and a function L such that for any
(n | c) ∈ dom(f) and m ∈ N,

m ∈ g(H(n) | L(n, c)) =⇒ K(n,m) ∈ f(n | c).
Such an H is called an inner reduction, and K is called an outer reduction. We

also call L a secret inner reduction.

Remark 2.17. One-query bilayered Turing reducibility for bilayer functions (ex-
tended Weihrauch predicates) is simply called Weihrauch reducibility in Bauer [2].
The algebraic structure of the one-query bilayered Turing degrees (the extended
Weihrauch degrees) has been studied there. For this reason, it may also be natural
to refer to LT-reducibility as generalized extended Weihrauch reducibility.

Proposition 2.18. ≤1
LT is a preorder.

Proof. Reflexivity is trivial. For transitivity, let 〈H0,K0, L0〉 witness f ≤1
LT g and

〈H1,K1, L1〉 witness g ≤1
LT h. Then m ∈ h(H1 ◦ H0(n) | L1(H0(n), L0(n, c)))

implies K1(H0(n),m) ∈ g(H0(n) | L0(n, c)), which implies K0(n,K1(H0(n),m)) ∈
f(n | c). Hence, H1 ◦ H0 is an inner reduction, (n,m) �→ K0(n,K1(H0(n),m))
is an outer reduction, and (n, c) �→ L1(H0(n), L0(n, c)) is a secret inner reduction
witnessing f ≤1

LT h. �

Proposition 2.19. ≤LT is a preorder.

Proof. Reflexivity is trivial. For transitivity, we only need to combine the argu-
ment in Proposition 2.18 and the proof of transitivity of generalized Weihrauch
reducibility [21, Proposition 4.4]. We assume that f ≤LT g and g ≤LT h. To
avoid confusion, we use the names Arthur0, Merlin0, and Nimue0 for the players in
the game G(f, g), and Arthur1, Merlin1, and Nimue1 for the players in the game
G(g, h). Let (τi | ηi) be a winning Arthuri-Nimuei strategy for the corresponding
game for each i < 2. In the following, we assume that Arthuri and Nimuei always
follow their winning strategies. We construct a winning Arthur-Nimue strategy for
G(f, h).

Let (x | c) be Merlin’s first move in the game G(f, h). Then, consider (x | c)
as Merlin0’s first move in the game G(f, g) as well, and simulate a play following
the Arthur0-Nimue0 strategy (τ0 | η0). Along such a play, if Arthur0 declares
termination with some u at some round, then Arthur also declares termination with
the same value u. If Arthur0 and Nimue0 make a query (u | z) to g at some round,
then think of (u | z) as Merlin1’s first move in the game G(g, h), and simulate a play
following the Arthur1-Nimue1 strategy (τ1 | η1). During this subplay, Arthur and
Nimue simply copy the moves made by Arthur1 and Nimue1, respectively, and play
them as their own moves. Here, Merlin copies Merlin1’s moves, except for the first
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move, and uses them directly in his own moves. Since Arthur1 and Nimue1 follow
their winning strategies, Arthur1 declares termination with some v at some round,
and moreover v ∈ g(u | z). Hence, one can think of such v as Merlin0’s response
to the previous move (u | z) by Arthur0 and Nimue0. This allows the game G(f, g)
to move on to the next round (and this can be simulated by Arthur and Nimue,
since they know the value of v). Repeating this process, since Arthur0 and Nimue0
follow their winning strategies, Arthur0 declares termination with some w at some
round, and moreover w ∈ f(x | c). Therefore, Arthur0 also declares termination
with some w ∈ f(x | c) at some round. Hence, the Arthur-Nimue strategy described
above is winning for G(f, h), which concludes f ≤LT h. �

Note that the rule of the game G(f, g) does not mention f except for Player I’s
first move. Hence, if we skip Player I’s first move, we can judge if a given play
follows the rule without specifying f . Such a restricted game is denoted by G(g).
Arthur and Nimue win the game G(g) if either Merlin violates the rule before
Arthur or Nimue violates the rule, or both Arthur and Nimue obey the rule and
Arthur declares termination.

Definition 2.20. Given a bilayer function h, let us define the new bilayer function
h� as follows: An input for h� is an Arthur-Nimue strategy (τ | η), where Arthur’s
strategy τ is a public input, and Nimue’s strategy η is a secret input.

• h�(τ | η) is defined only if, along any play following the strategy (τ | η),
Arthur and Nimue win the game G(h) whatever Merlin’s strategy is.

• u ∈ h�(τ | η) if and only if there is a play in G(h) that follows the strategy
(τ | η) such that Arthur declares termination with u at some round, where
all players obey the rule.

The first condition says that (τ | η) ∈ h� if and only if (τ | η) is a winning Arthur-
Nimue strategy for G(h) in a certain sense, and in particular, Arthur declares
termination at some round unless Merlin violates the rule. Alternatively, h� can
be thought of as a universal machine for h-relative computation.

Remark 2.21. In the context of NN-computability, the closure operator−� restricted
to partial multifunctions is essentially the same as the diamond operator in [33,48].

Proposition 2.22. For bilayer functions g and h, g ≤LT h if and only if g ≤1
LT h�.

Proof. (⇒) Let (τ | η) be a winning Arthur-Nimue strategy witnessing g ≤LT h.
Given an input (n | c) for g, define τn(σ) = τ (n�σ) and ηn,c(σ) = η(〈n, c〉�σ). Any
u ∈ h�(τn | ηn,c) corresponds to a play in G(g, h) following the strategy (τ | η),
where Merlin’s first move is (n | c), and Arthur declares termination with u. Since
(τ | η) is winning in G(g, h), we must have u ∈ g(n | c). Thus, n �→ τn is an
inner reduction, (n, c) �→ ηn,c is a secret inner reduction, and (n, u) �→ u is an outer
reduction witnessing g ≤1

LT h�.
(⇐) Let 〈H,K,L〉 witness g ≤1

LT h�. As H is an inner reduction, note that
H(n) is (a code of) Arthur’s strategy, and think of H(n)(σ) as Arthur’s move
after reading Merlin’s moves σ. Then, define τ (n�σ) = H(n)(σ) if H(n)(σ) does
not declare termination, i.e., H(n)(σ) is of the form 〈0, u〉. If H(n)(σ) declares
termination with u, then define τ (n�σ) = 〈1,K(n, u)〉; that is, τ (n�σ) declares
termination with K(n, u). Clearly, τ is computable. We also define η(〈n, c〉�σ) =
L(n, c)(σ).
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Assume that Arthur and Nimue follow the strategy (τ | η) in the game G(g, h). If
Merlin’s first move is (n | c), then, by the definitions of τ and η, Arthur and Nimue

follow the strategy (H(n) | L(n, c)) in the subgame G(h) until Arthur declares
termination. Since (H(n) | L(n, c)) ∈ dom(h�), either Merlin violates the rule
before Arthur or Nimue violates the rule, or all players obey the rule and Arthur

declares termination. Assume that Merlin follows a strategy obeying the rule.
Then, in the subgame G(h), Arthur declares termination with u at some round,
i.e., u ∈ h�(H(n) | L(n, c)). Hence, by the definition of τ , in the game G(g, h),
Arthur declares termination with K(n, u). As 〈H,K,L〉 are reductions witnessing
g ≤1

LT h�, u ∈ h�(H(n) | L(n, c)) implies K(n, u) ∈ g(n | c). This verifies that
(τ | η) is a winning Arthur-Nimue strategy witnessing g ≤LT h. �

Proposition 2.23. h�� ≡1
LT h�.

Proof. Obviously, h� ≤1
LT h��. For the other direction, by the reflexivity of ≤1

LT ,
we have h�� ≤1

LT h��, which implies that h�� ≤LT h� by Proposition 2.22. Simi-
larly, we also have h� ≤LT h. Since ≤LT is transitive by Proposition 2.19, we have
h�� ≤LT h. Hence, we get h�� ≤1

LT h� by Proposition 2.22. �

Remark 2.24. Several variants of Weihrauch reducibility can be explained by us-
ing bilayer functions in the context of NN-computation. For instance, f is com-
putable reducible to g in the sense of [15, 21] if and only if f is one-query bilay-
ered Turing reducible to (g | AdviceN) (see Definition 4.6) if we properly extend
the above notions to the context of NN-computability. The notion of omniscient
computable/Weihrauch reducibility [16, 17, 30] can also be explained in the bilayer
context.

The bilayered Turing degrees of concrete bilayer functions are examined in Sec-
tions 4 and 5.

3. Lawvere-Tierney topology

3.1. Realizability. There are several interpretations of intuitionistic logic that in-
volve assigning witnesses for the correctness of propositions. One of them is Kleene’s
realizability interpretation, which requires that a witness for the correctness of a
proposition be given in a computable way. Formally, each proposition is interpreted
as a set of witnesses for the correctness of the proposition as follows:

p ∧ q = {〈m,n〉 : m ∈ p ∧ n ∈ q},
p ∨ q = {〈0, n〉 : n ∈ p} ∪ {〈1, n〉 : n ∈ q},
p→ q = {e : (∀n ∈ N) [n ∈ p → ϕe(n) ∈ q]}.

Assuming that a witness for the correctness of an atomic proposition is given by
a natural number, the above construction guarantees that each proposition can be
identified with a subset of the natural numbers. That is, in the above definition we
can always assume that p, q ∈ P(N). Also, the set of witnesses for the correctness of
a proposition may be thought of as representing the truth value of that proposition,
so let us consider Ω = P(N) as the set of truth values in the world of computable
mathematics. Indeed, the morphism tracked by true : 1 → P(N), where true(∗) =
N, is a subobject classifier in the effective topos. For more information on the
effective topos, see [22, 26, 46].
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Let A be a propositional formula, where all propositional variables belong to Ω.
Then A can be thought of as an element of Ω by using the above Heyting operations
on Ω. We say that e realizes A if e belongs to A under the above interpretation.
We also say that e realizes ∀p A(p) if e ∈ A(p) for any p ∈ Ω. Then, A is realizable
if some e ∈ N realizes A.

3.2. Lawvere-Tierney topologies. In this section, we reveal the hidden relation-
ship between bilayered Turing degrees and Lawvere-Tierney topologies (Definition
3.3) on the effective topos. As mentioned in Section 1.1, we regard an Lawvere-
Tierney topology on the effective topos as a kind of data that indicate how much
non-computability to add to the world, and thus, a topology plays the same role
as an oracle. In this regard, Hyland [22] found an embedding of the Turing de-
grees (of total single-valued functions on N) into the lattice of Lawvere-Tierney
topologies on the effective topos. Hyland’s embedding can be extended to partial
functions or even partial multifunctions on N. By extending this further, we show
that there exists an isomorphism between the bilayered Turing degrees and the
lattice of Lawvere-Tierney topologies on the effective topos (Corollary 3.6). This
guarantees that, in the strict sense, any topology on the effective topos can be
identified with a (bilayer) oracle. Note that most of the results in Section 3.2 have
almost been proven by Lee and van Oosten [27], although their language is com-
pletely different from ours, and in particular they do not give any computational
interpretation of their notions.

A function β : Ω → Ω is said to be computably monotone if the following is
realizable:

∀p, q [(p→ q)→ (β(p)→ β(q))].

In other words, there exists e such that for any p, q ∈ Ω if a realizes p → q
then ϕe(a) realizes β(p) → β(q). We define a preorder on computably monotone
functions on Ω as follows:

α ≤rea β ⇐⇒ “∀p [α(p)→ β(p)]” is realizable,

that is, there exists e such that, for any p ∈ Ω, e realizes α(p) → β(p). For
a preorder, its quotient by the induced equivalence relation is called the poset
reflection.

