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A GENERATING FUNCTION APPROACH TO NEW

REPRESENTATION STABILITY PHENOMENA IN ORBIT

CONFIGURATION SPACES

CHRISTIN BIBBY AND NIR GADISH

Abstract. As countless examples show, it can be fruitful to study a sequence
of complicated objects all at once via the formalism of generating functions.
We apply this point of view to the homology and combinatorics of orbit config-

uration spaces: using the notion of twisted commutative algebras, which essen-
tially categorify algebras in exponential generating functions. This idea allows
for a factorization of the orbit configuration space “generating function” into
an infinite product, whose terms are surprisingly easy to understand. Beyond
the intrinsic aesthetic of this decomposition and its quantitative consequences,
it suggests a sequence of primary, secondary, and higher representation stabil-
ity phenomena. Based on this, we give a simple geometric recipe for identifying
new stabilization actions with finiteness properties in some cases, which we use
to unify and generalize known stability results. We demonstrate our method
by characterizing secondary and higher stability for configuration spaces on
i-acyclic spaces. For another application, we describe a natural filtration by
which one observes a filtered representation stability phenomenon in configu-
ration spaces on graphs.

1. Introduction

Let X be a Hausdorff topological space or a separated scheme over an alge-
braically closed field – abbreviate and say that X is a separated space. A funda-
mental topological object attached toX is its ordered configuration space Confn(X)
of n distinct points in X. Analogously, given a group G acting freely on X one
defines an ordered configuration space of n points with distinct orbits in X:

ConfnG(X) := {(x1, . . . , xn) ∈ Xn | Gxi ∩Gxj = ∅ for i �= j}.
These spaces simultaneously generalize complements of many subspace arrange-
ments such as the ordinary ordered configuration spaces as well as those associated
with root systems of type C, see Example 3.1.3. The symmetric group Sn acts
on ConfnG(X) by permuting the labels, and the group G acts on every coordinate
separately. Together these operations give an action of the wreath product group
Sn[G] := Gn �Sn.

In this paper, we study the linear representations that arise in homologySn[G] �
H∗(Conf

n
G(X)) for various n. Explicit calculations quickly become combinatori-

ally challenging, and we address these difficulties by importing generating function
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methods into topology. A concrete consequence of our approach is that the homol-
ogy exhibits representation stability – roughly, this stability theory gives a notion
for when representations of different groups could be considered to be the same,
and under which all homology representations eventually stabilize, see e.g. [SS12]
and [CEF15]. Together with our detailed analysis of the combinatorics governing
these spaces in [BG20], representation stability allows us to constrain the types
of representations that might occur in homology, generalizing results previously
known only for certain manifolds and revealing many new ways in which stability
manifests, see §1.2. For example, our results pertain to singular spaces including
graphs, whose configuration spaces fail to exhibit most common forms of stability.

Generating functions have proved invaluable for understanding and organizing
the combinatorics at play. For example, considering the compactly supported Euler
characteristics of ConfnG(X), a modification of the proof of [Gor14, Lemma 2.1]
shows that when a finite group G acts on X freely

(1)
∞∑

n=0

χc (Conf
n
G(X))

tn

n!
= (1 + |G|t)

χc(X)
|G|

and see [VW15, §1.34] for Vakil-Wood’s similar motivic zeta function for unordered
configuration spaces. The fractional power above is more naturally expressed using
exponentials,

(2) = exp

(
χc(X)

|G| log(1 + |G|t)
)

=
∞∏
i=1

exp

(
χc(X)(−|G|)i−1 t

i

i

)
.

We show in Theorem A that the latter product decomposition already holds at the
level of chains approximating the homology, and this forms the basis to our stability
analysis.

Lifting the above generating function to spaces, think of the entire sequence of
ordered configuration spaces along with their group actions at once, and collect
them into a single object: a topological species Conf•G(X) – this is essentially an
N-graded space on which the symmetric group Sn acts in the n-th component – a
standard categorification of the exponential generating function (see §2 for details).
A major benefit to this approach, as observed by Petersen [Pet17], is that the
species Conf•G(X) admits a commutative coproduct structure, coming from the
obvious equivariant inclusions

Confn+m
G (X) ↪→ ConfnG(X)× ConfmG (X),

and this operation could be understood as standing behind their many homological
stability phenomena. A species with (co)commutative (co)multiplication is known
as a twisted commutative (co)algebra, or (co)TCA for short, and Petersen [Pet17,
Lemma 4.2] shows that in many cases they give rise to representation stability in
the sense of Church-Farb (see [CEF15]).

In §2, we adjust the terminology and promote symmetric group actions into ones
of wreath products – replacing the notion of TCA by the G-version which we call a
GTCA. With this, one can make sense of lifting the infinite product decomposition
in (2) to the level of homology: exponentials here stand for free GTCAs. And in-
deed, such a homological decomposition holds in important special cases, including
the linear and toric arrangements associated to root systems of types A, B, C and
D, see Example 3.5.4. In general, however, the product decomposition holds only
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at a finite page of a spectral sequence converging to the Borel-Moore homology.
Theorem A is stated in a simplified form for the purpose of exposition; see Theo-
rem 3.7.2 for a general version. We assume that homology is taken with coefficients
in a Noetherian ring for which the Künneth formula holds; see our conventions in
§1.4.

Theorem A (Homological product decomposition). Let X be a separated topolog-
ical space with an action of a finite group G and consider the twisted commutative
coalgebra of orbit configuration spaces Conf•G(X). There is a spectral sequence of

GTCAs converging to HBM
∗ (Conf•G(X)), such that when G acts freely

(3) E1 ∼=
∞⊗

n=1

IndFBGG×Sn

(
HBM

∗ (X)� H̃n−3(Πn)[n− 1]
)
.

Here the operation IndFBGG×Sn
takes a representation of G×Sn and freely generates

from it a GTCA. Also Πn is the classical partition lattice, with the top and bottom
elements removed, and its homology is the homology of its nerve.

Lastly, when X ∼= Rd possibly with some points removed, the sequence collapses
and the product formula already holds in homology. More generally, this happens
for all i-acyclic spaces (see Corollary 4.3.7).

Computing the Euler characteristic of the above expression recovers (2) exactly.
Note also that the special case of a punctured R2 already includes the complements
of hyperplane arrangements coming from root systems of types A and C in both
their linear and toric variants. In the case of type B/C hyperplane arrangements
this coincides with the Whitney homology of a Dowling lattice, for which Henderson
[Hen06] observed this structure and used it to compute the Frobenius characteristic
of the Sn[G]-action. Our more general treatment of orbit configuration spaces, as
explained next, also includes the linear and toric arrangements associated to root
systems of types B and D.

1.1. Punctured almost free G-spaces. We introduced these orbit configuration
spaces under the assumption that the group G acts freely on X, but in fact we
can loosen this condition to allow the configuration space to inhabit some points
at which the action fails to be free, while excluding other positions.

From this point on, we will no longer assume that the action G � X is free,
but allow only finitely many exceptions to freeness – such actions are said to be
almost free. Given a finite G-invariant subset T ⊆ X of excluded positions, define
the T -excluded orbit configuration space

(4) ConfnG(X,T ) := {(x1, . . . , xn) ∈ Xn | ∀(i �= j)Gxi ∩Gxj = ∅, xi /∈ T} ⊆ Xn.

The product decomposition in Theorem A still holds in this more general setting,
but with an extra factor for each G-orbit of T as well as one for each nonfree G-orbit
of X; see Theorem 3.7.2 for the full expression.

We view ConfnG(X,T ) as a subspace of Xn rather than of the punctured (X \T )n
to allow the factors in the product decomposition to depend on HBM

∗ (X) rather

than on HBM
∗ (X \T ). This choice is substantially more interesting combinatorially

(see [BG20] for a thorough treatment), but it also brings real benefits. First, this
allows us to exploit properties of X that get corrupted by puncturing, such as it
being affine or projective, thus often simplifying spectral sequence calculations, see
Remark 3.7.5.
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Second, configuration spaces in punctured linear spaces Rd \ {r1, . . . , rk} get
treated as complements of linear subspace arrangements, thus bringing to bare a
vast body of knowledge and explicit formulas, see Corollary 3.5.3.

Lastly, allowing the case in which G does not act freely on X and varying T
lets our setup include all sequences of toric root system arrangements: in Example
3.1.3 we consider the action of Z2 on C× by group inversion. This action is not
free precisely at the two-torsion points {±1} ⊂ C×, and choosing T to be ∅, {+1},
or {±1} yields the arrangement associated to a root system of types D, B, and C,
respectively.

1.2. Representation stability. Unpacking the product decomposition and ex-
tracting useful information from it presents a new combinatorial challenge. We
face it with the framework of representation stability, which for our purposes could
be understood as the representation theory of GTCAs – mainly handling finite gen-
eration and Noetherianity of modules and their representation theoretic properties
(see Theorem 4.2.4 for the connection with other standard interpretations of the

theory). The multiplication structure on HBM
∗ (Conf•G(X)) gives rise to stabilization

operations of introducing points to configurations, e.g.

