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NORMAL MEASURES ON LARGE CARDINALS

ARTHUR W. APTER AND JAMES CUMMINGS

Abstract. The space of normal measures on a measurable cardinal is nat-
urally ordered by the Mitchell ordering. In the first part of this paper we
show that the Mitchell ordering can be linear on a strong cardinal where the
Generalised Continuum Hypothesis fails. In the second part we show that a
supercompact cardinal at which the Generalised Continuum Hypothesis fails
may carry a very large number of normal measures of Mitchell order zero.

Introduction

If κ is a measurable cardinal, then the Mitchell ordering on normal measures on
κ is defined by U � U ′ ⇐⇒ U ∈ Ult(V, U ′). We review a few standard facts and
definitions:

• If U � U ′ then jU (κ) < jU ′(κ) < (2κ)+.
• The Mitchell ordering is well-founded and has height at most (2κ)+.
• The Mitchell order of κ is the height of the Mitchell ordering, and the
Mitchell order of a normal measure is its height in the Mitchell ordering.

• A normal measure U has Mitchell order zero if and only if U concentrates
on non-measurable cardinals, equivalently κ is not measurable in Ult(V, U).
If κ is the least measurable cardinal then automatically all normal measures
on κ have order zero.

• For any normal measure U on κ, there are at most 2κ many normal measures
U ′ with U ′ � U .

If κ is a strong cardinal then the Mitchell ordering at κ has the maximal height
and cardinality. More precisely there are 22

κ

normal measures and the Mitchell
order of κ is (2κ)+. See Fact 1.4 for the proofs of these facts.

If V is the canonical inner model for a strong cardinal then the Mitchell ordering
at each measurable κ is linear, and since GCH holds the height of the Mitchell
ordering is at most κ++. See Remark 1.8 for a proof of linearity in this model.

The situation is less clear when κ is a supercompact cardinal, or when κ is strong
and 2κ > κ+, and this is largely what motivates the work in this paper. We note
that:

• Recent work by Goldberg [17] shows that if the Ultrapower Axiom (UA)
holds then the Mitchell ordering is always linear. UA holds in any inner
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model constructed by the known techniques, so we should expect that it is
consistent with the existence of a supercompact cardinal.

• The argument that if κ is strong then the Mitchell order at κ has the
maximal height and cardinality does not completely pin down the structure
of the Mitchell ordering. In particular when 2κ > κ+ the argument leaves
open whether the ordering is linear, and the related question of how many
measures of order zero there are.

This paper has two main parts. In Section 1 we investigate the Mitchell ordering
at a strong cardinal κ, and show that:

• (Theorem 1) It is consistent that GCH fails at κ while the Mitchell ordering
at κ is linear.

• (Theorem 2) It is consistent that GCH fails at κ while the Mitchell ordering
at κ is a non-linear prewellordering.

• (Theorem 3) It is consistent that GCH holds at κ while the Mitchell ordering
at κ is a non-linear prewellordering.

The proofs in Section 1 involve analysing extenders in canonical inner models and
their generic extensions, using a small amount of inner model theory.

In Section 2 we investigate measures of order zero on a measurable cardinal κ in
a setting where 2κ > κ+. We show that:

• (Theorem 4) It is consistent that there exists a normal measure of order zero
on κ whose associated ultrapower exhibits a surprising degree of closure.

• (Theorem 5) It is consistent that a measurable cardinal κ where GCH fails
can have a very large (in a sense to be made precise) number of normal
measures of order zero.

• (Theorem 6) It is consistent that there exists a supercompact cardinal, GCH
fails at every measurable cardinal, and every measurable cardinal carries a
very large number of normal measures of order zero.

The proofs in Section 2 involve lifting various ultrapower maps onto generic exten-
sions.

For general background on large cardinals (including the basic facts about exten-
ders) and forcing, we refer the reader to Kanamori’s monograph [18] and the second
author’s survey [12]. Mitchell’s Handbook paper [23] and Zeman’s monograph [28]
both cover all the inner model theory we will use.

A prewellordering is a preordering whose quotient ordering is a well-ordering.
The level of an element is its height in the quotient ordering, so that if α < β all
elements on level α are below all elements on level β.

Investigating the number of measures on a measurable cardinal and the possible
structures for the Mitchell ordering on those measures is a longstanding theme in set
theory. Mitchell [21,22] introduced the Mitchell ordering as part of his seminal work
on canonical inner models with many measurable cardinals. Kunen and Paris [19]
used forcing to show that a measurable cardinal can carry many normal measures
of Mitchell order zero. Subsequently some relevant partial results were obtained by
Apter, Cummings and Hamkins [2], Baldwin [6], Cummings [10, 11], Leaning and
Ben-Neria [20], and Witzany [25] among others.

Questions about the number of measures of order zero on a measurable cardinal
were largely settled by Friedman and Magidor [14]. Among their main results are
that:
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• [14, Theorem 1] It is consistent (modulo the existence of a measurable
cardinal) that there is a measurable cardinal carrying any (reasonable) pre-
scribed number of normal measures. More precisely: if κ is measurable,
GCH holds and 1 ≤ α ≤ κ++ then there is a cofinality-preserving generic
extension in which κ is measurable and carries exactly α measures.

• [14, Theorem 12] It is consistent (modulo the existence of a (κ+ 2)-strong
cardinal) that there is a measurable cardinal at which GCH fails and which
carries exactly one normal measure. Subsequently Ben-Neria and Gitik [9]
obtained the same conclusion from the optimal hypothesis, the existence of
κ such that o(κ) = κ++.

The question about the potential structure of the Mitchell ordering was com-
pletely settled by Ben-Neria [7, 8]. He showed, by a mixture of techniques from
forcing and inner model theory, that any well-founded partial ordering may be
realised as a Mitchell ordering.

• [8, Theorem 7.5] From an assumption weaker than o(κ) = κ+, every “tame”
partial ordering of size at most κ can be realised as the Mitchell ordering
on κ.

• [7, Theorem 1.1] If V is a canonical inner model for a technical assumption
about a measurable cardinal κ, involving extenders which overlap measur-
able cardinals above κ, then for every well-founded poset S with |S| ≤ κ
there is a set-generic extension in which S is realised as the Mitchell order-
ing on normal measures at κ.

• [7, Corollary 3.1] If V is a canonical inner model for a global version of
the hypothesis of [7, Theorem 1.1], then there is a class-generic extension
in which every well-founded partial ordering may be realised as a Mitchell
ordering on some measurable cardinal.

1. Measures on a strong cardinal

Our main result in this section is that consistently κ may be strong with GCH

failing at κ and the Mitchell order at κ linear. In this model 2κ = 2κ
+

= κ++ and

2κ
++

= κ+++. We’ll also produce some models where κ is strong, GCH may either
hold or fail at κ, and the Mitchell ordering at κ is a non-linear prewellordering.

1.1. Measures and extenders. We begin by recalling a few standard facts about
extenders and their generators. All the extenders we use will be short, that is,
we only consider (κ, λ)-extenders E where λ < jE(κ). It is easy to see that
E /∈ Ult(V,E) for any such extender E, because if E ∈ Ult(V,E) then Ult(V,E)

can construct a surjection from [λ]<ω × [κ]<ω

κ onto jE(κ) in which (a, f) maps to
jE(f)(a). This contradicts the inaccessibility of jE(κ) in Ult(V,E).

Suppose that E is a (κ, λ) extender and jE : V → M = Ult(V,E) is the associ-
ated ultrapower map. The set of generators of E is the set of α ∈ [κ, λ) such that
α /∈ {jE(f)(a) : f : [κ]<ω → κ, a ∈ [α]<ω}. It is easy to see that:

• κ is a generator.
• If A is the set of generators, then M = {jE(f)(a) : f : [κ]<ω → V, f ∈
V, a ∈ [A]<ω}.

• E is equivalent to a normal measure on κ (that is to say there is a normal
measure U on κ with jU = jE) if and only if κ is the only generator.
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• E is equivalent to a (κ, α)-extender if and only if the set of generators is a
subset of α.

Now suppose that P is a forcing poset in V , G is P-generic over V and there is
H ∈ V [G] such that H is jE(P)-generic over V with jE [G] ⊆ H. Then we may lift
jE to obtain an embedding j∗ : V [G] → M [H]. It is easy to see that:

• M [H] = {j∗(f)(a) : f : [κ]<ω → V [G], f ∈ V [G], a ∈ [λ]<ω}.
• j∗ is the ultrapower map formed from a (κ, λ) extender E∗ ∈ V [G] such
that Ea ⊆ E∗

a for all a.
• The set of generators of E∗ is a subset of the set of generators of E.

We will be particularly interested in the possibility that κ is the only generator of
E∗, so that E∗ is equivalent to a normal measure.

We also need some information about the closure properties of extender ultra-
powers. Fact 1.1 is well-known:

Fact 1.1. Let E be a (κ, λ)-extender. The following are equivalent:

• Ult(V,E) is closed under κ-sequences.
• κλ ⊆ Ult(V,E).

Proof. For the non-trivial direction, let �x = (xα)α<κ be a sequence of elements
of Ult(V,E) and let xα = jE(fα)(aα), where aα ∈ [λ]nα and dom(fα) = [κ]nα .

By hypothesis �a = (aα)α<κ ∈ Ult(V,E). Let �F = (fα)α<κ, then jE(�F ) � κ =
(jE(fα))α<κ ∈ Ult(V,E), so that easily �x ∈ Ult(V,E). �

For use later, we record a general fact about extenders which generalises a result
of Friedman and Thompson [15, proof of Lemma 4].

Fact 1.2. Let E be a (κ, λ)-extender such that the set of generators is contained
in jE(h)(κ) for some function h : κ → κ. Then κ is the only ordinal which lies in
jE(C) for every club C ⊆ κ.

Proof. Suppose for a contradiction that κ < α < jE(κ) and α ∈ jE(C) for every
club C ⊆ κ. Let α = jE(F )(�γ) where �γ is an increasing n-tuple of generators and
F : [κ]n → κ. Let D be the club of β < κ such that h[β] ⊆ β and F [[β]n] ⊆ β,
so that by hypothesis α ∈ jE(D). Since κ < α, jE(h)(κ) < α and in particular
�γ ∈ [α]n. But then jE(F )(�γ) < α, contradicting the choice of F . �

Remark 1.3. It will turn out that all the extenders which are relevant for our
purposes satisfy the hypotheses of Fact 1.2, see Remark 1.6(2). We note that the
proof of a corresponding fact in our earlier paper [1, Subclaim 2.1.2] is incorrect,
but in fact the extender discussed in that proof does satisfy the hypotheses of Fact
1.2 so the conclusion is sound. There do exist short extenders which do not satisfy
the conclusion of Fact 1.2: for example if U is a normal measure on κ and j02 is
the two-step iteration by U , then j01(κ) ∈ j02(C) for every club C ⊆ κ.

Finally we recall some easy facts about strong cardinals. For the convenience
of the reader we have sketched the proofs, which are adaptations of results by
Solovay appearing in the paper by Solovay, Reinhardt and Kanamori [24] about
supercompact cardinals. Facts 1.4 and 1.5 are formulated in slightly different ways,
because Fact 1.4 will be used to analyse measures in a universe where GCH may
fail and Fact 1.5 will be used to analyse extenders in a model where GCH holds.
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Fact 1.4. Let κ be (κ + 2)-strong. Then for every A ∈ Vκ+2 there is U a normal
measure with A ∈ Ult(V, U). As a consequence:

• The height of the Mitchell ordering on the set of normal measures on κ is
exactly (2κ)+.