Theorem 3.1. The poset reflections of the following preorders are isomorphic:

• The one-query bilayered Turing preorder ≤1
LT on bilayer functions.

• The preorder ≤rea on computably monotone functions on Ω.

Proof. Given a bilayer function g :⊆ N× Λ ⇒ N, we define a function g→ : Ω → Ω
as follows:

〈n, e〉 ∈ g→(p) ⇐⇒ (n | c) ∈ dom(g) and e realizes g(n | c)→ p for some c.

Roughly speaking, g→(p) is a problem that asks us to solve a problem p with the
help of g. Of the solutions n and e to g→(p), we sometimes call n an inner reduction
and e an outer reduction. Indeed, if we put ṗ(∗ | ∗) = p, then 〈n, e〉 ∈ g→(p) if
and only if 〈n, e〉 witnesses ṗ ≤1

LT g. Note that, if θ is a bilayer function, θ→ is
essentially the same as Gθ under the notation in Lee-van Oosten [27, page 873].
One can easily see that g→ is computably monotone (see also [27]). We first show
the following:

g ≤1
LT h ⇐⇒ g→ ≤rea h→.
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For the forward direction, assume that 〈H,K,L〉 witnesses g ≤1
LT h, and 〈n, e〉

witnesses ṗ ≤1
LT g with some c. Then, the composition H(n) of inner reductions

and the composition ϕe ◦ K of outer reductions witness ṗ ≤1
LT h with L(n, c).

This is because for any solution y ∈ h(H(n) | L(n, c)) we have K(n, y) ∈ g(n | c) as
〈H,K,L〉 is a reduction triple, and for any z ∈ g(n | c) we have ϕe(z) ∈ ṗ(∗ | ∗) = p;
hence ϕe ◦K(n, y) ∈ p. Put n′ = H(n) and let e′n be an index of the computable
function y �→ ϕe◦K(n, y). Then we have 〈n′, e′n〉 ∈ h→(p). Clearly 〈n, e〉 �→ 〈n′, e′n〉
is computable and independent of p. Hence we get g→ ≤rea h→.

For the backward direction, let e be a realizer for g→(p)→ h→(p) for any p ∈ Ω.
Given (n | c) ∈ dom(g), let us consider p = g(n | c). It is obvious that 〈n, id〉
witnesses ṗ ≤1

LT g, where id is a code of the identity. Thus, ϕe(n, id) = 〈mn, dn〉
witnesses ṗ ≤1

LT h. In other words, y ∈ h(mn | c′) implies ϕdn
(y) ∈ ṗ(∗ | ∗) =

g(n | c) for some c′. One can find an index d such that ϕd(n, x) = ϕdn
(x). Then,

n �→ mn is an inner reduction, c �→ c′ is a secret inner reduction, and ϕd is an outer
reduction for g ≤1

LT h.
To show surjectivity of g �→ g→ on the poset reflections, given a computably

monotone function β : Ω → Ω, define a bilayer function β← : ⊆ N × Ω ⇒ N as
follows:

dom(β←) = {(n | c) : n ∈ β(c)}, β←(n | c) = c.

We claim that (β←)→ ≡rea β. Note that β �→ β← is essentially the same
as the transformation f �→ θ in the proof of Lee-van Oosten [27, Theorem 2.4].
Therefore, as in the proof of [27, Theorem 2.4] (that shows f ≡ F (f) ≡ Gθ under
their terminology), one can verify the claim. However, the notation in [27] is very
different from ours, so for the sake of completeness, we give the details here. Define
β̃ : Ω→ Ω as follows:

〈n, e〉 ∈ β̃(p) ⇐⇒ (∃q ∈ Ω) [n ∈ β(q) and e realizes q → p].

Clearly, we have β ≤rea β̃ by considering q = p. To see β̃ ≤rea β, let a witness
computable monotonicity of β. If 〈n, e〉 ∈ β̃(p) via q, then e realizes q → p and
so ϕa(e) realizes β(q) → β(p) by computable monotonicity. As n ∈ β(q), we

get ϕϕa(e)(n) ∈ β(p). Hence, β̃ ≡rea β. Comparing the definitions of β← and

β̃, one can see that 〈n, e〉 ∈ β̃(p) if and only if there exists q ∈ Ω such that
(n | q) ∈ dom(β←) and e realizes β←(n | q)→ p. By the definition of g �→ g→, this

means that β̃ = (β←)→. Hence, β ≡rea β̃ = (β←)→. Thus, g �→ g→ is a surjective
embedding of the one-query bilayered Turing degrees into the poset reflection of
≤rea on computably monotone functions. This completes the proof. �

Remark 3.2. Recall that, in [2], one-query bilayered Turing reducibility is called ex-
tended Weihrauch reducibility. Together with the result in Bauer [2] that extended
Weihrauch degrees and instance degrees (over a relative partial combinatory alge-
bra) are equivalent preorders, one can deduce that the orders in Theorem 3.1 are
also isomorphic to instance degrees over Kleene’s first algebra.

By the proof of Theorem 3.1, note that we also have (g→)← ≡1
LT g and

g ≤rea h ⇐⇒ g← ≤1
LT h←.

We next consider the notion of Lawvere-Tierney topology (also known as local
operator or geometric modality), which is, in general, defined as a certain op-
erator on the truth-value object in a given topos. It is a generalization of the
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Grothendieck topology in the sense that the Grothendieck topologies correspond
exactly to Lawvere-Tierney topologies on presheaf toposes; see e.g. [29, Theorem
V.4.1]. The importance of this notion is that Lawvere-Tierney topologies on a topos
E are in one-to-one correspondence with subtoposes of E . In the effective topos, this
notion can be described as follows (see also [26, 27]):

Definition 3.3. A function j : Ω → Ω is a Lawvere-Tierney topology if all of the
following are realizable

(1) ∀p [p→ j(p)].
(2) ∀p [j(p ∧ q)↔ j(p) ∧ j(q)].
(3) ∀p [j(j(p))→ j(p)].

In a nutshell, a Lawvere-Tierney topology corresponds to a meet-preserving clo-
sure operator (in the internal sense); see e.g. [29, Proposition V.1.1]. There are
various equivalent definitions of a Lawvere-Tierney topology. For instance, the
condition (2) can be changed to computable monotonicity; see e.g. [27, Definition
1.1]. In particular, every Lawvere-Tierney topology is computably monotone.

Recall from the proof of Theorem 3.1 that g→(p) is the set of reduction pairs
for ṗ ≤1

LT g (where a secret reduction is not included). Therefore, by Proposition
2.22, g�→(p) is essentially the set of Arthur’s winning strategies for ṗ ≤LT g. We
next see that the function g�→ : Ω→ Ω is always a Lawvere-Tierney topology.

Observation 3.4. Let h be a bilayer function. Then, h�→ : Ω → Ω is a Lawvere-
Tierney topology.

Proof. (1) If one can solve a problem p without any help, it is clear that one can
also solve the problem p with the help of h�.

(2) For the backward direction, if one can solve problems p and q with the help
of h�, then by running these strategies in parallel, one can also solve the problem
p ∧ q with the help of h�. The forward direction is obvious.

(3) By definition, 〈τ, e〉 ∈ h�→h�→(p) if and only if e realizes h�(τ | η)→ h�→(p)
for some η. Thus, if u ∈ h�(τ | η) and ϕe(u) = 〈τ ′(u), e′(u)〉 then e′(u) realizes
h�(τ ′(u) | η′(u)) → p for some η′(u). As in the proof of Proposition 2.19, we
combine two games, but this time in series. On the first game G(h), Arthur and
Nimue follow their strategies (τ | η) with one exception: Even if the strategy τ
declares termination u, then Arthur do not declare termination, but move on to the
next game which is also G(h). Then Arthur and Nimue next follow their strategies
(τ ′(u) | η′(u)) with one exception: If the strategy τ declares termination v, then
Arthur declares termination with ϕe′(u)(v). Note that if Merlin obeys the rule,
then we always have ϕe′(u)(v) ∈ p. This can be viewed as a single game which is also
G(h), and then we write (τ ′′ | η′′) for the Arthur-Nimue strategy described above.
It is easy to check that (τ ′′ | η′′) ∈ dom(h�), and if w ∈ h�(τ ′′ | η′′) then w ∈ p.
Therefore, the identity map realizes h�(τ ′′ | η′′) → p. Hence, 〈τ ′′, id〉 ∈ h�→(p).
Clearly, τ �→ τ ′′ is computable, and thus an index of the computable function
〈τ, e〉 �→ 〈τ ′′, id〉 realizes h�→h�→(p)→ h�→(p) for all p. �

For any monotone function β : Ω → Ω, consider L(β) = β←�→. By the above
observation, L(β) is always a topology.

Theorem 3.5 (See also [27, Proposition 1.2]). Let β : Ω → Ω be a computably
monotone function. Then, L(β) is the ≤rea-least topology such that L(β) ≥rea β.
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Proof. First, since β← ≤1
LT β←�, we have β ≡rea β←→ ≤rea β←�→ = L(β) by

Theorem 3.1; that is, β ≤rea L(β) always holds. Thus, it remains to show that
β ≤rea j implies L(β) ≤rea j for any topology j. To prove this, as in [27, Proposition
1.2], consider the following:

L′(β)(p) := ∀q [[(p→ q) ∧ (β(q)→ q)]→ q].

As shown in [27, Proposition 1.2], β ≤rea j implies L′(β) ≤rea j. Hence, it re-
mains to show L(β) ≤rea L′(β). Here, recall that a realizer for L(β)(p) = β←�→(p)
is a pair 〈d, e〉 of an inner reduction d and an outer reduction e for ṗ ≤1

LT β←�, i.e.,
e realizes β←�(d | c)→ p for some c. In this case, we must have (d | c) ∈ dom(β←�),
which means that (d | c) is a winning Arthur-Nimue strategy for the game G(β←).

To compute a realizer of L′(β)(p), assume that we are given a realizer a of p→ q
and a realizer b of β(q) → q in the premise of L′(β)(p), which are independent of
q. On some play of the game G(β←), if (n | z) is Arthur and Nimue’s queries to
β← in their moves (without declaring termination) at some round, then we have
(n | z) ∈ dom(β←), which means that n ∈ β(z) and β←(n | z) = z. Since b

realizes β(z) → z, we have ϕb(n) ∈ β←(n | z). Hence, b yields Merlin’s strategy
which obeys the rule. Therefore, one can simulate one of the plays of the game
G(β←) from the information in d, c, and b. Since (d | c) is a winning Arthur-Nimue
strategy, and Merlin’s strategy b obeys the rule, Arthur declares termination at
some round along this play. In particular, one can compute Arthur’s final move in
this play, which yields some m ∈ β←�(d | c). By applying e to this result, we can
get a realizer for p. Furthermore, by applying a to this result, we get a realizer for
q. This procedure yields a realizer for L(β)(p) → L′(β)(p) independent of p, and
thus, L(β)→ L′(β) is realizable. �

As in [27], we define

α ≤L β ⇐⇒ α ≤rea L(β).

In summary, for bilayer functions f and g, we obtain

f ≤LT g ⇐⇒ f ≤1
LT g� ⇐⇒ f→ ≤rea g�→ = L(g→) ⇐⇒ f→ ≤L g→.

Here, the first equivalence follows from Proposition 2.22, and the second one
follows from Theorem 3.1. As any computably monotone function is ≡rea-equivalent
to a function of the form f→, this concludes the following:

Corollary 3.6. The poset reflections of the following preorders are isomorphic:

• The bilayered Turing preorder ≤LT on bilayer functions.
• The preorder ≤L on computably monotone functions on Ω.
• The preorder ≤rea on Lawvere-Tierney topologies.

