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CRITICAL POINT COUNTS IN KNOT COBORDISMS: ABELIAN

AND METACYCLIC INVARIANTS

CHARLES LIVINGSTON

Abstract. For a pair of knots K1 and K0, we consider the set of four-tuples
of integers (g, c0, c1, c2) for which there is a cobordism from K1 to K0 of genus
g having ci critical points of each index i. We describe basic properties that
such sets must satisfy and then build homological obstructions to membership
in the set. These obstructions are determined by knot invariants arising from
cyclic and metacyclic covering spaces.

1. Introduction

Given a pair of knots K1 and K0 in S3, let G(K1,K0) denote the set of all four-
tuples (g, c0, c1, c2) of nonnegative integers for which there is a smooth orientable
cobordism from K1 to K0 of genus g having ci critical points of each index i. Our
goal is to identify ways in which classical knot theory can provide constraints on
this set. The value of c1 is determined by those of g, c0 and c2, so our investigation
is reduced studying the sets Gg(K1,K0) consisting of nonnegative pairs (c0, c2) for
which there is a genus g cobordism from K1 to K0 having c0 and c2 critical points
of index 0 and 2, respectively.

A number of well-studied problems can be formulated in terms of G(K1, U),
where U is the unknot: related topics include the knot four-genus, the slice-ribbon
conjecture, problems related to the ribbon-number of ribbon knots, and general
unknotting operations. The set G0(K1,K0) is related to knot concordances and in
particular to the existence and properties of ribbon concordances. Papers that touch
on aspects of these topics include [1,2,5,8,14,16,19–22,26–28,34,36]. Through the
use of cyclic branched covers, this study is related to the study of the handlebody
structure of cobordisms between three-manifolds, as presented, for instance, in [2].

We have several goals. The first is simply to present this perspective on knot
cobordism. Next, we describe how homological invariants of cyclic branched covers
of knots provide constraints on the sets G(K1,K0); this work consists of extensions
of known results concerning ribbon disks and concordances to the setting of cobor-
disms. Our use of equivariant homology groups lets us further refine our results.
After this, we consider the use of metacyclic invariants; these arise from cyclic cov-
ers of cyclic branched covers. Finally, we list some problems that arise from this
perspective.

Summary of results. In seeking invariants fromMn(K), the n–fold cyclic branch-
ed cover of a knot K, or from a q–fold cyclic cover of Mn(K), one faces a series
of choices: the values of n and q; the coefficients F for the homology groups; and
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the choice of which q–fold cover to consider. There is also a decision as to whether
to take into account the module structure of the homology, viewed as an F[Zn]–
module or F[Zq]–module. As has been done in the past, we will follow a path
that is sufficiently complicated to illustrate the techniques but is simple enough to
avoid technicalities. For instance, we will work with knots for which the associated
F[Zn]–modules are of a simple form.

Our main result that is based on cyclic branched covers is the following.

Theorem 5.1. Suppose that Σ is a cobordism from K1 to K0. Then for all n, for
all primes p satisfying p − 1 ≡ 0 mod n, and for all ζ ∈ Fp satisfying ζn = 1, we
have

c0(Σ) ≥
βζ
1(Mn(K1),Fp)− βζ

1(Mn(K0),Fp)

2
− g(Σ).

In this statement, βζ
1(Mn(K1),Fp) is the dimension of the ζ–eigenspace of the

Zn–action on H1(Mn(K),Fp), where ζ ∈ Fp is an n–root of unity in the finite field
with p elements. Averaging over the set of n–roots of unity yields the following
simplier, but often weaker, result.

Corollary 5.4. Under the conditions of Theorem 5.1,

c0(Σ) ≥
β1(Mn(K1),Fp)− β1(Mn(K0),Fp)

2(n− 1)
− g(Σ).

A simple application of Corollary 5.4 concerns 3–stranded pretzel knots: Pk =
P (2k + 1,−2k − 1, 2k + 1). These are ribbon knots. It follows from Corollary 5.4
that if 2i + 1 and 2j + 1 are distinct primes, then there is a genus g cobordism
from αPi to βPj having with c0 ≥ 0 and c2 ≥ 0 critical points of index 0 and 2,
respectively, if and only if c0 ≥ α − g and c2 ≥ β − g. This is proved using 2–fold
branched covers.

We will also present an example that depends on the full strength of Theorem 5.1,
using higher-fold covers and the eigenspace splitting. The example is built from the
knot 10153, which is a ribbon knot with ribbon number 1 (see [23]). We show that
there exists a genus g surface in B4 bounded by α10153 having c0 and c2 index 0
and index 2 critical points, respectively, if and only if c0 ≥ α+ 1− g.

Examples in which metacyclic covers yield stronger results will be built from
knots K(k, J) illustrated on the left in Figure 1. In the figure, the right band is
knotted. For instance, in the case that the knot J is the figure eight knot, the
portion of the knot within the box labelled “J” would be replaced with the knotted
band illustrated on the right in Figure 1. The left band has −k full twists and the
right band has k + 1 full twists. If J is a ribbon knot, then this knot is ribbon:
the simple closed curve that goes over each band once in opposite directions has
framing 0 and has knot type J . This family is of interest because the Seifert form
of K(k, J) is independent of the choice of J , and thus no homological invariants
arising from cyclic branched covers can be used to distinguish a pair K(k, J1) and
K(k, J2). However, the branched cyclic covers Mn(K(k, J)) themselves have cyclic
covers, and the homology of these iterated covers does depend on J . In Section 8
we will explore these examples in detail, focusing on the case of k = 1 and J is a
multiple of either K(1, U) = 61 or K(2, U) = 103. The obstructions we develop are
determined from 3–fold cyclic covers of the 2–fold branched cover of S3, but the
proofs of the results require that we consider covers of order 3b for some unknown
value of b. This is a reflection of an underlying issue that first appeared in [6].
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Jx y

Figure 1. Basic knot K(k, J). The two strands of the right hand
band are knotted. In the case that J is the figure 8 knot, the
box labeled “J” is replaced with the figure on the right. In the
diagram, x = −k and y = k + 1 denote full twists.

2. The set Gg(K1,K0)

In this section, we present in detail the knot invariants of interest and describe
some of their basic properties.

2.1. The definition of Gg(K1,K0). We view knots as smooth oriented diffeo-
morphism classes of pairs (S,K) where S is diffeomorphic to S3 and K is dif-
feomorphic to S1. We will be using the shorthand notation K ⊂ S3 or simply
K for such a pair; −K denotes the pair (−S,−K). A cobordism from a knot
K1 to a knot K0 consists of a smooth oriented surface Σ ⊂ S3 × [0, 1] for which
∂(S3 × [0, 1],Σ) = −(S3,K0)

⊔
(S3,K1). (In particular, Σ ∩ (S3 × {1}) = K1.)

We will assume that Σ is connected. We will also restrict our attention to Morse
cobordisms, those for which the projection Σ → [0, 1] is a Morse function.

Viewing Σ as a twice punctured surface of genus g, we have that β1(Σ) = 2g+1;
alternatively, g = (β1(Σ)− 1)/2. We will write g(Σ) for the value of g.

We let c0(Σ), c1(Σ), and c2(Σ) denote the number of local minima, saddle points,
and local maxima of the projection of Σ to [0, 1], respectively. The height function
on Σ determines a handlebody structure on (Σ,K0) having c0, c1, and c2 handles
of dimensions 0, 1, and 2, respectively. We will move between the Morse function
and the handlebody decomposition without further comment.

If g(Σ) = 0, then Σ is called a concordance. If c2(Σ) = 0, then Σ is called a
ribbon cobordism.

An Euler characteristic argument shows that for a genus g cobordism with c0, c1,
and c2 critical points of each index, we have c1 = c2+ c0+2g. Thus, to understand
the counts of critical points of possible cobordisms, or equivalently the number of
handles in the corresponding handlebody structure, we do not need to keep track of
the value of c1. (Many past papers focus on c1, for instance in studying the ribbon
number of ribbon knots, but notice that if there is a cobordism from K1 to K0 with
c1 saddle points, there is also a cobordism from K0 to K1 with c1 saddle points; we
can more readily highlight the asymmetry of the general problem by using c0 and
c2.)
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Definition 2.1. For knots K1 and K0, set

• Gg(K1,K0)={(c0(Σ), c2(Σ))
∣∣Σ is a cobordism from K1 to K0 with g(Σ)=g}

⊂ (Z≥0)
2.

• G(K1,K0) = {(g, c0, c1, c2)
∣∣ (c0, c2) ∈ Gg(K1,K0) and c1 = c2+ c0+2g} ⊂

(Z≥0)
4.

2.2. Elementary properties of Gg(K1,K0). We begin with Proposition 2.2, a
restatement of the definition of ribbon cobordism.

Proposition 2.2. There exists a c0 ≥ 0 such that (c0, 0) ∈ Gg(K1,K0) if and only
if there exists a genus g ribbon cobordism from K1 to K0.

A cobordism can be modified by adding a pair of critical points of indices 0 and
1, or of indices 1 and 2, without altering the genus. Thus we have the next result.

Proposition 2.3. For a pair of knots K1 and K0, if (c0, c2) ∈ Gg(K1,K0), then
(c0 + i, c2 + j) ∈ Gg(K1,K0) for all i, j ≥ 0.

It follows that each Gg(K1,K0) is a finite union of quadrants,
⋃

α Q(aα, bα),
where

Q(a, b) := {(i, j)
∣∣ i ≥ a and j ≥ b }.

Figure 2 illustrates the union of quadrants Q(2, 3)
⋃
Q(5, 1).

Figure 2. Graph of Q(2, 3)
⋃
Q(5, 1)

If for some pair of knots K1 and K0 and g ≥ 0, the graphic in Figure 2 represents
Gg(K1,K0), then the fact that there are no point on either axis implies that there
does not exist a genus g ribbon cobordism from K1 to K0 or from K0 to K1.

Next, we observe the most basic ways in which points in Gg(K1,K0) determine
points in Gg+1(K1,K0)

Proposition 2.4. For a pair of knots K1 and K0, suppose that (c0, c2)∈Gg(K1,K0).

(1) If c0 > 0, then (c0 − 1, c2) ∈ Gg+1(K1,K0).
(2) If c2 > 0, then (c0, c2 − 1) ∈ Gg+1(K1,K0).