• The cardinal κ carries exactly 22
κ

normal measures.
• If the Mitchell ordering is linear then 22

κ

= (2κ)+.

Proof. Let ≺ be a well-ordering of Vκ, and let j : V → M witness that κ is (κ+2)-
strong. For each α < κ, let aα be the least element of Vα+2 such that aα /∈ Ult(V, u)
for any normal measure u on α. Assume for a contradiction that the claim fails
and let A ∈ Vκ+2 be the j(≺)-minimal counterexample. By the agreement between
V and M , A = j(a)κ. Now let U be the normal measure derived from j and
let k : Ult(V, U) → M be given by k : [F ]U 	→ j(F )(κ), so that j = k ◦ jU .
Routinely Vκ+1 ⊆ rge(k) and so A = jU (a)(κ), contradicting the choice of A as a
counterexample. �

Fact 1.5. Let κ be strong and let GCH hold. Then for every A ⊆ κ++ there is a
(κ, κ++)-extender E such that P (κ+) ∪ {A} ⊆ Ult(V,E).

Proof. Let ≺ be a well-ordering of Vκ, and let j : V → M witness that κ is λ-
strong for some large λ. For each α < κ let aα be least such that aα /∈ Ult(V, e)
for any (α, α++)-extender e. Let A be the j(≺)-minimal counterexample to the
claim, so that A = j(a)(κ). Let E be the (κ, κ++)-extender derived from j and let
k : Ult(V,E) → M be given by k : jE(f)(a) 	→ j(f)(a). As usual P (κ+) ⊆ Ult(V,E)
and κ++ ⊆ rge(k), so A = jE(a)(κ) for an immediate contradiction. �

1.2. The minimal inner model with a strong cardinal. All the constructions
in this section will involve forcing over the minimal inner model with a strong

cardinal. More explicitly we assume that V = L[ �E] where �E is a coherent non-
overlapping sequence of extenders in the sense of Mitchell’s survey [23], further we

assume that o
�E(κ) = ∞. It follows that:

• κ is strong.

• κ is largest with o
�E(κ) > 0.

• o
�E(α) < κ for all α < κ.

• α is measurable if and only if o
�E(α) > 0.

• GCH holds.
• For every regular λ > κ and every A ⊆ λ, there is η < λ+ such that
A ∈ Ult(V,E(κ, η)).

• For every regular λ > κ, P (λ) ⊆ Ult(V,E(κ, ζ)) for all ζ ≥ λ+.
• For every generic extension V [G] of V and every elementary embedding
i : V [G] → N defined in V [G], i � V is a uniquely determined normal
iteration (that is to say an iteration with increasing critical points) of V

via extenders on �E. The uniqueness is easy to see: coherence tells us exactly
which extenders to apply in the course of the iteration. As a special case,
if F is a (κ, λ)-extender in V then jF is a normal iteration whose first
extender is of the form E(κ, ζ).

We refer the reader to [23, Section 3] for a detailed discussion of this model.

In the sequel we will lighten the notation by writing o(α) for o
�E(α), Eζ for

E(κ, ζ), jζ for jE(κ,ζ) and Mζ for Ult(V,E(κ, ζ)).
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Remark 1.6 will be useful later:

Remark 1.6.

(1) By coherence, jζ(o)(κ) = ζ.
(2) Since the generators of Eζ are contained in κ + 1 + ζ and jζ(o)(κ) = ζ, it

follows that Eζ satisfies the hypotheses of Fact 1.2.
(3) If P is a forcing iteration of length κ where the iterands are non-trivial only

at α with o(α) > 0, then in jζ(P) the first non-trivial iterand past κ occurs

past ζ. This holds because the image of �E is non-overlapping.
(4) If i : V → N is a normal iteration of length greater than one via extenders

on �E, and Eζ is the first extender applied, then the critical point at the
second step is greater than ζ, so that Mζ and N agree well past rank ζ. In
particular Eζ /∈ N .

(5) For regular λ > κ the generators of E(κ, λ+) are unbounded in λ+. Other-
wise E(κ, λ+) would be equivalent to a (κ, η)-extender F for some η < λ+,
and since P (λ) ⊆ Mλ+ we would have F ∈ Mλ+ = Ult(V, F ) for an imme-
diate contradiction.

For our purposes we will need some detailed information about the extenders on
�E with critical point κ.

Lemma 1.7. Let F be a (κ, κ++)-extender such that P (κ+) ⊆ Ult(V, F ). Then
there is a unique ζ such that κ++ ≤ ζ < κ+++, the generators of Eζ form a subset
of κ++, and F = Eζ � κ++. Conversely if κ++ ≤ ζ < κ+++, the generators of Eζ

form a subset of κ++, and F = Eζ � κ++, then P (κ+) ⊆ Ult(V, F ).

Proof. For the forward direction note that jF is a normal iteration of V by extenders

on �E whose first step has critical point κ, and let Eζ be the first extender applied.
We claim that ζ ≥ κ++: if ζ < κ++ then Eζ ∈ Ult(V, F ), but as we noted above

this is not possible in a normal iteration by extenders on �E.
Next we claim that the iteration for jF only goes one step. Suppose for a

contradiction that there is a second step, so that jF = i ◦ jζ where ζ < crit(i) = λ
say. Since κ is the largest measurable cardinal in V , λ ≤ jζ(κ), so λ < i(λ) ≤ jF (κ)
and thus λ has the form jF (h)(a) for some a ∈ [κ++]n and h : [κ]n → κ. Since
κ++ ≤ ζ < λ = crit(i), we have that λ = i(jζ(h)(a)), which is not possible as
λ = crit(i).

It follows that jF = jζ . Since the definition of the generators of an extender
depends only on the associated ultrapower map, it follows that F and Eζ have the
same generators. Since F is a (κ, κ++)-extender, the generators of Eζ form a subset

of κ++. Finally for every a ∈ [κ++]<ω and X ⊆ [κ]|a| we have X ∈ Fa ⇐⇒ a ∈
jF (X) ⇐⇒ a ∈ jζ(X) ⇐⇒ X ∈ (Eζ)a, so that F = Eζ � κ++.

For the converse let κ++ ≤ ζ < κ+++, assume that the generators of Eζ form
a subset of κ++, and let F = Eζ � κ++. It follows from the facts listed at the
start of this section that P (κ+) ⊆ Mζ . Since the generators of Eζ form a subset
of κ++, F is equivalent to Eζ , and so in particular Mζ = Ult(V, F ) and hence
P (κ+) ⊆ Ult(V, F ). �

Remark 1.8. A similar argument to that for Lemma 1.7 lets us classify the normal
measures on κ. If U is a normal measure then there is a unique ζ < κ++ such
that E(κ, ζ) has κ as its only generator and U is equivalent to E(κ, ζ). It follows
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immediately from coherence that the Mitchell ordering of normal measures on κ is
linear.

Lemma 1.9. Let F be an extender of the type identified in Lemma 1.7. Then the
generators of F are unbounded in κ++, and Ult(V, F ) is closed under κ-sequences.

Proof. If the generators are a subset of η for η < κ++ then F is equivalent to an
extender which is coded by a subset of κ+ and hence lies in Ult(V, F ), but this
is impossible. For the closure just note that since P (κ+) ⊆ Ult(V, F ) we have
κκ++ ⊆ Ult(V, F ), and appeal to Fact 1.1. �

It will follow from Theorem 1 that there are unboundedly many ζ∈ [κ++, κ+++)
with the set of generators contained in κ++, but this also follows from what we
already proved. Appealing to Fact 1.5 we can build a Mitchell increasing sequence
of extenders (Fi)i<κ+++ such that P (κ+) ⊆ Ult(V, Fi) for all i, and by Lemma 1.7
these correspond to an unbounded set of ζ’s as required.

It will be convenient later to have names for the class of ζ identified in Lemma
1.7 and its reflections to smaller critical points.

Definition 1.10. Let α ≤ κ be regular. Then Yα is the set of ζ < o(α) such that
ζ ≥ α++ and the generators of E(α, ζ) form a subset of α++.

It is easy to see that Yα ⊆ α+++: the point is that for ζ ≥ α+++ we have
P (α++) ⊆ Mζ , so that E(α, ζ) cannot be equivalent to an (α, α++)-extender.

For completeness we will prove that most extenders Eζ for ζ ∈ [κ++, κ+++) are
of a different character. Using arguments from Cummings’ paper [11, Section 6],
we will show that for most ζ in the interval [κ++, κ+++) the generators of Eζ are
unbounded in ζ, and for many such ζ the model Mζ is not κ-closed. These results
are not needed in the sequel and the impatient reader may skip to the start of
Section 1.3.

We will use a standard fact which is a form of condensation for L[ �E]. See [3, Fact
2.7] for a sketch of the argument, and [23, Theorem 3.24] for a much more general
condensation lemma.

Fact 1.11. Let θ > κ+ be a successor cardinal and let X ≺ Lθ[ �E] with P (κ) ⊆ X

and �E � θ ∈ X. Let the transitive collapse of X be Lθ̄[�F ]. Then Eζ = F (κ, ζ) for

all ζ < o
�F (κ).

Lemma 1.12. There is a club set C ⊆ [κ++, κ+++) such that:

• For every ζ ∈ C, the generators of Eζ form an unbounded subset of ζ.
• For every ζ ∈ lim(C) ∩ cof(ω), Mζ is not ω-closed.

Proof. Let θ be large enough. Build a continuous strictly increasing chain

(Xi)i<κ+++ of elementary substructures of Lθ[ �E] such that { �E � θ} ∪Hκ++ ⊆ X0,
κ++ ⊆ X0, |Xi| = κ++, δi = Xi ∩ κ+++ ∈ Xi+1 ∩ κ+++. Let C = {δi : i < κ+++},
so that C is club in κ+++.

It follows from Fact 1.11 that E(κ, κ+++) ∈ Xi and it collapses to E(κ, δi).
By part (5) of Remark 1.6, the generators of E(κ, κ+++) are unbounded in κ+++.
By elementarity the collapse of Xi believes that the generators of E(κ, δi) are
unbounded in δi, and by the agreement between V and the collapse of Xi it is easy
to check that this is true in V .

Now let i be limit with cf(i) = ω. For every η < κ+++ we have E(κ, κ+++) �
η ∈ Mκ+++ , and arguing as in the last paragraph we see that for all η < δi we have
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E(κ, δi) � η ∈ Mδi . Since E(κ, δi) /∈ Mδi and cf(δi) = ω, we see that Mδi is not
ω-closed. �

By similar (but simpler) arguments we may also analyse the normal measures
on κ. In this case we just sketch the arguments.

Lemma 1.13. For every normal measure on κ there is a unique ζ < κ++ such that
Eζ has κ as its only generator and U is the normal measure derived from jζ . The
set of ζ such that Eζ has κ as its only generator is non-stationary and unbounded
in κ++.

Proof. Arguing exactly as in Lemma 1.7, if U is a normal measure then there is
a unique ζ such that jU = jζ , and so Eζ has only one generator and U is the
measure derived from jζ . Since there is a Mitchell increasing κ++-sequence of
normal measures, there are cofinally many ζ < κ++ such that Eζ has only one
generator. Reflecting the properties of E(κ, κ++) to a continuous κ++-chain of
models of cardinality κ+, we see as in the proof of Lemma 1.12 that for almost
every ζ < κ++ (modulo the club filter) the generators of Eζ are unbounded in
ζ. �

1.3. Linear Mitchell ordering at a strong cardinal where GCH fails. We
will use essentially the same forcing construction that was used by Friedman and
Magidor [14, Theorem 12] to get a model where GCH fails at a measurable κ and κ
carries a unique normal measure. One small difference in the forcing construction
is that we only force at measurable α < κ: this will enable us to lift jζ for arbitrary
ζ ≥ κ++ by “spacing out” the support of the iteration on the j-side. To make this
paper more self-contained we describe the construction in some detail and state its
basic properties, but for proofs of these properties we will refer the reader to [14],
together with papers by Friedman and Thompson [15] and Friedman and Honzik
[13].