In summary, for any bilayer function g, the map g�→ which, given a problem
p, returns a problem asking us to giving an Arthur’s winning strategy for ṗ ≤LT

g is always a Lawvere-Tierney topology, and conversely, every Lawvere-Tierney
topology on the effective topos can be described in this way.

Remark 3.7. After completing this article, the author succeeded in giving a crystal-
clear explanation of the results in this section (the correspondence between Lawvere-
Tierney topologies and oracles); see [24].
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4. On the structures of Lawvere-Tierney topologies

4.1. Turing degrees of choices from co-m-tons. If the domain (for public in-
puts) of a bilayer function g is a singleton (i.e., an input is always of the form
(∗ | c)), then we call g a basic bilayer function. In many cases, such a function is
not modest, where a function is modest if it is (one-query) bilayered Turing equiv-
alent to a partial multifunction (see also Bauer [2]). In this section, we deal with
the basic (non-modest) bilayer function Errorm/k for m < k ∈ N defined by

dom(Errorm/k) = {(∗ | A) : A ⊆ {0, . . . , k − 1} ∧ |A| = m},
Errorm/k(∗ | A) = {0, . . . , k − 1} \A.

This is a problem such that m of the k choices are wrong. In particular, one-
query Errorm/k-relative computation is the one in which k computations are run in
parallel, m of which may be wrong. Note that the basic bilayer function Errorm/k

is denoted as Ok
m in [27]. Lee-van Oosten [27] proposed to study the structure of

({Error→m/k}m<k,≤rea,≤L). By Theorem 3.1 and Corollary 3.6, this is the same as

examining the structure of ({Errorm/k}m<k,≤1
LT ,≤LT ).

Remark 4.1. Changing condition |A| = m in the definition of Errorm/k to condition

|A| ≤ m does not affect its ≡1
LT -degree, because even if a given A satisfies |A| < m,

Nimue is free to add elements to A to satisfy the condition |A| = m. The identity
functions then become public inner and outer reductions between Errorm/k and its
“|A| ≤ m” version. This is a trick made possible by not imposing any effectivity
on Nimue’s strategy.

Of course, the basic bilayer function Errorm/k is closely related to the well-known
notion, the lessor limited principle of omniscience (recall Example 2.8). Here, we
consider its generalization:

dom(LLPOm/k) = {e ∈ N : |{j < k : ϕe(j) ↓}| ≤ m},
LLPOm/k(e) = {0, . . . , k − 1} \ {j < k : ϕe(j) ↓}.

Clearly, LLPO introduced in Example 2.8 is equivalent to LLPO1/2. As mentioned
there, it yields Lifschitz realizability. The principle LLPO1/� is first introduced in
Richman [39], and extensively studied in constructive mathematics and related
areas. For the computability-theoretic study, see Brattka-Gherardi-Pauly [6]. Note
that one can deduce several results on the structure of ({LLPOm/k}m<k,≤1

LT ) from
the work by Cenzer-Hinman [8].

One may relativize LLPOm/k by replacing ϕe with ϕα
e for a given oracle α ∈ 2N,

and then the resulting function is denoted by LLPOαm/k. Recall from Example 2.10

that a partial multifunction can be thought of as a bilayer function. The following
is obvious:

Observation 4.2. For any oracle α, LLPOαm/k ≤1
LT Errorm/k.

If α = ∅, we can do a little better.

Proposition 4.3. LLPOm/k ≤1
LT Errorm/k+1.

Proof. We define a secret inner reduction L as follows: For any e ∈ dom(LLPOm/k),

L(e) =

{
{j < k : ϕe(j) ↓} if |{j < k : ϕe(j) ↓}| = m

{j < k : ϕe(j) ↓} ∪ {k} if |{j < k : ϕe(j) ↓}| < m.
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One can easily check that (∗ | L(e)) belongs to the domain of Errorm/k+1. For
an outer reduction K, define K(e, j) = j for any j < k. To compute K(e, k),
wait for finding m many j < k such that ϕe(j) ↓. If it is found at some stage,
then K(e, k) is defined as the least � < k such that j �= � for any such j < k, so
K(e, k) ↓= � implies ϕe(�) ↑. Otherwise, the computation never terminates, i.e.,
K(e, k) ↑.

We claim that 〈L,K〉 witnesses LLPOm/k ≤1
LT Errorm/k+1. Assume

a ∈ Errorm/k+1(∗ | L(e)).
If a < k then we have K(e, a) = a �∈ {j < k : ϕe(j) ↓}; hence K(e, a) ∈ LLPOm/k.
If a = k then by our definition of L(e), we must have |{j < k : ϕe(j) ↓}| = m.
The computation for K(e, a) eventually recognizes this fact at some stage, and this
implies that K(e, a) �∈ {j < k : ϕe(j) ↓}; hence K(e, a) ∈ LLPOm/k(e). �

In particular, we get LLPO ≤1
LT Error1/3. One can easily see that the above proof

indeed shows that LLPOm/k ≤1
LT LLPO∅

′

m/k+1. However, it cannot be improved any

further. To prove this, we need a little preparation. We say that a tree T ⊆ N
<N is

n-fat if any node σ ∈ T which is not a leaf has at least nmany immediate successors.
We use the following easy combinatorial fact, which is a slight modification of
Cenzer-Hinman [8, Proposition 2.9] (see also Lemma 5.7).

Fact 4.4. For �,m ∈ N, let T be an (m · � + 1)-fat finite tree, and LT be the set
of all leaves of T . Assume that every leaf of T has the same length. Then, for any
function f : LT → � there exists an (m+ 1)-fat tree S ⊆ T such that f is constant
on the leaves of S.

Proposition 4.5. LLPO1/� �≤LT Error1/�+2.

Proof. The proof is by a typical recursion trick; see [23]. Suppose for the sake of
contradiction that there exists a winning Arthur-Nimue strategy (τ | η) witnessing
LLPO1/� ≤LT Error1/�+2. Except for the first move e, Merlin’s move is always

a number j < � + 2, which yields the tree (� + 2)<N of all possible moves by
Merlin. Fix e, and then Arthur’s strategy τ yields a partial computable function
Φτ : ⊆ (� + 2)<N → N, where Φτ (σ) ↓= u if and only if, after reading Merlin’s
moves σ, Arthur’s strategy τ declares termination with u. Moreover, as Nimue

makes a secret input A ⊆ (� + 2) for Error1/�+2 at each round, Nimue’s strategy

η restricts Merlin’s possible moves to an (�+ 1)-fat finite subtree Tη of (�+ 2)<N,
where after Arthur declares termination, Nimue makes no further moves; hence if
σ ∈ Tη and Φτ (σ) ↓ then σ has to be a leaf of Tη. On the other hand, if Arthur
does not declare termination, then Nimue makes the next move, so Φτ restricted to
the leaves Lη of Tη yields a total function from Lη to �. One can assume that every
leaf of Tη has the same length: Otherwise, let t be the length of a longest node of
Tη, and for each leaf ρ of Tη of length s < t, place a full (� + 1)-branching tree of
height t− s on the leaf ρ. Then, for a leaf ρ of the resulting tree T ∗

η , define Φ∗
τ (ρ)

as the value Φτ (ρ
∗) for the unique initial segment ρ∗ of ρ such that ρ∗ ∈ Lη. Then

replace Tη with T ∗
η if necessary.

Since Φτ is �-valued, and Tη is (�+1)-fat, by Fact 4.4, there exists a 2-fat subtree
S of Tη of the same height such that Φτ is constant on the leaves of S. Recall that
Φτ depends on e, so there exists a computable function d such that Φτ = ϕd(e).
Now, we construct an algorithm r(e) as follows: By brute-force, Merlin searches
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for a 2-fat finite subtree S of (�+2)<N such that ϕd(e) is total and constant on the
leaves of S. Let j < � be the unique value of ϕd(e) on the leaves of S. Then, we
declare that ϕr(e)(j) halts, and ϕr(e)(k) never halts for k �= j.

Since Nimue’s move reduces the number of possible moves for Merlin by at most
one at each round, and S is 2-fat, S contains Merlin’s correct moves in a play
following (τ | η) as a path ρ ∈ S. Since (τ | η) is winning, ϕd(e)(ρ) = Φτ (ρ) = j ∈
LLPO1/�(e) since e is Merlin’s first move. This means that ϕe(j) ↑. However, by the
Kleene recursion theorem (see e.g. [11, Theorem 4.1.1] or [34, Theorem II.2.10]),
there exists e such that ϕe = ϕr(e), and by our definition, we have ϕr(e)(j) ↓. This
is a contradiction. �

This also shows that LLPO∅
′

1/� �≤LT Error1/�+1.

Definition 4.6. For a partial multifunction f and a basic bilayer function g, we
define a bilayer function (f | g) as follows:

(f | g)(n | c) = f(n)× g(∗ | c).

A similar argument as above also shows the following:

Proposition 4.7. Error1/� �≤LT (f | Error1/�+1) for any partial multifunction f .

Proof. Note that any partial multifunction f is one-query Turing reducible to a
single-valued function. This is because any choice function for f refines f . Thus,
without loss of generality, one can assume that f is a single-valued function.

Suppose for the sake of contradiction that there exists there exists a winning
Arthur-Nimue strategy (τ | η). Except for the first move c, the second coordinate
of Merlin’s move is always a number j < �+1, which yields the tree (�+1)<N of all
possible moves. Given Arthur’s moves, the first coordinates of the corresponding
moves by Merlin are computable in f . Therefore, Arthur’s strategy τ and the
corresponding responses by Merlin yield a partial f -computable function Φf

τ : ⊆
(� + 1)<N → N, where Φf

τ (σ) ↓= u if and only if, after reading Merlin’s moves
whose second coordinates are σ, Arthur’s strategy τ declares termination with
u. Moreover, Nimue’s strategy η restricts second coordinates of Merlin’s possible
moves to an finite subtree Tη of (� + 1)<N. As in the proof of Proposition 4.5,
one can assume that every leaf of Tη has the same length t. Then, Φf

τ restricted
to Tη ∩ (� + 1)t yields a total function from Tη ∩ (� + 1)t to �. By considering
min{Φf

τ (σ), �− 1}, one can assume that Φf
τ is a partial �-valued function even if we

consider an input σ �∈ Tη ∩ (�+ 1)t. By Fact 4.4 applied to any totalization of Φf
τ ,

one can see that there exists a 2-fat subtree S of (� + 1)t of the same height such
that Φf

τ takes at most one value (or undefined) on the leaves of S (where Φf
τ can

be partial).
Let j < � be the only possible value of Φf

τ on the leaves of S. Note that this
value only depends on Arthur’s strategy τ ; hence it is independent of Merlin’s first
move c. Since Nimue’s move reduces the number of possible moves for Merlin by
at most one at each round, and S is 2-fat, S contains the second coordinates of
Merlin’s correct moves in a play following (τ | η) as a path ρ ∈ S. Since (τ | η) is
winning, Φf

τ (ρ) is defined, and j is the only possible value. Hence j ∈ Error1/�(c)
since c is Merlin’s first move. However, this value j is independent of c, which is a
contradiction. �

One can apply combinatorial techniques developed in [8] to prove the following:
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Theorem 4.8. Errorm/k ≡LT Error1/�, where � = � k
m�.

This solves all problems posed in Lee-van Oosten [27, Open problems in pages
876–877].