Proof. In terms of cross-sections of the cobordism, an index 0 critical point at
height t corresponds to the addition of an unknotted, unlinked component to the
cross-section of Σ as the height increases past t. The same addition can be realized
by performing a trivial band move to the cross-section at height just below t. This
corresponds to adding a critical point of index 1 in exchange for eliminating the
index 0 critical point. It increases the genus by 1. A similar construction eliminates
index 2 critical points. �
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Example 2.5. Figure 3 illustrates how a point in Gg generates points in Gg+1. In
this example, the point (4, 2)∈G0. Using Propostion 2.4 we see that {(3, 2), (4, 1)}⊂
G1. This in turn implies that {(2, 2), (3, 1), (4, 0)} ⊂ G2. It next follows that
{(1, 2), (2, 1), (3, 0)} ⊂ G3. As a consequence, we have {(0, 2), (1, 1), (2, 0)} ⊂ G4

and then that {(0, 1), (1, 0)} ⊂ G5. Finally, (0, 0) ∈ Gg for all g ≥ 6.
In this example, if the first figure represents G0 for some pair of knots, we are

not asserting the remaining diagrams illustrate the Gg, but only that they represent
subsets of the Gg. Example 5.6 in Section 5 we will show that G(K1,K0) can be
strictly larger than the set guaranteed by Proposition 2.4.

g = 0 g = 1 g = 2

g = 3 g = 4 g = 5 g ≥ 6

Figure 3. Possible sets Gg(K1,K2)

2.3. The set of G(K1,K2) and the associated sequence. It is apparent that
each Gg is determined by a unique finite set of points and that for large g, Gg

consists of the entire quadrant. This is summarized in Theorem 2.6.

Theorem 2.6. Each set G(K1,K0) is determined by a finite sequence

S(K1,K0) =
(
(g1, a1, b1), (g2, a2, b2), (g3, a3, b3), (g4, a4, b4), . . . , (gk, 0, 0)

)
of elements in (Z≥0)

3 which is lexicographically ordered. There is a unique minimal
length such sequence.

As an example, some of the terms of the lexigraphically ordered sequence corre-
sponding to the regions in Figure 3 are(
(0, 4, 2), (1, 3, 2), (1, 4, 1), (2, 2, 2), (2, 3, 1), (2, 4, 0), . . . , (5, 0, 1), (5, 1, 0), (6, 0, 0)

)
.

A general problem that seems to be beyond currently available techniques is to de-
termine if there are any constraints on the sequences that can arise from a pair of
knots other than those that are a consequence of Propositions 2.3 and 2.4. For in-
stance, the ribbon conjecture can be stated as the following: if (0, c0, c2) ∈ S(K,U)
for some c0 and c2, then (0, c′0, 0) ∈ S(K,U) for some c′0. The generalized rib-
bon conjecture states that if (g, c0, c1) ∈ S(K,U) for some g, c0 and c2, then
(g, c′0, 0) ∈ S(K,U) for some c′0. See Section 10 for a further discussion.

2.4. The case of K0 is unknotted. Understanding Gg(K,U) is equivalent to
analyzing surfaces bounded by K in B4. Given a knot K ⊂ S3, we let Σ ⊂ B4 with
∂Σ = K. We will assume the radial function is Morse on Σ; hence, we can define
the count of critical points as before.
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Definition 2.7. For knot a knot K, set

Bg(K) = {(c0(Σ), c2(Σ))
∣∣ Σ ⊂ B4, ∂Σ = K, and g(Σ) = g}.

The following is clear.

Proposition 2.8. For any knot K, (c0, c2) ∈ Bg(K) if and only if (c0 − 1, c2) ∈
Cg(K,U).

The sets Gg(K1,K0) and Bg(K1#−K0) are related, but note that in considering
Gg(K1#−K0) we have lost the asymmetry of the general problem. Let b(K) denote
the minimum number of index 0 critical points in a ribbon disk for K #−K. This
invariant is related to classical three-dimensional knot invariants. For instance, let
br(K) denote the bridge index ofK. A ribbon disk forK#−K with c0 = br(K) and
c1 = br(K) − 1 is easily constructed; thus b(K) ≤ br(K). Results concerning the
interplay between these invariants appear in [21, Section 1]. See also Problem (4)
in Section 10.

Given a cobordism from K1 to K0, we can start with the ribbon surface for
K0 # −K0 to build a slicing surface for K1 # −K0: use the cobordism to change
K1 # −K0 into K0 # −K0 and then attach a slice disk. This leads to the next
result.

Theorem 2.9. If (c0, c2) ∈ Gg(K1,K0), then (c0 + b(K0), c2) ∈ Bg(K1 #−K0)

In the reverse direction, given a surface bounded by K1 #−K0, we can build a
cobordism from K1 to K0: build a cobordism from K1 to K1#−K0#K0 and then
cap it off with the surface bounded by K1 #−K0. This yields the following.

Theorem 2.10. If (c0, c2)∈Bg(K1#−K0), then (c0 − 1, c2+b(K0))∈Gg(K1,K0).

3. Covering spaces and equivariant homology theory

In this section, we set up the notation for covering spaces and the general the-
ory of the associated equivariant homology theory. We then consider a technical
issue that arises from the following situation. A homomorphism ρ : π1(X) → Zm

determines a homomorphism ρ : π1(X) → Zkm for any k via inclusion; we will
need to understand relationships between the equivariant homology groups of the
associated m–fold and km–fold cyclic covers.

3.1. Cyclic covers of knots. Let K ⊂ S3 be a knot and let Σ ⊂ S3 × [0, 1] be a
cobordism between knots.

Definition 3.1.

• Mn(K) will denote n–fold cyclic cover of S3 branched over K.

• K̃ denotes the preimage of K in Mn(K).

• Wn(Σ) and Σ̃ denote the n–fold cyclic cover of S3 × [0, 1] branched over Σ
and the preimage of Σ.

• M∞(K) and W∞(Σ) will denote the infinite cyclic covers of S3 \ K and(
S3 × [0, 1]

)
\ Σ.
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3.2. Covering space theory. For any group Γ, let KΓ denote an Eilenberg-
MacLane space for Γ and let EΓ denote its universal cover. All spaces X considered
here will be connected manifolds and covering spaces will be abelian, so we need
not discuss details about the underlying point set topology and basepoint issues.

If X is connected and ρ : π1(X) → Γ is a homomorphism, then it induces a map

X → KΓ. The pullback of EΓ → KΓ to X is a covering space X̃ρ. Points in the

preimage of a basepoint in X̃ρ correspond to elements of Γ and components of X̃ρ

corresponds to cosets of ρ(π1(X)) ⊂ Γ.

3.3. Cyclic groups acting on vector spaces. We collect here some basic alge-
braic results. Details can be found in texts such as [7]. Let F be a field of char-
acteristic p, possibly 0, and let F denote its algebraic closure. For any m > 0, the
polynomial tm−1 ∈ F[t] factors as

∏
0≤i<m(t− ζi), where the ζi are not necessarily

distinct. For instance, t2 − 1 = (t− 1)2 ∈ F2[t].

Proposition 3.2. If p does not divide m, then the roots ζi of tm − 1 in F are
distinct.

Proof. Suppose that (t− ζi)
2 is a factor of tm − 1. Then applying the product rule

in computing the derivative of tm − 1, we see that (t − ζi) is a factor of mtm−1.
However, since p does not divide m, the polynomial mtm−1 is nontrivial and does
not have any nonzero roots. �
Proposition 3.3. Suppose that V is a finite dimensional F–vector space and T is
a linear transformation of V satisfying Tm − Id = 0. If the characteristic of F does
not divide m, then Vs = Fs ⊗ V splits into eigenspaces under the induced action of
T , where Fs ⊂ F is the splitting field for tm − 1.

Proof. View Vs as a module over Fs[t] by letting t act by the transformation T . Then
since Fs[t] is a PID, Vs splits as a direct sum of modules Fs[t]/ 〈fj(t)〉 where the fj(t)
are powers of irreducible polynomials. We have (

∏
i(t− ζi))Vs = (tm − 1)Vs = 0.

In particular, (tm−1)Fs[t]/ 〈fj(t)〉 = 0. Hence, each fj(t) must be a factor of tm−1
in Fs[t]; that is, it must be the form fj(t) = (t − ζi) for some i. Each summand
of the form Fs[t]/(t− ζi) corresponds to a one-dimensional eigenspace for T having
eigenvalue ζi. �

Continuing the notation of the previous results we have the following.

Proposition 3.4. Let φ : Fs → Fs be an automorphism of the extension Fs/F for
which φ(ζi) = ζj. Then φ induces an isomorphism Φ: Vs → Vs that carries the ζi
eigenspace of T to the ζj eigenspace.

Proof. The action of T on Vs = Fs⊗V is given by T (f ⊗v) = f ⊗T (v). The action
of Φ is given by Φ(f ⊗ v) = φ(f)⊗ v. These two actions commute. Notice that for
any v ∈ Vs and a ∈ Fs, we have Φ(av) = φ(a)Φ(v); this follows from the observation
that Φ(a(f ⊗ v)) = Φ(af ⊗ v)) = φ(af) ⊗ v = φ(a)φ(f) ⊗ v = φ(a)(φ(f) ⊗ v) =
φ(a)Φ(f ⊗ v).

Let v ∈ Vs be a ζi-eigenvector. Then T (Φ(v)) = Φ(T (v)) = Φ(ζiv) = ζjΦ(v),
showing that Φ(v) is a ζj-eigenvector for T , as desired. �
Note. In the case that the characteristic p of F does not divide m, the roots of
tm − 1 form a cyclic group of order m under multiplication. To see this, note that
the set of roots forms an abelian group of order m, and if not cyclic, it would
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contain a subgroup isomorphic to Zq⊕Zq for some prime q. This would imply that
the polynomial tq − 1 would have at least q2 distinct roots, which is not possible.
There is a Galois automorphism Φ carrying ζi to ζj if and only if ζj and ζj are of
the same order.

3.4. The equivariant homology of CW-complexes with cyclic group ac-

tions. Let X̃ be a connected finite CW-complex and let T : X̃ → X̃ be an order
m homeomorphism that preserves the CW-structure.

We work with a field F of characteristic that does not dividem. Then the complex

C∗(X̃,Fs) splits into eigenspaces which we denote Cζi
∗ (X̃, T,Fs) and the homology

groups Hk(X̃,Fs) split into eigenspaces denoted Hζi
k (X̃, T,Fs). The dimension of

Hζi
k (X̃, T,Fs) will be denoted βζi

k (X̃, T,Fs). When possible, we will suppress the
appearance of the T in the notation when it is understood and we will supress
subscripts that indicate gradings when possible.

Theorem 3.5. For all i, we have Hζi(X̃,Fs) ∼= H(Cζi(X̃,Fs)).