We need a certain parameter for the forcing construction which we choose by the
same method as in [14]. Let S = κ++ ∩ cof(κ+). It is a standard fact (using fine
structure) that in our ground model V there is a ♦S sequence 〈Sβ : β ∈ S〉, which
is definable without parameters in Hκ++ : moreover for every measurable α < κ the
same formula defines a diamond sequence on α++ ∩ cof(α+) when we interpret it
in H(α++).

For each γ < κ++ let Tκ
γ = {β ∈ S : Sβ = {γ}}, so that the sets Tκ

γ are pairwise

disjoint stationary subsets of S, and let �Tκ = (Tκ
γ )γ<κ++ . Similarly, for α < κ

measurable we use the definable diamond sequence on α++ ∩ cof(α+) to define a

sequence �Tα = (Tα
γ )γ<α++ of disjoint stationary subsets of α++. Now let ζ ≥ κ++,

so that H(κ++) ⊆ Mζ . It is easy to see that �Tκ = jζ(α 	→ �Tα)(κ), where the key
point is that the sets Tκ

γ are stationary in V but are uniformly definable in Mζ .

We can now describe the forcing construction. For α inaccessible, Sacks∗(α, 1)
is the set of closed subtrees of <α2 which satisfy the following uniform splitting
condition: there is a club set C ⊆ α such that for singular β ∈ C every point on
level β has 2 immediate successors, while all points on the remaining levels have
a unique successor. Sacks∗(α, α++) is the product of α++ copies of Sacks∗(α, 1),
taken with supports of size α.

It is easy to see that Sacks∗(α, α++) is α-closed, and that if 2α = α+ then
Sacks∗(α, α++) is α++-cc. If p ∈ Sacks∗(α, 1) and s ∈ p then we can refine p to
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p[s], the subtree of sequences comparable with s: informally we say “thin p using
s”. Given a condition q ∈ Sacks∗(α, α++), a set S ⊆ supp(q) with |S| < α and
an ordinal γ < α, an (S, γ)-thinning of q is a refinement of q obtained by thinning
q(β) for each β ∈ S using some point on level γ of q(β). If D is a dense subset of
Sacks∗(α, α++) then q reduces D if there exist S and γ as above such that every
(S, γ)-thinning of q reduces D: a fusion argument shows that if D is a family of α
dense sets then the set of conditions which reduce all D ∈ D is dense. This readily
implies that α+ is preserved. For proofs of these properties see [13, Section 2.4].

At each measurable α ≤ κ, we will force with a two-step iteration Sacks∗(α, α++)∗
˙Code(α), where Code(α) is a version of Jensen coding defined using �Tα. Let Xα

i

for i < α++ be the generic subset of α added by Sacks∗(α, α++) at coordinate i.
The forcing poset Code(α) adds a club set cα ⊆ α++ which selectively destroys

the stationarity of certain elements in the sequence �Tα, so that both cα and the
sets Xα

i can be recovered from the set of i such that Tα
i is stationary. One subtle

point is that membership of β in cα or Xα
i is coded twice, by one entry in �Tα

remaining stationary and another becoming non-stationary: this makes the coding
more absolute. For our purposes all we need to know about Code(α) is that it is
α+-closed, adds no α+-sequences of ordinals and has cardinality α++.

The iteration is done with non-stationary supports. Let Pκ+1 be the resulting
forcing poset. It will be crucial later that for any ζ ≥ κ++, jζ(Pκ) � κ+ 1 = Pκ+1:
this is true by the agreement between V and Ult(V,Eζ), and the careful choice of

the sequences �Tα.
Let G be Pκ+1-generic over V . Then we decompose G as Gκ ∗ g where Gκ is

Pκ-generic over V and g is Sacks∗(κ, κ++)∗ ˙Code(κ)-generic over V [Gκ]. We further
decompose g as g0 ∗ g1, where g0 is Sacks∗(κ, κ++)-generic over V [Gκ] and g1 is
Code(κ, κ++)-generic over V [Gκ][g0].

We will use Fact 1.14, which is proved by the same argument as [14, Lemma 14].

Fact 1.14. For every f ∈ (κκ)V [G], there is F ∈ V such that |F (α)| ≤ α++ and
f(α) ∈ F (α) for all α.

Lemma 1.15. For every normal measure U on κ in V [G] there is a unique ζ such

that κ++ ≤ ζ < κ+++ and j
V [G]
U is a lift of jζ . Moreover the set of generators of

Eζ is a subset of κ++.

Proof. Start by observing that since 2κ = κ++ in V [G], κ++ < j
V [G]
U (κ) < κ+++.

By our assumptions on V , j
V [G]
U � V is a normal iteration i of V by extenders

on �E, and we let Eζ be the first extender used. Clearly ζ < κ+++, for otherwise

i(κ) ≥ jζ(κ) > ζ ≥ κ+++, contradicting i(κ) = j
V [G]
U (κ) < κ+++.

By the argument of [14, Lemma 18], the iteration i only goes for one step, that
is to say i = jζ . It follows that κ++ ≤ ζ, because if ζ < κ++ then by an easy

counting argument jζ(κ) < κ++, contradicting jζ(κ) = j
V [G]
U (κ) ≥ κ++.

To finish we verify that the set of generators of Eζ is contained in κ++. Note
that κ++ is not a generator because, since Mζ computes κ++ correctly, jζ(α 	→
α++)(κ) = κ++. Suppose for a contradiction that Eζ has generators greater than
κ++, and let η be the least one. So κ++ < η < ζ and η is not of the form jζ(f)(�α)
for f ∈ V with f : κ<ω → κ and �α ∈ (κ++)<ω.

Since η < ζ < jζ(κ) = j
V [G]
U (κ), η = j

V [G]
U (h)(κ) for some h ∈ V [G] with

h : κ → κ. By Fact 1.14 there is H ∈ V such h(α) ∈ H(α) ⊆ κ and |H(α)| ≤ α++
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for all α. Let I be a function such that I(α) is a surjection from α++ onto H(α),
so η = jζ(I)(κ)(ρ) for some ρ < κ++, contradicting our hypothesis on η. �

At this point we are interested in lifting those extenders Eζ with generators
contained in κ++. It turns out that under favourable circumstances, the lift will
automatically be a normal measure.

Lemma 1.16. Let κ++ ≤ ζ < κ+++ and assume that the generators of Eζ are a
subset of κ++. Let j∗ be a lift of jζ onto V [G] such that j∗(G) � κ+ 1 = G. Then
j∗ is an ultrapower map by a normal measure on κ in V [G].

Proof. Let j∗ be such a lift of jζ onto V [G], so that by the discussion at the start
of this section j∗ = jE∗ for some (κ, ζ)-extender E∗ in V [G]. It will suffice to show
that κ is the only generator of E∗.

For each measurable α with α ≤ κ and each i < α++, let Xα
i be the ith Sacks

generic function at α added by G. We define fi : κ → κ for i < κ++ as follows: if
α < κ is measurable and Xκ

i � α = Xα
j for some j < α++ then fi(α) is the least

such j, otherwise fi(α) is 0.
By the assumption on the agreement between G and j∗(G), G and j∗(G) add

the same κ++-sequence of subsets of κ at coordinate κ. Since j∗(Xκ
i ) ∩ κ = Xκ

i

and all the sets Xκ
i are distinct, we see that j∗(fκ

i )(κ) = i for all i < κ++. Since
the generators of E form a subset of κ++ it follows that κ is the only generator of
E∗ and so j∗ is the ultrapower by a normal measure. �

Now we use techniques from [14] and from our prior work [1] to show that for
every ζ ≥ κ++ such that Mζ is κ-closed, the embedding jζ has a unique lift to
V [G]. This will be used to show that κ is still strong in V [G] and to analyse the
set of normal measures on κ in V [G].

We start by quoting a slightly simplified version of the relevant part of [1, Lemma
2.30].

Lemma 1.17. Let j : V → M be an embedding with critical point κ, let I ⊆ κ with
I an unbounded set of inaccessible cardinals and κ ∈ j(I). Let Rκ be an iteration
where the supports are non-stationary subsets of I, and the iterand at α is forced
to be an α-closed forcing poset of cardinality less than min(I \ (α + 1)). Suppose
that for every dense D ⊆ j(Rκ) with D ∈ M , there exists a sequence (Dα)α∈I of
families of dense subsets of Rκ such that |Dα| < min(I \ (α+ 1)) and D ∈ j(D)κ.

Let Gκ be Rκ-generic over V and let Gκ ∗ g be j(Rκ) � κ + 1-generic over M .
Then there is a unique filter H such that H is j(Rκ)-generic over M , j[Gκ] ⊆ H
and H � κ+ 1 = Gκ ∗ g.

Lemma 1.18. For every ζ ≥ κ++ such that Mζ is closed under κ-sequences, the
embedding jζ has a unique lift to V [G]. Moreover the unique lift j∗ has the property
that j∗(G) � κ+ 1 = G.

Proof. As we already noted, jζ(Pκ) � κ + 1 = Pκ+1. We claim that V [G] and
Mζ [G] agree on H(κ++). By the distributivity of the coding forcing, this amounts
to showing that V [Gκ][g0] and Mζ [Gκ][g0] agree. But Gκ ∗ g0 is generic for κ++-
cc forcing of cardinality κ++, and H(κ++) ⊆ Mζ , so the agreement claim follows
immediately.

To find a suitable choice for j∗(Gκ) we use Lemma 1.17, with I the set of

measurable cardinals less than κ. Recall that since �E is non-overlapping, if α
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and β are successive points of I then o(α) < β: we will use this to get the required
bound on the cardinality of the set Dα.

To apply Lemma 1.17, we need only to verify the technical condition on dense
subsets of j(Pκ). So let D ∈ Mζ be dense in j(Pκ), so that D = jζ(d)(�a) for some
�a ∈ [ζ]n and some function d from [κ]n to dense sets in Pκ. Let Dα = {d(β) :

β ∈ [o(α)]n}. As we noted above, it follows from �E being non-overlapping that

|Dα| = o(α) < min(I \ (α+1)). By the coherence of �E, jζ(o)(κ) = ζ, so that easily
D = jζ(d)(�a) ∈ j(D)κ. Appealing to Lemma 1.17 we get a generic object j∗(Gκ)
with j∗(Gκ) � κ + 1 = Gκ ∗ g and jζ [Gκ] ⊆ j∗(Gκ), together with a lifted map
j∗ : V [Gκ] → Mζ [j

∗(Gκ)].
We will first show that j∗[g0] generates a filter j∗(g0) which is generic over

Mζ [j
∗(Gκ)] for Sacks

∗(jζ(κ), jζ(κ
++)). Once this is done we can lift again to obtain

j∗ : V [Gκ][g0] → Mζ [j
∗(Gκ)][j

∗(g0)]. At this point we are basically done, since g1
is generic for forcing which is sufficiently distributive that there will be no problem
showing that j∗[g1] generates a suitably generic filter j∗(g1).

To find j∗(g0) we use arguments which parallel those of Friedman and Honzik
[13, Theorem 2.22] and [15, Lemma 5]. The main difference is that we are using
Sacks forcing which only splits at singular levels: this only simplifies the arguments.