Proof of Theorem 4.8. As in Cenzer-Hinman [8, Proposition 2.4], one can easily
see that � k

m� ≤ � implies Error1/� ≤1
LT Errorm/k. Now, let us think of Errorm/k

as a problem of choosing a surviving block, where there are k blocks and one
may secretly destroy at most m of them. As a variant of this problem, consider
Errorm/k;n, where there are k blocks as above, but n of them are hard blocks. One
can secretly hit blocks m times, and while a normal block will break in one hit, a
hard block will only break if we hit it all m times. The information about which
blocks are hard is given as a public input 〈ai〉i<n, and the information on which
blocks to hit is given as a secret input 〈cj〉j<m, where ai, cj < k for any i < n and
j < m. Formally,

a �∈ Errorm/k;n(〈ai〉i<n | 〈cj〉j<m) ⇐⇒
{
a ∈ {cj}j<m if a �∈ {ai}i<n,

{a} = {cj}j<m if a ∈ {ai}i<n.

This notion is an analogue of a sequence of type (m,n) in [8, Theorem 2.6]. Now
assume that there are k blocks, of which n are hard blocks. Consider an operation
of consolidating m of the normal blocks into a single hard block. Then we now have
k − m + 1 blocks, since we have consolidated m blocks into one. The number of
normal blocks remaining is � = k− n−m, and the number of hard blocks is n+ 1.
One can secretly hit a block m times, but assuming that a hard block will always
break if one hits it all the times does not change the difficulty of the problem,
so one can assume that the number of times we hit it is m∗ = min{�,m}. This
consolidating operation transforms an instance of Errorm/k;n into an instance of
Errorm∗/k−m+1;n+1.

The join f � g of bilayer functions f and g is defined as follows:{
(f � g)(〈0, n〉 | c) = f(n | c),
(f � g)(〈1, n〉 | c) = g(n | c).

The next claim corresponds to the formula (6) in Cenzer-Hinman [8, Theorem
2.6].

Claim. Errorm/k;n ≤LT Errorm∗/k−m+1;n+1 � Errorm−1/k;n.

Proof. Assume that an input (〈ai〉i<n | 〈cj〉j<m) for Errorm/k;n is given. There
are only a finite number of patterns of consolidating m normal blocks, and the
location information of the n hard blocks is given as a public input. Therefore, by
brute-force, Arthur can try all patterns of consolidating m normal blocks. If the
number of patterns is s, at the first s rounds, Arthur and Nimue make queries to
Errorm∗/k−m+1;n+1. For such a round, Arthur chooses m normal blocks 〈bi〉i<m,
i.e., {bi}i<m ∩ {ai}i<n = ∅, and consolidate them into a single hard block b. Then
Nimue hits the new blocks according to the original secret input 〈cj〉j<m; that is,
if cj �∈ {bi}i<m then c′j = cj , and if cj ∈ {bi}i<m then c′j = b. Then, Nimue’s next
move is given by 〈c′j〉j<m.

If Merlin’s response u is not b at some round, then u is a solution to the original
problem, so Arthur declares termination with u. If Merlin’s response u is the new
consolidated hard block b at each round, then the original secret input 〈cj〉j<m



LAWVERE-TIERNEY TOPOLOGIES FOR COMPUTABILITY THEORISTS 67

does not hit m normal blocks. This is because if 〈cj〉j<m hits m normal blocks then
Arthur consolidates these m blocks into a single hard block b at some round, and
so Nimue hits the new hard block m times. This means that Nimue breaks b, so
b is not acceptable as Merlin’s response. Hence, the original secret input 〈cj〉j<m

hits at most m− 1 normal blocks, so (〈ai〉i<n | 〈cj〉j<m) can also be thought of as
an input of Errorm−1/k;n. Thus, at round s + 1, Arthur use 〈ai〉i<n and Nimue

use 〈cj〉j<m as a query to Errorm−1/k;n, and then Merlin’s response u must be a
solution to (〈ai〉i<n | 〈cj〉j<m). Then, Arthur declares termination with u. This is a
winning Arthur-Nimue strategy witnessing Errorm/k;n ≤LT Errorm∗/k−m+1;n+1 �
Errorm−1/k;n. �

The next claim corresponds to the formula (11) in Cenzer-Hinman [8, Theorem
2.6].

Claim. If q = �k−n
m �+ n then Errorm/k;n ≤LT Error1/q.

Proof. If m = 1 then q = k and there is no difference between normal blocks and
hard blocks; hence Error1/k;n ≤LT Error1/k. We prove the claim by induction on

m and k. By the induction hypothesis, if we put q0 = � (k−m+1)−(n+1)
m∗ �+n+1 and

q1 = � k−n
m−1�+ n, then

Errorm∗/k−m+1;n+1 ≤LT Error1/q0

Errorm−1/k;n ≤LT Error1/q1 .

We clearly have q1 ≥ q, and moreover

q0 =

⌈
(k −m+ 1)− (n+ 1)

m∗

⌉
+n+1 ≥

⌈
(k −m− n)

m

⌉
+n+1 =

⌈
(k − n)

m

⌉
+n = q.

Thus, q0, q1 ≥ q and this implies that Error1/q0 , Error1/q1 ≤1
LT Error1/q.

Hence, by the previous claim,

Errorm/k;n ≤LT Errorm∗/k−m+1;n+1 � Errorm−1/k;n

≤LT Error1/q0 � Error1/q1 ≤LT Error1/q � Error1/q ≡LT Error1/q.

This verifies the claim. �

In particular, if we put n = 0, then we have Errorm/k ≤LT Error1/� as � = � k
m�.

This concludes the proof of Theorem 4.8. �

4.2. Non-existence of a minimal topology. We next consider the basic bilayer
function Errorm/N for m ∈ N defined by

dom(Errorm/N) = {(∗ | A) : A ⊆ N ∧ |A| = m},
Errorm/N(∗ | A) = N \A.

Again, condition |A| = m in the definition of Errorm/N can be changed to con-

dition |A| ≤ m without affecting its ≡1
LT -degree. In Lee-van Oosten [27, Proposi-

tions 5.1 and 5.2], it is shown that Errorm/N <1
LT Errorm+1/N, but Error1/N ≡LT

Errorm/N. Interestingly, as shown in [27, Proposition 5.5], Error1/N is the ≤LT -
least basic bilayer function which is strictly ≥LT -above Id, where Id is any function
yielding the identity topology (e.g., (n | ∗) �→ n). However, if we include non-basic
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functions, Error1/N is not the ≤LT -least one. For instance, the basic bilayer func-
tion Error1/N is closely related to the notion called all-or-counique choice [6]:

dom(ACC) = N, ACC(e) =

{
N \ {ϕe(e)} if ϕe(e) ↓
N if ϕe(e) ↑.

One may relativize ACC by replacing ϕe with ϕα
e for a given oracle α ∈ 2N,

and then the resulting function is denoted by ACCα. Again, we think of a partial
multifunction as a bilayer function as in Example 2.10. The following is obvious:

Observation 4.9. Id <LT ACCα <LT Error1/N for any oracle α.

Lee [26, Open Problem 3.5.18] asked if there is the least topology strictly above
the identity topology. By Corollary 3.6, it is the same as asking if there is the ≤LT -
least bilayer function which is strictly ≥LT -above Id. If such a function exists,
then it must be a non-basic bilayer function. To solve this problem, given a partial
function g :⊆ N→ N, we consider the following multifunction Avoidg : N ⇒ N:

Avoidg(n) =

{
N \ {g(n)} if n ∈ dom(g)

N otherwise.

We first show that there exists no ≤T -least partial multifunction which is strictly
≥T -above Id.

Lemma 4.10. Let P :⊆ N ⇒ N be a partial multifunction such that P >T Id. Then,
there exists a total function g : N→ N such that

Id <T Avoidg and P �≤T Avoidg.

Proof. Let αP ∈ N
N be an oracle coding the full information of P. For instance,

αP(〈n,m〉) =

⎧⎪⎨
⎪⎩
0 if n ∈ dom(P) ∧ m �∈ P(n)

1 if n ∈ dom(P) ∧ m ∈ P(n)

2 if n �∈ dom(P).

Let g : N → 2 be an αP-generic real (that is, g is contained in any dense αP-
computable open set in Cantor space 2N, and such a g exists by the Baire category
theorem). By genericity, for any computable function f , there are infinitely many n
such that f(n) = g(n); hence Id <T Avoidg. Suppose for the sake of contradiction
that Arthur has a winning strategy Ψ for P ≤T Avoidg. Then we show the following
claim:

Claim. For any s ∈ N, there exist n ∈ N and σ ∈ N
<N such that

minσ > s ∧ Ψ(n, σ) ↓= 〈1, y〉 ∧ P(n) ↓ ∧ y �∈ P(n),

where recall that by Ψ(n, σ) = 〈1, y〉 we mean that, after reading Merlin’s moves
(n, σ), Arthur declares termination with y.

Proof. Otherwise, there is a number s refuting the claim. Let Ψ1(n, σ) denote
the second coordinate of Ψ(n, σ). Let us consider a sequence a0, a1, . . . such that
a�+1 ∈ Avoidg(Ψ1(n, a0, a1, . . . , a�)) for any �, i.e., 〈ai〉 is the sequence of Merlin’s
moves obeying the rule. It is clear that there always exists such an a� > s since
Avoidg only reduces the number of possible values by one. Since Ψ is winning, after
reading a finite initial segment of the sequence 〈ai〉, Arthur declares termination;
that is, Ψ(n, a0, a1, . . . , a�) = 〈1, y〉 for some � and y.
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In particular, there exists σ with minσ > s such that Ψ(n, σ) ↓= 〈1, y〉 for some
y. Given n, without knowing the information about g, one can effectively find
such a σ by brute-force. Then define f(n) as Ψ1(n, σ). Clearly, f is a computable
function. However, since the claim is supposed to fail, we have either P(n) ↑ or
f(n) = y ∈ P(n). Hence, the computable function f refines P, which means P ≤T Id.
However this contradicts our assumption on P. �

Given s, one can find an n and a σ in the above claim in an αP-computable
manner since αP contains the full information of P. For a given t, put s(t) =
max{g(n) : n < t}, and for this s = s(t), we write nt and σt = (ati)i<� for n
and σ in the claim. By the above claim, after reading Merlin’s play (nt, σt),
Arthur’s strategy Ψ declares termination, but fails to compute a solution of P.
However, since Ψ is a winning strategy for P ≤T Avoidg, Merlin must have violated
the rule at some round. In other words, there exists j < � such that atj+1 �∈
Avoidg(Ψ1(n, a

t
0, a

t
1, . . . , a

t
j)). Put mt

j = Ψ1(n, a
t
0, a

t
1, . . . , a

t
j), and we now have

atj+1 = g(mt
j) for some j < �. Note that, since atj > s for any j, if mt

j < t then

g(mt
j) �= atj+1 by our choice of s = s(t). Now consider the finite set Et defined by

Et = {〈mt
j , a

t
j+1〉 : j < � ∧ mt

j ≥ t}.
Given t, one can find the canonical code of Et is an αP-computable manner. Note

that there exists 〈m, a〉 ∈ Et such that g(m) = a. However, note that

D = {τ ∈ 2<N : (∃t ∈ N)(∀〈m, a〉 ∈ Et) τ (m) �= a}
yields a dense αP-computable open set in Cantor space 2N. This is because, given
a binary string τ , choose t > |τ |, and extend τ to τ∗ so that τ∗(m) �= a for any
〈m, a〉 ∈ Et. This is doable since 〈m, a〉 ∈ Et obviously implies m ≥ t. In this
way, any τ extends to τ∗ ∈ D and thus D is dense. Since g is αP-generic, we have
g ∈ D; that is, there exists t such that g(m) �= a for any 〈m, a〉 ∈ Et. However,
by the property of Et, for any t, we must have a pair 〈mt

j , a
t
j+1〉 ∈ Et such that

g(mt
j) = atj+1, a contradiction. �

Theorem 4.11. There exists no ≤LT -minimal bilayer function which is strictly
≥LT -above Id; that is, for any bilayer function P >LT Id there exists a bilayer
function Q such that Id <LT Q <LT P. Hence, there exists no minimal Lawvere-
Tierney topology which is strictly above Id.