Proof. There are two splittings of H(X̃,Fs):

⊕m−1
i=0 Hζi(X̃,Fs) ∼= H(X̃,Fs) ∼= H(C(X̃,Fs)) ∼= ⊕m−1

i=0 H(Cζi(X̃,Fs)).

Any cycle in Cζi(X̃,Fs) represents a class in Hζi(X̃,Fs) and thus under the isomor-

phism from the direct sum on the right side to the one on the left, H(Cζi(X̃,Fs))

maps to Hζi(X̃,Fs). In general, if an isomorphism of vectors spaces ⊕iA1 → ⊕iBi

maps Ai to Bi for all i, then it induces isomorphisms Ai → Bi for all i. �

3.5. Cyclic covers of CW-complexes. In the case that X̃ is an m–fold cyclic

cover of a finite CW-complex X, we can consider the homology of X̃ with the lifted
CW-structure and with T a generating deck transformation.

For each cell x ∈ X we choose a lift x̃ in X̃.

Theorem 3.6. The complex Cζi(X̃, T,Fs) has basis the set {
∑m−1

k=0 ζ−k
i T k(x̃)}x∈X .

Proof. As an Fs[t]–module, C(X̃,Fs) has basis {x̃}. To determine the eigenspace
decomposition of the action, we can focus on the eigenspace of the restriction of
the action to the m–dimensional summand generated by the orbit of a single x̃.

For each x, the action of T on the orbit of x̃ is algebraically the same as that

of t on Fs[t]/ 〈tm − 1〉. A simple calculation shows that
∑m−1

k=0 ζ−k
i tk(x̃) is a ζi–

eigenvector for this action. Given that the dimension of Fs[t]/ 〈tm − 1〉 over Fs

is m and we have found m eigenvectors with distinct eigenvalues, each of these
eigenvectors must form the basis for a one-dimensional eigenspace. �

Corollary 3.7. For all m–roots of unity ζi, dimCζi
k (X̃, T,Fs) = dimCk(X).

There is a special case of interest to us. Enumerate the ζi so that ζ0 = 1. The
map τ : x →

∑
T k(x̃) is easily seen to commute with the boundary map and so

yields a chain map τ : C(X,Fs) → Cζ0(X̃,Fs) called the transfer map. We have
the following.

Corollary 3.8. For all k, τ∗ : Hk(X,Fs) → Hζ0
k (X̃,Fs) is an isomorphism.

Proof. By Theorem 3.6 the map τ is surjective. Let π : C(X̃) → C(X) be the
map induced by projection. The composition π ◦ τ : Ck(X,Fs) → Ck(X,Fs) is
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multiplication by m, and since the characteristic of Fs does not divide m, this map
is injective. In particular, τ is injective. Thus, τ is a chain isomorphism and induces
an isomorphism on homology. �

3.6. Relations between equivariant Betti numbers. For a connected finite
CW complex X, suppose that ρ : π1(X) → Zm is a homomorphism. Let ρ′ : π1(X)
→ Zkm be induced by the inclusion Zm ⊂ Zkm.

Theorem 3.9. With the conditions given above, the induced km–fold cover of X
is the disjoint union of k copies of the m–fold cover of X:

X̃ρ′ ∼= X̃ρ � X̃ρ � · · · � X̃ρ.

The order km deck transformation shifts each summand to the next. The last

summand is mapped to the first via the order m deck transformation of X̃ρ.

Proof. This result follows from standard covering space theory. �

Theorem 3.10. Suppose that ρ : π1(X) → Zm is a homomorphism and ρ′ : π1(X)
→ Zkm is the composition of ρ with the inclusion Zm ⊂ Zkm. Let Tρ be the order

m deck transformation of X̃ρ and let Tρ′ be the order km deck transformation of

X̃ρ′ . Then the k power of Tρ′ is a transformation of order m and

βζ
i (X̃ρ′ , T k

ρ′ ,F) = kβζ
i (X̃ρ, Tρ,F).

Proof. The action of the k power of Tρ′ leaves invariant each factor X̃ρ in the

decomposition given by Theorem 3.9, X̃ρ � X̃ρ � · · · � X̃ρ. It restricts to each factor

to be the deck transformation of X̃ρ. �

3.7. Pairs of spaces. Let (X,Y ) be a CW–pair and let ρ : H1(X) → Zm. Then

there is an associated covering space pair (̃X,Y ) and we can consider the equivariant
relative homology groups of this cover. All the results of this section carry over to
this relative setting.

3.8. Computing the equivariant homology for spaces associated to knots.

For any given knot, the computation of βζ
i (Mn(K),Fp) is fairly straightforward,

using little more that what is covered in, say, the text by Rolfsen [33]. The com-
putation of the metacyclic invariants can be technically challenging; in particular,
they are not determined by a Seifert matrix. For this reason, we will restrict our
examples to those for which for which the computation is quickly accessible.

4. Handlebody structure

Theorem 4.1. The pair (Wn(Σ) \ Σ̃,Mn(K0) \ K̃) has a relative handlebody de-
composition with:

• nc0(Σ) 1–handles.
• nc1(Σ) 2–handles.
• nc2(Σ) 3–handles.

Proof. See, for instance, [13, Proposition 6.2.1] for a description of the handlebody
structure on (S3 × [0, 1]) \ Σ. That structure lifts to the covering space. �

Theorem 4.2. The pair (Wn(Σ),Mn(K0)) has a relative handlebody decomposition
with:
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• nc0(Σ) 1–handles.
• nc1(Σ) 2–handles.
• nc2(Σ) + 2g(Σ) 3–handles.

Proof. We have that (Wn(Σ),Mn(K0)) is built from (Wn(Σ) \ Σ̃,Mn(K0) \ K̃0) via
handle additions. For each i–handle in Σ there is an (i+ 2)–handle added.

The surface Σ can be built with one 0–cell and β1(Σ) 1–cells. The 0–cell and the
first 1–cell comprise K0. Hence, in building (Wn(Σ),Mn(K0)) the added 2–handle
and the first 3–handle complete the construction of a product neighborhood of
Mn(K0). There remain (β1(Σ)− 1) 3–handles to add. Finally, β1(Σ)− 1 = 2g. �

5. Homological constraints arising from cyclic branched covers

5.1. Homological constraints. In this section, we will denote the order n deck
transformation of Mn(K) by T . That is, no confusion should result by using the
symbol T without notating its dependence on K and n. We will work with finite
fields of prime order, Fp, that contain primitive n–roots of unity; that is, p− 1 ≡ 0
mod n. Unless specified, we will not assume that a given n–root of unity ζ is
primitive. The main result of this section is the next theorem. Notice that the
coefficients are in Fp rather than the splitting field. This is made possible by the
assumption that p − 1 is divisible by n; the order of the multiplicative group of
nonzero elements in Fp is cyclic of order p− 1, so if n divides p− 1 then it contains
n elements of order n, and thus Fp is the splitting field for tn − 1. Notice also that
if n divides p− 1, then n and p are relatively prime.

Theorem 5.1. Suppose that Σ is a cobordism from K1 to K0. Then for all n, for
all prime p satisfying p − 1 ≡ 0 mod n, and for all ζ ∈ Fp satisfying ζn = 1, we
have

c0(Σ) ≥
βζ
1(Mn(K1), T,Fp)− βζ

1(Mn(K0), T,Fp)

2
− g(Σ).

Before proving this, we isolate the case ζ = 1 in a lemma and then prove another
lemma that will simplify our exposition.

Lemma 5.2. Let K be a knot and let {n, p} be a relatively prime pair. Then the
1–eigenspace of the deck transformation acting on H1(Mn(K),Fp) is trivial.

Proof. The proof is a slight generalization of that for Corollary 3.8; we must now
take into account the branch set. We can still define the transfer map on the chain
level. For each cell x in the decomposition of (S3,K), the map τ is defined by

τ (x) =
∑n−1

j=0 T j x̃, where x̃ is a chosen lift of x. It is clear the image of τ is
contained in the 1–eigenspace. To verify that it is surjective, one considers cells
that are in, or not in, K, separately.

For x not in K, τ (x) is the generator of the 1–eigenspace of the action restricted
to the orbit of x̃. This follows from Theorem 3.6 in the case of ζi = 1.

If x is in K, then the orbit of x̃ is a single cell which is a 1–eigenvector. Since p
does not divide n, τ (x) = nx is nontrivial.

Again denoting the chain map induced by the projection map from Mn(K) to
S3 by π, we have that the composition π ◦ τ is multiplication by n on the chain
level. Thus, it is a chain isomorphism, implying that τ is injective and thus an
isomorphism from the chain complex of (S3,K) to the 1–eigenspace of the action
of T on the associated cellular decomposition of Mn(K). The result now follows
from the fact that H1(S

3,Fp) = 0. �
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Lemma 5.3. Let (W,M) be a CW–pair supporting an action T of Zn. Suppose
that F is a field containing n−1 distinct elements ζ �= 1 satisfying ζn = 1. Finally,
assume that T preserves the components of M ; that is, that T∗ acts trivially on
H0(M,F). Then with F–coefficients,

β1(W ) ≤ βζ
1(M) + dim(Cζ

1 (W,M))

and

β1(W ) ≥ βζ
1(M) + dim(Cζ

1 (W,M))− dim(Cζ
2 (W,M)).

Proof. Removing cells of dimension 3 or higher does not affect any of the terms in
the statement, so we can assume thatW is a 2–complex. In the proof, to simplify the
presentation we suppress the F in notation for chain complexes, homology groups,
and Betti numbers.

The group Hζ
0 (M) = 0. Thus, from the long exact sequence, we have

Hζ
2 (W,M) → Hζ

1 (M) → Hζ
1 (W ) → Hζ

1 (W,M) → 0.

From this it follows that

(1) βζ
1(W ) = βζ

1(W,M) + βζ
1(M)− dim

(
Image(Hζ

2 (W,M) → Hζ
1 (M))

)
.

Since βζ
1(W,M) ≤ dim(Cζ

1 (W,M)), the first inequality in the statement of the
lemma is immediate.

We have dim
(
Image(Hζ

2 (W,M) → Hζ
1 (M))

)
≤ βζ

2(W,M); substituting into
Equation 1 yields

βζ
1(W ) ≥ βζ

1(M) + βζ
1(W,M)− βζ

2(W,M).