HBM
d (X)⊗HBM

i (ConfnG(X)) → HBM
d+i (Conf

n+1
G (X))

which Petersen observed to be conjugate to the ordinary forgetful map

Confn+1
G (X) → ConfnG(X)

under Poincaré duality when X is a connected d-manifold. Stabilization operations
thus generate a GTCA, over which HBM

∗ (Conf•G(X)) forms a module, and rep-
resentation stability is synonymous with having this module be finitely-generated
(the reason why this can reasonably be called ‘stability’ will be explained below).
Indeed, we show the following in Theorem 4.2.1.

Theorem B (Finite generation in homology). Let X be a separated space, endowed
with an almost free action of a finite group G, and let T ⊂ X be a finite G-invariant
subset. Assume dimHBM

∗ (X) < ∞ and let HBM
d (X) �= 0 be the top nonvanishing

Borel-Moore homology group.
For every i ≥ 0, the cross product

HBM
d (X)⊗HBM

i (ConfkG(X,T )) → HBM
d+i (Conf

k+1
G (X,T ))

presents the sequence of codimension i homologies HBM
d•−i(Conf

•
G(X,T )) as a filtered

module over the free GTCA generated by HBM
d (X).

If d ≥ 2, then every one of these modules is finitely generated. Explicitly, for
every i ≥ 0 there exist finitely many classes

α1, . . . , αk ∈
∐
n∈N

HBM
dn−i(Conf

n
G(X,T ))

whose images under repeated multiplication by HBM
d (X) generate

HBM
dm−i(Conf

m
G (X,T ))

as a Sm[G]-representation for all m ∈ N.
Otherwise, when d = 1, the homology is endowed with a natural multiplicative

‘collision filtration’ under which every submodule of bounded filtration degree

Fp H
BM
d•−i(Conf

•
G(X,T ))
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is finitely generated.

This finite generation result vastly extends the known scope of applicability of
representation stability: in the early days of this theory Church found a notion of
stability for the Sn-representations H∗(Confn(M)) of connected orientable man-
ifolds of dimension ≥ 2 [Chu12], which was later recasted as finite generation of
a representation of some category [CEF15]. With this approach, Wilson [Wil14],
Kupers–Miller [KM18], and Casto [Cas16] studied orbit configuration spaces of free
actions and showed that they give rise to similar finitely generated representations
of categories, with analogous representation theoretic implications. More recently,
Petersen [Pet17] brought the TCA point of view to the study of nonequivariant con-

figurations and extended the finiteness result to general spaces with HBM
top (X) of

rank 1 along with further technical assumptions. We see Theorem B as a conceptual
improvement over this body of work in the following ways:

• We discuss orbit configuration spaces associated with a G-action, perhaps
with some points removed and not necessarily with a free action.

• While most previous results applied to connected orientable manifolds, our
theorem encompasses general spaces that may be singular, disconnected
and nonorientable. Only the Borel-Moore homology of the space enters
our calculation, and therefore only the proper stable homotopy type. Un-
der Poincaré duality one recovers most known finite-generation results for
manifolds (see Remark 4.2.2).

• Our analysis elucidates the stability aspects of configuration spaces of
graphs (that is, 1-dimensional CW-complexes), which were previously un-
derstood to be unstable. While naively the homology does not exhibit
stability, it is equipped with a natural filtration by finitely-generated mod-
ules. Moreover, unlike all previous work on the subject, only the compactly
supported Betti numbers of the graph enter our calculation.

Finite generation translates to stability of representations since it demonstrates
that all homology groups are subquotients of representations naturally induced from

V � (H � . . .�H)︸ ︷︷ ︸
k�1 times

,

where H = HBM
d (X) is a fixed G-representation and V is drawn from a fixed fi-

nite list of Sn[G]-representations. One then has precise branching rules describing
the irreducible decomposition of representations of this form. The representations
stabilize in the sense that there is a natural naming scheme on the irreducible
representations of the groups Sn[G], under which HBM

dn−i(Conf
n
G(X,T )) all even-

tually have the same name (see Theorem 4.2.4). For the reader familiar with
FIG-modules, let us remark that working with GTCAs instead of FIG-modules (as
in [SS16, KM18, Cas16]) allows us to consider cases in which H above is not the
trivial representation. A more detailed discussion is found in §4.2.

1.3. Secondary and higher stability. The finite generation and stability result
above is associated only with stabilization by a single term in the infinite product
decomposition of Theorem A. Introducing the actions of the other terms gives rise
to higher-order stabilization. More concretely, after understanding the multiplica-
tion by HBM

d (X), one may factor it out and inquire as to the remaining classes – the
generators of the modules described in Theorem B. These collections of generators
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themselves form modules over the GTCAs generated by the remaining stabilization
operations, and in some cases these too exhibit stability, namely secondary stability.

In §4.1 we introduce a new geometric technique for recognizing finitely-generated
module structures on a bigraded GTCA, indexed by corners of convex rational
polygons. Applying this technique to the product decomposition in Theorem A
lets us identify a multitude of secondary stabilization operations:

• multiplying by increasingly higher codimensional homology HBM
d−k(X) – call

this high dimensional secondary stability, discussed next in Theorem C;
• multiplying by terms of the product decomposition (3) associated with
n > 1 – in §4.4 we identify these as a natural analogue of the Miller-Wilson
secondary stability operation of introducing an orbiting pair of points to a
configuration [MW16]; and

• multiplying by low dimensional homology, e.g. HBM
0 (X) – a new sequence

of stabilization operations that comes out of our geometric approach and
endows the homology with finitely generated module structures, see §4.5
for details.

The caveat is that the product decomposition of Theorem B applies only to the
E1-page in a spectral sequence, and it is difficult in general to control how factoring-
out stabilization operations interacts with differentials. While we expect secondary
stability in homology to hold more generally, the most explicit statements we make
here are about i-acyclic spaces, when all differentials vanish. These include, for
example, any space of the form X × R and any orientable manifold with trivial
cup product on H∗

c . In particular the results apply to root system arrangements in
their affine and toric variants. See Definition 4.3.1 on how to extract the generating
module, and Remark 3.7.5 for a discussion regarding i-acyclic spaces.

In high dimensional stabilization for i-acyclic spaces, multiplying by HBM
d−k(X) for

k = 1, 2, . . ., each operation in turn gives rise to a finitely generated module struc-
ture on the module of generators of the previous one. A concrete consequence of
this pattern is an increased range of homology generated by stabilization operations,
stated in Theorem C. One can extend this sequence of stabilization operations by
using the factors of the product decomposition indexed by n > 1. See Figure 1
for an illustration. Since the first draft of this paper was released, Ho [Ho20] has
given a similar sequence of stability operations. He uses a completely different
approach which requires rational coefficients, but his results apply to a different
generalization of configuration spaces.

Theorem C (High dimensional secondary stability). Let X be a separated almost

free G-space with dimHBM
∗ (X) < ∞, and let HBM

d (X) �= 0 be the top nonvanishing
homology group. Assume further that X is i-acyclic, i.e. the map H∗

c(X) → H∗(X)
is zero, such as any space of the form X ′ × R. Lastly, pick a finite G-invariant
subset T ⊂ X.

Fix k < d
2−1. Then in the range j ≤ (k+1)n the cross products give a surjection

Ind
Sn[G]
G×Sn−1[G]

(
k⊕

i=0

HBM
d−i (X)⊗HBM

d(n−1)+i−j(Conf
n−1
G (X,T ))

)
� HBM

dn−j(Conf
n
G(X,T )).

Further statements are possible for larger k, but we omit them from this discussion.
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These operations turn out to behave increasingly poorly when approaching the
middle homological dimension of X, setting the case d = 1 of graphs as now part
of a broad phenomenon – see Example 4.3.8 for details. Corollary 4.3.7 expands
on the statement of Theorem C and includes effective bounds on the generation
degrees in special cases. We prove Theorem C as a corollary in Remark 4.3.9.

0

. . .

n

∗
∗
=

d
n
−

j

∗
=

d
n

HBM
∗ (ConfnG(X,T ))

0

. . .

n

∗

∗
=

d
n

∗
=

(d
−

1
)n

−
j

Figure 1. Visualizing Theorem C for HBM
∗ (ConfnG(X,T )) with

k = 0 (left) and k = 1 (right). Blue indicates the primary stability
range, red indicates the next stability range, and black indicates
generators for stabilization by HBM

d (X) (left) or by HBM
d (X) and

HBM
d−1(X) (right).

As a particular case of Theorem C, observe that if the homology is known to
vanish in a range: HBM

d−1(X), . . . ,HBM
d−k(X) = 0 for k < d

2 − 1, then the primary

stability operation will in fact generate HBM
dn−j(Conf

n
G(X,T )) in the improved range

j ≤ (k + 1)n.

Example 1.3.1. Fix numbers k < d
2 − 1 and let M ′ be a (d − 1)-manifold

with finitely generated homology such that H1(M
′) = . . . = Hk(M

′) = 0 and
an almost free G-action. Then for the d-manifold M = M ′ × R, the homol-
ogy HBM

dn−j(Conf
n
G(M)) is generated under the Sn[G]-action by classes of the form

[M ]× α for α ∈ HBM
d(n−1)−j(Conf

n−1
G (M)) in the range j ≤ (k + 1)n.