Proof. Let P be a bilayer function such that P >LT Id. Put Pn(∗ | c) = P(n | c),
and then Pn is a basic bilayer function. If Pn �≤LT Id, then by minimality of
Error1/N ([27, Proposition 5.5]), we have Error1/N ≤LT Pn ≤LT P. By Observation
4.9, P cannot be minimal. Thus, one can assume that Pn ≤LT Id for any n ∈
dom(P). This implies that, since Pn is a basic bilayer function, if n ∈ dom(P), then
P̃(n) :=

⋂
c Pn(∗ | c) is nonempty. This is because, at some round in the reduction

game for Pn ≤LT Id, Arthur’s winning strategy declares termination with some
u ∈ Pn(∗ | c), which is independent of c, as c is invisible to Arthur. Then, since P̃

is a partial multifunction, by Lemma 4.10, there exists a total function g such that
Id <T Avoidg and P̃ �≤T Avoidg.

We claim that P �≤LT Avoidg also holds. Otherwise, there exists Arthur’s win-
ning strategy τ witnessing P ≤LT Avoidg, where we note that, since Avoidg is
a partial multifunction, Nimue does not intervene in the game. Let (n | c) be
Merlin’s first move. Since τ is winning, Arthur declares termination with some
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u ∈ P(n | c). However, since c is invisible to Arthur, the last value u only depends
on n. This implies that u ∈ P̃(n) =

⋂
c P(n | c). Namely, the strategy τ also

witnesses P̃ ≤T Avoidg. However, this contradicts our choice of g.
Moreover, since the Lawvere-Tierney topologies form a lattice, the Turing degrees

of bilayer functions also form a lattice by Corollary 3.6. For an explicit description
of the infimum operation, we define the meet a  b of bilayer functions a and b as
follows:

(a  b)(m,n | c, d) =
(
{0} × a(m | c)

)
∪
(
{1} × b(n | d)

)
.

Note that this is a bilayer analogue of the meet in the Weihrauch lattice [6].
We claim that the meet Q := P  Avoidg of P and Avoidg strictly lies between Id

and P. As P �≤LT Avoidg, we have Q <LT P. If Id �<LT Q, then Q ≤LT Id, so Q

is computable. This means that there exists a computable function p such that
p(n,m) ∈ Q(n,m | c, ∗) for n,m, c. First consider the case that for any n ∈ dom(P)
there exists m ∈ N such that p(n,m) is of the form 〈0, k〉. For such an m, since
Avoidg is total, we also have 〈n,m〉 ∈ dom(Q), and thus p(n,m) ∈ Q(n,m | c, ∗), so
k ∈ P(n | c) for any c. In this case, given n ∈ dom(P), by brute-force, we effectively
search for m ∈ N such that the first coordinate of p(n,m) is 0, then return its
second coordinate, which must be a solution to P(n | c) as seen above. Hence,
this procedure witnesses that P is computable, which contradicts the assumption
P >LT Id. Thus, there must exist n ∈ dom(P) such that p(n,m) is of the form 〈1, k〉,
for any m ∈ N. As in the above argument, we have p(n,m) ∈ Q(n,m | c, ∗), so k ∈
Avoidg(m). Then, the algorithm which, givenm ∈ N, returns the second coordinate
of p(n,m) witnesses that Avoidg is computable. However, this contradicts the
property Avoidg >LT Id. Consequently, Id <LT Q <LT P. This verifies the first
assertion. Then, the second assertion follows from Corollary 3.6. �

This solves Lee’s problem [26, Open Problem 3.5.18].

5. Other topologies

5.1. Probabilistic computation. As in Section 2.2, we consider bilayer functions
expressing certain kinds of probabilistic computation. However, unlike Section 2.2,
for the sake of brevity in discussion, we require that a parameter A be compact. By
inner regularity, every μ-measurable set in 2N is approximated from the inside by a
compact set, so adding this assumption does not make much difference. Here, recall
that μ is the uniform probability measure on 2N. Then we consider the following
bilayer function:

ProbErrorε(〈e, n〉 | A) ↓ ⇐⇒ A ⊆ 2N is compact

∧ μ(A) ≥ 1− ε ∧ (∀α ∈ A) ϕα
e (n) ↓ .

ProbErrorε(〈e, n〉 | A) = {ϕα
e (n) : α ∈ A}.

One would say that the subtopos obtained from the Lawvere-Tierney topology
corresponding to ProbErrorε is the “world of probabilistically computable mathe-
matics with error probability ε.” Surprisingly, we show that ProbError induces
exactly the same topology as Lee-van Oosten’s function Error.

Proposition 5.1. For any p, q ∈ N with p ≤ q, ProbErrorp/q ≡LT Errorp/q.
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Proof. Obviously, we have Errorp/q ≤LT ProbErrorp/q. We show the other direc-
tion. Let (〈e, n〉 | A) be an input for ProbErrorp/q and assume that

ProbErrorp/q(〈e, n〉 | A) ↓ .
This means that ϕα

e (n) ↓ for any α ∈ A. Since A is compact, there exists t such that

the stage t approximation ϕα�t
e,t (n) halts for any α ∈ A. Note that 〈e, n〉 �→ t is not

necessarily computable, and thus Arthur does not have access to this information,
but Nimue does have access to it.

The public input 〈e, n〉 can be thought of as a partial function α �→ ϕα
e (n). This

induces the push-forward measure on N defined by ν(j) = μ({α ∈ 2N : ϕα
e (n) ↓=

j}). We consider its finitary approximation; that is, put Es
j = {α ∈ 2N : ϕα�s

e,s (n) ↓=
j}, and define νs(j) = μ(Es

j ). For each stage s, the value νs(j) is rational, and
moreover νs(j) > 0 happens for at most finitely many j ∈ N. Let 〈ji〉i<�(s) be
a list of all such j’s. Clearly, s �→ 〈νs(ji)〉i<�(s) is computable. Since we have
only finitely many rationals 〈νs(ji)〉i<�(s), we can assume that all values have the
same denominator and are of the form νs(ji) = as,i/qrs. Note that we clearly have∑

i<�(s) as,i ≤ qrs. Fix a pairwise disjoint sequence (Js
i )i<�(s) such that Js

i ⊆ qrs
and |Js

i | = as,i.
Since Errorprs/qrs ≤LT Errorp/q by Theorem 4.8, there is Arthur’s winning

strategy τs witnessing this fact. As s �→ rs is computable, one can easily see that
the proof of Theorem 4.8 ensures that s �→ τs is also computable. Hence, instead
of taking Nimue’s moves as secret inputs to Errorp/q, we can take them directly as
secret inputs to Errorprs/qrs through the above reduction implicitly. Here, note that
such a conversion takes multiple rounds through Arthur and Nimue’s moves, but
we do not count this number of rounds, and without mentioning it, all conversions
are assumed to be done automatically.

Thus, at the (s+1)-st round, after seeing Nimue’s previous move, we assume that
Merlin plays a move j less than qrs. Then Arthur reacts to this. If Merlin’s move
j is contained in Js

i for some i < �(s), then Arthur declares termination with ji.
Otherwise, Arthur declares that the game proceeds to the next round, and urges
Nimue to make the next move. Now we describe Nimue’s move Bs at the s-th round.
Nimue reads the secret input A and then define Bs as follows: For any m ∈ Js

i , we
define

m ∈ Bs ⇐⇒ A ∩ Es
ji = ∅.

For m ∈ qrs \
⋃

i<�(s) J
s
i , we define

m ∈ Bs ⇐⇒ A ∩Es
↑ = ∅,

where Es
↑ = {α ∈ 2N : ϕα�s

e,s (n) ↑}. One can see that if t ≥ s then qrs \
⋃

i<�(s) J
s
i is

included in Bs, where t is a number mentioned in the first paragraph of this proof.
Note that, in order to enumerate as,i many elements in Js

i into Bs, the measure
of A needs to be removed by νs(ji) = as,i/qrs. Similarly, in order to enumerate
qrs −

∑
i<�s

ai,s elements in qrs \
⋃

i<�(s) J
s
i into Bs, the measure of A needs to be

removed by

μ(Es
↑) = 1−

∑
i<�(s)

μ(Es
ji) =

qrs −
∑

i<�s
ai,s

qrs
.

Since the measure of A is greater than or equal to 1− p/q, the measure removed
from A should be at most prs/qrs. Therefore, only at most prs many elements can
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ProbError1/ℓ

Error1/ℓ

Error1/N

WWKL1/ ℓ+1( )

LLPO1/ ℓ+1( )

ACC

Id

Figure 1. Lower parts of the lattice of Lawvere-Tierney topologies on the
effective topos

be enumerated into Bs, so (∗ | Bs) belongs to the domain of Errorprs/qrs . Hence,
Nimue’s move Bs obeys the rule.

We claim that Arthur and Nimue win this game along the play described above.
Note that Arthur declares termination by the (t + 1)-th round. This is because
the complement of

⋃
i<�(s) J

s
i is included in Bs, and thus Merlin must play a move

from
⋃

i<�(s) J
s
i at the (t + 1)-th round. In response to this move, Arthur’s strat-

egy described above declares termination. We now assume that Arthur declares
termination with jsi at the (s+ 1)-st round. In order for this to happen, Merlin’s
previous move must belong to Js

i . In such a case, Nimue’s previous move Bs must
satisfy Js

i �⊆ Bs. This means that A ∩ Es
ji
�= ∅. In particular, there exists α ∈ A

such that ϕα
e (n) = ji. Hence, ji ∈ ProbErrorp/q(〈e, n〉 | A). �

One can also consider a counterpart of ProbErrorε in the context of partial
multifunctions, which is known as weak weak König’s lemma [5]. Let Pe be the e-th
Π0

1 subset of 2N (or the set of all infinite paths though the e-th primitive recursive
subtree of 2<N).

WWKLε(〈e, n, i〉) ↓ ⇐⇒ μ(Pi) ≥ 1− ε ∧ (∀α ∈ Pi) ϕ
α
e (n) ↓ .

WWKLε(〈e, n, i〉) = {ϕα
e (n) : α ∈ Pi}.

As in Proposition 5.1, one can show that WWKLp/q ≡LT LLPOp/q. However, of
course, weak weak König’s lemma is known to be much stronger than the lessor
limited principle of omniscience. Indeed, if we consider analogues of WWKL and LLPO

in the Kleene-Vesley algebra (i.e., in the context of NN-computation), then one can
easily see that WWKL is strictly above LLPO with respect to Turing reducibility for
N

N-computability (i.e., generalized Weihrauch reducibility). Therefore, Proposition
5.1 is a phenomenon specific to the effective topos. If we consider another (rela-
tive) realizability topos, such as the Kleene-Vesley topos, the situation would be
completely different.
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Figure 1 summarizes some of basic implications about the ≤rea-ordering on the
Lawvere-Tierney topologies on the effective topos, where A → B means B ≤LT A
(or B�→ ≤rea A�→). By our results, there are no more implications in Figure 1.