We have that cζ0(W,M) = 0, so a standard Euler characteristic argument implies

that βζ
1(W,M)− βζ

2(W,M) = dim
(
Cζ

1 (W,M)
)
− dim

(
Cζ

2 (W,M)
)
. Hence,

βζ
1(W ) ≥ βζ

1(M) + dim
(
Cζ

1 (W,M)
)
− dim

(
Cζ

2 (W,M)
)
,

as desired. �

Proof of Theorem 5.1. To simplify notation, we let W = Wn(Σ) \ Σ̃, ∂0W =

Mn(K0) \ K̃0 and ∂1W = Mn(K1) \ K̃1.
The 1–handles and 2–handles in the relative handlebody structure on (W,∂0W )

are each freely permuted by the action of the generating deck transformation T .
That is, for i = 1 and i = 2 we have that as an Fp[Zn]–module the CW–chain
complex Ci(W,∂0W,Fp) is free; it is isomorphic to ci−1 copies of Fp[Zn]. We identify
Fp[Zn] with Fp[T ]/ 〈1− Tn〉, where the action of the generator of Zn is given by
multiplication by T . Each of these splits into n eigenspaces; letting ξ be a primitive
n–root of unity,

Fp[T ]/ 〈1− Tn〉 ∼= ⊕n−1
i=0 Fp[T ]/

〈
ξi − T

〉
.

We have that ζ = ξi for some i, so the ζ–eigenspace of the relative CW–chain com-
plex of (W,∂0W ) has c0 generators in dimension 1 and c1 generators in dimension

(2). That is, dim(Cζ
i (W,∂0W,Fp)) = ci−1. The first inequality of Lemma 5.3 gives

βζ
1(W,T,Fp) ≤ β1(∂0W,T,Fp) + c0(Σ).

We have a similar construction of W starting with ∂1W = Mn(K1) \ K̃1. In

this case, we have dim(Cζ
1 (W,∂1W )) = c2 and dim(Cζ

2 (W,∂1W )) = c1. Using the
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second inequality in Lemma 5.3,

βζ
1(W,T,Fp) ≥ βζ

1(∂1W,T,Fp) + c2(Σ)− c1(Σ).

Combining these, we see that

βζ
1(∂0W,Fp) + c0(Σ) ≥ βζ

1(∂1W,F) + c2(Σ)− c1(Σ).

Recall that c1(Σ) = c0(Σ)+c2(Σ)+2g(Σ). The previous inequality can be rewritten
as

βζ
1(∂0W,T,Fp) + c0(Σ) ≥ β1(∂1W,T,Fp) + c2(Σ)− (c0(Σ) + c2(Σ) + 2g(Σ)).

This inequality simplifies to give

c0(Σ) ≥
βζ
1(∂1W,T,Fp)− βζ

1(∂0W,T,Fp)

2
− g(Σ).

The proof is finished by noting that completing the covers to form the branched
cyclic covers adds generators to the CW–complex that are all in the 1–eigenspace
and thus do not change the computation. �

Early work [28] studying ribbon knots provided homological constraints on the
minimum number of index 1 critical points in a ribbon disk based on the homology
of the 2–fold branched covers. The next theorem is a fairly simple generalization of
such results. Notice that we do not restrict to the ribbon situation, 2–fold covers,
or the case of g = 0.

Corollary 5.4. Under the conditions of Theorem 5.1,

c0(Σ) ≥
β1(Mn(K1),Fp)− β1(Mn(K0),Fp)

2(n− 1)
− g(Σ).

Proof. The proof consists of summing over the n − 1 eigenspaces. By Lemma 5.2
the 1–eigenspace is trivial. �

Example 5.5. Let Pk denote the pretzel knot P (2k + 1,−2k − 1, 2k + 1). These
are ribbon knots having Seifert form(

0 k
k + 1 0

)
.

Each bounds a ribbon disk with one saddle point and two minimum. For a knot
with Seifert form V , the homology of its 2–fold branched cover is presented by
V + V T. Thus, we have H1(M2(Pk)) ∼= Z2k+1 ⊕ Z2k+1. (Presentations of the
homology of general cyclic branched covers are described in Theorem A.1.) In the
examples that follow, we consider P1 and P2, and so have H1(M2(P1)) ∼= Z3 ⊕ Z3

and H1(M2(P2)) ∼= Z5 ⊕ Z5

We want to consider the sets Gg(nP1,mP2) and for convenience assume that
n ≥ m. This example presents the case of g = 0 and the next considers g > 0.

Our first observation is that aPk bounds a ribbon disk with a saddle points
and a + 1 minima. From this it is easily seen that there is a concordance Σ from
nP1 to mP2 with c0(Σ) = n, c1(Σ) = n + m, and c2(Σ) = m. That is, (n,m) ∈
G0(nP1,mP2).

Using Z3–coefficients in Corollary 5.4, we see that

c0(Σ) ≥
2n− 0

2
− 0 = n.
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Similar, working with Z5–coefficients we have c2(Σ) ≥ m. Thus, G0(nP1,mP2) is
precisely the quadrant with vertex (n,m), that is Q(n,m).

Example 5.6. If m > 0 and n > 0, then by Proposition 2.4 we have Q(n− 1,m)∪
Q(n,m−1) ⊂ G1(nP1,mP2). Here we show that this is a proper containment, that
in fact, G1(nP1,mP2) = Q(n− 1,m− 1).

The construction of a cobordism is simple. In the initial concordance that we
built, the local maxima were at levels below the local minima. Because of this, the
concordance can be modified by replacing disk neighborhoods of a maximum point
and a minimum point by an annulus near an increasing path from the maximum
to the minimum. The effect is to decrease both c0 and c2 by 1 in exchange for
increasing the genus by 1; that is G1(nP1,mP2) ⊂ Q(n − 1,m − 1). Corollary 5.4
immediately implies that this inclusion must be an equality.

The process can be repeated to prove that for g ≤ m we have Gg(nP1,mP2) =
Q(n− g,m− g).

Finally, Proposition 2.4 implies that for m ≤ g ≤ n we have Gg(nP1,mP2) =
Q(n− g, 0). For g ≥ n we have Gg(nP1,mP2) = Q(0, 0).

Figure 4 illustrates the sets Gg(4P1, 2P2).

g = 0 g = 1 g = 2 g = 3 g ≥ 4

Figure 4. Gg(4P1, 2P2)

Example 5.7. Let K = 10153. We consider cobordisms to the unknot. For this
knot H1(M2(K)) = 0 and H1(M5(K)) ∼= Z11 ⊕ Z11. Clearly Theorem 5.1 and
Corollary 5.4 provide no information in the case of 2–fold covers. Using 5–fold
covers does. The four primative 5–roots of unity in F11 are 3, 4, 5, and 9.

We first observe that there are precisely two nontrivial eigenspaces for the Z5

action on Z11 ⊕ Z11, each 1–dimensional, as can be seen as follows. Clearly there
are at most two nontrivial eigenspaces. Poincaré duality implies that if there is
a ζ–eigenvector, there is also a ζ−1–eigenvector; we present a proof of this in the
appendix as Lemma B.1.

Using either eigenvalue, Theorem 5.1 implies that for any cobordism from nK
to the unknot, we have c0(Σ) ≥ n− g. Corollary 5.4 yields the weaker result that
c0(Σ) ≥ n/2− g. The improvement by a factor of two is expected, since two of the
eigenspaces are trivial and two have dimension 1.

6. The infinite cyclic cover and the Alexander module

It has been known that the rank of the Alexander module of a knot has an upper
bound that is determined by the genus of a surface bounded by the knot in B4 and
the critical point structure of that surface. We now generalize that observation,
focusing on cobordisms.

Recall that M∞(Ki) and W∞(Σ) represent the infinite cyclic covers of the com-
plements of the Ki and Σ. In general, suppose we have a finite CW–complex X
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and a homomorphism ρ : H1(X) → Z; then ρ induces an infinite cyclic cover X̃ρ.

The group H1(X̃ρ,Q) is a finitely generated module over the PID Q[t, t−1]. We
denote this module by A(X, ρ,Q[t, t−1]). There is splitting

A(X, ρ,Q[t, t−1]) ∼=
n⊕

j=1

Q[t, t−1]/ 〈fj(t)〉 ,

where fj divides fj+1 for j < n. This splitting is unique and the value of n is called
the rank of the module.

Definition 6.1. LetX be a space (or pair of spaces) supporting a map ρ : H1(X) →
Z with associated infinite cyclic cover X̃ρ. We denote by βi(X̃ρ, ρ,Q[t, t−1]) the
Q[t, t−1]–rank of A(X, ρ,Q[t, t−1]). When ρ is implicit, it is dropped from the
notation.

For the complements of the Ki and of Σ there are canonical maps of the first
homology to Z, and thus we can suppress the ρ in our notation. The infinite cyclic
cover W∞(Σ) is built from the infinite cyclic cover M∞(K0) by adding the lifts
of c0 1–handles, followed by c1 2–handles, and then 3–handles. There is a similar
decomposition arising for M∞(K1). The proof of Theorem 5.1 carries over to this
setting, yielding the following result.

Theorem 6.2. Suppose that Σ is a cobordism from K1 to K0. Then

c0(Σ) ≥
β1(M∞(K1),Q[t, t−1])− β1(M∞(K0),Q[t, t−1])

2
− g(Σ).

This result can be strengthened by focusing on the direct sum decomposition of
the module A(X, ρ,Q[t, t−1]) that corresponds to irreducible elements in Q[t, t−1].

For any irreducible polynomial f we can set βf
i (X̃, ρ,Q[t, t−1]) to be the rank of

the f–primary summand of A(X, ρ,Q[t, t−1]). The proof of the following result is
much the same as that for the previous theorem. (As an alternative, one can switch
to the ring Q[t, t−1](f), which denotes the localization at f , that is, the ring formed

from Q[t, t−1] by adding a multiplicative inverse to all nontrivial elements g that
are relatively prime to f . This is a PID with a unique prime, represented by f .)

Theorem 6.3. Suppose that Σ is a genus g cobordism from K1 to K0. Then for
any irreducible polynomial f ∈ Q[t, t−1],

c0(Σ) ≥
βf
1 (M∞(K1),Q[t, t−1])− βf

1 (M∞(K0),Q[t, t−1])

2
− g(Σ).

Corollary 6.4 is immediate.

Corollary 6.4. If knots K and J have nontrivial Alexander polynomials with a
pair of distinct irreducible factors, then for any cobordism Σ from from nK to mJ
we have

c0(Σ) ≥ n/2− g

and

c2(Σ) ≥ m/2− g.