Since κ is inaccessible in Mζ [j
∗(Gκ)], conditions in j∗(Sacks∗(κ, κ++)) have the

property that no tree appearing in them splits at level κ. This is slightly simpler
than the situation in [13, Theorem 2.22], where the splitting condition on Sacks
forcing is different and there is splitting at coordinates in the range of j.

We claim that for each α < j(κ++), there is a unique xα : jζ(κ) → 2 such that
for all β < jζ(κ) and all p ∈ g0 with α ∈ supp(j∗(p)), xα � β ∈ j∗(p)(α). For each
γ < κ the set of conditions in Sacks∗(κ, κ++) with no splitting before γ is dense, so
easily xα � κ is unique. By Fact 1.2, for every δ < jζ(κ) there is a club set Eδ ⊆ κ
such that jζ(Eδ) ∩ (κ, δ] = ∅: there is a dense set of conditions in Sacks∗(κ, κ++)
with splitting contained in Eδ, and since there is no splitting at level κ it follows
that xα � [κ, δ) is unique for all δ.

We let j∗(g0) be the set of conditions q ∈ j∗(Sacks∗(κ, κ++)) such that for
every α ∈ supp(q), xα is a branch through q(α). Clearly j∗[g0] ⊆ j∗(g0), and
the remaining issue is to show that j∗(g0) is generic. Since Mζ is closed under
κ-sequences, this follows exactly as in [13, Theorem 2.22].

The claims about uniqueness of j∗ follow by the arguments of [14], which we
briefly rehearse here. Suppose j′ : V [G] → M [j′(G)] is a lift of jζ . Clearly G �
κ = j′(G) � κ. The coding forcing at κ codes its generic object and the Sacks
generic object at κ in a way which is both upwards and downwards absolute, so
that j′(G) � κ + 1 = G. Since jζ [Gκ] = j′[Gκ] ⊆ j′(Gκ) and j′(G) � κ + 1 = G, it
follows from the uniqueness part of Lemma 1.17 that j′(Gκ) = j∗(Gκ) and hence
j∗ � V [Gκ] = j′ � V [Gκ]. Finally j∗(g0) and j∗(g1) are generated by j∗[g0] = j′[g0]
and j∗[g1] = j′[g1], so j∗(g) = j′(g) and hence j∗ = j′.

�

Remark 1.19. With a bit more effort it is possible to show that jζ has a unique
lift for every ζ ≥ κ++. We have omitted this argument, since for our purposes it
suffices to lift only those jζ for which Mζ is closed under κ-sequences.

Remark 1.20. Recalling the definition of Yκ from Definition 1.10, Lemmas 1.15,
1.16 and 1.18 give us a complete description of the normal measures on κ in V [G]
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and their ultrapower maps. The ultrapower maps are exactly the unique lifts of jζ
for ζ ∈ Yκ, and of course these maps determine the normal measures.

Lemma 1.21. κ is strong in V [G].

Proof. Let θ be a regular cardinal greater than κ, and choose ζ much larger than θ
such that Vθ ⊆ Mζ and Mζ is closed under κ-sequences. Let j∗ : V [G] → Mζ [j

∗(G)]
be the unique lift of jζ . Since j∗(G) � κ + 1 = G, the next point in the support
of j∗(G) is greater than ζ, and the tail forcing j(Pκ+1)/G is highly closed, we see
that V [G] and Mζ [j

∗(G)] agree to rank θ. �
Lemma 1.22. The Mitchell ordering at κ is linear in V [G].

Proof. Let U and U ′ be normal measures on κ in V [G]. By Lemmas 1.7, 1.9, 1.15,
1.16, and 1.18, there are unique ordinals ζ, ζ ′ ∈ Yκ (in particular lying in the interval

[κ++, κ+++)) such that j
V [G]
U is the unique lift of jζ , and j

V [G]
U ′ is the unique lift of

jζ′ . If ζ = ζ ′ then U = U ′, so assume that ζ < ζ ′.
By coherence Eζ ∈ Mζ′ . It is now routine to check that we may perform the

argument for lifting j
Mζ′
ζ in Mζ′ [G], using the fact that Mζ′ [G] and V [G] agree on

H(κ++). It follows that Uζ ∈ Mζ′ [G] = Ult(V [G], Uζ′). �
Putting these results together, we have proved:

Theorem 1. It is consistent (relative to the existence of a strong cardinal) that

there is a strong cardinal κ such that 2κ = 2κ
+

= κ++, 2κ
++

= κ+++, and the
Mitchell ordering at κ is linear.

Using the same ideas we can arrange some other “close to linear” behaviours for
the Mitchell ordering at a strong cardinal where GCH fails, by making the Mitchell
ordering a prewellordering. It is in this setting that the very fine analysis from the
proof of Lemma 1.15 really pays off. We illustrate the ideas with a model where
the Mitchell ordering is a prewellordering with one measure at every odd level and
two measures at every even level.

We begin by stating some easy properties of the sets Yα from Definition 1.10.

• For every ζ ≥ κ++ and regular η < κ, Y
Mζ
η = Yη.

• For every ζ ≥ κ++, jζ(α 	→ Yα)(κ) = Y
Mζ
κ = Yκ ∩ ζ.

• Let ζ ∈ Yκ and let η = ot(Yκ ∩ ζ). Then jζ(α 	→ ot(Yα)) = η.

Now let α ≤ κ be inaccessible and define a variation Sacks′(α) of Sacks forcing at
α as follows. Conditions are uniformly splitting subtrees p of <α2 with the following
splitting condition: there is a club set C ⊆ α such that the splitting levels of p are
those β ∈ C such that either β is singular or β is regular and ot(Yβ) is even. By
the properties of the sequence (Yα) we have that for all ζ ∈ Yκ:

• jζ(α 	→ Sacks′(α))(κ) = Sacks′(κ).
• jζ(Sacks

′(κ)) has a splitting level at κ if and only if ot(Yκ ∩ ζ) is even.

Now we modify the construction in the proof of Theorem 1, using
Sacks∗(α, α++) × Sacks′(α) in place of Sacks∗(α, α++). Accordingly we modify
the coding forcing, so that it codes the generic object for Sacks′(α) in addition to
the generic object for Sacks∗(α, α++) at each non-trivial stage α.

Now we work through the arguments for Theorem 1 making changes as necessary.
The analogues of Fact 1.14, Lemma 1.15 and Lemma 1.16 have the same statements
and proofs as before.
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The key point is that normal measures in V [G] correspond exactly to ordinals

in Yκ, so that if ζ ∈ Yκ and j
V [G]
U lifts jζ then the Mitchell order of U is precisely

ot(Yκ ∩ ζ). It is these considerations that motivated the choice of the splitting
condition for the forcing Sacks′(α).

Lemma 1.18 is modified as follows:

Lemma 1.23. For every ζ ≥ κ++ such that Mζ is closed under κ-sequences, the
embedding jζ has exactly one lift to V [G] if ot(Yκ∩ζ) is odd and exactly two lifts to
V [G] if ot(Yκ∩ζ) is even. Every lift j∗ of jζ has the property that j∗(G) � κ+1 = G.

Proof. The argument is the same as in the proof of Lemma 1.18 up to the point
where we construct j∗(g0), where in the current setting it is no longer true that
j∗(g0) generates a generic filter. The issue is that the splitting condition has changed
at level κ in the forcing at jζ(κ) on the jζ-side. To be more specific, the factor
j∗(Sacks′(κ)) has a splitting level at κ if ot(Yκ∩ζ) is even. The case when ot(Yκ∩ζ)
is odd and there is no splitting at κ is the same as in Lemma 1.18, so we concentrate
on the case when ot(Yκ ∩ ζ) is even.

Let g′0 be the Sacks′(κ)-generic added by the second factor in g0. Using Fact 1.2
as in the proof of Lemma 1.18, for i ∈ 2 there is a unique function x′

i : jζ(κ) → 2
such that:

• x′
i(κ) = 1.

• x′
i � β ∈ j∗(p) for all β ∈ jζ(κ) and p ∈ g′0.

Using the functions x′
i and the arguments from Lemma 1.18, we can now argue

that there are exactly two generic filters containing j∗[g0]. The functions xα for
α < jζ(κ

++) are constructed exactly as in the proof of Lemma 1.18. The two
filters are each of the following form: the set of pairs (q, q′) such that x′

i is a branch
through q′, and xα is a branch through qα for every α in the support of q. The
argument for genericity is exactly as in the proof of Lemma 1.18. Since the xα’s
are unique and x′

i is determined by the value x′
i(κ), these filters represent the only

two possibilities.
Each of the filters we just described is mutually generic with the filter generated

by j∗[g1], and the rest of the argument proceeds as in the proof of Lemma 1.18,
with each of the two choices for j∗(g0) giving a unique lift. �

With Lemma 1.23 in hand, we can prove the analogue of Lemma 1.21 exactly as
before. Since ot(Yκ) = κ+++ which is an even ordinal, it turns out that for every
ζ ≥ κ+++ there are two lifts for jζ , but this makes no difference in the argument.
Finally we modify Lemma 1.22.

Lemma 1.24. The Mitchell ordering at κ in V [G] is a prewellordering of height
κ+++ with exactly two measures at every even level and exactly one measure at
every odd level.

Proof. Let U and U ′ be normal measures on κ in V [G]. Exactly as in the proof of

Lemma 1.22, there are unique ordinals ζ, ζ ′ ∈ Yκ such that j
V [G]
U is a lift of jζ , and

j
V [G]
U ′ is a lift of jζ′ . As in the proof of Lemma 1.22, it is easy to see that U �U ′ if
and only if ζ < ζ ′.

This analysis, along with the coherence properties of the sets Yα listed above,

shows that if j
V [G]
U is a lift of jζ then the Mitchell order of U is ot(Yκ ∩ ζ). By

Lemma 1.23 there are two possibilities for U when ot(Yκ ∩ ζ) is even and only one
possibility when ot(Yκ ∩ ζ) is odd. �
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We have proved:

Theorem 2. It is consistent (relative to the existence of a strong cardinal) that

there is a strong cardinal κ such that 2κ = 2κ
+

= κ++, 2κ
++

= κ+++, and the
Mitchell ordering at κ is a prewellordering with two measures at even levels and
one measure at odd levels.

Remark 1.25. It is possible to prove versions of Theorems 1 and 2 in a setting where
the GCH fails more severely at a strong cardinal. Suppose that λ = cf(λ) > κ,
and there is h : κ → κ such that jη(h)(κ) = λ for all ordinals η with η ≥ λ. This
hypothesis is satisfied by (for example) λ of the form κ+α+1 for α < κ, or the least
inaccessible cardinal greater than κ.

Let λα = h(α) for α < κ inaccessible, where we may assume that λα = cf(λα) >
α. To prove a version of Theorem 1 with 2κ = λ we will modify the construction by
replacing Sacks∗(α, α++) by Sacks∗(α, λα), and modifying Code(α) to add a subset
of λα coding the λα sets added by Sacks∗(α, λα) plus itself. The argument now
goes through with the following modifications:

• (Fact 1.14) For every f ∈ (κκ)V [G], there is F ∈ V such that |F (α)| ≤ λα

and f(α) ∈ F (α) for all α.
• (Lemma 1.15) For every normal measure U on κ in V [G] there is a unique

ζ such that λ ≤ ζ < λ+ and j
V [G]
U is a lift of jζ . Moreover the set of

generators of Eζ is a subset of λ, and Mζ is closed under κ-sequences.
• (Lemma 1.16) Let ζ be as in the last item and let j∗ be a lift of jζ onto
V [G] such that j∗(G) � κ + 1 = G. Then j∗ is an ultrapower map by a
normal measure on κ in V [G].