5.2. Cofinite choice. The basic bilayer functions we have dealt with so far were
of no help at all for computing a single-valued function when treated as an oracle.
However, indeed, there is a known basic bilayer function which is rather powerful
when considered as an oracle. Pitts [38, Example 5.8] introduced the following
basic (non-modest) bilayer function Cofinite:

dom(Cofinite) = {∗} × N, Cofinite(∗ | n) = {m ∈ N : m ≥ n}.
Note that a one-query Cofinite-relative computation is one in which countably

many computations are run in parallel, a finite number of which may be wrong.
Pitts [38] observed that the above function yields a Lawvere-Tierney topology J on
the effective topos such that id <rea J <rea ¬¬. Here, note that J = Cofinite�→

in our terminology. Interestingly, van Oosten [47, Theorem 2.2] showed that, for a
total function f : N→ N, the topology J forces f to be decidable if and only if f is
hyperarithmetic. In other words, for a total function f : N → N, f ≤LT Cofinite

if and only if f is hyperarithmetic. For the basics of hyperarithmetic sets, we refer
the reader to Sacks [41] and Chong-Yu [10]. It is also known that Error1/� �≤LT

Cofinite for any � ∈ N (see [27, Proposition 5.11]).
Pitts’ function Cofinite also has a partial multi-valued counterpart, which has

been studied as cofinite choice [1,4] or bound [19] in the context of NN-computation.
We introduce cofinite choice relative to an oracle α ∈ 2N as follows:

Cαcof(e) ↓ ⇐⇒ |{n ∈ N : ϕα
e (n) ↓}| is finite,

Cαcof(e) = {n ∈ N : ϕα
e (n) ↑}.

It is obvious that Cαcof ≤LT Cofinite for any oracle α ∈ 2N. Moreover, we also
have Cαcof ≤T α′, where α′ is the Turing jump of α. To estimate the strength of cofi-
nite choice, we consider the following equivalent definition of the hyperarithmetical
hierarchy based on the effective Baire hierarchy.

Definition 5.2 (Effective Baire hierarchy). For each computable ordinal ξ, we
define a set Bξ of total functions on N as follows: First, B0 is the set of all total
computable functions on N, and a B0-code of f ∈ B0 is a program code computing
f . For ξ > 0, Bξ is the set of functions f : N → N such that f = lims→∞ fs for
some sequence (fn)n∈N, where there exists an algorithm Φf which, given n ∈ N,
returns a Bζ-code of fn ∈ Bζ for some ζ < ξ. A Bξ-code of f ∈ Bξ is a pair of a
code of ξ and a code of such Φf .

By the Shoenfield limit lemma (see e.g. [44, Lemma III.3.3] or [34, Proposition
IV.1.19]), Bn corresponds to ∅(n)-computability for n ∈ N, and Bξ corresponds to

∅(ξ+1)-computability for an infinite ordinal ξ, where ∅(ξ) is the ξ-th Turing jump of
a computable function. Obviously, Definition 5.2 of f ∈ Bξ produces a computable
well-founded tree Tf whose leaves are labeled by computable functions. Here, such
a Tf is full-splitting, that is, if σ ∈ Tf is not a leaf, then σ�n ∈ Tf for any n ∈ N.

Conversely, let T ⊆ N
<N be a computable full-splitting well-founded tree, and LT

be the set of leaves of T . A computable assignment is a computable function h : LT×
N → N. The above argument implies that f ∈ Bξ always yields a computable
assignment. Moreover, ξ corresponds to the rank of the tree. Here, the rank of a
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node σ ∈ T , rankT (σ), is inductively defined as follows: The rank of a leaf of T is
0, and if σ ∈ T is not a leaf, then the rank of σ is sup{rankT (σ�n) + 1 : n ∈ N}.
Then, rank(T ), the rank of T , is defined as the rank of its root.

Given such a computable assignment h, one can recover a function hT : N→ N of
effective Baire class ξ, where ξ is the rank of T . To be more precise, we inductively
label each node σ of T with a function hσ : N → N or an undefined symbol ↑ as
follows: If ρ is a leaf of T , then put hρ(n) = h(ρ, n). If σ�s is labeled by ↑ for some
s ∈ N, then σ is also labeled by ↑. If lims→∞ hσ�s(n) exists for all n ∈ N, then σ
is labeled by the pointwise limit hσ = lims→∞ hσ�s. Otherwise, σ is labeled by ↑.
Then define hT as the label of the root of T if it is defined. Observe that if hσ is
defined, then hσ ∈ BrankT (σ). Indeed, one can compute a BrankT (σ)-code of hσ.

Definition 5.3. We call a pair (T, h) of a computable full-splitting well-founded
tree T and a computable assignment h a blueprint.

One can easily see that f ∈ Bξ if and only if there exists a blueprint (T, h) such
that f = hT and rank(T ) = ξ. We are now ready to prove the following:

Proposition 5.4. For any computable ordinal ξ, we have C∅
(ξ)

cof ≡T ∅(ξ+1).

Proof. It suffices to show that ∅(ξ+1) ≤T C∅
(ξ)

cof . As mentioned above, ∅(ξ+1) corre-

sponds to B1+ξ. Therefore, it suffices to show that f ≤T C∅
(ξ)

cof for any f ∈ B1+ξ.
Let (T, h) be a blueprint defining f as above. Since hT = f is defined, hσ is also
defined for any σ ∈ T by definition.

We describe Arthur’s strategy for f ≤T C∅
(ξ)

cof . Assume that Merlin’s first move
is n, and the second and subsequent moves are σ = 〈x1, x2, . . . , x�〉. If σ is a leaf
of T , then Arthur declares termination with hσ(n). Here, Arthur can use the
information of hσ since hσ is computable. Assume that σ is not a leaf of T . Since
the rank of T is 1 + ξ, the rank of σ is at most 1 + ξ and thus the rank of any
immediate successor σ�s of σ is less than 1 + ξ. By the property of a blueprint,
given s ∈ N, one can compute a Bζ-code of hσ�s ∈ Bζ for some ζ < 1 + ξ. In

particular, (s, n) �→ hσ�s(n) is ∅(ξ)-computable.
Then consider the following program e: Given an input s, the computation

searches for t > s such that hσ�t(n) �= hσ�s(n). If such a t is found, the computation

ϕ∅(ξ)

e (s) halts. Otherwise, ϕ∅(ξ)

e (s) never halts. Since hσ is defined, lims→∞ hσ�s(n)
exists; that is, there exists s such that hσ�t(n) = hσ�s(n) for any t > s. Hence,

there are at most finitely many s such that ϕ∅(ξ)

e (s) halts. This means that e ∈
dom(C∅

(ξ)

cof ). Then, Arthur declares that the game is to continue, and uses e as the
next query, that is, 〈0, e〉 is Arthur’s next move.

We claim that this is Arthur’s winning strategy. To see this, if Merlin’s second
and subsequent moves are σ = 〈x1, x2, . . . , x�〉, then we inductively show that
hT (n) = hσ(n). We inductively assume that hT (n) = hσ(n). As the next move,
if Arthur declares that the game is to continue, and uses e as the next query,

Merlin responds to this with some t�+1 ∈ C∅
(ξ)

cof (e). This means that hσ�t�+1
(n) =

lims→∞ hσ�s(n)=hσ(n). Hence, by the induction hypothesis, we have hσ�t�+1
(n) =

hT (n).
If the history of Merlin’s moves ρ = 〈x1, x2, . . . , xk〉 reaches a leaf of T , then

Arthur declares termination with hρ(n), and by the above property, we obtain
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hρ(n) = hT (n) = f(n). Hence, the procedure described above is shown to be

Arthur’s winning strategy. Consequently, we get f ≤T C∅
(ξ)

cof . �

As Cαcof ≤LT Cofinite for any oracle α ∈ 2N, this explains the reason why
Cofinite is so powerful as an oracle. Interestingly, by the result in van Oosten [47,
Theorem 2.2] mentioned above, one can observe that even if relativized by a tremen-
dously powerful oracle α, Cαcof never be able to compute a non-hyperarithmetic
function; that is, for any non-hyperarithmetic f , we have f �≤T Cαcof no matter
what an oracle α is. Roughly speaking, this is because a computational process
beyond hyperarithmetic is not a finite approximation process, but an approxima-
tion process along an ordinal, which prevents us from using the “time trick”; see
e.g. [3]. As another remark, since Cofinite corresponds to giving an upper bound
on an unknown value, it seems that van Oosten’s characterization [47, Theorem
2.2] is somehow related to Solovay’s result [45] that the computably encodable sets
are exactly the hyperarithmetical ones.

5.3. Asymptotic density. As a candidate for another basic (non-modest) bilayer
function, one that uses asymptotic density may come to mind. For a set A ⊆ N,
the lower asymptotic density of A is defined by

d(A) = lim inf
n→∞

|A ∩ {0, 1, . . . , n− 1}|
n

.

Then, for any real ε ∈ [0, 1], we define the basic bilayer function DenErrorε as
follows:

dom(DenErrorε) = {(∗ | A) : A ⊆ N and d(A) ≥ 1− ε}
DenErrorε(∗ | A) = A.

Obviously, we have Cofinite ≤1
LT DenErrorε for any real ε ∈ [0, 1] since the

asymptotic density of a cofinite set is 1. The major difference between Cofinite

and DenErrorε is the following property.

Observation 5.5. Error1/� ≤1
LT DenError1/� for any � ∈ N.

Proof. We define an outer reduction K as follows: For n ∈ N and m < �, put
K(n�+m) = m. Then, for an input (∗ | {j}) for Error1/�, a secret inner reduction
L is defined by L({j}) = {n�+m : n ∈ N and j �= m < �}. Note that the asymptotic
density of L({j}) is 1 − 1/�. Clearly, y ∈ DenError1/�(L({j})) = L({j}) implies
K(y) �= j; hence K(y) ∈ Error1/�(∗ | {j}). �

We say that a partial multifunction P :⊆ N ⇒ N is hyperarithmetic if there exists
a partial Π1

1 function f :⊆ N→ N such that f(n) ∈ P(n) for any n ∈ dom(P).

Proposition 5.6. Let P be a partial multifunction whose codomain is � ∈ N with
� > 0. For any ε < 1/(�+ 1), if P ≤LT DenErrorε, then P is hyperarithmetic.

To prove this, we need to show an auxiliary lemma. For a tree T ⊆ N
<N, let

succT (t) be the set of all immediate successors of t in T . For a function b : N<N → N,
a tree T is b-fat if, for any t ∈ T which is not a leaf, t has at least b(t) immediate
successors, i.e., |succT (t)| ≥ b(t). For a function b : N<N → N and � ∈ N, consider
the function � · b : σ �→ � · b(σ). The following is an analogue of Cenzer-Hinman
[8, Proposition 2.9].
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Lemma 5.7. Let b : N<N → N be a function, T be an (� · b)-fat finite tree, and LT

be the set of all leaves of T . Then, for any function f : LT → � there exists a b-fat
tree S ⊆ T such that f is constant on the leaves of S.

Proof. Since T is finite, one can assume that any σ ∈ LT has the same length. We
prove the assertion by induction on the height k of T . Let f : LT → � be given. If
k = 1, then T has � · b(ε) leaves, where ε is the empty strings. As f is �-valued,
there are at least b(ε) leaves on which f is constant.