For related results in the case of ribbon concordances, see [9].
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7. Knots K(1, α61), K(1, β103), and their associated metacycle covers

A metacyclic invariant of a knot K, or of a surface Σ ⊂ S3 × [0, 1], is one that
is derived from a cyclic cover of a cyclic branched cover of K or Σ. The use of
such invariants in knot theory already appears in early work, such as Reidemeiser’s
1932 book [31, 32]. The role of such invariants in concordance first appeared in
the work of Casson and Gordon [6]. That paper, which introduced what is now
called Casson-Gordon theory, was restricted to 2–bridge knots B((2k+ 1)2, 2). We
will build our examples using the 2–bridge knots B((2k + 1)2, 2k). The reason
for the different choice is that Casson and Gordon were interested in showing that
particular knots are not slice; we want to start with knots that are slice and explore
their slice disks and concordances between them.

Our examples are built from two knots from this family: K(1, U) = B(9, 2) = 61
and K(2, U) = B(25, 4) = 103, but further examples are easily constructed.

Figure 1 gives an illustration of a knot K(k, J). For J unknotted, this is B((2k+
1)2, 2k). We can think of K(1, J) as being built from B((2k+1)2, 2k) by removing
a neighborhood of a circle α linking the right band in the Seifert surface shown in
Figure 1 (for which the right band unknotted) and replacing that neighborhood with
the complement of the knot J in S3. Viewed as knots in S3, α and J have meridians
and longitudes. The identification of the boundaries of their complements identifies
the meridian of each with the longitude of the other. This creates a new knot in
S3, formed from K(1, U) by tying the knot J in a band on the Seifert surface, as
desired. We will focus on two specific examples: K(1, α61) and K(1, β103), where
α and β are nonnegative integers.

7.1. Ribbon disks for K(k, J).

Theorem 7.1. If J is ribbon and bounds a ribbon disk with n minima, then K(k, J)
is ribbon, bounding a ribbon disk with 2n minima.

Proof. A simple closed curve γ that passes once over each of the bands of the genus
one Seifert surface for K(k, J) in opposite directions has framing zero and has the
knot type of J . A ribbon disk for K(k, J) is built by first removing an annular
neighborhood of γ on the Seifert surface for K(k, J). The boundary of this annulus
is a pair of parallel curves on the surface, each of knot type J . Those two curves
can be capped off in the four-ball with parallel copies of the ribbon disk in the
4–ball for J . The resulting surface is a disk; since the ribbon surface for J has n
minima, using two copies of the ribbon disk yields a surface with 2n minima. �

7.2. The 2–fold branched cover of K(1, J). An algorithm of Akbulut-Kirby [4]
provides a surgery diagram of the 2–fold branched cover of K(1, J), as shown on
the left in Figure 5; M2(K(1, J)) is given as surgery on a two-component link, with
one of the components unknotted and the other representing J # Jr, where Jr

denotes J with its string orientation reversed. Since all the knots J we consider are
reversible, we have left out the superscript “r” and do not orient the circles labeled
with J . Also, we can write 2J rather then J#Jr when needed. As described in, for
instance, [33], that surgery diagram can be modified to appear as in the diagram on
the right. This illustrates the 2–fold branched cover as formed from the lens space
L(9, 2) by removing two parallel copies of a core circle and replacing each with a
copy of the complement of J .
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−2 4 J

J

J

J

9/2

Figure 5. Branched cyclic cover of K(1, J), where J = Jr

As an immediate consequence, we have the following result, which also follows
from the fact that that the homology is presented by V +V T, where V is the Seifert

matrix for K(1, J) given by V =

(
−1 1
0 2

)
.

Theorem 7.2. For all J , H1(M2(K(1, J))) ∼= Z9.

7.3. The metacyclic cover of K(1, J). The first homology of M2(K(1, J)) is

isomorphic to Z9. Thus it has a unique connected cyclic 3–fold cover M̃3
2 (K(1, J)).

We need to understand the construction of this space from the lens space L(3, 2).
Here is a summary of the result we will use.

Lemma 7.3. The space M̃3
2 (K(1, J)) is built from L(3, 2) by removing tubular

neighborhoods of two homologically essential parallel curves, α̃1 and α̃2, and replac-
ing each with copies of the 3–fold cyclic cover of S3 − J . The attaching map for
each identifies a lift of a longitude of J with a meridian of α̃1 and identifies the
preimage of a meridian of J with a parallel curve to α̃i.

Proof. Results such as this appear in the work of Gilmer [12] and Litherland [25]
in greater generality, in which rather than the 3–fold cover an infinite cover is
analyzed. Here is an outline of the proof.

First, we set up some notation. Let α1 and α2 be the curves that are labeled J
in Figure 5. Viewed as curves in S3, these have meridians and longitudes, which
we will denote m1, l1,m2, and l2. The 3–fold cyclic of L(9, 2) is L(3, 2). The curves
αi, now viewed as in L(9, 2), each have connected preimages which we denote α̃i.

The longitude of αi has a connected preimage that we denoted l̃i. The preimage of
its meridian has three components; we choose one to call m̃i.

We denote a meridian and a longitude of J by μ and λ. We view these as curves
on the torus boundary of S3 −N(J). The preimage of μ in the 3–fold cyclic cover,

˜S3 −N(J), is connected; we call it μ̃. We denote by λ̃ one of the components of
the preimage of λ.

The diagram below offers a schematic of the covering spaces. The union on the

bottom row represents M2(K(1, J)); on the top row we have M̃3
2 (K(1, J)). The

downward pointing arrows represent the covering spaces. These maps commute
with the attaching maps described above that are used to form the union. This
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completes a summary of the proof of the lemma.(
L(3, 2)− {α̃i}

)
∪ (

S̃3 − J ∪ S̃3 − J
)

(
L(9, 2)− {α̃i}

)
∪

(
S3 − J ∪ S3 − J

)� �

�
7.4. The homology of the metacyclic cover of K(1, J). As described in
Lemma 7.3, the 3–fold cyclic cover of M2(K(1, J)) is built from the 3–fold cyclic
cover of L(9, 2), which is the lens space L(3, 2), by removing a pair of parallel core

circles and replacing them with copies of M3(J) \ J̃ . This is illustrated in Figure 6.
We will thus need the following.

J̃

J̃

3/2

Figure 6. The 3–fold cyclic cover of the 2–fold branched cover of K(1, J)

Theorem 7.4. There is an isomorphism H1(M̃
3
2 (K(1, J))) ∼= Z3 ⊕H1(M3(J))

2.

Proof. For any knot J , let X1 and X2 be copies of the 3–fold cyclic cover of S3 \J .
We have H1(Xi) ∼= Z⊕H1(M3(J)).

The torus boundary of Xi has natural boundary curves, mi, and li, lifts of the
meridian and longitude of J . The curve mi represents an element of infinite order
in Z⊕H1(M3(J)), and with the appropriate choice of basis represents 1⊕ 0. The
curve li is null-homologous in Xi, bounding a lift of a Seifert surface.

In Figure 6 the curves mi and li are attached to the longitude and meridian,

respectively, of the curves labeled J̃ . (Notice that there is an interchange of meridian
and longitude.)

One can now undertake a Mayer-Vietoris argument. The covering space is split
into four components by the three evident tori in Figure 6: that is, the peripheral
tori to the three curves illustrated. As just described, two are related to the 3–fold
covers of J , one is a solid torus with core γ (corresponding to the 3/2–surgery),
and one is the compliment of the three component link that is illustrated, having
homology generated by three meridians, which we denote α0, β1 and β2, corre-

sponding to the 3/2–surgery curves and the two J̃3. We let T = H1(M3(J)). Via
the Mayer-Vietoris sequence, we see the homology is a quotient of(

Z(α)⊕ Z(β1)⊕ Z(β2)
)
⊕
(
Z(m1)⊕ T

)
⊕
(
Z(m2)⊕ T

)
⊕ Z(γ).

The identification along the three tori, each with rank two first homology, in-
troduces six relations. Taking them in order, meridian first and initially along the
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surgery torus, yields the following, where we write l1 despite it equaling 0, to make
the gluing maps more evident:

• α = −2γ
• β1 + β2 = 3γ
• β1 = l1
• α = m1

• β2 = l2
• α = m2.

None of these involve the summand T ⊕ T and so, in effect, they are relations
defining a quotient of Z6 ∼= 〈α, β1, β2,m1,m2, γ〉. A simple exercise shows the
quotient is isomorphic to Z3, as desired. �

To apply this result, we will use the following and its immediate corollary, show-
ing that in our case T ∼= (Z7)

2 or T ∼= (Z19)
2, depending on whether J = 61 or

103.

Lemma 7.5. H1(M3(61)) ∼= Z7 ⊕ Z7 and H1(M3(103)) ∼= Z19 ⊕ Z19.

Proof. This is a standard knot theoretic computation; see, for instance [33]. More
generally, in Theorem A.1 in the appendix it is shown that for q odd,H1(Mq(B((2k+
1)2, 2k))) ∼= Z(k+1)q−kq ⊕ Z(k+1)q−kq . �

Corollary 7.6. H1(M̃
3
2 (K(1, 61))) ∼= Z3 ⊕ (Z7)

4 and H1(M̃
3
2 (K(1, 103))) ∼= Z3 ⊕

(Z19)
4.

7.5. The eigenvalue decomposition of H1(M̃
3
2 (K(1, J))). For any field F, there

is an action of Z3 on H1(M̃
3
2 (K(1, J)),F). In the case that F contains a primitive

3–root of unity ζ, the homology H1(M̃(K(1, J)),F) splits into eigenspaces, as de-
scribed in Section 3. Note that F7 and F19 both contain such roots of unity. When
no confusion can result, we will use the same symbol ζ to denote a primitive cube
root of unity in F7 and in F19.

Theorem 7.7. With the set-up described above:

• βζ
1(M̃

3
2 (K(1, α61)),F7) = 2α.

• βζ
1(M̃

3
2 (K(1, α61)),F19) = 0.

• βζ
1(M̃

3
2 (K(1, β103)),F7) = 0.

• βζ
1(M̃

3
2 (K(1, β103)),F19) = 2β.

Proof. Considering the F7–homology, we have H1(M̃
3
2 (K(1, α61)),F7) ∼= (F7)

2α

arises entirely from the 2α copies of M3(J) \ J̃ that appear in the covering space.
Thus the proof of the first statement comes down to analyzing the eigenspace
splitting of the Z3–action on M3(J) ∼= F7 ⊕ F7. We claim that the 1–eigenspace
is trivial and the ζ–eigenspaces and ζ−1–eigenspaces are both 1–dimensional. This
can be shown with an explicit computation, or one can argue abstractly, as follows.
A transfer argument, using the branched covering map M3(J) → S3 shows that
the 1–eigenspace is trivial. Poincaré duality implies that the ζ–eigenspace and
ζ−1–eigenspace are isomorphic (see Lemma B.1 for a proof).