• (Lemma 1.18) For every ζ ≥ λ such that Mζ is closed under κ-sequences,
the embedding jζ has a unique lift to V [G]. Moreover the unique lift j∗ has
the property that j∗(G) � κ+ 1 = G.

To get a version of Theorem 2 with 2κ = λ, we additionally replace Yα with the
set of ζ < o(α) such that ζ ≥ λα and the generators of E(α, ζ) form a subset of λα.

Remark 1.26. By varying the construction we may also obtain versions of Theorem
2 with more general prewellorderings. Let f : κ → κ \ {0}, change the support of
the iteration to consist of inaccessible closure points of f , and modify the definition
of Sacks′(α) as follows: conditions are uniformly splitting subtrees of <αα such that
for some club set C ⊆ α splitting occurs only on levels in C, nodes t on levels which
are singular elements of C have successors ti for i ∈ 2, nodes t on levels which
are regular elements of C have successors ti for i ∈ f(ot(Yβ)).

Let ζ ∈ Yκ, so that lifts of jζ give rise to the measures of Mitchell order η where
η = ot(Yκ ∩ ζ). It is easy to see that jζ has exactly jζ(f)(η) distinct lifts, so there
are jζ(f)(η) many measures of order η in V [G].

1.4. The Mitchell ordering at a strong cardinal where GCH holds. Now
we consider an extension of the same general kind as the one used by Friedman
and Magidor to produce a measurable cardinal with exactly two normal measures
[14, Theorem 1]. We will do a non-stationary support iteration forcing at each

measurable α ≤ κ with Sacks(α, 1) ∗ ˙Code(α), where Sacks(α, 1) is defined using
trees which split at almost every non-measurable inaccessible level and Code(α)
is designed to code the Sacks generic object and its own generic object. Code(α)
is defined using a sequence of disjoint subsets of α+ ∩ cof(α) which is uniformly
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definable in H(α++). We adopt the same notational conventions as in the last
section.

We use the following covering fact (which is easily proved by modifying the proof
of [14, Lemma 14]):

Fact 1.27. For f ∈ (κκ)V [G], there is F ∈ V such that |F (α)| ≤ α+ and f(α) ∈
F (α) for all α.

Lemma 1.28. For every normal measure U on κ in V [G] there is a unique ζ < κ++

such that j
V [G]
U is a lift of jζ . Moreover Eζ has κ as its only generator.

Proof. The argument that j
V [G]
U is a lift of jζ is exactly as before. Assume for a

contradiction that Eζ has at least two generators, so that if η is the second generator
then η is the least ordinal not of the form jζ(f)(κ) for f ∈ V with f : κ → κ. Since

η < ζ < jζ(κ) = j
V [G]
U (κ), η = j

V [G]
U (h)(κ) for some h ∈ V [G] with h : κ → κ. By

Fact 1.27 there is H ∈ V such that h(α) ∈ H(α) ⊆ κ and |H(α)| ≤ α+ for all α.
Let I ∈ V be a function such that I(α) is a surjection from α+ onto H(α).

Now η = j
V [G]
U (h)(κ) ∈ j

V [G]
U (H)(κ) = jζ(H)(κ), hence η = jζ(I)(κ)(ν) for some

ν < κ+. Let cν be the νth canonical function, so that jζ(cν)(κ) = ν. Let f ∈ V
be defined by setting f(α) = I(α)(cν(α)). Then jζ(f)(κ) = jζ(I)(κ)(jE(cν)(κ)) =
jE(I)(κ)(ν) = η, contradicting the choice of η as a generator. �

The arguments of the last section adapt readily to show that κ is strong in V [G].
For ζ > 0 the embedding jζ will lift uniquely, but j0 will have two distinct lifts:
this is because κ is non-measurable in M0 but measurable in Mζ for ζ > 0. The
analysis of the Mitchell ordering works in exactly the same way as before.

We have proved:

Theorem 3. It is consistent (relative to the existence of a strong cardinal) that
there is a strong cardinal κ, GCH holds, there are exactly two normal measures on
κ of order zero and exactly one normal measure of order ζ for ζ > 0.

It is now straightforward to prove other results of this kind by varying the split-
ting condition in the Sacks forcing, along the same lines as in Remark 1.26. We
begin with a function f : κ → κ \ {0} in the ground model. In a suitable generic
extension κ is strong, GCH holds, measures of order η arise from lifts of jζ for
ζ ∈ Yκ with ot(Yκ ∩ ζ) = η, and measures form a prewellordering with jζ(f)(η)
measures of order η.

Remark 1.29. We can view Theorems 1, 2 and 3 as first steps towards a version for
strong cardinals of Ben-Neria’s theorem [7] that any reasonable partial ordering can
be the Mitchell ordering of normal measures on a measurable cardinal. Of course
such a result would have to incorporate the constraints imposed by Fact 1.4.

2. Measurable cardinals with many measures of order zero

We begin by observing that it is fairly easy to get a measurable cardinal with 22
κ

measures of order zero if 2κ = κ+. To see this we use an argument of the second
author [10], which simplifies some results by Kunen and Paris [19].

Suppose that κ is measurable and 2κ = κ+, let U be a measure of order zero
on κ and let j : V → M be the ultrapower map. Let P be an Easton support
iteration which adds a Cohen subset of α++ for every inaccessible α < κ, and let
G be P-generic over V . Observe that:
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• V [G] |= κM [G] ⊆ M [G].
• j(P)/G is j(κ)-cc forcing of cardinality j(κ) in M [G].
• j(P)/G is κ+-closed in V [G].
• |j(κ)| = κ+.
• The set of maximal antichains of j(P)/G which lie in M [G] has cardinality
j(κ) in M [G], and hence has cardinality κ+ in V [G].

• Since P × P is κ-cc and κ is not measurable in M , κ is not measurable in
M [G].

• Every condition in j(P)/G has two incompatible extensions.

Using these facts it is easy to work in V [G] and build a perfect binary tree of
height κ+ of decreasing sequences from j(P)/G, such that any branch generates
a j(P)/G-generic filter over M [G]. For each such filter H we may lift j to get
j : V [G] → M [G][H], which is the ultrapower map by a measure UH on κ in V [G].
By the agreement between M [G] and M [G][H] we see that κ is not measurable in
M [G][H], so that UH is a measure of order zero.

This shows that in V [G] the cardinal κ carries 2κ
+

= 22
κ

measures of order zero.
Since we could have prepared the universe by adding as many Cohen subsets of κ+

as we please, preserving the measurability of κ and the hypothesis that 2κ = κ+,

the value of 2κ
+

in this construction may be arbitrarily large.
It is natural to ask about the situation where κ is measurable and 2κ > κ+. In

this setting the argument we just gave fails, because the ultrapower by a normal
measure on κ is not closed under κ+-sequences. In this section we will give a version
of the argument which does work to produce 22

κ

measures for 2κ > κ+.

2.1. A measure of order zero with a highly closed ultrapower.

Theorem 4. It is consistent (modulo GCH plus the existence of κ which is κ+-

supercompact) that there exist a cardinal κ with 2κ = 2κ
+

= κ++ and a normal
measure U on κ with the following properties:

(1) κ is the least measurable cardinal, so that in particular the measure U has
order zero.

(2) κ+

jU (κ) ⊆ Ult(V, U).

We digress briefly to discuss some historical background. Answering a question
raised by Apter, Woodin showed using Radin forcing [26] that consistently the least
measurable cardinal κ can be κ+-supercompact. Subsequently Apter and Shelah
[4,5] showed how to prove the same result using Easton support iteration. Woodin
also showed using Easton support iteration [27] that consistently there can exist a

normal measure U on κ such that κ+

jU (κ) ⊆ Ult(V, U).
As some context for Theorem 4, note that:

• For any normal measure U on a measurable cardinal κ, jU is continuous at

κ+ and hence jU [κ
+] /∈ Ult(V, U). It follows that κ+

jU (κ
+) � Ult(V, U), so

clause (2) in Theorem 4 is as close to being closed under κ+-sequences as
an ultrapower by a normal measure can come.

• If κ is measurable with 2κ = κ+ and M is any inner model such that
P (κ+) ⊆ M , then κ is measurable in M . So assuming 2κ = κ+, there can

be no measure U of order zero on κ with the property that κ+

2 ⊆ Ult(V, U).
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• If κ is measurable with 2κ = κ+ and U is a normal measure on κ, then

cf(jU (κ)) = κ+. It follows that κ+

jU (κ) � Ult(V, U), since jU (κ) > κ+ and
jU (κ) is regular in Ult(V, U).

We begin by describing a forcing construction by Apter and Shelah [4]. Its prop-
erties are only outlined in [4], so we give the proofs in more detail with references
to parallel arguments from [5]. Giving the arguments at this level of detail helps
us verify that we can mix in Woodin’s methods to prove Theorem 4.

2.2. Killing measurability in a mild way. Let γ < δ < λ with γ regular, δ
inaccessible, λ inaccessible or the successor of a cardinal with cofinality above δ.
Let GCH hold above δ. We will define a forcing poset P0 in V , and then forcing
posets P1 and P2 in the extension by P0. The definitions of P0 and P2 depend
only on γ and λ, but the definition of P1 also involves δ. All these posets preserve
cardinals and cofinalities.

The key features of these posets are that P0 ∗ P1 forces that δ is not measurable
and that 2δ = λ, while P0 ∗ (P1 ×P2) is equivalent to Add(λ, 1)×Add(δ, λ). In our
intended application in Section 2.3 there is a large cardinal κ and we set γ = ω,
δ = κ, λ = κ++. If κ has been suitably prepared, then P0∗P1 kills the measurability
of κ and the GCH at κ, but forcing with P2 resurrects measurability because of the
simple form of P0 ∗ (P1 × P2).

P0 is the natural forcing to add a non-reflecting stationary subset S of λ∩ cof(γ)
via initial segments of the characteristic function. It is easy to see that P0 adds no
< λ-sequences of ordinals.

Working in V [S], let P2 be the natural forcing to add a club subset C of λ with

C disjoint from S. It is a standard fact that P0 ∗ Ṗ2 is equivalent to Add(λ, 1).
It can be shown ([5, Lemma 1] or [4, Lemma 1]) that in V [S] there is a sequence

〈xα : α ∈ S〉 witnessing ♣λ(S). That is to say xα is cofinal in α, ot(xα) = γ, and
for every unbounded A ⊆ λ there are stationarily many α ∈ S such that xα ⊆ A.

The following fact is standard (see [5, Lemma 2] or [4, Lemma 2] for a proof):
If T is a set of limit ordinals such that T ∩ α is non-stationary in α for all α, and
(yα)α∈T is a family of sets such that yα is a cofinal subset of α for all α, then there
exist (zα)α∈T such that zα is a final segment of yα and the sets zα are pairwise
disjoint.

In our context this gives us the following facts:

• In the generic extension V [S] by P0, for every η < λ there exist (zα)α∈S∩η

such that the sets zα are pairwise disjoint final segments of the sets xα for
α ∈ S ∩ η.

• In the generic extension V [S ∗ C] by P0 ∗ Ṗ2 there exist (zα)α∈S such that
the sets zα are pairwise disjoint final segments of the sets xα for α ∈ S. By
distributivity, this sequence has the property that (zα)α∈S∩η ∈ V [S] for all
η < λ.

P1 is defined in V [S] as follows: conditions have the form (w,α, r̄, Z) where

(1) w ⊆ λ and |w| < δ.
(2) α < δ.
(3) r̄ = (ri)i∈w where ri : α → 2 for each i ∈ w.
(4) Z ⊆ {xβ : β ∈ S}, and every z ∈ Z is contained in w on a tail (so |Z| < δ).