Next, assume that k > 1. Then, for any t ∈ T of length k − 1, define g(t) as the
least j < � such that |{n ∈ succT (t) : f(t

�n) = j})| ≥ b(t). Since T is (� · b)-fat, we
have |{n : f(t�n) < �}}| ≥ � · b(t), so such a j exists. Note that g is a function from
T ∩N

k−1 to �. By the induction hypotheis, there exists a b-fat tree S− ⊆ T ∩N
<k

such that g is constant on the leaves of S−. Let j < � be the unique value of g on
the leaves L−

S of S−. Note that L−
S ⊆ T . Then, define

S = S− ∪ {t�n : t ∈ L−
S ∧ n ∈ succT (t) ∧ f(t�n) = j}.

By definition, clearly f is constant on the leaves of S. Moreover, for any t ∈ L−
S ,

by our definition of g and S−, we have

|succS(t)| = |{n ∈ succT (t) : f(t
�n) = j}| ≥ b(t).

Therefore, S is b-fat. This concludes the proof. �
Proof of Proposition 5.6. Let (τ | η) be a winning Arthur-Nimue strategy witness-
ing P ≤LT DenErrorε. Except for the first move n, Merlin’s move is always a
number j ∈ N, which yields the tree N

<N of all possible moves by Merlin. Fix n,
and then Arthur’s strategy τ yields a partial computable function Φn

τ :⊆ N
<N → N,

where Φn
τ (σ) ↓= u if and only if, after reading Merlin’s moves σ, Arthur’s strategy

τ declares termination with u. Nimue’s strategy η restricts Merlin’s possible moves
to a well-founded subtree Tn

η of N<N such that, for each σ ∈ Tn
η , if σ is a leaf then

Φn
τ (σ) is defined, and the lower asymptotic density of the set An

η (σ) := succTn
η
(σ)

is at least 1 − ε since Nimue obeys the rule as long as Merlin obeys the rule, and
this value is greater than 1 − 1/(� + 1) since ε < 1/(� + 1). By the definition of
lower asymptotic density, there exists b(σ) such that, for any m ≥ b(σ), we have
|An

η (σ) ∩m|/m > 1− 1/(�+ 1). In particular, we have

|An
η (σ) ∩ (�+ 1) · b(σ)| > (�+ 1) · b(σ) ·

(
1− 1

�+ 1

)
= � · b(σ).

Fix such b : N<N → N, where if σ is either a leaf of Tn
η or σ �∈ Tn

η , then b(σ) is

arbitrary. Then, consider the tree T b of ((�+ 1) · b)-bounded strings:

T b = {t ∈ N
<N : (∀s < |t|) t(s) < (�+ 1) · b(t � s)}.

Since T b is finite branching and Tn
η is well-founded, Tn,b

η := T b ∩ Tn
η is finite by

König’s lemma. Moreover, Φn
τ is total on the leaves of Tn,b

η . Note that if σ is not

a leaf of Tn,b
η then succTn,b

η
(σ) = An

η (σ) ∩ (� + 1) · b(σ). Hence, Tn,b
η is (� · b)-fat.

Since Φn
τ is �-valued, by Lemma 5.7, there exists a b-fat subtree S of Tn,b

η of the
same height such that Φn

τ is constant on the leaves of S. Hereafter, we write b as
bn since such a b satisfying the above density condition depends on Merlin’s first
move n.

For a function g : N<N → N, our algorithm Ψg(n) searches for a g-fat finite tree
S ⊆ T g such that Φn

τ is constant on the leaves of S, and returns the unique value j
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of Φn
τ on the leaves of S if such an S exists. Note that if g(σ) is a correct witness

for the above density condition for An
η (σ), then such an S always exists. Now, we

define Q as follows

Q(n, j) ⇐⇒ (∀f : N<N → N)(∃g ≥ f) [Ψg(n) ↓= j],

where by f ≤ g we mean that f(σ) ≤ g(σ) for any σ ∈ N
<N. Note that Ψg(n) is

defined only if Ψg(n) succeeds in finding S, which means that the algorithm Ψ only
reads g up to the height of S. Thus, the above predicate Q is Π1

1.
We claim that Q(n, j) implies j ∈ P(n). To see this, put f(σ) = bn(σ). If g ≥ f

then we have |An
η (σ)∩(�+1) ·g(σ)| > � ·g(σ) by our choice of bn. If Ψ

g(n) ↓= j then
the algorithm Ψ succeeds in finding a g-fat finite tree S ⊆ T g such that Φn

τ (ρ) = j
for any leaf ρ of S. Note that succS(σ) ⊆ (�+ 1) · g(σ) by the definition of T g, and
|succS(σ)| ≥ g(σ) since S is g-fat. This implies that succS(σ)∩An

η (σ) is nonempty.
Hence, S ∩ Tn

η has a common leaf ρ. Since (τ | η) is winning, and ρ is a leaf of Tn
η ,

we must have Φn
τ (ρ) ∈ P(n). By our choice of S, Φn

τ is constant on the leaves of S,
and thus Ψg(n) must be equal to Φn

τ (ρ). This concludes Ψ
g(n) = j ∈ P(n).

We next claim that for any n there exists j < � such that Q(n, j). Otherwise,
for any j < � there exists fj such that either Ψg(n) is undefined or Ψg(n) �= j
for any g ≥ fj . Then, put h(σ) = max{bn(σ), fj(σ) : j < �}. As h(σ) ≥ bn(σ),
clearly, h(σ) is a correct witness for the above density condition for An

η (σ). Then,
by the argument using Lemma 5.7 described above, the algorithm Ψ succeeds in
finding S, so that Ψh(n) ↓= j for some j < �. However, as h ≥ fj , this contradicts
our assumption on fj . Therefore, Q determines a total relation. Since Q is Π1

1,
by Δ1

1-selection (see Moschovakis [32, 4B.5] or Sacks [41, Theorem II.2.3]), there
exists a hyperarithmetic function p : N → N such that Q(n, p(n)) holds. By the
first claim, this implies that p(n) ∈ P(n). �

In particular, DenErrorε and Cofinite have partly the same properties in the
following sense.

Corollary 5.8. Assume ε < 1/2. Then, for a function f : N → N, f ≤LT

DenErrorε if and only if f is hyperarithmetic.

Proposition 5.6 also shows that LLPOα1/� �≤LT DenError1/(�+2) for a sufficiently

powerful oracle α. By Observation 4.2, this implies that Error1/� �≤LT

DenError1/(�+2). Now it is natural to ask whether Error1/� ≤LT DenError1/(�+1)

or not. One can answer this question by introducing the concept of hyperarith-
metical reducibility for bilayer functions. First consider the one-query version.

Definition 5.9. Let f and g be bilayer functions. We say that f is a one-query
hyperarithmetically LT-reducible to g (written f ≤1

hLT g) if there exist partial Π1
1

functions H and K and a partial function L such that for any (n | c) and m,

m ∈ g(H(n) | L(n, c)) =⇒ K(n,m) ∈ f(n | c).
Let ψe :⊆ N→ N be the eth patrial Π1

1 function (given by the canonical enumer-
ation of all Π1

1 sets). Then, consider the following partial multifunction:

dom(Π1
1-LLPOm/k) = {e ∈ N : |{j < k : ψe(j) ↓}| ≤ m},

Π1
1-LLPOm/k(e) = {0, . . . , k − 1} \ {j < k : ψe(j) ↓}.

It is well-known that Π1
1 is higher analogue of computable enumerability, i.e.,

a set is Π1
1 if and only if there exists a hyperarithmetical enumeration procedure
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along a computable ordinal; see e.g. [32, 41]. The following is a hyperarithmetical
analogue of Proposition 4.3:

Proposition 5.10. Π1
1-LLPOm/k ≤1

hLT Errorm/k+1.

Proof. We define a secret inner reduction L as follows: For any e∈dom(Π1
1-LLPOm/k),

L(e) =

{
{j < k : ψe(j) ↓} if |{j < k : ψe(j) ↓}| = m

{j < k : ψe(j) ↓} ∪ {k} if |{j < k : ψe(j) ↓}| < m.

One can easily check that (∗ | L(e)) belongs to the domain of Errorm/k+1. For
an outer reduction K, define K(e, j) = j for any j < k. To compute K(e, k) along
computable ordinal steps, wait for finding m many j < k such that ψe(j) ↓. If
it is found at some ordinal stage, then K(e, k) is defined as the least � < k such
that � �= j for any such j < k. Otherwise, the computation never terminates, i.e.,
K(e, k) ↑. One can easily see that K is Π1

1.
For readers who are not familiar with ordinal computability, we describe the

details. Let O ⊆ N be Kleene’s system of ordinal notations; see e.g. [10, 41]. As
Kleene’s O is Π1

1-complete, and the graph Ge of ψe is Π1
1, there exists a many-

one reduction p witnessing Ge ≤m O, where ≤m denotes many-one reducibility.
Then, for a ∈ O, one can consider the stage a approximation ψe[a] of ψe; that is,
ψe(n)[a] ↓= m if and only if p(n,m) <O a. Note that <O is c.e. (see e.g. Sacks
[41, Theorem I.3.5]); hence ψe[a] ↓ is also a c.e. property. Then define GK as
follows:

(e, k, �) ∈ GK ⇐⇒ (∃a ∈ O)
[
(∃≥mj < k) ψe(j)[a] ↓
∧ (∀j < k) [ψe(j)[a] ↓ → j �= � < k]

]
.

One can easily see that GK is Π1
1 since O is Π1

1. Hence, by Π1
1-uniformization

(see Sacks [41, Theorem II.2.3] or Moschovakis [32, 4B.4]), there exists a partial Π1
1

function K :⊆ N
2 → N such that GK(e, k,K(e, k)) holds whenever (e, k, �) ∈ GK

for some �. As in the proof of Proposition 4.3, one can see that 〈L,K〉 witnesses
Π1

1-LLPOm/k ≤1
hLT Errorm/k+1. �

Now we introduce the notion of hyperarithmetical reducibility for bilayer func-
tions. Arthur’s hyperarithmetic strategy is a code τ for a partial Π1

1 function
hτ : N

<N → N.

Definition 5.11. Let f and g be bilayer functions. We say that f is hyperarith-
metically LT-reducible to g (written f ≤hLT g) if there exists a hyperarithmetical
winning Arthur-Nimue strategy for G(f, g).

The following is an analogue of Proposition 5.6:

Proposition 5.12. Let P be a partial multifunction whose codomain is � ∈ N with
� > 0. For any ε < 1/(�+ 1), if P ≤hLT DenErrorε, then P is hyperarithmetic.

Proof. The argument is the same as Proposition 5.6. Only the complexity of Q
needs to be considered. If we consider a hyperarithmetical strategy, Φn

τ is no longer
a computable function, but a Π1

1 function. For this reason, Ψ is also Π1
1. To see

this, note that Ψg(n) is defined to be j if and only if there exists a g-fat finite tree
S ⊆ T g such that Φn

τ is defined and constant on the leaves of S and its unique value
is j. This condition is Π1

1 since S is finite and Φn
τ is Π1

1. Moreover, as mentioned
in the proof of Proposition 5.6, if Ψg(n) is defined then the algorithm Ψ only reads
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g up to the height of S. Thus, Q(n, j) holds if and only if for any f , there exists a
finite string σ such that σ majorizes f up to |σ| and Ψσ(n) ↓= j. This condition is
Π1

1. The rest follows the same argument as in Proposition 5.6. �

Corollary 5.13. For any � ≥ 2, Error1/� ≤LT DenErrorε if and only if 1/� ≤ ε.

Proof. The backward direction follows from Observation 5.5. For the forward di-
rection, assume that 1/� > ε. It is clear that Π1

1-LLPO1/(�−1) is not hyperarithmetic.

In particular, by Proposition 5.12, we have Π1
1-LLPO1/(�−1) �≤hLT DenErrorε since

ε < 1/�. However, by Proposition 5.10, we have Π1
1-LLPO1/(�−1) ≤hLT Error1/�.