Similar arguments give the remaining statements. �
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7.6. Metacyclic covers of nK(1, α61) and mK(1, β103). In this section we need
to understand the construction of cyclic covers of connected sums of three-manifolds.
The details are intricate, but the following example should clarify the approach.
Consider the schematic diagram in Figure 7. In this diagram we illustrate a 5–fold
cover, rather than the 3–fold cover we will use in our later examples. The figure at
the bottom indicates the connected sum of manifolds N1, N2, and N3. A connected
sum is formed by removing a ball from each manifold and replacing it with a copy
of S2 × [0, 1]. The segments in the diagram represent copies of S2 × [0, 1]. Suppose
that we have a homomorphism from the first homology of the connected sum to
Z5 that restricts to be surjective on the first two summands and is trivial on the
third. Then the induced 5–fold covering space is formed from 5–fold covers of N1

and N2, along with copies of N3 as illustrated in the top diagram. This space is

diffeomorphic to Ñ1 # Ñ2 # 5N3 # 4(S1 × S2).

The homology of the cover is the direct sum of the homology groups of Ñ1, Ñ2,
five copies of the first homology of N3, and an additional Z4 summand. As a Z[Z5]–
module, the Z4 summand is isomorphic to Z[t]/

〈
1 + t+ · · ·+ t4

〉
. If we reduce to

Fp coefficients where p �= 5, then the (Fp)
4 summand factors as the direct sum of

four nontrivial eigenspaces after tensoring with the splitting field of t5 − 1 over Fp,
one for each nontrivial 1/5–root of unity.

Ñ1 Ñ2

N3

N3

N3

N3

N3

N1 N2 N3

Figure 7. Schematic of a 5–fold cyclic cover of a connected sum

Moving on to the details of our specific example, let ρ : H1(M2(nK(1, J))) → Z3

be nonzero on a of the natural Z3–summands and be 0 on (n−a) of the summands.
We need to understand the eigenspace decomposition of the homology of the asso-
ciated cover.

Theorem 7.8.

(A) Suppose that ρ : H1(M2(nK(1, α61))) → Z3 is nonzero on a ≥ 0 of the
natural Z9–summands. Then

• If a ≥ 1, then βζ
1(M̃

3
2 (nK(1, α61)), ρ,F7) = 2aα+ a− 1.

• If a ≥ 1, βζ
1(M̃

3
2 (nK(1, α61)), ρ,F19) = a− 1.

• If a = 0, then βζ
1(M̃

3
2 (nK(1, α61)), ρ,F7) = βζ

1(M̃
3
2 (nK(1, α61)), ρ,F19) = 0.
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Similarly,

(B) Suppose that ρ : H1(M2(nK(1, β103)) → Z3 is nonzero on a′ ≥ 0 of the
natural Z9–summands. Then

• If a′ ≥ 1, then βζ
1(M̃

3
2 (nK(1, β103)), ρ,F19) = 2a′β + a′ − 1.

• If a′ ≥ 1, βζ
1(M̃

3
2 (nK(1, β103)), ρ,F7) = a′ − 1.

• If a′ = 0, then βζ
1(M̃

3
2 (nK(1, β103)), ρ,F19) = βζ

1(M̃
3
2 (nK(1, β103)), ρ,F7) =

0.

Proof. We consider the first statement in part (A). The 3–fold cover M̃3
2 (nK(1, α61))

is a connected sum containing: a copies of the nontrivial cover M̃3
2 (K(1, α61)); an

additional 3(n− a) copies of the trivial cover, M2(nK(1, α61)); and (a− 1) copies

of S1 × S2 # S1 × S2. By Theorem 7.7, each of the a copies of M̃3
2 (K(1, α61))

contributes 2α to the Betti number βξ
1 , explaining the 2aα. The (a − 1) copies of

S1 × S2 each contribute 1 to the Betti number βξ
1 . This completes the discussion

of the first of the six cases of the theorem. The others are addressed in a similar
way. �

8. Cobordisms between nK(1, α61) and mK(1, β103))

To simplify the discussion, we will assume that n ≥ m > 0. Let Σ be a genus
g cobordism from nK(1, α61) and mK(1, β103)). We continue to denote the 2–
fold cover of S3 × [0, 1] branched over Σ by W2(Σ); this is a cobordism from
M2(nK(1, α61)) to M2(mK(1, β103)).

8.1. Gilmer’s results on surfaces in B4 bounded by knots. We begin with
a summary of key results of Gilmer [11, Lemma 1 and Theorem 1]. Recall that for
a rational homology three-sphere M , the linking form β is a nonsingular pairing
H1(M)×H1(M) → Q/Z. Let M be a rational homology three-sphere bounding a
four-manifold W . Then Gilmer’s Lemma 1 states the following.

Lemma 8.1. The linking form for M splits as a direct sum β1 ⊕ β2 defined with
respect to a splitting A1 ⊕ A2 of H1(M). The splitting is such that A1 has a

presentation of rank β2(W ) and β2 vanishes on a subgroup M ⊂ A2 where
∣∣M∣∣2 =∣∣A2

∣∣. Furthermore, the homomorphism H1(M) → Q/Z defined by linking with any
element of M extends to a homomorphism defined on H1(W ).

In general, for a finite abelian group G with nonsingular linking form lk, a

subroup M upon which the linking form restricts to be 0 and for which
∣∣M∣∣2 =

∣∣G∣∣
is called a metabolozier for (G, lk).

The second result that we use is the next lemma, which is contained in the proof
of Gilmer’s Theorem 1.

Lemma 8.2. If W is the 2–fold branched cover of B4 branched over a surface of
genus g bounded by a knot, then β2(W ) = 2g.

In our setting we can apply these two results to attain the following.

Theorem 8.3. Let K0 and K1 be knots such that H1(M2(K0)) ∼= H1(M2(K1)) ∼=
Z9, so that H1(nM2(K1)) ⊕H1(−mM2(K0)) ∼= (Z9)

n ⊕ (Z9)
m. Furthermore, as-

sume that there is a genus g cobordism Σ from nK0 to nK1 and that n+m ≥ 2g.
For some ε ≥ 0, the linking form on this group splits off a summand that is isomor-
phic to (Z9)

n+m−2g+ε which contains a metabolizer M ⊂ H, all elements of which
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define homomorphisms that extend to the 2–fold branched cover of the cobordism.
In particular, the order of M is at least 3n+m−2g.

8.2. Extending homomorphisms from H1(M2(nK(1, α61))) to H1(W2(Σ)).

Theorem 8.4. Suppose that a surface Σ is a genus g cobordism from nK(1, α61)
to mK(1, β103) and assume that n > 2g. Then there exists a surjective homomor-
phism ρ : H1(M2(nK(1, 61))) → Z3 that extends to a homomorphism ρ′: H1(W2(Σ))
→ Z3b for some b.

Proof. Abbreviate nK(1, α61) by nK1 and mK(1, β103) by mK2. We then have
that H1(M2(K1))⊕H1(−M2(K2)) ∼= (Z9)

n+m.
As described in Theorem 8.3, there exists a set M of homomorphisms map-

ping H1(nM2(K1)) ⊕ H1(−M2(mK0)) to Q/Z that extend to homomorphisms
on H1(W2(Σ)). The order of M is 3n+m−2g and the order of a metabolizer for
H1(−M2(mK0)) is 3

m. It follows that if 3n+m−2g > 3m, then some element in M is
not contained in 0⊕H1(−M2(mK0)) and thus must be nontrivial onH1(M2(mK1)).
This will occur as long as n > 2g. Call one such element ρ ∈ M and let ρ′ denote
an extension of ρ to H1(W2(Σ)).

The image of ρ′ is a finite cyclic subgroup G ⊂ Q/Z. Projecting G to its
3–primary summand does not change its restriction to the boundary, so we can
assume that ρ′ takes values in Z3b for some b. If ρ is not of order 3, then it can be
multipled by 3 so that it does have order 3. �

8.3. The 3b–fold cyclic cover of W (Σ). Let π : W̃ 3
2 (Σ) → W2(Σ) denote the

3b–fold cyclic cover of W2(Σ) associated to the homomorphism ρ′ defined above.

We let ∂1(W̃
3
2 ) = π−1(M2(nK(1, α61))) and ∂0(W̃

3
2 ) = π−1(M2(nK(1, α103))).

We can now apply Theorem 3.10 and Theorem 7.8. Let ζ be a primitive 3–root

of unity and consider the Z3–action on ∂1(W̃
3
2 ), the 3b−1 power of order 3b deck

transformation, which we denote by T = S3b−1

.

Theorem 8.5. Assume that the restriction ρ : M2(nK(1, α61)) → Z3 is nonzero
on a ≥ 1 of the n summands. Also suppose that the restriction is nonzero on a′ ≥ 0
of the m summands of H1(M2(mK(β103)).

• βζ
1(∂1(W̃

3
2 ), T,F7) = 3b−1βζ

1(M̃
3
2 (nK(1, α61)),F7) = 3b−1(2aα+ a− 1).

• βζ
1(∂0(W̃

3
2 ), T,F7) = 3b−1(a′−1) if a′ ≥ 1 and βζ

1(∂0(W̃
3
2 ),F7) = 0 if a′ = 0.

Applying a relative version of Corollary 3.7 along with Theorem 4.2 gives the
next result.

Theorem 8.6. Let Cζ
i (W̃

3
2 , ∂0(W̃

3
2 ),F7) be the ζ–eigenspace of the CW–chain group

under the Z3–action given as the 3b−1–power of its deck transformation. Then

• dimCζ
1 (W̃

3
2 , ∂0(W̃

3
2 ), T,F7) = 3b−1(2c0(Σ)).

• dimCζ
2 (W̃

3
2 , ∂0(W̃

3
2 ), T,F7) = 3b−1(2c1(Σ)).

• dimCζ
3 (W̃

3
2 , ∂0(W̃

3
2 ), T,F7) = 3b−1(2c2(Σ) + 2g(Σ)).

Theorem 8.7. Let Σ be a genus g cobordism from nK(1, α61) to mK(1, β103).
Assume that n > 2g. Then

c0(Σ) ≥
2α+ 1−m

4
− g.
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Proof. The proof is much like the one for Theorem 5.1. We work with the ζ–

eigenspaces of the Z3–actions. Consider the fact that W̃
3
2 is built from ∂0(W̃

3
2 ). We

have

βζ
1(W̃

3
2 , T,F7) ≤ 3b−1(m− 1) + 3b−1(2c0(Σ)).