Via Poincaré duality, this translates to the standard context of cohomological
representation stability: Hj(ConfnG(M)) → Hj(Confn+1

G (M)) associated with the
maps forgetting a point from a configuration. Here one gets a much improved
stable range of j ≤ (k + 1)n (compare with Church’s [Chu12, Proposition 4.1] and
Tosteson’s [Tos16, Examples 1.4 and 1.6]).

1.3.1. Relation to previous work. Theorem C gives a close analogue to the work of
Miller and Wilson on secondary stability [MW16], as made more precise in our The-
orem 4.4.2. However there are several notable differences between the two works.
For instance, Miller–Wilson give a concrete stable range beyond which stability is
known to hold (controlling where generators and relations may appear) without
assuming any differentials vanish. In our analysis beyond primary stability we only
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consider i-acyclic spaces, for which one encounters no differentials. However, the
explicit bounds on generators and freeness of the E1 page in Theorem 4.3.4 provides
the necessary input to bound stable ranges using common representation stability
techniques.

Putting stable range calculations aside, we obtain finite generation without han-
dling the nontrivial combinatorics of the complex of injective words, which Miller–
Wilson had to understand to get their finite generation results. Secondly, our
theorem is only sensitive to the proper homotopy type of X, via HBM

∗ (X) and its
diagonal maps, while the previous work asked that X specifically be a manifold
with boundary.

Moreover, Miller-Wilson always stabilize by a 1-cycle of orbiting points, regard-
less of the dimension of the manifold X. This had the consequence that their
stabilization map was trivially 0 when dim(X) ≥ 3. From this perspective, our
stabilization map, which uses a (d−1)-cycle of orbiting points, is more natural and
meaningful for manifolds of any dimension.

1.4. Conventions. We carry several conventions throughout this paper, which we
state here. The term separated space will refer to either

• a locally compact Hausdorff topological space or
• a separated scheme of finite type over some algebraically closed field.

A group action on a set G � X is almost free if there is some finite subset S ⊆ X
for which G acts freely on X \ S. An almost free G-space is a separated space
equipped with an almost-free action of a finite group G.

Throughout, we discuss Borel-Moore homology with various coefficients, but we
shall typically suppress the coefficients from the notation. One key restriction on
coefficient systems is that they satisfy the Künneth isomorphism for powers:

(5) HBM
n (X ×Xk) ∼=

n⊕
i=0

HBM
i (X)⊗HBM

n−i (X
k),

for a separated space X and k ≥ 1. Therefore we consider homology with coeffi-
cients in k that is

• a field,
• a Noetherian ring over which HBM

∗ (X) is a projective module, or

• a sheaf of R-algebras on X for which HBM
∗ (X; k) is projective over a Noe-

therian ring R.

Lastly, when X is a scheme and k is a sheaf of commutative algebras, the Borel-
Moore homology HBM

∗ (X; k) denotes the étale hypercohomology in negative degrees

HBM
∗ (X; k) := H−∗

ét (X;Dk),

where Dk denotes the Verdier dual complex.

1.5. Outline of this paper. Since this work is directed towards different research
communities – topology, representation stability and algebraic combinatorics – each
comfortable with different common notions, we attempt to make it accessible to all
by including proper introduction to the central combinatorial objects and opera-
tions as well as explicit examples. The reader is encouraged to skip any and all of
those whenever deemed unnecessary.

§2 is a review of basic definitions, examples, constructions, and operations on
G-twisted commutative algebras (GTCAs). §3 contains the main combinatorial
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and topological inputs that culminate in the proof of the product decomposition of
Theorem A.

Lastly, §4 discusses representation stability: §4.1 introduces simple geometric
tests for finite generation of a bigraded module over a GTCA – our primary tech-
nique behind our stability results. In §4.2 we establish Theorem B on finite gener-
ation and multiplicity stability with respect to the primary stabilization operation.
The section also contains our treatment of higher representation stability and ends
by identifying new forms of stability that have previously gone unnoticed to the
best of our knowledge.

2. G-twisted commutative algebras

This section recounts definitions and operations on twisted commutative alge-
bras (TCAs), also extending the theory to the equivariant context. We do this at
some length since the notion of a TCA is, as of this time, still not standard, but
refer the reader to [SS12] as a general reference. One of the main points is that the
collection of all orbit configuration spaces ConfnG(X,T ) can be treated as a single
mathematical object with an algebraic structure. This perspective offers a frame-
work in which orbit configuration spaces and related structures can be described
succinctly, which we will later exploit.

Throughout this section, let G be a finite group.

2.1. Definitions. Let FBG be the category of all f inite sets I and G-bijections;
that is, functions f : I

∼→ J along with a “coloring” g : I → G. The composition
rule for I → J → K is given by first pulling back the G-coloring from J to I and
then multiplying the two pointwise:

I
(f,g)−→ J

(f ′,g′)−→ K �→ (f ′ ◦ f, (g′ ◦ f) · g).
Note that every morphism in FBG is invertible, and the automorphism group of a set
I with |I| = n is isomorphic to the wreath product of G with the symmetric group,
Gn �Sn. Denote the automorphism group of I by SI [G] and let [n] = {1, . . . , n}
for every n ∈ N including [0] = ∅.

Remark 2.1.1. An equivalent description of FBG, or rather an equivalent category,
is the category of finite free G-sets and G-equivariant bijections between them.
Sending a finite set I to the free G-set G×I gives an equivalence with the definition
above. In particular, one can consider the free G-sets G× [n] and stick to thinking
in these natural terms. But below we prefer the definition as stated above since it
helps us identify induced representations of this category.

FBG is symmetric monoidal, with monoidal product given by disjoint union I ⊗
J := I �J under the obvious action on morphisms and monoidal unit being ∅. This
product gives the usual “block diagonal” embeddings Sn[G]×Sm[G] ↪→ Sn+m[G].

In everything that follows, we will be interested in functors [FBG, C] into various
categories C. Now, functor categories between symmetric monoidal categories are
often themselves symmetric monoidal via the Day convolution. Therefore in that
context one can discuss algebra objects A ⊗ A → A and modules A ⊗ M → M .
With FBG these take the following explicit form.

Definition 2.1.2 (G-twisted commutative algebra, GTCA). A G-twisted commu-
tative algebra (GTCA for short) in a symmetric monoidal category (C,⊗,1) is a lax
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monoidal functor A• : FBG → C (also denoted A[•]). That is, an assignment AI for
every finite set I, and for every pair I and J a map

AI ⊗AJ → AI�J

which is SI [G]×SJ [G]-equivariant and satisfies appropriate associativity, symme-
try and unit axioms. We shall insist that our GTCAs be unital in the sense that
A∅ = 1, the monoidal unit, and the multiplication map A∅ ⊗ AI → AI is the unit
map.

Analogously, a G-twisted commutative coalgebra (co-GTCA for short) is a GTCA
in the opposite category Cop. This is a contravariant functor A• along with com-
patible structure maps

AI�J → AI ⊗AJ .

Definition 2.1.3 (Modules over GTCAs). A module over a GTCA A• is a functor
M• : FBG → C equipped with maps

AI ⊗MJ → MI�J

satisfying the predictable axioms.

Remark 2.1.4 (Graded algebras). The objects of the form [n], where n ∈ N, along
with [0] = ∅, form a skeletal subcategory of FBG. We will often discuss a GTCA
A• (or similarly a module over A•) as a functor on this subcategory, abbreviating

An := A[n].

In this notation, one can view a GTCA as a graded algebra (A•) ∼
∐

n An equipped
with an action of Sn[G] on An for all n ∈ N, so that the multiplication is suitably
equivariant.

Moreover, when a GTCA A• takes values in the category of graded k-modules,
we will distinguish the GTCA “grading” from the k-module grading by using •
to indicate the GTCA argument, and ∗ to indicate the intrinsic grading on the
k-modules An.

Remark 2.1.5 (Combinatorial species). Forgetting the algebra structure, one ob-
tains a well-known object called a combinatorial species. Species were originally
studied as a categorification of exponential generating functions, as there are opera-
tions on species which correspond to adding, multiplying, and composing generating
functions. Species were extended to the equivariant setting by Henderson [Hen06],
using an equivalent category to FBG whose objects are finite sets equipped with
free G-actions and whose morphisms are G-equivariant bijections. Henderson even
studied some of the combinatorial species we encounter in this paper, but we study
them with their natural algebra structure which we exploit in §4.

One of the goals of this section is to give reasonable descriptions of particular
GTCAs and their modules, and describe how to “generate” them from simpler or
finitely many objects.

Definition 2.1.6 (Finite generation). Let k be a commutative ring and let Modk
be the symmetric monoidal category of k-modules. We say that a GTCA A• taking
values in Modk is finitely generated if there exists a finite set S ⊆

∐
I AI such that

no proper sub-GTCA contains S. Similarly, a module M• over a GTCA A• of
k-modules is finitely generated if there exists a finite subset of

∐
J MJ which is not

contained in any proper submodule.
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2.2. Examples. This subsection will be devoted to important and relevant exam-
ples and constructions of (co-)GTCAs and modules over them.