Hence, Error1/� �≤hLT DenErrorε. �

Note that the above proof also shows that Π1
1-LLPO1/� ≤hLT DenErrorε if and

only if 1/(�+ 1) ≤ ε.
The above results say nothing about DenError0. Note that since the asymptotic

density of a cofinite set is 1, we have Cofinite ≤1
LT DenError0. We show that

computability with density error 0 is strictly stronger than computability with
finitely many errors in the following sense:

Theorem 5.14. Cofinite <LT DenError0.

Proof. Suppose not. Then, there exists a winning Arthur-Nimue strategy (τ | η)
witnessing DenError0 ≤LT Cofinite. Except for the first move (∗ | A), Merlin’s
move is always a number j ∈ N, which yields the tree N

<N of all possible moves by
Merlin. Here A is a secret input, which is invisible to Arthur. Hence, Arthur’s
strategy τ yields a partial computable function Φτ :⊆ N

<N → N, where Φτ (σ) ↓=
u if and only if, after reading Merlin’s moves σ, Arthur’s strategy τ declares
termination with u. For h : N<N → N, consider the tree N

<N[≥ h] = {σ ∈ N
<N :

(∀n < |σ|) h(σ � n) ≤ σ(n)}. Nimue’s strategy η restricts Merlin’s possible moves
to the tree N

<N[≥ ηA], where ηA(σ) = η(A�σ), and moreover, as τ is winning,
the computation Φτ determines covers the tree N

<N[≥ ηA]; that is, for any infinite
path x through N

<N[≥ ηA] there exists an initial segment ξ of x such that Φτ (ξ) is
defined.

This ensures the existence of a function h : N<N → N such that the computation
Φτ covers the tree N<N[≥ h]. Consider the set B of all minimal strings ξ ∈ N

<N[≥ h]
such that Φτ (ξ) is defined. Note that any infinite path x through N

<N[≥ h] has an
initial segment in B. Then, B yields a well-founded subtree T = {ζ ∈ N

<N : (∃ξ ∈
B) ζ � ξ} of N<N[≥ h] so that B is the set of all leaves of T . One can see that
if σ ∈ T is not a leaf then the set succT (σ) of its immediate successors is cofinite.
This is because, for any n ≥ h(σ), any infinite path extends σ�n ∈ N

<N[≥ h] has
an initial segment ρ ∈ B. Then ρ is a leaf of T , and since σ ∈ T is not a leaf, ρ
must extend σ�n. Hence we have σ�n ∈ T since a tree is �-downward closed.

We label each node of this well-founded tree as follows: First, a leaf ρ ∈ T is
labeled by the value of Φτ (ρ). If σ ∈ T is not a leaf, then turn to its immediate
successors. If σ has infinitely many immediate successors which have the same label
c, then σ is also labeled by c. If there is no such label c, then σ is labeled by ∞.

Now, suppose that the label of the root of T is c �= ∞. Then, Merlin plays
N\{c} as his first move, which has clearly asymptotic density 1. In the following, we
assume that Arthur and Nimue follows their winning strategies τ and η, respectively.
If Nimue reacts to the above move with z0, search for x1 ≥ z0 such that 〈x1〉 ∈ T
and the label of 〈x1〉 is c. Such an x1 exists, since for the former condition 〈x1〉 ∈ T ,
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recall that the set of immediate successors of a node in T is cofinite, and for the
latter condition, the label of the root is c, so there are infinitely many immediate
successors labeled by c. Then Merlin plays x1 as his next move. Continuing
this argument, Merlin can keep returning nodes of T with the same label c, and
Merlin’s moves eventually reach a leaf of T . Reaching a leaf means that Arthur
declares termination of the game with some value Φτ (ρ), but since the label of this
leaf ρ is c, the value Φτ (ρ) must be c. Since c �∈ DenError0(N \ {c}) and Merlin’s
first move is N \ {c}, this means that Merlin wins the game, which contradicts our
assumption that (τ | η) is a winning Arthur-Nimue strategy.

Thus, the root of T must be labeled by ∞. We say that a node σ′ ∈ T is a big
sibling of a node σ ∈ T if σ and σ′ take the same value except for the last entry,
and σ′ is larger than σ for the last entry; that is, σ(n) = σ′(n) for any n < |σ| − 1
and σ(|σ| − 1) < σ′(|σ| − 1). We also say that a node σ ∈ T is decisive if all proper
initial segments of σ are labeled by∞, but σ and all big siblings of σ are labeled by
some values in N. Note that the root of T is not decisive as it is labeled by ∞, so
any decisive node has a proper initial segment. Let (αs)s∈N be a list of all decisive
nodes of T . First put d0 = 1. At stage s, assume that ds has already been defined.
The immediate predecessor α−

s of αs is labeled by ∞ since αs is decisive. The label
∞ of α−

s means that, for any c ∈ N, there are only finitely many siblings of αs

labeled by c. Therefore, by the pigeonhole principle, αs has a big sibling labeled by
some cs > ds. As αs is decisive, cs must be a finite value. Then, put ds+1 = 2cs.

Now Merlin plays N\{cs : s ∈ N} as his first move, which has asymptotic density
1 since cs+1 > 2cs for any s by our construction. At the round n+ 1, assume that
the history of Merlin’s previous moves is x1, . . . , xn, and Nimue’s previous move
is zn. First consider the case that the label of σn = 〈x1, . . . , xn〉 is ∞. If σn has
infinitely many immediate successors labeled by ∞, then as his next move Merlin

plays xn+1 ≥ zn so that σn
�xn+1 ∈ T is labeled by ∞. Otherwise, there are only

finitely many immediate successors of σn labeled by ∞, and thus, there exists a
decisive immediate successor of σn of the form σn

�z for some z ≥ zn. Then we
must have αs = σn

�z for some s. As seen above, αs has a big sibling α′
s = σn

�z′

labeled by cs. As his next move, Merlin plays the last entry xn+1 := z′ of α′
s.

Note that the history α′
s = 〈x1, . . . , xn, xn+1〉 of moves is now labeled by cs. Next

consider the case that the label of σn = 〈x1, . . . , xn〉 has already become a finite
value c ∈ N. In this case, σn has infinitely many immediate successors labeled by
c, and then as his next move Merlin can play xn+1 ≥ zn so that σn

�xn+1 ∈ T is
labeled by c.

As this play follows a winning Arthur-Nimue strategy, Arthur declares termina-
tion at some round. Then, the history of Merlin’s moves eventually reaches a leaf
of T which is labeled by a finite value. Hence, the history of Merlin’s moves is
labeled by a finite value at some round, and once the label becomes a finite value,
our construction of Merlin’s strategy ensures that the value of the label does not
change after that. Indeed, Merlin’s strategy described above stabilizes the labels of
the histories of Merlin’s moves to cs for some s. Therefore, the history of Merlin’s
moves eventually reaches a leaf of T which is labeled by cs, which turns out to be
(the second coordinate of) Arthur’s last move since the leaf of T is labeled by the
value of Φτ on it. However, cs �∈ DenError0(N\{cs : s ∈ N}) and Merlin’s first move
is N \ {cs : s ∈ N}. This means that Merlin wins the game, which contradicts our
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Error1/ℓ
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Figure 2. Higher parts of the lattice of Lawvere-Tierney topologies on the
effective topos

assumption that (τ | η) is a winning Arthur-Nimue strategy. Consequently, there
exists no winning Arthur-Nimue strategy; hence Cofinite <LT DenError0. �

Hence, we get the strict hierarchy of computability with error density ε:

Cofinite <LT DenError0 <LT . . . <LT DenError1/3 <LT DenError1/2 ≡LT ¬¬.
Figure 2 summarizes some of basic implications about the ≤rea-ordering on the

Lawvere-Tierney topologies (around hyperarithmetic Turing topologies) on the ef-
fective topos, where A→ B means B ≤LT A (or B�→ ≤rea A�→).

6. Future work

One may come up with other basic bilayer functions not mentioned in this article,
but we do not know which ones are non-trivial and interesting. It is a vague
question, but finding interesting basic non-modest bilayer functions is a big problem
in itself.

Question 1. Is there any other interesting basic non-modest bilayer function?

In Section 5.1, we have seen that the N-version of weak weak König’s lemma,
WWKL, is Turing equivalent to LLPO. Due to this kind of phenomenon, unlike N

N-
computation, it is difficult to find a nontrivial partial multifunction in the context
of N-computation. There are partial multifunctions on N not mentioned so far,
such as all-or-unique choice AoUCX on X (see e.g. [25]). However, the N-version
of AoUC2N turns out to be Turing equivalent to LLPO by the same argument as in
Section 5.1, and AoUCN is Turing equivalent to the halting problem by considering
enumeration time functions as in Section 2.1.

Question 2. Is there any other natural partial multifunction on N whose Turing
degree strictly lies between the computable ones and the halting problem?
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In this article, we have focused on topologies on the effective topos; however
“the world of computable mathematics” for modern computability theorists seems
to be the Kleene-Vesley topos rather than the effective topos. As indicated in
Section 2.2, the structure of Lawvere-Tierney topologies on the Kleene-Vesley topos
seems isomorphic to the bilayer version of generalized Weihrauch reducibility. In
the Kleene-Vesley context, modest bilayer functions have already been studied in
depth. There seem several results on non-modest functions as well: In the study
of (computability-theoretic) reverse mathematics on Ramsey-type theorems, the
notions of encodability [9, 35] and omniscience reducibility [16, 17, 30] have been
introduced, and interestingly, these notions seem to play a role in transforming
modest functions into non-modest functions. Although only one-query reducibility
has been studied yet in such a context, there seems to be no doubt that non-
modest functions are important in the study of reverse mathematics on Ramsey-
type theorems. This structure should also be explored in depth in the future.

Question 3. Study the LT-degrees of basic non-modest bilayer functions on N
N.

As another topos, the realizability topos RT(K2) induced by Kleene’s second
algebra corresponds to “the world of continuous mathematics,” and a Lawvere-
Tierney topology on the topos is a kind of data that indicates how much discon-
tinuity to add to the world. One can see that the structure of Lawvere-Tierney
topologies on the topos RT(K2) is isomorphic to the bilayer version of generalized
continuous Weihrauch reducibility.

In general, there are many other toposes that are related to computability the-
ory and (effective) descriptive set theory. As mentioned in Kihara [23], any Σ∗-
pointclass (see [32]) yields a (relative) partial combinatory algebra, which induces
a topos. If the pointclass Π

˜

1
1 is used as a seed, a topos corresponding to “the world

of Borel measurable mathematics” will be created, and if the pair (Π1
1,Π

˜

1
1) is used,

a topos corresponding to “the world of effective Borel measurable mathematics”
will be created. These lead us to the study of “Lawvere-Tierney topologies for
(effective) descriptive set theorists.” The topologies in this case are some sort of
data that indicate how much non-Borel objects to add to the world.

It may also be reasonable to study these structures in the context of synthetic
descriptive set theory [37]. We leave the exploration of these structures as a future
task.

Question 4. Investigate the structure of Lawvere-Tierney topologies on relative
realizability toposes.

Finally, coincidentally, instance reducibility in Bauer [2] and the ordering on
computably monotone functions (Section 3.2) have the exact same structure, but
what is the connection between them? For instance, can we characterize the order-
ing on Lawvere-Tierney topologies by a sort of iterated instance reducibility?

Question 5. Characterize the ordering on Lawvere-Tierney topologies on the ef-
fective topos (or other relative realizability topos) using a variant of instance re-
ducibility.
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