The first summand comes from the homology of the boundary, using the fact that
in Theorem 8.5 we have a′ − 1 ≤ m. Turning the bordism upside down and using

the fact that W̃ 3
2 is built from ∂1(W̃

3
2 ) by adding 1–handles and 2–handles that

correspond to the index two and index one critical points of Σ, respectively, we find
that

βζ
1(W̃

3
2 , T,F7) ≥ 3b−1(2aα+ a− 1) + 3b−1(2c2(Σ))− 3b−1(2c1(Σ)).

Together, these inequalities imply

(2aα+ a− 1) + 2c2(Σ)− (2c1(Σ)) ≤ (m− 1) + (2c0(Σ)).

We have that c1(Σ) = c0(Σ) + c2(Σ) + 2g(Σ). Substituting yields

(2aα+ a− 1) + 2c2(Σ)− 2(c0(Σ) + c2(Σ) + 2g(Σ)) ≤ (m− 1) + 2c0(Σ).

This simplifies to give

c0(Σ) ≥
2aα+ a−m

4
− g.

Finally, since a ≥ 1, we have the desired result:

c0(Σ) ≥
2α+ 1−m

4
− g.

�
8.4. Strengthening the bounds. The difference between the lower bound pro-
vided by Theorem 8.7 and the best upper bound that we can prove with a realization
result is quite large. For instance, we have the following realization result.

Theorem 8.8. If g ≤ min{n(2α+1),m(2β+1)}, then there is a genus g cobordism
Σ from nK(α61) to mK(β103) satisfying

c0(Σ) = n(2α+ 1)− g and c0(Σ) = m(2β + 1)− g.

Proof. The construction given in Example 5.6 can be easily modified to produce the
result. What is essential is that the canonical ribbon disks can be pieced together
to form a concordance in which the local maxima are beneath the local minima. �

A limitation in this theorem is the absence of n in the bound on c0 given Theo-
rem 8.7. We want to explore this briefly. We have an inclusion of (Z3)

m+n into a
group with nonsingular linking form:

(Z3)
n ⊕ (Z3)

m ⊂ (Z9)
n ⊕ (Z9)

m.

We have assumed that n+m > 2g and identified a subgroup M ⊂ (Z9)
n ⊕ (Z9)

m

of order 3n+m−2g upon which the linking form is identically 0. In the proof of
Theorem 8.7, we used the fact that if n > 2g then M∩ (Z3)

n⊕ 0 is nontrivial. But
in fact, if n is large in comparison to m and g, then the rank of the intersection
M ∩ (Z3)

n ⊕ 0 must be large as well; in particular, rather than use a ≥ 1 in
the argument, we could find metabolizing elements for which a is much larger.
Similarly, we used the obvious fact that a′ ≤ m; with care, we could also show
that it is possible to assume that a′ is close to 0. We have opted not to undertake
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the careful analysis of self-annihilating subgroups of the standard linking form on
(Z9)

n+m that is required to establish these better bounds.

9. Non-reversible knots

To conclude our presentation of examples, we consider a subtle family built from
knots K and Kr, where Kr denotes the reverse of K. Such knots are difficult to
distinguish by any means. For instance, all abelian invariants are identical for the
two knots. It is not known at the moment whether any invariants that are built from
the Heegaard Floer knot complex CFK∞(K) defined in [29], such as its involutive
counterpart, defined in [18], can distinguish them. The successful application of
metacyclic invariants to distinguishing knots from their reverses began with the
work of Hartley, [17].

Figure 8 illustrates a knot that we will denote P = P (J1, J2). The starting knot
is the pretzel knot P (3,−3, 3), and knots J1 and J2 are placed in the two bands.
Notice that we have indicated the orientation of P . We let P ∗ denote reverse of the
knot; that is, the knot with the same diagram except with the arrow reversed (the
use of P ∗ rather than the more standard notation P r will simplify some notation
later on). These knots have formed the basis of a variety of concordance result
related to reversibility; see, for instance, [24]. In past papers that used these knots,
the J1 were chosen so that the knots could be shown not to be concordant. We will
let J1 and J2 be slice knots, so that they the P and P ∗ are themselves slice and
our results apply to consider concordances between them.

J1 J2

Figure 8. The knot P (J1, J2)

We will now briefly summarize the results of some calculations related to these
knots, leaving the details to [24]. Our first observation concerns the choice of deck
transformation for a cyclic branched cover a knot. Let K ⊂ S3 be an oriented
knot. The canonical map φ : π1(S

3 \K) → Zn determines an index n subgroup of
π1(S

3\K), and associated to this subgroup there is a cyclic branched cover, Mn(K).
This is an oriented manifold and is independent of the choice of string orientation
of K. However, the map φ identifies the group of deck transformations of Mn(K)
with Zn. Reversal of the string orientation of K has the effect of changing the
identification. To be more explicit, if m is an orientated meridian of K, viewed as
a path, then a lifting of that path to Mn(K) is a path α. The canonical generator
T of the group of deck transformations has the property that T (α(0)) = α(1). If
the orientation of K is reversed, then the meridian is reversed, and for the new
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deck transformation T ′ we have T ′(α(1)) = α(0). That is, reversing the string
orientation of K has the effect of inverting the canonical deck transformation.

If x ∈ H1(Mn(K),Fp) is λ eigenvector for the deck transformation T , we have
T (x) = λx. If we replace K with its reverse and call the deck transformation
T ′, then T ′(x) = T−1(x) = λ−1x. That is, reversing K interchanges λ and λ−1

eigenspaces.
In our example of interest, the 3–fold cover has H1(M3(P )) ∼= Z7 ⊕ Z7. This

group splits into a 2–eigenspace and a 4–eigenspace for the deck transformation
using F7–coefficients. If z and w are linking circles to the two bands, with z̃ and w̃
being chosen lifts to M3(P ), then the 2–eigenspace and 4–eigenspace are spanned
by z̃ and w̃, respectively. For P ∗ we have z̃∗ and w̃∗ as eigenvectors, but because
of the reversal, they are the 4–eigenvectors and 2–eigenvectors, respectively.

Let Σ be a cobordism from P to P ∗. We let W ′
3 be the 3–fold cover of S3× [0, 1]

branched over Σ. By removing an arc from W ′
3 along the lift of Σ that joins its two

boundary components, we build a four-manifold W3 having boundary M3(P ) #
−M3(P

∗). Lemma 8.1 asserts the existence of a subgroup M ⊂ H1(M3(P )) ⊕
H1(−M3(P

∗)) with specified properites. Using the linking form to identify this
subgroup with a group of homomorphisms to Q/Z, we have that all elements of M
extend to define homomorphisms on H1(M3(P )) ⊕ H1(−M3(P

∗)) that extend to
W3. Within Gilmer’s proof, one sees that since the deck transformation on ∂W3

extends to W3, the subgroup M must be invariant under the Z3–action and thus
is spanned by eigenvectors. Here are the possibilities.

• M is a 2–eigenspace, spanned by {z̃, w̃∗}.
• M is a 4–eigenspace, spanned by {w̃, z̃∗}.
• M contains a nontrivial 2–eigenvector az̃+bw̃∗ and a 4–eigenvector cw̃+bz̃∗.

We now wish to find obstructions based on the 7–fold cyclic covers of the spaces
involved. There are three cases to consider. Here is a summary of what arises.

• Case 1: Considering the eigenvector z̃, for the corresponding 7–fold cover
of M3(P ) the rank of the first homology will be determined, up to some
constant, by the rank of the homology of M7(J1). For the eigenvector w̃∗,
the corresponding cover of M3(P

∗) will have first homology whose rank
is determined, up to a constant, by the rank of the homology of M7(J2).
Computing the value of that constant arises is technical; details are pre-
sented in the appendix as Theorem C.1. What is essential here is that if the
rank of H1(M7(J2),Fp) is large (respectively 0), then the rank of the first
homology of the 7–fold cover of M3(P ) will be large (respectively, small).

• Case 2: This is similar, with the roles of J1 and J2 reversed.
• Case 3: The last case splits into subcases depending on whether the coef-
ficients a, b, c, and d are zero or not. The most interesting case is when,
say a �= 0 �= b. Then the homology of the corresponding 7–fold cover of
M3(P ) will involve the first homology of M7(J1) and the homology of the
corresponding 7–fold cover of M3(P

∗) will also involve the first homology
of M7(J2).

From this it should be clear that by choosing J1 and J2 so that the rank of
the first homology groups H1(M7(J1),Fp) and H1(M7(J2),Fp′) are large for appro-
priate primes p and p′, then regardless of which metabolizer arises, there will be
obstructions to the values of c0(Σ) and c2(Σ) being small. This can be achieved
by letting J1 be a multiple of 61 and letting J2 be a multiple of 103. Theorem A.1
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shows H1(M7(61)) ∼= Z127 ⊕ Z127 and H1(M7(103)) ∼= Z2059 ⊕ Z2059. The number
2059 has prime factors 29 and 71. All of F127, F29 and F71 contain primitive 7–roots
of unity.

To construct examples in Section 7, we used the fact that the 3–fold cover of
L(9, 2) is L(3, 2). For carrying out an explicit computation here, we would need to
know the homology of the 7–fold cover of M3(P ) corresponding to each eigenspace
of the Z3–action. Regardless of what there groups are, their ranks in comparison to
the rank of H1(M7(αJ1)) or H1(M7(βJ2)) will be small if α and β are large. This
permits one to prove the following result.

Theorem 9.1. For any nonnegative integers g, c0 and c2, there are positive integers
α and β such that the knot P = P (α61, β103) has the following properties.

• P (α61, b103) is a ribbon knot.
• Any genus g cobordism Σ from P to P ∗ has c0(Σ) ≥ c0 and c2(Σ) ≥ c2.

10. Problems

(1) Is Gg(K1,K0) always a quadrant, of the form Q(a, b), for some a and b?
In the case of g = 0, this would imply Gordon’s Conjecture [16] recently
proved by Agol [3]: If K1 is ribbon concordant to K0 and K0 is ribbon
concordant to K1, then K1 = K0.

(2) A generalization of Gordon’s conjecture is the following statement: if for
some c0 and c2, (c0, 0) ∈ Gg(K1,K0) and (0, c2) ∈ Gg(K1,K0), then
Gg(K1,K2) = Q(0, 0).