The ordering is as follows: (w′, α′, r̄′, Z ′) ≤ (w,α, r̄, Z) iff

(1) w ⊆ w′.
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(2) α ≤ α′.
(3) r′i � α = ri for i ∈ w.
(4) Z ⊆ Z ′.
(5) If z ∈ Z with z ⊆ w, and α ≤ η < α′, then both {i ∈ z : r′i(η) = 0} and

{i ∈ z : r′i(η) = 1} are cofinal in z.

Lemma 2.1 follows the same lines as the discussion following the definition of
P1
δ,λ[S] in [5, pages 107 and 108]. We note that the conclusion given in that dis-

cussion is the γ-directed closure of P1
δ,λ[S], but the argument actually establishes

δ-directed closure.

Lemma 2.1. P1 is δ-directed closed.

Proof. Let A be directed with |A| < δ, and define a condition q as follows: wq =⋃
p∈A wp, αq = supp∈A αp, rqi =

⋃
p∈A,i∈wp r

p
i for i ∈ wq, and Zq =

⋃
p∈A Zp. It

is routine that q is a condition and that the first four clauses in the definition of
q ≤ p are satisfied for p ∈ A.

For the last clause let z ∈ Zp with z ⊆ wp and αp ≤ η < αq, so that αp ≤ η < αr

for some r ∈ A where we may assume that r ≤ p by directedness. Then wp ⊆ wr,
rqi (η) = rri (η) for all i ∈ wp, and {i ∈ z : rri (η) = 0} and {i ∈ z : rri (η) = 1} are
both cofinal in z. �

Taken together, Lemmas 2.2 and 2.3 parallel [5, Lemma 3].

Lemma 2.2. In the generic extension by P1, for each i < λ let r∗i be the union of
rpi for p in the generic filter such that i ∈ wp. Then dom(r∗i ) = δ.

Proof. It is easy to see that the set of p with i ∈ wp is dense, so we assume that
i ∈ wp and αp < η < δ and claim that there is q ≤ p with αq = η. We will set
wq = wp and Zq = Zp, so it remains to define rqi � [αp, η) for i ∈ wp.

Let S′ = {β ∈ S : xβ ∈ Zp}, note that S′ is a bounded subset of S and so
we may choose tails yβ of xβ for β ∈ S′ so that the yβ ’s are disjoint. Then for
αp ≤ ζ < η and β ∈ S′, we may easily choose values of rqi (ζ) for i ∈ yβ such that
{i ∈ z : rqi (ζ) = 0} and {i ∈ z : rqi (ζ) = 1} are both cofinal in yβ , since there is no
“interference” between different values of β. �

Let rli = {α < δ : r∗i (α) = l} for l ∈ 2.

Lemma 2.3. It is forced by P1 that δ is not measurable.

Proof. Let p force that Ḋ is a measure on δ, where we may assume that p lies in
the dense set of conditions where z ⊆ w for all z ∈ Z. For all i < λ, choose pi ≤ p
to decide whether r0i or r1i is in Ḋ and arrange that i ∈ wpi , also that pi is in the
dense set described above.

Following the same lines as some familiar chain condition arguments, we will
successively thin out the sequence of conditions pi for i in the stationary set λ ∩
cof(δ), eventually producing a stationary set T ⊆ λ ∩ cof(δ) such that (pi)i∈T is a
highly regular sequence of conditions:

• We may assume that sup(wpi ∩ i) is constant with some value ρ for i ∈ T .
This is possible by Fodor’s lemma, since |wpi | < δ = cf(i).

• We may assume that wpi ∩ i is constant with value w∗ for i ∈ T . This is
possible since ρ<δ < λ.
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• Intersecting T with the club set of closure points of the function i 	→
sup(wpi), we may assume that sup(wpi) < j = min(wpj \ j) for i, j ∈ T
with i < j. Note that the sets wpi for i ∈ T form a head-tail-tail Δ-system
with root w∗.

• We may assume that αpi is constant with value α for i ∈ T . This is possible
because αpi < δ.

• We may assume that there is a sequence r̄ = (rk)k∈w∗ such that rk : α → 2
and rk = rpi

k for all k ∈ w∗. This is possible because δ is inaccessible, so
that in particular |w∗| < δ and α < δ.

• Finally, we may assume that there is l < 2 such that pi � rli ∈ Ḋ for all
i ∈ T .

Note that wp ⊆ w∗, and ri � αp = rpi for all i ∈ wp. Since the xβ ’s form a
♣λ(S)-sequence and T is unbounded in λ, we may find β ∈ S such that xβ ⊆ T .

Define a condition q as follows:

• wq =
⋃

i∈xβ
wpi . This is legal as |xβ | = γ < δ. Note that since i ∈ wpi we

have that xβ ⊆ wq.
• αq = α.
• rqk = rpi

k for i ∈ xβ and k ∈ wpi . This makes sense as the r-parts of the pi’s
agree on the root w∗ of the Δ-system formed by wpi for i ∈ T , and also
xβ ⊆ T .

• Zq =
⋃

i∈xβ
Zpi ∪ {xβ}. This makes sense as |xβ | < δ.

Clearly q is a condition, so we verify that q ≤ p and q forces that Ḋ fails to be
a measure. For q ≤ p we just check the last clause in the definition. Let z ∈ Zp

(so that z ⊆ wp) and αp ≤ η < α = αq. By construction, for any i ∈ xβ we have
rqk(η) = rpi

k (η) for all k ∈ z, and since pi ≤ p we are done.

Now consider the sets rli for i ∈ xβ . We claim that q forces that
⋂

i∈xβ
rli ⊆ αq.

The point is that xβ ∈ Zq and xβ ⊆ wq, so that for any r ≤ q and any η with
αq ≤ η < αr we have that {i ∈ xβ : rri (η) = 1− l} is unbounded in xβ , in particular
r � η /∈

⋂
i∈xβ

rli.

This is a contradiction since q also forces that the sets rli for i ∈ xβ are measure

one for Ḋ, and that Ḋ is a δ-complete measure. �

Lemma 2.4 parallels [5, Lemma 4].

Lemma 2.4. P0 ∗ (Ṗ1 × Ṗ2) is equivalent to Add(λ, 1)×Add(δ, λ).

Proof. As we already remarked, P0∗Ṗ2 is equivalent to Add(λ, 1), so it will suffice to

show that after forcing with P0 ∗ Ṗ2 the forcing poset P1 is equivalent to Add(δ, λ).
The key idea is to reorganise P1 using the fact that S becomes non-stationary after
forcing with P2.

Since every initial segment of S (including S itself) is non-stationary, we may
choose disjoint tails yβ of the sets xβ for β ∈ S. We claim that the set E of
conditions q ∈ P1 such that for all β ∈ S the set yβ is either contained in or
disjoint from wq is dense in P1. To see this let p be arbitrary, and define q as
follows: wq = wp ∪ (

⋃
{yβ : β ∈ S, yβ ∩ wp �= ∅}), αq = αp, r̄q is any sequence with

r̄q � wp = r̄p, and Zq = Zp. Since the sets yβ are disjoint sets of size γ we have
|wq| ≤ γ · |wp| < δ, and easily q ≤ p with q ∈ E.
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Now we define posets Q0
β (β ∈ S) and Q1, and show that a condition q ∈ E can

essentially be decomposed into pieces which each lie in one of these posets. Each
poset is a subset of P1 with the ordering inherited from P1.

• For each β ∈ S, Q0
β is the set of conditions (w,α, r̄, Z) ∈ P1 such that

w = yβ . For such a condition, if xγ ∈ Z then γ = β, so that Z ⊆ {xβ}.
• Q1 is the set of conditions (w,α, r̄, Z) ∈ P1 where w ⊆ λ \

⋃
β∈S yβ . For

such a condition necessarily Z = ∅.
Let q = (wq, αq, r̄q, Zq) ∈ E. Since q ∈ E, wq has the form (

⋃
β∈s yβ) ∪ (wq \

⋃
y∈S yβ) for some set s ⊆ S with |s| < δ. Since the sets yβ are disjoint, Zq ⊆ {xβ :

β ∈ s}. We define conditions q0β ∈ Q0
β (β ∈ S) and q1 ∈ Q1 as follows:

• q0β is the trivial condition for β /∈ s.

• q0β = (yβ , α
q, r̄q � yβ , Zq ∩ {xβ}) for β ∈ s.

• q1 = (wq \
⋃

y∈S yβ , α
q, r̄q � (wq \

⋃
y∈S yβ), ∅).

It is routine to check that for q, r ∈ E, r ≤ q if and only if r0β ≤ q0β for all β and

r1 ≤ q1: the key point is that in clause (5) of the definition of r ≤ q, if z ∈ Zq then
z = xβ where yβ ⊆ wq, so that satisfying clause (5) for r ≤ q and this value of z
amounts to satisfying clause (5) for r0β ≤ q0β .

Let Q∗ be the < δ-support product of the posets Q0
β together with Q1. We write

elements of this poset in the form ((aβ)β∈S , b) where aβ ∈ Q0
β , b ∈ Q1, and aβ is

non-trivial for fewer than δ many values of β. Let E′ be the subset of Q∗ consisting
of conditions ((aβ)β∈S , b) such that, for some α < δ, we have αb = α and αaβ = α
for all β such that aβ is non-trivial. It is easy to see that E′ is dense in Q∗.

We have shown that E is isomorphic to E′. Since δ is inaccessible and |yβ | = γ <
δ, the poset Q0

β is δ-closed with cardinality δ, hence it is equivalent to Add(δ, 1).

Since clause (5) is irrelevant to the ordering of Q1, it is clear that Q1 is equivalent
to Add(δ, |λ \

⋃
β∈S yβ |). It follows that P1 is equivalent to Add(δ, λ). �

Corollary 2.5. It is forced by P0 that Ṗ1 has the δ+-chain condition.

Lemma 2.6 will be used in the lifting argument for the proof of Theorem 4.

Lemma 2.6. If S ∗ (G×C) is P0 ∗ (Ṗ1 × Ṗ2)-generic and we rearrange it as g× h
which is Add(λ, 1)×Add(δ, λ)-generic as in Lemma 2.4, then h � η ∈ V [S ∗G] for
every η < λ.

Proof. In the construction from the proof of Lemma 2.4, each of the λ coordinates
in Add(δ, λ) corresponds either to yβ for some β ∈ S or to some point in λ\

⋃
β∈S yβ .

It follows that to compute h � η from G we only need a proper initial segment of
the sequence (yβ)β∈S , and all such initial segments lie in V [S] because forcing over
V [S] with P2 does not add any new < λ-sequences of ordinals. �

The point of Lemma 2.4 is that if δ happens to be a suitably prepared < λ-
supercompact cardinal, we may kill its measurability with P0∗Ṗ1 and then resurrect
it by forcing with P2. We note that P0 ∗ Ṗ1 is < δ-strategically closed, by an easy
argument along the lines of [5, Lemma 5]; the key point is that P0 ∗ Ṗ1 embeds into

P0 ∗ (Ṗ1× Ṗ2), which is equivalent to a δ-closed forcing poset by Lemma 2.4. In the
sequel we write Pi

γ,δ,λ for the version of Pi defined with parameters γ, δ and λ.
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2.3. Proof of Theorem 4. We start by assuming that GCH holds and κ is κ+-
supercompact, and fix a supercompactness measure W on Pκκ

+. Let j : V → N =
Ult(V,W ) be the ultrapower map, so that by standard arguments:

• κ++ = (κ++)N < j(κ) < j(κ+) < j(κ++) < j(κ+++) = κ+++.
• j is continuous at κ++.