Example 2.2.1 (The exponential GTCA). Let (C,⊗,1) be a monoidal category,
such as topological spaces, posets or sets, all with their Cartesian product. The
exponential GTCA, denoted by 1•, is the one sending every set I to 1 and every
morphism to the identity map. The monoid action is given by the canonical unit
morphism 1⊗ 1 → 1.

In the case of a trivial group G = 1, it is known that modules over 1• are
the same thing as FI-modules: representations of the category FI of finite sets
and all injective maps between them. It is in the context of these objects that
Church-Ellenberg-Farb began their work on representation stability. For example,
they show in [CEF15] that the cohomology of configuration spaces of a connected,
orientable manifold of dimension n ≥ 2 is a finitely generated FI-module, and derive
explicit representation theoretic conclusions from this fact.

In the case of a general group G, a module over 1• is what’s known in the liter-
ature as an FIG-module: representations of the category of finite, free G-sets and
equivariant injections. In special cases the representation theory of such categories
has been studied by Wilson [Wil14], and the general case was worked out by Sam-
Snowden [SS16]. When G is a finite group, FIG-modules enjoy a similar theory of
representation stability, with numerous applications to both algebra and topology
(see the two references mentioned in this paragraph).

Example 2.2.2. In the monoidal category (Set,×, ∗) we have the exponential
GTCA (∗)• as in Example 2.2.1. A related GTCA of sets, denoted by (∗̌)•, is
obtained in the same way with the exception of having the value ∅ in degree 1.
This GTCA will be a key ingredient for the GTCA we will analyze in §3.

The following set of examples makes up our motivation to consider GTCAs in
the first place.

Example 2.2.3 (The power co-GTCA). Given a space X with an action of G, the
power co-GTCA of X is

X• : I �→ XI ∼= X × . . .×X
|I| many times

, X∅ = {∗}.

Explicitly, a point x ∈ XI is a function x : I → X, and a morphism (f, g) : I → J
acts on y ∈ XJ by sending it to

(f, g).y := g−1.f∗(y) : a �→ g(a)−1.y(f(a)).

Two sets I and J give a canonical isomorphism

XI�J ∼→ XI ×XJ

satisfying all compatibility axioms. Clearly, the same definition works with X in
any symmetric monoidal category. Furthermore, note that since all maps in this
example are isomorphisms, they can be inverted to get a GTCA instead.

Next we observe that orbit configuration spaces form a co-GTCA as well.

Example 2.2.4 (Orbit configuration spaces). Recall the spaces ConfnG(X,T ) de-
fined in (4) in §1.1. As we let n vary and range over all finite sets, the collection
of these spaces (for a fixed X and T ) has the structure of a co-GTCA: it can be

described as the maximal sub-co-GTCA Conf•G ⊂ X• in which Conf
[1]
G ⊂ X is
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the complement of T and Conf
[2]
G ⊂ X2 is disjoint from the diagonal Δ ⊂ X2.

To see that the collection indeed forms a sub-co-GTCA one only needs to observe

Conf
[n+m]
G is identified with an open subspace of Conf

[n]
G ×Conf

[m]
G inside Xn+m,

given by imposing more nonequalities of the form xi �= g.xj .

Example 2.2.5 (Borel-Moore homology). Consider a co-GTCA A• of topological
spaces for which the maps AI�J → AI ×AJ are open inclusions. One such example
is the co-GTCA of orbit configuration spaces in Example 2.2.4. Since Borel-Moore
homology (with coefficients as in the conventions of §1.4) is a contravariant func-

tor on open inclusions, HBM
∗ (A•) is a GTCA of graded k-modules. The GTCA

HBM
∗ (Conf•G(X,T )) will be the primary focus of our study in later sections.

Before we proceed to our main examples, we describe a number of construc-
tions and operations on GTCAs that make the treatment of them more formal
and streamlines the pursuing discussions. These are all special cases of the left
Kan extension, and they all work as expected. We include a detailed account for
completeness.

2.3. Induced GTCAs. The power GTCA from Example 2.2.3 is a special case
of induced GTCAs, which are central to our study of the combinatorics of orbit
configuration spaces.

Fix some n ∈ N. Then the restriction

A• �→ An

associates to every GTCA A• an object with an action of the wreath product group
Sn[G] = Gn�Sn. This restriction functor often has a left adjoint – the induction,
denoted by IndFBG(n) . We construct this induction explicitly in the case of k-modules.

The same construction works for sets, posets, topological spaces and so on.
Let V be a representation of Sn[G]. Then the tensor powers V ⊗• naturally form

a Sn[G]-TCA (with base group Sn[G] instead of G). The category FBSn[G] is a
monoidal subcategory of FBG under the functor

(6) ι×n : [k] �→ [k × n].

The left Kan extension along ι×n acquires a GTCA structure and is the sought after
induced module IndFBG(n) (V )•. More explicitly, the wreath product Sk[Sn[G]] =

Sk[Sn[G]] is a subgroup of Skn[G] = Skn[G] and we have

(7) IndFBG(n) (V )kn = Ind
Skn[G]
Sk[Sn[G]] V

⊗k

while IndFBG(n) (V )r = 0 unless n|r. When working in other categories, the object 0

must be replaced with the initial object ∅.

Remark 2.3.1.

(1) In the case where G is trivial and V is a representation of Sn, Sam and
Snowden [SS12] denote the TCA IndFB(n)(V )• by Sym(V ). The idea is to

generate a free GTCA, similar to how one generates a polynomial ring,
with V in degree n.

(2) Recall that a symmetric monoidal category is equipped with isomorphisms
A ⊗ B → B ⊗ A, for any two objects A and B. When describing the
induction above, the symmetric group Sk permutes the tensor factors of
V ⊗k using this isomorphism. In particular, when working with graded
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modules, the switching operation involves (−) signs that makes the GTCA
a graded-commutative algebra.

Example 2.3.2 (Set partitions). Consider the case where G = 1 and construct
the GTCA (really a TCA) induced by the trivial Sn-set ∗. Its value on [k × n] is
the induced set

Ind
Sk×n

Sk[Sn]
(∗) ∼= Skn/Sk[Sn].

To identify this set consider the collection of set partitions of [k× n] into blocks of
size n. The group Skn permutes these permutations transitively, and the stabilizer
of the partition

{[1, . . . , n], [n+ 1, . . . , 2n], . . . , [(k − 1)n+ 1, . . . , kn]}

is the wreath product Sk[Sn]. Therefore the induced TCA assigns to a set all the
possible ways to partition it into blocks of size n.

When n = 1, this is simply the exponential TCA from Example 2.2.1: IndFB(n) ∗ =

(∗)•.

A well-known characterization of induced G-representations is by a direct sum
decomposition ⊕x∈XVx on which G acts by permuting the summands transitively.
An analogous useful characterization for induced GTCAs is given by the follow-
ing, whose proof is a straightforward generalization of the case of induced group
representations.

Fact 2.3.3 (Induction characterization). A GTCA A• is induced from An if and
only if there exists a GTCA of sets X•, induced from a transitive Sn[G]-set Xn,
and the following holds: for all k ∈ N one has

Ak =
∐

x∈Xk

Ax

for some objects Ax, and the category FBG acts on A• in a way compatible with
this decomposition. That is:

• Every morphism f : [k] → [k] of FBG permutes the summands according to
its action on X•, i.e. f(Ax) = Af(x).

• The products of A• define isomorphisms Ax ⊗Ay
∼−→ Ax·y.

2.4. Change of group. Another operation that plays an important role in our
combinatorial analysis arises when changing the underlying group G. Given a
subgroup H ≤ G, there is a natural inclusion of wreath products Sn[H] ≤ Sn[G]
giving rise to a monoidal inclusion functor

(8) ιGH : FBH ↪→ FBG.

Restricting a GTCA along this inclusion yields an HTCA. As with the previous
operation, this restriction often has a left adjoint given by the left Kan extension
and denoted here by IndFBGFBH

. An explicit description of this extension is given for
every n by

(9)
(
IndFBGFBH

A
)
n
= Ind

Sn[G]
Sn[H](An) ∼= HomFBG(ι

G
H [n], [n])×Sn[H] An.

The product operation for the GTCA (IndFBGFBH
A)• is the obvious one given by

∐
on the left factor along with the product of the HTCA A• on the right factor.
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Example 2.4.1 (Colorings). Let H ≤ G be a fixed subgroup. The set of (G/H)-
colorings on [n], i.e. the set of functions [n] → G/H, admits a transitive action
of the wreath product group Sn[G], and the stabilizer of the constant function
k �→ 1H is the wreath product group Sn[H]. Therefore the set of all such colorings

on [n] is the induced set Ind
Sn[G]
Sn[H](∗).

Now consider the exponential HTCA of sets (∗)• from Example 2.2.1. The
induced GTCA IndFBGFBH

(∗)• sends a finite set I to the set of its (G/H)-colorings.

This group-change operation interacts well with the induction operation from
the previous section as well as with disjoint unions. For example, if V is an H-
representation and IndGH(V ) is its (ordinary) induced G-representation, there is an
obvious isomorphism

IndFBGFBH
IndFBH(1) (V ) ∼= IndFBG(1) IndGH(V ).