(3) If (a+ 1, b+ 1) ∈ Gg(K1,K0), then is (a, b) ∈ Gg+1(K1,K0)?
(4) Recall that the bridge number of K is denoted br(K) and we defined b(K)

to be the minimum number of index 0 critical points of a slice disk for
K # −K. It is elementary to show that b(K) ≤ br(K). It is also not
difficult to construct ribbon knots K with large bridge index that bound
disks in the four-ball with one saddle point. Using these knots we see that
br(K)− b(K) can be arbitrarily large.

For the torus knot T2,3 we have br(T2,3) = 2 and it is elementary to
see that b(T2,3) = 2. In fact, in [21] it is shown that for torus knots,
b(K) = br(K). Yet there are still basic examples that are unresolved: for
K = nT2,3 we have br(K) = n+ 1; is it true that b(nT2,3) = n+ 1?

Appendix A. The knots K(k, J)

Here we summarize the computations required in Section 7 that determine the
homology groups of covering spaces associated to K(k, J). Recall that if J is
unknotted, this is the two-bridge knot B((2k + 1)2, 2k). It is the basic building
block for the examples in Lemma 7.5.

A.1. A Seifert surface for K(k, J) and its Seifert form. The knot K(k, J)
has a genus 1 Seifert surface F built by attaching two bands to a disk, one with
framing k + 1 and other with framing −k. One band has a knot J tied in it. This
was illustrated in Figure 1. The Seifert matrix with respect to the natural basis
{a, b} of H1(F ) is

Ak =

(
k + 1 1
0 −k

)
.
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The classes a and b are represented by simple closed curves on F representing
the unknot and the knot J . If we change basis, letting a′ = a − b and b′ = b then
the Seifert matrix becomes

Bk =

(
0 k + 1
k −k

)
.

These generators are still represented by simple closed curves, the first of which is
unknotted and the second of which represents J .

A.2. The homology of the cyclic branched covers of K(k, J). We next have
the computation of the needed homology groups.

Theorem A.1. Let K(k, J) be as above. Then H1(M2(K(k, J))) ∼= Z(2k+1)2 . For
n odd, H1(Mn(K(k, J))) ∼= Zd ⊕ Zd, where d = (k + 1)n − kn.

Proof. The homology group H1(M2(K(k, J))) is presented by Ak +AT
k , where AT

denotes the transpose. This 2× 2 matrix has one if its entries a 1, so it presents a
cyclic group. The order of that group is the absolute value of the determinant of
the matrix. As an alternative, the presence of J does not affect the Seifert matrix
or the homology of the cover. If J is the unknot, then the 2–fold branched cover is
the lens space L((2k + 1)2, 2k).

The homology group H1(Mn(K(k, J))) can be computed using a formula of
Seifert [35]; see [10] for a more recent treatment. In our notation, this result states
that for a knot K with Seifert matrix B, H1(Mn(K)) is presented by

Γn − (Γ− Id)n,

where Γ = (BT −B)−1BT.
In our case, one readily computes that

Γ =

(
k + 1 −k
0 −k

)
,

and thus we are interested in the group presented by

Ak =

(
k + 1 −k
0 −k

)n

−
(
k −k
0 −k − 1

)n

.

For some b, this is of the form

Ak =

(
(k + 1)n − kn b

0 (−k)n − (−k − 1)n

)
.

Since n is odd, this can be rewritten as

Ak =

(
(k + 1)n − kn b

0 (k + 1)n − kn

)
.

With a bit more work we could show that b = 0, but instead we rely on a theorem
of Plans [30] (or see [33, Chapter 8D]): the homology of an odd-fold cycle branched
cover is a double. �

A.3. A number theoretic observation. In our examples, we considered the
cases of H1(M3(K(1, U))) ∼= Z7 ⊕ Z7 and H1(M3(K(2, U))) ∼= Z19 ⊕ Z19. We
observed that both F7 and F19 contain primitive 3–roots of unity, since 7 ≡ 1
mod 3 and 19 ≡ 1 mod 3. This is not a coincidence. Our examples were the cases
of p = 3 and either k = 1 or k = 2 in Theorem A.2, which follows immediately from
a standard application of the binomial theorem or from Fermat’s Little Theorem.
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Theorem A.2. If p is prime, then for all k, (k + 1)p − kp ≡ 1 mod p.

Appendix B. The eigenspace structure of H1(Mn(K),Fp)

In his survey paper on knot theory [15], Gordon used a duality argument to
prove that the first homology of the infinite cyclic cover of a knot, viewed as a
module over the ring Z[Z] ∼= Z[t, t−1], is isomorphic to its dual module, in which
the action of t is replaced with the action of t−1. A similar argument can be applied
in the setting of n–fold cyclic branched covers. Here we give a simple proof of a
consequence of such a result. Duality is still required to the extent that it implies
that the linking form of a three-manifold is nonsingular.

Theorem B.1. Assume that H1(Mn(K)) ∼= Fk
p for some k and prime p. Suppose

that n divides p − 1, so that Fp contains a primitive n–root of unity, ξ. Then
H1(Mn(K)) splits into a direct sum of ξi–eigenspaces, denoted Ei, under the action
of the deck transformation T∗. In addition, E0 is trivial and Ei

∼= En−i for all
i, 0 < i < n.

Proof. Since n divides p− 1, we have that p does not divide n and Propostion 3.3
implies that H1(Mn(K)) splits into eigenspaces. We focus on proving that Ei

∼=
En−i.

Let lk(x, y) ∈ Fp denote the Fp–valued linking form on H1(Mn(K)). Recall
that the linking form is symmetric, nonsingular and equivariant with respect to the
action of a homeomorphism, in particular with respect to T∗.

Claim 1. The eigenspaces Ei and Ej are orthogonal with respect to the linking
form unless i = j = 0 or i = n− j.

To see this, suppose that x ∈ Ei and y ∈ Ej . Then

ξilk(x, y) = lk(T∗x, y) = lk(x, T−1
∗ y) = lk(x, ξ−jy) = ξ−j lk(x, y).

It follows that (ξi−ξ−j)lk(x, y) = 0. This can be rewritten as (ξi−ξn−j)lk(x, y) = 0.
If i �= 0, then ξi − ξn−j �= 0 unless i = n − j. Thus, if i �= 0 and i �= n − j, then
lk(x, y) = 0.

Claim 2. E0 is trivial. We can now write

H1(M(K)) ∼= E0 ⊕ En/2

⊕
1≤i<n/2

(
Ei ⊕ En−i

)
.

(The summand En/2 exists if and only if n is even, in which case it represents the
−1–eigenspace.)

If x ∈ E0, then x+ T∗x+ · · ·+ Tn−1
∗ x = nx is in the image of the transfer map

τ : H1(S
3) → H1(Mn(K)), and thus equals 0. We can write p − 1 = nk for some

k, and so (p− 1)x = 0. But p− 1 is relatively prime to p, and so we have x = 0, as
desired.

Claim 3. Ei
∼= En−i for all i, 0 < i < n. This is automatic for En/2 in the case the

n is even. We focus on a summand Ei ⊕ En−i for 1 ≤ i < n/2.
Suppose that Ei is of dimension a and En−i is of dimension b. By choosing bases

for these eigenspaces, the linking form can be represented by an (a + b) × (a + b)
matrix with entries in Fp. Both Ei and En−i are self-orthogonal, so there are blocks
with all entries 0 of size a×a and b×b. The nonsingularity implies that a ≤ (a+b)/2
and b ≤ (a+ b)/2. This can occur only if a = b.

�
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Appendix C. The 7–fold cover of the 3–fold cover of the

nonreversible knot P in Section 9

In Section 9 we considered knots P (J1, J2). We have that H1(M3(P (J1, J2))) ∼=
Z7 ⊕ Z7. The homology is generated by classes represented by lifts z̃ and w̃ of
meridians to the bands in the evident Seifert surface in Figure 8. A homomor-
phism φ : Z7⊕Z7 → Z7 determines a homomorphism φ : H1(M3(P (J1, J2))) → Z7

for all choices of J1 and J2. The corresponding 7–fold cyclic covers are denoted

M̃7
3 (P (J1, J2), φ).
We fix a prime p. In Theorem C.1, let R1 = rank

(
H1(M7(J1),Fp)

)
and let

R2 = rank
(
H1(M7(J1),Fp)

)
.

Theorem C.1. There is a constant C that is independent of φ, p, J1, and J2 such
that ∣∣rank(H1(M̃

7
3 (P (J1, J2), φ),Fp

)
− ε1R1 − ε2R2

∣∣ ≤ C.

The value of ε1 is 0 or 3, depending on whether φ is trivial or nontrivial on z̃, and
the value of ε2 is 0 or 3, depending on whether φ is trivial or nontrivial on w̃.

Proof. In Section 9 we saw that z̃ and w̃ are nonzero eigenvectors for the deck
transformation. In particular, if the function φ is trivial on z̃, it is trivial on the
two translates of z̃.

The preimage of z̃ in M̃7
3 (P (U,U)) consists of either seven curves, each trivially

covering z̃, or one curve that is a 7–fold covering of z̃. Similarly for w̃. We call
these lifts z̃′i and w̃′

i, where the index set has either one or seven elements.

We then have that M̃7
3 (P (J1, U)) is built from M̃7

3 (P (U,U)) by removing solid
tori and replacing them with either copies of S3−J1 (in the case that φ is trivial on

z̃) or with copies of M7(J1) \ J̃1 in the case that φ is nontrivial on z̃. In the second
case, there would be three such replacements, since z̃ has two nontrivial translates.

The construction of M̃7
3 (P (J1, J2)) from M̃7

3 (P (J1, U)) is similar.

Let S̃ denote the set of all curves z̃′i and w̃′
i along with the lifts of the two

nontrivial translates of w and z under the action of the deck transformation of
M3(P (U,U)). We now see that M̃7

3 (P (J1, J2)) is built from copies of the following
spaces by gluing along tori.

• M̃7
3 (P (U,U), φ) \ S̃

• S3 \ J1
• M7(J1) \ J̃1
• S3 \ J2
• M7(J2) \ J̃2

The homology of M̃7
3 (P (J1, J2)) can be computed from this decomposition.

Since there is only a finite number of possible φ, there is a bound on the rank

of H1(M̃
7
3 (P (U,U), φ) \ S̃,Fp) that is independent of φ. There is also a bound on

the number of components of the intersection (tori) of the various pieces, again that
is independent of φ.

With this, we see that up to a constant that is independent of φ, the rank of the
homology is determined by the rank of the homology of M7(J1) and M7(J2). Each
appears nontrivially if and only if the constants εi in the statement of the theorem
are nonzero, in which case the term appears three times in the Mayer-Vietoris
sequence. �
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