We force with an Easton support iteration Q of length κ+ 1 defined as follows:
at inaccessible α < κ we force with P0

ω,α,α++ ∗ Ṗ1
ω,α,α++ , and at κ we force with

P0
ω,κ,κ++ ∗ (Ṗ1

ω,κ,κ++ × Ṗ2
ω,κ,κ++). Let giα be the Pi-generic object added at stage

α, let Gκ be the generic object for the iteration up to stage κ, and let Gκ+1 be
the generic object for the whole iteration Q. By Lemma 2.3 the forcing at each
inaccessible α < κ destroys the measurability of α, and since the remainder of
the iteration is highly closed it follows that Q destroys the measurability of every
cardinal less than κ.

The first stage of the construction is to lift j onto V [Gκ+1], making sure that for
the lifted version of j we have κ++ ⊆ {j(h)(κ) : h ∈ V [Gκ+1]}. As usual we will lift
j by building a generic object for j(Q) over N which contains j[Gκ+1]. The first
few steps are routine:

• j(Q) is an iteration such that j(Q) � κ = Q � κ, and j(Q)κ = P0
ω,κ,κ++ ∗

Ṗ1
ω,κ,κ++ .

• Gκ ∗ g0κ ∗ g1κ is j(Q) � (κ+ 1)-generic over N .
• Since Gκ is generic for κ-cc forcing, g0κ is generic for forcing which adds no
κ+-sequences, and g1κ is generic for κ+-cc forcing, it follows that V [Gκ ∗
g0κ ∗ g1κ] |= κ+

N [Gκ ∗ g0κ ∗ g1κ] ⊆ N [Gκ ∗ g0κ ∗ g1κ].
• In N [Gκ ∗ g0κ ∗ g1κ], the part of j(Q) between κ and j(κ) is δ-closed forcing
with j(κ) maximal antichains, where δ is the least N -inaccessible greater
than κ.

• In V [Gκ∗g0κ∗g1κ], the part of j(Q) between κ and j(κ) is κ++-closed forcing
with κ++ maximal antichains.

• There is H ∈ V [Gκ ∗ g0κ ∗ g1κ] such that H is generic over N [Gκ ∗ g0κ ∗ g1κ] for
the part of j(Q) between κ and j(κ).

• V [Gκ ∗ g0κ ∗ g1κ] |= κ+

N [Gκ ∗ g0κ ∗ g1κ ∗H] ⊆ N [Gκ ∗ g0κ ∗ g1κ ∗H].
• Since Q has Easton supports, j[Gκ] ⊆ Gκ ∗ g0κ ∗ g1κ ∗H, so j lifts in V [Gκ ∗
g0κ ∗ g1κ] to j : V [Gκ] → N [Gκ ∗ g0κ ∗ g1κ ∗H].

Since Qκ is equivalent in V [Gκ] to Add(κ, κ++)×Add(κ++, 1) (as computed in
V [Gκ]), we may as well assume that Qκ = Add(κ, κ++)× Add(κ++, 1). With this
in mind we write the generic object at κ as g × g′, where we know that g � δ × η ∈
V [Gκ][g

0
κ ∗ g1κ] for all η < κ++.

Our task is now to construct compatible generic objects h ⊇ j[g] and h′ ⊇ j[g′],
where we note that by Easton’s lemma mutual genericity between h and h′ is
automatic.

We note thatN [Gκ∗g0κ∗g1κ∗H] = {j(h)(j[κ+]) : h ∈ V [Gκ], dom(h) = (Pκκ
+)V },

in particular every element is represented by a function whose domain has cardinal-
ity κ+. Since g′ is generic for κ++-closed forcing, it follows by standard arguments
(see for example [12, Proposition 15.1]) that j[g′] generates a generic filter h′ for
j(Add(κ++, 1)) over N [Gκ ∗ g0κ ∗ g1κ ∗H].

Before constructing h, we digress briefly to analyse dense subsets of
Add(κ, κ++)V [Gκ] working in the model V [Gκ]. By GCH, or alternatively using
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that κ is inaccessible, |Add(κ, α)| ≤ κ+ for all α < κ++. Now let D be a dense set,
then we claim there is a function fD : κ++ → κ++ such that for every α < κ++ and
every p ∈ Add(κ, α)V [Gκ] there is q ≤ p with q ∈ D ∩ Add(κ, fD(α)): just choose
an extension in D for every condition in Add(κ, α), and use the observation that
|Add(κ, α)| ≤ κ+ to choose β so large that all the extensions lie in Add(κ, β).

Let ED be the club set of closure points of fD and let γ ∈ ED with cf(γ) ≥ κ,
where we note that Add(κ, γ) =

⋃
α<γ Add(κ, α). We claim that for every p ∈

Add(κ, γ) there is q ≤ p with q ∈ D ∩ Add(κ, γ). To see this let p ∈ Add(κ, γ), so
that p ∈ Add(κ, α) for some α < γ. By the definition of fD there is q ≤ p with q ∈
D∩Add(κ, fD(α)), and since γ is a closure point of fD we have q ∈ D∩Add(κ, γ).

To construct j(g) we enumerate the antichains of j(Add(κ, κ++)V [Gκ]) which lie
in N [Gκ ∗ g0κ ∗ g1κ ∗H]. Since j(κ++) < κ+++ there are only κ++ such antichains,
so we may enumerate them in V [Gκ ∗ g0κ ∗ g1κ] as (Ai)i<κ++ . We also enumerate the
ordinals less than j(κ) as (μi)i<κ++ .

Let Di be the dense open set of conditions which extend some condition in Ai

and let Di = j(di)([id]), where di ∈ V [Gκ], dom(di) = (Pκκ
+)V , and di(x) is

a dense subset of Add(κ, κ++)V [Gκ] for all x. Let Ei =
⋂

x Edi(x), so that Ei is

club in κ++. By elementarity, if γ ∈ j(Ei) and N [Gκ ∗ g0κ ∗ g1κ ∗ H] |= cf(γ) ≥
j(κ) then for every p ∈ Add(j(κ), γ)N [Gκ∗g0

κ∗g1
κ∗H] there is q ≤ p with q ∈ Di ∩

Add(j(κ), γ)N [Gκ∗g0
κ∗g1

κ∗H].
Now we work in V [Gκ][g

0
κ ∗g1κ ∗g2κ] to build a decreasing κ++-sequence (fi)i<κ++

of conditions in j(Add(κ, κ++)V [Gκ]). The properties which we require are:

• The sequence (fi)i<κ++ eventually meets each of the dense open sets Di

(this will ensure that the sequence generates a generic filter).
• For every η < κ++ and ν < κ,

⋃
i<κ++ fi(j(η), ν) =

⋃
g(η, ν) (this will

ensure that when we lift j, j[g] is contained in the filter generated by
(fi)i<κ++).

• For every η < κ++,
⋃

i<κ++ fi(j(η), κ) = μη. This will ensure that when

we lift j, if xη is the ηth generic function added by g then j(xη)(κ) = μη:
so every ordinal less than j(κ) is of the form j(x)(κ) for some x : κ → κ.
This idea was first used by Woodin [27] in a similar context, and marks the
key step here, as we will see at the end of the proof.

• Every proper initial segment of (fi)i<κ++ lies in V [Gκ ∗ g0κ ∗ g1κ] (this,

combined with the fact that V [Gκ ∗ g0κ ∗ g1κ] |= κ+

N [Gκ ∗ g0κ ∗ g1κ ∗ H] ⊆
N [Gκ ∗ g0κ ∗ g1κ ∗H], will ensure that we can continue the construction for
κ++ steps).

We start by setting f0 equal to the empty condition. For j limit we let fj =⋃
i<j fi. Suppose that we have chosen fi. We start by finding γ ∈ Ei ∩ cof(κ) so

large that fi ∈ Add(j(κ), j(γ)). Note that it follows from the choice of Ei that for
every p ∈ Add(j(κ), j(γ)) there is q ≤ p with q ∈ Di ∩ Add(j(κ), j(γ)).

We first choose f ′
i ≤ fi such that f ′

i ∈ Add(j(κ), j(γ)), f ′
i(j(η), κ) = μη for

every η < γ, and f ′
i(j(η), ν) =

⋃
g(η, ν) for every η < γ and ν < κ. This is

possible because j : V [Gκ] → N [Gκ ∗ g0κ ∗ g1κ ∗ H] is defined in V [Gκ ∗ g0κ ∗ g1κ],

V [Gκ∗g0κ∗g1κ] |= κ+

N [Gκ∗g0κ∗g1κ∗H] ⊆ N [Gκ∗g0κ∗g1κ∗H], and g � γ ∈ V [Gκ∗g0κ∗g1κ].
Then we choose fi+1 ≤ f ′

i such that fi+1 ∈ Di ∩ Add(j(κ), j(γ)). This completes
the construction.



NORMAL MEASURES 151

Now we take stock: let V ′ = V [Gκ ∗ g0κ ∗ (g1κ × g2κ)], then we have a lifted
embedding j′ : V ′ → N ′ such that j′ witnesses κ is κ+-supercompact, κ is not
measurable in N ′ (in fact κ is the least measurable cardinal in V ′), and j′(κ) =
{j′(f)(κ) : f ′ : κ → κ, f ′ ∈ V ′}. As usual we may factor j′ through the ultrapower
i′ : V ′ → M ′ by the normal measure U ′ induced by j′, and we have k′ : M ′ → N ′

with k′ ◦ i′ = j′.
By construction crit(k′)>j′(κ), so easily i′(κ)=j′(κ) and (Vi′(κ))

M ′
=(Vi′(κ))

N ′
.

Finally as V ′ |= κ+

N ′ ⊆ N ′ and κ+

i′(κ) ⊆ (Vi′(κ))
N ′

, we see that V ′ |= κ+

i′(κ) ⊆
M ′ as required. Since κ is not measurable in M ′ the measure U ′ has order zero,
concluding the proof of Theorem 4.

2.4. Many measures of order zero.

Theorem 5. It is consistent (modulo the existence of a cardinal κ which is κ+-

supercompact) that for the least measurable cardinal κ, 2κ = 2κ
+

= κ++ and κ

carries 2κ
++

normal measures of order zero. The value of 2κ
++

may be taken
arbitrarily large.

Proof. We assume the conclusion of Theorem 4: that is to say κ is the least
measurable cardinal, 2κ = κ++, and there is a normal measure U on κ such
that if j : V → M is the ultrapower map then κ is not measurable in M and
κ+

j(κ) ⊆ M . Let P be the Easton support iteration which adds a single Cohen
subset of α+++ for every inaccessible α < κ, and let G be P-generic. Note that
V [G] |= “j(P)/G is κ++-closed forcing of size j(κ)”.

Since P is κ-cc forcing of cardinality κ, a P-name for a function from κ+ to j(κ)
may be coded by a function from κ×κ+ to j(κ). By hypothesis all such functions lie

in M , so V [G] |= κ+

j(κ) ⊆ M [G]. Since P×P is κ-cc in M and κ is not measurable
in M , κ is not measurable in M [G].

Working in V [G], we may enumerate the maximal antichains of j(P)/G which
lie in M [G] in order type κ++. We will then build a complete binary tree of height
κ++ of conditions in j(P )/G such that every branch meets every maximal antichain
of j(P)/G which lies in M [G]. This is possible by adapting the argument from [10]
given at the start of this section in the obvious way: the key point is that by
what we have proved about M [G] and j(P)/G, any < κ++-sequence from V [G] of
conditions in j(P)/G lies in M [G] and therefore has a lower bound.