We shall abbreviate this composition of inductions to IndFBGH .

Remark 2.4.2. For a subgroup H ≤ Sn[G], the group change operation (8) can be
composed with the spacing operation (6):

FBH
ι
Sn[G]
H
↪→ FBSn[G]

ι×n

↪→ FBG.

The resulting induction produces GTCAs taking nontrivial values only in degrees
k × n with k ≥ 1. We will denote this induction operation by IndFBG

FBH(n). The

collection of such operations satisfies the relations

IndFBG
FBH(n) Ind

FBH
FBK(m) = IndFBG

FBK(nm) for K ≤ Sm[H] and H ≤ Sn[G].

As above, we abbreviate the induction of H-representations to GTCAs

(10) IndFBGH := IndFBG
FBH(n) Ind

FBH
(1) .

Example 2.4.3. A key example is IndFBGG×Sn
(∗), where H = G×Sn sits diagonally

inside Sn[G] = Gn�Sn and acts trivially on the singleton set ∗. When G is trivial,
we simply obtain partitions with blocks of size n as in Example 2.3.2. For general
G, this combines Examples 2.3.2 and 2.4.1, and we obtain partitions whose blocks
are of size n and equipped with G-colorings (up to equivalence). We will more
formally define these G-partitions in §3.

Let us consider the case G = Z2, which we view as Z2 = {+,−}. Here, we obtain
signed partitions with blocks of size n. That is, the elements in a block are colored
with either + or −, considered up to multiplication by − throughout the block.

2.5. Products of GTCAs. Let A• and B• be two GTCAs in (C,⊗,1). Define
their product (A⊗B)• by the Day convolution:

(A⊗B)[n] ∼=
⊕

i+j=n

Ind
Sn[G]
Si[G]×Sj [G]

(
A[i] ⊗B[j]

)
(11)

∼=
⊕

i+j=n

HomFBG

(
[i]
∐

[j], [n]
)

×
Si[G]×Sj [G]

(
A[i] ⊗B[j]

)
.

Note that this is precisely the left Kan extension along the disjoint union functor∐
: FB2G → FBG, and therefore it commutes with other induction operations in the

obvious way:

IndFBGFBH
(A⊗FBH B) ∼= IndFBGFBH

(A)⊗FBG IndFBGFBH
(B).
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Example 2.5.1 (Set partitions). Take G = 1 and let Pn
• and Pm

• be the TCAs in
(Set,×, ∗) from Example 2.3.2, assigning to a set its collection of partitions into
blocks of equal size n or m respectively. Then if n �= m, the product TCA

P {n,m} := Pn × Pm

assigns to a set the collection of partitions into blocks of size either n or m.
Multiplying further gives TCAs PS

• for any set S of natural numbers, parame-
terizing partitions with block sizes in S. Then whenever S ∩ T = ∅, the product of
those gives

PS × PT ∼= PS∪T .

Remark 2.5.2 (Exponential property of induction). Observe that the induction
operation behaves like an exponential with respect to the tensor product of GTCAs,
in the sense that

IndFBG(1) (V ⊕W ) = IndFBG(1) (V )⊗ IndFBG(1) (W ).

This is simply a reflection of the expansion

(V ⊕W )⊗n =
⊕

i+j=n

IndSn

Si×Sj
V ⊗i ⊗W⊗j =

⊕
i+j=n

Ind
Sn[G]
Si[G]×Sj [G] V

⊗i ⊗W⊗j .

Analogous formulas apply when working in other categories, like spaces or posets.
This should not be surprising to the reader familiar with species: this induction es-
sentially performs a plethystic product (also known as substitution or composition)
with the exponential TCA.

3. Dowling posets and orbit configuration spaces

The combinatorial object that arises in the calculation of the homology of an
orbit configuration space from the inclusion ConfnG(X,T ) ⊆ Xn is the intersection
data of the components of Xn \ ConfnG(X,T ). This intersection data corresponds
to a stratification of Xn. Thus, the Borel–Moore homology of ConfnG(X,T ) can
be computed using the spectral sequence for stratified spaces from [Pet17], whose
purpose is to separate the topology of X from the combinatorics of the arrangement
Xn \ ConfnG(X,T ).

In [BG20], we introduced and utilized the poset of labeled partial G-partitions
DT

n (G,S) as a combinatorial model for the strata (see [BG20, Section 3.4] for def-
initions and a general discussion). We also noted in [BG20, Proposition 2.1] that
these posets are in fact functorial in n and monoidal with respect to the disjoint
union. Using the present terminology, this monoidality is rephrased to say that
the collection DT

• (G,S) forms a GTCA. Its structure as such is the subject of this
section.

3.1. Dowling posets. First, we remind the reader of some relevant notation, used
to model the intersection pattern of strata inXn, but warn that without the context
of [BG20] Definition 3.1.1 will likely be opaque. Throughout this section, we let G
be a finite group.

Definition 3.1.1 (Partial G-partitions). Let I be any finite set. A partial G-

partition of I is a collection β̃ = {B̃1, . . . , B̃�} consisting of a partition β =
{B1, . . . , B�} of a subset ∪Bi ⊆ I along with a relative G-coloring on each block:
functions bi : Bi → G, defined up to the equivalence relation bi ∼ big for g ∈ G.

The zero block of a partial G-partition β̃ of I is the set Z := I \ ∪B∈βB.
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In the current context we shall be interested in the following refinement of the
above notion of partial G-partition, as it arises from the combinatorics of orbit
configuration spaces.

Definition 3.1.2 (Dowling posets). Fix two finite G-sets S and T . For a finite set

I, let DT
I (G,S) be the set of pairs (β̃, z), where β̃ is a partial G-partition of I and

z : Z → S is a coloring of its zero block, with the restriction that |z−1(G.s)| = 1
only if s ∈ T .

The set DT
I (G,S) is partially ordered via the following covering relations:

(merge): (β̃ ∪{Ã, B̃}, z) ≺ (β̃ ∪{C̃}, z) where C = A∪B with c ∼ a∪ bg for
some g ∈ G, and

(color): (β̃ ∪ {B̃}, z) ≺ (β̃, z′) where z′ is the extension of z to Z ′ = B ∪ Z
given on B by a composition

B
b→ G

f→ S

for some G–equivariant function f .

Note that DT
I (G,S) = DT∩S

I (G,S), so we may and will assume that T ⊆ S.
When I = [n], denote DT

[n](G,S) = DT
n (G,S).

Two notable special cases of these posets are:

• the partition lattice ΠI , which is the case G = {1} and S = ∅; and
• the Dowling lattice DI(G), which is the case S = T = {∗} is a single point.

Note that for any T , DT
I (G,S) is a subposet of DS

I (G,S); of particular interest

is D∨
I (G) := D∅

I(G, {∗}) which is a sublattice of the Dowling lattice DI(G) =

D
{∗}
I (G, {∗}) consisting of partial G-partitions with nonsingleton zero block. The

following is an example which is not a lattice.

Example 3.1.3 (Toric type C poset). Let G = Z2 and S = {+,−} with G acting
on S trivially. D±

n (G,±) is not a lattice for any n ≥ 2, e.g. because there is not a
unique maximum element: the maximal elements are all the different S-colorings
of the set {1, 2, . . . , n}.

The poset D±
n (Z2,±) is discussed in [BG20, Ex. 2.2.2.], and it arises from the

toric arrangement associated to the type C root system. The toric arrangements
associated to the type B and D root systems give rise to the subposets D+

n (Z2,±)
and D∅

n(Z2,±), respectively.

3.2. The GTCA of Dowling posets. Properties of the Dowling posets DT
I (G,S)

can be neatly expressed in the language of GTCAs, which we will explain next.
Each Dowling poset DT

I (G,S) admits a natural action of a wreath product group
SI [G]. Furthermore, the disjoint union operation on sets clearly extends to a
product operation on the collection of partial G-partitions:

DT
I (G,S)×DT

J (G,S) → DT
I�J (G,S),

compatible with the actions on the two sides. Therefore the collection DT
• (G,S)

has the structure of a GTCA, taking values in the category of posets.
Since a partition is trivially a disjoint union of its blocks, this GTCA decom-

poses as a product once one forgets the ordering. This is not surprising in light of
Examples 2.3.2, 2.4.1 and 2.5.1 from the previous section, and is readily observed
in the language of species (as Henderson observes in the case S = {0} [Hen06]).
We state this formally in Lemma 3.2.1.
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Lemma 3.2.1 (Dowling GTCA factorization). Let G be a finite group, and let S
and T be two finite G-sets. Pick orbit representatives s ∈ [s] for all [s] ∈ S/G and
let Gs be the corresponding stabilizer in G. Then as a GTCA of sets DT

• (G,S)
factors as

DT (G,S) ∼=
Set

∞∏
n=1

IndFBGG×Sn
(∗)×

∏
[s]∈S/G

IndFBGFBGs
(∗)T• (s),

where (∗)T• (s) denotes (∗)• when s ∈ T and (∗̌)• when s /∈ T .
The factors were described in Examples 2.2.1, 2.2.2, and 2.4.3.