We may now construct 2κ
++

normal measures of order zero on κ in V [G]. The
conclusion of Theorem 4 remains true if we add Cohen subsets of κ++ so we may

make 2κ
++

as large as we wish.
�

Remark 2.7. We can prove versions of Theorems 4 and 5 with larger values for
2κ. Assume that GCH holds and λ is either inaccessible or of the form μ+ where
cf(μ) > κ. Assume that κ is < λ-supercompact, that is to say there is j : V → M
such that κ = crit(j), j(κ) > λ, and <λM ⊆ M . We may assume that:

• (λ inaccessible) j is the limit ultrapower by a tower of supercompactness
measures (Uζ)κ≤ζ<λ where Uζ is a measure on Pκζ, so that λ < j(λ) =
sup j[λ] < λ+.

• (λ is μ+ for cf(μ) > κ) j is the ultrapower by a supercompactness measure
on Pκμ, so that again λ < j(λ) = sup j[λ] < λ+.
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It is now straightforward to modify the proofs and obtain cardinal and cofinality-
preserving extensions where:

• (Theorem 4) κ is the least measurable cardinal, 2κ = λ, and there is a
normal measure U of order zero on κ such that <λjU (κ) ⊆ Ult(V, U).

• (Theorem 5) κ is the least measurable cardinal, 2δ = λ for all δ ∈ [κ, λ)
and κ carries 2λ normal measures of order zero. The value of 2λ may be
taken arbitrarily large.

We can also prove a global version of Theorem 5, in which there is a supercompact
cardinal and every measurable cardinal satisfies the conclusion of that theorem.

Theorem 6. It is consistent (relative to the existence of a supercompact cardinal)

that there exists a supercompact cardinal, and that 2δ = 2δ
+

= δ++ and δ carries

2δ
++

measures of order zero for every measurable cardinal δ.

Proof. We start by assuming that GCH holds, κ is supercompact, and there are
no inaccessible cardinals above κ. We do an Easton support iteration P of length
κ + 1 which is non-trivial only at cardinals δ which are measurable in V . Given
such δ we work in V [Gδ] to define P0

δ , P
1
δ and P2

δ as in Section 2.2 with γ = ω and
λ = δ++.

• If δ is not δ+-supercompact then we force over V [Gδ] with P0
δ ∗ Ṗ1

δ .

• If δ is δ+-supercompact then we force over V [Gδ] with P0
δ ∗ (Ṗ1

δ × Ṗ2
δ).

Let V ∗ be the generic extension by the iteration P. By the properties of P0
δ ∗

Ṗ1
δ , every cardinal δ which is measurable but not δ+-supercompact in V is not

measurable in V [Gδ+1], and so by the closure of the tail forcing is not measurable
in V ∗. Moreover if δ is a measurable cardinal in V ∗ then δ is certainly Mahlo in V ,
so that (P � δ) × (P � δ) is δ-cc and hence δ is measurable in V . In summary, if δ
is measurable in V ∗ then δ must be δ+-supercompact in V .

The proof of Theorem 4 shows that if δ is δ+-supercompact in V , then δ is
measurable and satisfies the conclusion of that theorem in V [Gδ+1], and hence by
the closure of the tail forcing it also satisfies the conclusion in V ∗. That is to say,

in V ∗ we have that 2δ = 2δ
+

= δ++, and there is a normal measure U of order zero

on δ such that δ+jU (δ) ⊆ Ult(V ∗, U).
We claim that κ is supercompact in V ∗. Let λ > κ++ with λ regular, and let

j : V → M be the ultrapower by some supercompactness measure on Pκλ. P � κ is
κ-cc forcing of size κ, the last stage of P is essentially Add(κ, κ++)×Add(κ++, 1),
and (since there are no inaccessible cardinals above κ) the support of j(P) is empty
in the interval (κ, λ]. Standard arguments now allow us to lift the embedding j to
the model V ∗.

Working in V ∗ let Q be an Easton support iteration to add a Cohen subset of
α+++ for every inaccessible α < κ. Similar arguments to those given earlier in
the proof show that after forcing with Q the cardinal κ is still supercompact, and
no measurable cardinals are created or destroyed. Arguments as in the proof of
Theorem 5 show that every measurable cardinal δ now carries the desired number

2δ
++

of measures of order zero. �

Remark 2.8. Starting from GCH and a cardinal κ which is κ++-supercompact,
similar arguments produce a set model in which there is a proper class of strong
cardinals and every measurable cardinal satisfies the conclusions of Theorem 5.
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We finish with two natural questions raised by the use of κ+-supercompactness
as a hypothesis in Theorems 4 and 5. It is easy to see that these theorems require
at least the strength of a measurable cardinal κ with o(κ) = κ++, since by work
of Gitik [16] this is the consistency strength of the failure of GCH at a measurable
cardinal.

Question 2.9. What is the consistency strength of the assertion that there is a

normal measure U on κ such that κ+

jU (κ) ⊆ Ult(V, U)?

Question 2.10. What is the consistency strength of the assertion that 2κ > κ+

and κ carries 22
κ

normal measures of order zero?

Remark 2.11. After reading the first draft of this paper, Moti Gitik pointed out
Theorem 5 can be proved from the optimal hypothesis that there exists κ with
o(κ) = κ++, resolving Question 2.10. He also noted that Theorem 4 does not
require the full strength of the hypothesis that κ is κ+-supercompact, and outlined
a proof that some hypothesis at the level of superstrong cardinals is required.

Acknowledgment

The authors are very grateful to the referee for their careful reading of the first
version of this paper, and for several extremely useful comments.

References

[1] Arthur W. Apter and James Cummings, Normal measures on a tall cardinal, J. Symb. Log.
84 (2019), no. 1, 178–204, DOI 10.1017/jsl.2018.24. MR3922790

[2] Arthur W. Apter, James Cummings, and Joel David Hamkins, Large cardinals with few
measures, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2291–2300, DOI 10.1090/S0002-9939-
07-08786-2. MR2299507

[3] Arthur W. Apter, James Cummings, and Joel David Hamkins, Singular cardinals and strong
extenders, Cent. Eur. J. Math. 11 (2013), no. 9, 1628–1634, DOI 10.2478/s11533-013-0265-1.
MR3071929

[4] Arthur W. Apter and Saharon Shelah, Menas’ result is best possible, Trans. Amer. Math.
Soc. 349 (1997), no. 5, 2007–2034, DOI 10.1090/S0002-9947-97-01691-7. MR1370634

[5] Arthur W. Apter and Saharon Shelah, On the strong equality between supercompactness and
strong compactness, Trans. Amer. Math. Soc. 349 (1997), no. 1, 103–128, DOI 10.1090/S0002-
9947-97-01531-6. MR1333385

[6] Stewart Baldwin, The � -ordering on normal ultrafilters, J. Symbolic Logic 50 (1985), no. 4,
936–952 (1986), DOI 10.2307/2273982. MR820124

[7] Omer Ben-Neria, The structure of the Mitchell order—II, Ann. Pure Appl. Logic 166 (2015),
no. 12, 1407–1432, DOI 10.1016/j.apal.2015.08.003. MR3397347

[8] Omer Ben-Neria, The structure of the Mitchell order—I, Israel J. Math. 214 (2016), no. 2,
945–982, DOI 10.1007/s11856-016-1368-8. MR3544708

[9] Omer Ben-Neria and Moti Gitik, A model with a unique normal measure on κ and 2κ = κ++

from optimal assumptions, http://math.huji.ac.il/~omerbn/NormalMeasure.pdf, Accessed
18 June 2022.

[10] James Cummings, Possible behaviours for the Mitchell ordering, Ann. Pure Appl. Logic 65
(1993), no. 2, 107–123, DOI 10.1016/0168-0072(93)90034-B. MR1257466

[11] James Cummings, Possible behaviours for the Mitchell ordering. II, J. Symbolic Logic 59
(1994), no. 4, 1196–1209, DOI 10.2307/2275699. MR1312304

[12] James Cummings, Iterated forcing and elementary embeddings, Handbook of set theory. Vols.
1, 2, 3, Springer, Dordrecht, 2010, pp. 775–883. MR2768691

[13] Sy-David Friedman and Radek Honzik, Easton’s theorem and large cardinals, Ann. Pure
Appl. Logic 154 (2008), no. 3, 191–208, DOI 10.1016/j.apal.2008.02.001. MR2428070

[14] Sy-David Friedman and Menachem Magidor, The number of normal measures, J. Symbolic
Logic 74 (2009), no. 3, 1069–1080, DOI 10.2178/jsl/1245158100. MR2548481

https://www.ams.org/mathscinet-getitem?mr=3922790
https://www.ams.org/mathscinet-getitem?mr=2299507
https://www.ams.org/mathscinet-getitem?mr=3071929
https://www.ams.org/mathscinet-getitem?mr=1370634
https://www.ams.org/mathscinet-getitem?mr=1333385
https://www.ams.org/mathscinet-getitem?mr=820124
https://www.ams.org/mathscinet-getitem?mr=3397347
https://www.ams.org/mathscinet-getitem?mr=3544708
http://math.huji.ac.il/~omerbn/NormalMeasure.pdf
https://www.ams.org/mathscinet-getitem?mr=1257466
https://www.ams.org/mathscinet-getitem?mr=1312304
https://www.ams.org/mathscinet-getitem?mr=2768691
https://www.ams.org/mathscinet-getitem?mr=2428070
https://www.ams.org/mathscinet-getitem?mr=2548481


154 A. W. APTER AND J. CUMMINGS

[15] Sy-David Friedman and Katherine Thompson, Perfect trees and elementary embeddings, J.
Symbolic Logic 73 (2008), no. 3, 906–918, DOI 10.2178/jsl/1230396754. MR2444275

[16] Moti Gitik, The strength of the failure of the singular cardinal hypothesis, Ann. Pure Appl.
Logic 51 (1991), no. 3, 215–240, DOI 10.1016/0168-0072(91)90016-F. MR1098782

[17] Gabriel Goldberg, The linearity of the Mitchell order, J. Math. Log. 18 (2018), no. 1, 1850005,
17, DOI 10.1142/S0219061318500058. MR3809587

[18] Akihiro Kanamori, The higher infinite, Perspectives in Mathematical Logic, Springer-Verlag,

Berlin, 1994. Large cardinals in set theory from their beginnings. MR1321144
[19] K. Kunen and J. B. Paris, Boolean extensions and measurable cardinals, Ann. Math. Logic

2 (1970/71), no. 4, 359–377, DOI 10.1016/0003-4843(71)90001-5. MR277381
[20] Jeffrey Scott Leaning and Omer Ben-Neria, Disassociated indiscernibles, MLQ Math. Log.

Q. 60 (2014), no. 6, 389–402, DOI 10.1002/malq.201100111. MR3274970
[21] William J. Mitchell, Sets constructible from sequences of ultrafilters, J. Symbolic Logic 39

(1974), 57–66, DOI 10.2307/2272343. MR344123
[22] William J. Mitchell, Sets constructed from sequences of measures: revisited, J. Symbolic Logic

48 (1983), no. 3, 600–609, DOI 10.2307/2273452. MR716621
[23] William J. Mitchell, Beginning inner model theory, Handbook of set theory. Vols. 1, 2, 3,

Springer, Dordrecht, 2010, pp. 1449–1495. MR2768696
[24] Robert M. Solovay, William N. Reinhardt, and Akihiro Kanamori, Strong axioms of infinity

and elementary embeddings, Ann. Math. Logic 13 (1978), no. 1, 73–116, DOI 10.1016/0003-
4843(78)90031-1. MR482431
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