Proof. Write D• for DT
• (G,S). The image in D• of ∗ from each induction in the

product is as follows:

(1) Sending ∗ to the block [1, . . . , n] ∈ D[n] with each element colored by the

same element of G defines a map IndFBGG×Sn
(∗) ↪→ D• whose image is exactly

the G-partitions with blocks of size n.
(2) When s ∈ T , sending ∗ in degree n ≥ 1 to the zero block [1, . . . , n] with

constant coloring by s defines a map IndFBGFBGs
(∗)• ↪→ D• whose image is

exactly the zero blocks with coloring in the orbit [s].
(3) Similarly to the previous case, when s ∈ S \ T , sending ∗ in degree n >

1 to the zero block [1, . . . , n] with constant coloring by s defines a map
IndFBGFBGs

(∗̌)• ↪→ D• whose image is exactly the zero blocks of size > 1 and

coloring in the orbit [s].

The product of these sub-GTCAs consists precisely of all possible ways to construct
a partial G-partition of a set with an S-colored zero block uniquely. �

The above product decomposition seems to require forgetting the order relation,
and thus we pose Question 3.2.2.

Question 3.2.2. Is it possible to define a product operation on GTCAs of posets
so that the decomposition of Lemma 3.2.1 holds in this category?

3.3. Homology of Dowling lattices. The GTCA D•(G) = D
{∗}
• (G, {∗}) of

Dowling lattices gives rise to a fascinating algebraic GTCA given by their top
homology.

The order complex attaches a topological space to every poset in a functorial
way. In the case of Dowling lattices Dn(G) it is well-known that, after removing
the top and bottom elements, the order complex has the homotopy type of a wedge
of (n− 2)-dimensional spheres (see [Fol66]). Thus the main topological invariant is
the Sn[G]-representation on the top homology group of this wedge of spheres.

Letting n vary, one can promote this sequence of representations to a GTCA
as follows. For every lattice P let P denote the result of removing the top and
bottom elements from P . Then a morphism of lattices P → Q induces one of
posets P → Q. Next, [Wac07, Theorem 5.1.5] describes equivariant isomorphisms

H̃r(P ×Q) ∼=
r⊕

i=0

H̃i(P )⊗ H̃r−i−2(Q)

which are easily seen to be functorial in P and Q. This implies that after shifting,

the poset homology P �→ H̃∗−2(P ) is a monoidal functor from bounded posets to
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graded k-modules. In particular, the homology of a GTCA of lattices itself forms
a GTCA.

On Dowling lattices, this construction specializes to give a GTCA structure on
the top homology

H̃n−2(Dn(G))⊗ H̃m−2(Dm(G)) → H̃n+m−2(Dn+m(G))

and all other reduced homology groups vanish. The resulting GTCA, taking value

H̃|I|−2(DI(G)) on a finite set I, will be denoted by H̃|•|−2(D•(G)) and it will play
a role in our topological analysis of orbit configuration spaces.

Note that for G = 1 the isomorphism Dn(1) ∼= Πn+1 defines a product structure
on the top homology of ordinary partition lattices (shifted by 1). Here, one considers

the Sn action on Πn+1 and can show that H̃|•|−2(Π•+1) is the TCA of regular rep-
resentations. As for a general group G, while the sequence of Sn[G]-representations

H̃n−2(Dn(G)) has been studied in the context of species and generating functions,
the algebra structure on this sequence remains virtually unexplored.

Question 3.3.1. Describe the product structure of the GTCA H̃|•|−2(D•(G)) and
give a combinatorial description of its generators and relations.

3.4. The GTCA of order relations. A central tool in the study of poset homol-
ogy, as well as the cohomology of subspace arrangements, is the Whitney homology :

we shall think of this as the collection of poset homology groups H̃∗−2(P≤p) as p

ranges over the elements of P . For example, for a finite bounded poset P = [0̂, 1̂]
ranked by rk : P → N, there is a formal equality

H̃∗−2(P ) = ±
∑

0̂≤p<1̂

(−1)rk(p)H̃∗−2(P≤p)

in some appropriate Grothendieck group of modules, therefore allowing an inductive
description of the homology of P (see [Sun94,Wac07] for examples). One is thus
led to studying the collection of subposets P≤p for all p ∈ P – systematized in this
subsection.

Let (P,≤) be a poset, and view the order relation ≤ as a set of pairs {(p1, p2) |
p1 ≤ p2} ⊆ P × P . The second projection

π2 : ≤ → P

has the property that π−1
2 (p) ∼= P≤p, i.e. one realizes the lower intervals in P as

the fibers of π2. Furthermore, the set ≤ is itself naturally ordered by restricting the
product order on P × P (note that this does not coincide with the standard order
relation on the poset of intervals, with its order induced from P op × P ). Under
our chosen ordering, the projection π2 is order preserving, and the isomorphism
π−1
2 (p) ∼= P≤p is one of posets.
Lastly, the passage from a poset P to its order relation ≤ is functorial and

monoidal with respect to the Cartesian product. Therefore, given a GTCA of
posets P•, one gets another by considering ≤•. The projection

π2 : ≤• → P•

is clearly a morphism of poset GTCAs.
Using this language, the order relation of Dowling posets has a product decom-

position as a GTCA compatible with that in Lemma 3.2.1. Just as before, this
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requires forgetting the ordering on D•, but now we must also forget the order
coming from the second coordinate of ≤•.

Definition 3.4.1. The right-discretized order relation of a poset P is the poset
≤rδ whose underlying set is

≤rδ= {(p1, p2) ∈ P × P | p1 ≤ p2}

and whose partial order is given by

(p1, p2) ≤ (q1, q2) ⇐⇒ p1 ≤ q1 and p2 = q2.

Note that there is an isomorphism ≤rδ∼=
∐

p∈P P≤p which is natural in the poset
P .

Lemma 3.4.2 (GTCA factorization of intervals). Let G be a finite group, and let
S and T be two finite G-sets. Pick orbit representatives s ∈ [s] for [s] ∈ S/G and let
Gs be the corresponding stabilizer. Note that the posets DT

• (Gs, s) form a GsTCA.
Then the associated poset GTCA ≤rδ

• decomposes as a product of poset GTCAs
in a way compatible with the factorization of the set GTCA D• from Lemma 3.2.1:

(12)

≤rδ

DT (G,S)

∼=
∞∏
n=1

IndFBGG×Sn
Πn

×
∏

[s]∈S/G

IndFBGFBGs
DT

• (Gs, s)

∼=
∞∏
n=1

IndFBGG×Sn
(∗) ×

∏
[s]∈S/G

IndFBGFBGs
(∗)T• (s),

π2

where (∗)T• (s) denotes (∗)• when s ∈ T and (∗̌)• when s /∈ T . In the top row, we
let G×Sn act on the partition lattice Πn via its ordinary Sn action with G acting
trivially.

Proof. Fibers of the projection π2 are just lower intervals in a Dowling poset, and
so we use the interval factorization from [BG20, Theorem A], which states that for

any (β̃, z) ∈ DT
n (G,S),

(13) DT
A(G,S)≤(β̃,z) ∼=

∏
B∈β

ΠB ×
∏

[s]∈S/G

DT
z−1([s])(Gs, s).

In particular, when [1, . . . , n] ∈ D[n](G,S) is a single block with trivial G-

coloring, we have an isomorphism Πn
∼= D[n](G,S)≤[1,...,n], which then induces

a map from the GTCA generated by Πn to ≤rδ. When (∅, s) ∈ D[n](G,S) is
an element whose zero block is [n] and colored by s, we have an isomorphism
DT

[n](Gs, s) ∼= DT
[n](G,S)≤(∅,s), which then induces a map from the GTCA gen-

erated by DT
• (Gs, s) to ≤rδ. Lemma 3.2.1 describes how to write an element

(β̃, z) ∈ DT
A(G,S) as a product of its blocks, and (13) describes how to lift this

so that DT
A(G,S)≤(β̃,z) can be written as an element in the product.

Because (13) is an isomorphism of posets, the product decomposition of the
right-discretized order relation ≤rδ

• holds as a GTCA of posets, rather than just as
sets. �
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Example 3.4.3. Consider a finite group G acting trivially on T = S = {+,−}.
The interval underneath a single-block partition {1, 2} in D±

[2](G,±) with any G-

coloring is isomorphic to Π[2], a poset with two elements, independently of the

chosen G-coloring. Similarly, in D±
{5}(G,±), the interval underneath a maximal

element, say the zero block {5} colored by +, is isomorphic to D±
{5}(G,+), which

is again a poset with two elements.
Now let us consider the product 12 · 34 · 5+ in D±

[5](G,±): the interval under-

neath should be a product of the previously mentioned intervals. We depict this
isomorphism in Figure 2. Note that this diagram sits inside of the much larger
poset D±

[5](G,±).

(
D

±
{1,2}(G,±)

)≤12
×

(
D

±
{3,4}(G,±)

)≤34
×

(
D

±
{5}(G,±)

)≤5+ ∼=
(
D±

[5](G,±)
)≤12·34·5+

× × ∼=

12 · 34 34 · 5+

12 · 34 · 5+

12 34 5+

Figure 2. Factorization of an interval inside D±
[5](G,±). See Ex-

ample 3.4.3.

3.5. Whitney homology. The interval factorization of Lemma 3.4.2 immediately
translates to a factorization of Whitney homology, defined as follows.

Definition 3.5.1. The Whitney homology of a finite poset P containing a bottom
element is

WH∗(P ) :=
⊕
p∈P

H̃∗−2(P≤p).

Just as with poset homology, P �→ WH∗(P ) is a monoidal functor from finite
bounded-below posets to graded k-modules (where k is as in §1.4). In particular,
when P• is a GTCA of finite bounded-below posets, WH∗(P•) is a GTCA of graded
k-modules taking value WH∗(PI) on a set I.

Theorem 3.5.2 (Whitney homology factorization). Let G be a finite group, and
let S and T be two finite G-sets. Pick orbit representatives s ∈ [s] for orbits
[s] ∈ S/G and let Gs denote the respective stabilizers. The GTCA of Whitney
homology WH∗(D

T
• (G,S)) factors as a GTCA of graded k-modules into the product

(14)
∞⊗

n=1

IndFBGG×Sn

(
H̃n−3(Πn)

)
⊗
⊗

[s]∈S/G

IndFBGFBGs

(
H̃|•|−2(DT

• (Gs, s))
)
,

where the graded k-module H̃n−3(Πn) is homogeneous of degree n−1, and the degree

of H̃|•|−2(DT
• (Gs)) is | • |.
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Proof. As stated above, the right-discretized order relation of a poset P satisfies
≤rδ∼=

∐
p∈P P≤p. This isomorphism is in fact monoidal in P : for posets P1 and P2

it is clear that there are natural poset isomorphisms

≤rδ
1 × ≤rδ

2
∼=
∐

(p1,p2)

P≤p1

1 × P≤p2

2
∼=
∐

(p1,p2)

(P1 × P2)
≤(p1,p2) ∼= (≤1 × ≤2)

rδ.

We thus notice that the Whitney homology functor is just the composition of the
functors

WH∗(P ) : P �→≤rδ �→ H̃∗−2(≤rδ),

where we extend the operation Q �→ Q to disjoint unions of lattices by removing
the top and bottom elements of each connected component.

We claim that each of these operations commutes with products and induction.
Indeed, both the product of GTCAs and induction are built from finite disjoint
unions and products. Therefore, every functor that is both additive and multiplica-
tive, i.e. monoidal with respect to

∐
and ⊗, will automatically preserve products

and inductions of GTCAs. In the case at hand, the functor P �→≤rδ is clearly
additive and multiplicative. The shifted homology functor was discussed in §3.3,
where its multiplicative property was observed and additivity is obvious.

It follows immediately from Lemma 3.4.2 that the Whitney homology factors

into a product of GTCAs, induced from H̃∗−2(Πn) and H̃∗−2(DT
• (Gs, s)). These

posets are geometric lattices and thus have homology only in dimension rk−2,
where rk(Πn) = n− 1 and rk(DT

n (Gs, s)) = n. �

We shall see in the following section how the Dowling posets, and in particular
their Whitney homology, are a key ingredient in understanding the (co)homology of
orbit configuration spaces. Before we proceed to discuss general orbit configuration
spaces, there are special cases in which the Whitney homology already coincides
with the cohomology.

Corollary 3.5.3. Let X = Ad be an affine space over either R or an algebraically
closed field. Let a finite group G act almost freely on X by affine transforma-
tions. Then for any finite G-invariant set T ⊂ X, the cohomology of Conf•G(X,T )
decomposes into the product of induced GTCAs given in (14) of Theorem 3.5.2.

Proof. The claim follows from Goresky-MacPherson’s formula [GM88, Part III]: it
shows that the complement for any arrangement of affine subspaces has cohomology
given by the Whitney homology of the corresponding intersection poset, possibly
up to simple dimension shifts. But in [BG20, Theorem C] we show that these
intersection posets are exactly the corresponding Dowling posets. �

Example 3.5.4. Special cases to which Corollary 3.5.3 applies include:

• The classical configuration space Conf•(Rd), when G = 1 and T = ∅.
• The configuration space of a punctured space Conf•(Rd\{r1, . . . , rk}), when
G = 1 and T = {r1, . . . , rk}.

• The complement of the type B/C and D root systems and their complexi-
fications, when G = Z2 and either T = {0} or T = ∅, respectively.

• The complement of a Dowling arrangement Conf•μk
(C\{0}), when the k-th

roots of unity act by scalar multiplication μk � A, and T = {0}.



262 CHRISTIN BIBBY AND NIR GADISH

3.6. Combinatorics of orbit configuration spaces. Let X be a separated G-
space (as in §1.4) with an almost free action, i.e. where the set of singular points
for the G-action

SingG(X) :=
⋃

1�=g∈G

Xg

is finite, denoting by Xg the set of points fixed by g. Fix a finite G-invariant subset
T ⊆ X, and let

S := SingG(X) ∪ T.

Every element β = ({B̃1, . . . , B̃�}, z) ∈ DT
n (G,S) defines a subspace Xβ ⊆ Xn

as follows. The partial G-partition of [n] specifies which coordinates are related by
an application of g ∈ G and the zero block specifies which coordinates land on an
element s ∈ SingG(X) ∪ T . More explicitly,

(15) Xβ := XB̃1 × · · · ×XB̃� ×Xz ⊆ XB1 × · · · ×XB� ×XZ ∼= Xn,

where for a block B with G-coloring b : B → G, the subspace XB̃ ⊆ XB consists
of functions xB : B → X satisfying

b(i)−1.xB(i) = b(j)−1.xB(j) ∀i, j ∈ B,

and Xz is the single element of XZ defined by z : Z → S ⊆ X.
The collection of Xβ as β runs over Dn = DT

n (G,S) describes the closed strata in
a stratification of Xn. The locally-closed strata Uβ whose disjoint union is Xn are
given by Uβ = Xβ \∪

α∈D
≥β
n

Xα, and the open stratum corresponding to the trivial

partition with empty zero block (the minimum of Dn) is ConfnG(X,T ). We refer
the reader to [BG20, Theorem C] for more details on this stratification; although
that theorem assumed that X is connected, the stratification does not require this
assumption.

Consider the ‘incidence variety’ over the Dowling poset:

Ln = {(x, β) ∈ Xn ×Dn | x ∈ Xβ}

DT
n (G,S)

�

�

(x, β)

β,

π2

The fiber over an element β ∈ DT
n (G,S) is simply the topological space Xβ . In this

sense the incidence variety is the tautological bundle over DT
n (G,S).

Letting the parameter n vary, one sees that the collection of incidence varieties
is in fact a GTCA of topological spaces, and the projection π2 is a map of GTCAs.
A geometric version of Lemma 3.4.2 is the following,

Lemma 3.6.1 (GTCA factorization of incidence varieties). Let X be an almost
free G-space (as in §1.4), let T ⊂ X be a finite G-invariant subset, and let S =
SingG(X)∪T . The GTCA of incidence varieties factors as a product of topological
GTCAs, compatibly with the factorization of DT

• (G,S):
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L

DT (G,S)

∼=
∞∏

n=1

IndFBGG×Sn
X ×

∏
[s]∈S/G

IndFBGFBGs
(∗)T• (s)

∼=
∞∏

n=1

IndFBGG×Sn
(∗) ×

∏
[s]∈S/G

IndFBGFBGs
(∗)T• (s),

π2

where G × Sn acts on X via the provided action of G and, as in Lemma 3.2.1,
(∗)T• (s) is either a point or the empty space.

Proof. Lemma 3.2.1 gives a factorization of DT
• . The generator ∗ of the factor

indexed by n corresponds to the diagonal Δ ⊆ Xn, which is (G×Sn)-equivariantly
isomorphic to X. As for the factor labeled by an orbit [s], the point in (∗)Tn (s)
corresponds to the point {(s, . . . , s)} ⊆ Xn, which can be equivariantly identified
with (∗)Tn (s) itself. The multiplication of these subspaces is given by the Cartesian
product of topological spaces, and so the fiber over any β ∈ Dn is the product of
the diagonals and points as prescribed by β and described in (15). �

3.7. The collision spectral sequence. Now we have two compatible product
decompositions: an order theoretic one in Lemma 3.4.2 and a topological one in
Lemma 3.6.1. After applying homology, we combine them to get a handle on the
Borel–Moore homology of Conf•G(X,T ) (with coefficients as in Convention 1.4).

The proposed factorization does not exist universally for all spaces (although it
applies to a large class of them, see Remark 3.7.5 and Corollary 4.3.7). Rather,
the factorization appears at a finite stage of a spectral sequence, associated with a
natural filtration we now discuss.

We define a filtration on the homology HBM
∗ (ConfnG(X,T )), natural with respect

to proper maps. The idea here is that Fk H
BM
∗ are all the Borel-Moore homology

classes that are restricted from partial configuration spaces in which only k or more
simultaneous collisions are excluded.

Recall from §3.6 that the Dowling poset Dn(X,T ) indexes a stratification of
Xn, whose closed strata are denoted by Xβ for β ∈ Dn(X,T ) as defined in (15).
This Dowling stratification of Xn gives rise to a diagram of open sets in Xn, where
β ∈ Dn(X,T ) corresponds to a partial configuration space: the open set

Confβ(X) = Xn \
⋃

0̂<α≤β

Xα,

where one only removes the subspaces xi = g.xj and xi = t that contain Xβ. Then

β < β′ implies Confβ(X) ⊃ Confβ
′
(X).

Since Borel-Moore homology is contravariant with respect to open inclusions,
the containments ConfnG(X,T ) ⊆ Confβ(X) induce a diagram of subspaces

HBM
∗ (ConfnG(X,T ))β := Im

(
HBM

∗ (Confβ(X)) → HBM
∗ (ConfnG(X,T ))

)
for which β < β′ now implies HBM

∗ (ConfnG(X,T ))β ⊆ HBM
∗ (ConfnG(X,T ))β

′
. Then

the rank function on Dn(X,T ) gives rise to a filtration as follows.
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Definition 3.7.1 (Collision filtration). With the notation of the previous para-
graph, set

Fk(H
BM
∗ (ConfnG(X,T ))) :=

∑
rk(β)≤k

HBM
∗ (ConfnG(X,T ))β,

which is already defined at the level of Borel-Moore chains Fk(C
BM
∗ (ConfnG(X,T ))),

and more generally with coefficients in any sheaf on X.

Clearly the filtration is natural in all inputs (G,X, T ) in the obvious way. More
importantly, the filtration is compatible with the GTCA structure: the Sn[G]-

action on Xn permutes the sets Confβ(X) while preserving rk(β), thus the induced
action on homology respects the filtration. Furthermore, since for every β ∈ Dn and

β′ ∈ Dm there is a natural open inclusion Confβ×β′
⊂ Confβ ×Confβ ⊂ Xn+m, it

follows that there is a multiplication map

HBM
∗ (ConfnG(X,T ))β ⊗HBM

∗ (ConfmG (X,T ))β
′ → HBM

∗ (Confn+m
G (X,T ))β×β′

and in particular Fk ⊗ F� → Fk+�. We shall therefore use the GTCA notation

Fk(H
BM
∗ (Conf•G(X,T )))

to refer to the respective filtrations on all powers of X simultaneously. This is the
collision filtration.

The spectral sequence associated with this filtration admits a natural product
decomposition of GTCAs, as the following shows.

Theorem 3.7.2 (Spectral sequence factorization). Let X be an almost free G-space
as in §1.4, let T ⊆ X be a finite G-invariant subset, and let S = SingG(X)∪T . Pick
orbit representatives s ∈ [s] for every [s] ∈ S/G and let Gs ≤ G denote its stabilizer.
The collision filtration gives rise to a spectral sequence of GTCAs converging to the
GTCA HBM

∗ (Conf•G(X,T )), with E1 ∼=

(16)
∞⊗

n=1

IndFBGG×Sn

(
HBM

∗ (X)� H̃n−3(Πn)
)
⊗
⊗

[s]∈S/G

IndFBGFBGs
H̃|•|−2

(
DT

• (Gs, s)
)
,

where the space HBM
∗ (X) � H̃n−3(Πn) is placed in bidegree (n − 1, ∗) and

H̃|•|−2(DT
• (Gs, s)) is in bidegree (| • |, 0). These GTCAs are in the category of

bigraded modules with standard tensor product and (graded-commutative) symme-
try.

Moreover, the spectral sequence and the product factorization are natural with
respect to proper G-equivariant maps.

Proof. In [Pet17, Lemma 4.12] Petersen constructs a spectral sequence of TCAs

converging to HBM
∗ (Conf•G(X,T )), which by [BG20, Theorem D] has E1 given by

E1
p,q[•] =

⊕
β∈D•

rk(β)=p

HBM
q

(
Xβ
)
⊗ H̃p−2

(
D

≤β
•
)
,

where Dn = DT
n (G,S). Note that while Petersen explicitly considered only the

symmetric group action on each term, his arguments apply to the G-equivariant
context and in fact give a spectral sequence of GTCAs.

We use Theorem 3.5.2 and Lemma 3.6.1 (applying Borel–Moore homology to
the second), in which we have factorizations of two GTCAs of graded k-modules.
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By taking their pointwise tensor product over the GTCA DT
• (G,S), one obtains

the factorization stated here. The details are completely straightforward and thus
omitted.

It remains to show that Petersen’s construction in fact coincides with the spec-
tral sequence associated with our collision filtration. As a quick reminder, let
j : ConfnG(X,T ) ↪→ Xn denote the inclusion. Starting with a sheaf F on Xn,
Petersen resolves the sheaf j!j

−1F which computes H∗
c(Conf

n
G(X,T );F) by the

complex

F →
⊕

0<β∈Dn

F|Xβ →
⊕

0<β1<β2

F|Xβ1 → . . . →
⊕

0<β1<...<βn

F|Xβn → . . .

and filters it by rk(βn). This filtration produces the aforementioned spectral se-
quence. Applying the functor computing global sections of the Verdier dual RΓ ◦D
to this complex gives a filtered chain complex computing HBM

∗ (ConfnG(X,T );F).

Similarly, for a partial configuration space jβ : Confβ(X) ↪→ Xn, the sheaf
(jβ)!(j

β)−1F is resolved in the same way, but with the poset Dn replaced by the

subposet D≤β
n . Thus the complex computing HBM

∗ (Confβ(X)) naturally sits as a

subcomplex of the one computing HBM
∗ (ConfnG(X,T )), and this inclusion realizes

the restriction from the former to the latter.
Since the subcomplex of Petersen’s filtration degree p is precisely the sum over

all terms in D≤β
n for rk(β) ≤ p, it is precisely the chains restricted from those

Confβ . This is our definition of the collision filtration. �

Remark 3.7.3. Dan Peterson and Phil Tosteson communicated to us that they had
each observed this factorization in the special case that G is trivial and S is empty:
in the language of species, one views this as a composition with an exponential.
For more general G and S, we have more elaborate group inductions as well as
additional factors corresponding to nonfree orbits.

Remark 3.7.4 (Factorization at the space level). One could build a more systematic
framework to show a factorization at the space level, making sense of the object⊔

β∈Dn

Xβ ×D≤β
n

in a category that allows us to pair together topological spaces and posets. While
the factorization is clear in the category of sets, one needs the additional structure
on the objects in order to apply homology functors.

Remark 3.7.5 (Differentials). This result would still be of limited use if nothing
could be said about the differentials of the spectral sequence. Fortunately, several
general statements could be made.

• When X is a smooth projective variety, there can be at most one nonzero
differential (by a standard weight argument). This nontrivial differential is
completely determined by what it does to the generators of the GTCA.

• When X is i-acyclic (the map H∗(X) → HBM
∗ (X) is zero), all differentials

must vanish [Ara16,Pet18]. For example, a product of any space by affine
spaces and copies of the multiplicative group Gm is i-acyclic. In this case,
it is not known whether the Borel-Moore homology GTCA factors as a
product of inductions, even though the GTCAs are isomorphic as species
(forgetting the algebra structure).
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Other general statements involve the representation stability, which is the subject
of the next section. In short, the kernel and cokernel of every differential are
finitely generated modules for certain algebras actions, and this constrains the
Sn[G]-representation that may occur.

4. Representation stability and secondary stability

The product formula of Theorem 3.7.2 gives a good handle on how to generate
the E1-page computing the homology of configuration spaces as a GTCA. Unfor-
tunately, the differentials are difficult to describe in terms of these generators. The
main goal of this section is to address this difficulty and shed light on the structure
of the homology HBM

∗ (ConfnG(X,T )) using the tools of representation stability.
Stated vaguely, this section will show that under mild hypotheses on X, the

Borel-Moore homology groups HBM
∗ (ConfnG(X,T )) stabilize as sequences of repre-

sentations of the various wreath products. One of the central contributions of the
representation-stability point of view is that this notion of stability is best under-
stood as the finite-generation of modules over GTCAs. Then the Noetherian prop-
erty of certain GTCAs ensures that stability is a robust property, preserved under
subquotients and extensions. It is therefore enough to establish finite-generation at
the E1-page of a spectral sequence converging to the modules in question.

4.1. Geometric criteria for finite-generation. Here we present a simple geo-
metric technique for identifying many structures of finitely-generated modules on
a bigraded GTCA E∗,∗[•] as occurs in the E1-page of the spectral sequence com-

puting HBM
∗ (Conf•G(X,T )). Very briefly, it says that there exists a polygon whose

corners govern the finitely-generated module structures on E.
Comparing GTCA generators appearing at different • = n gets rather confusing.

An effective trick to simplify this problem is to work as though all generators appear
already in • = 1, which is formally similar to adjoining an n-th root to generators
∈ E[n]. Making this approach systematic, we make Definition 4.1.1.

Definition 4.1.1 (The generation locus). Let E∗,∗[•] be a bigraded GTCA, gen-
erated by the finite-dimensional subspaces Vi ≤ Epi,qi [ni] with i ∈ N.

For every e ∈ Ep,q[n] write v(e) :=
(
p
n ,

q
n

)
∈ Q2 and define the generation locus

to be

Gen := {v(Vi) | i ∈ N} ⊂ Q2.

These are the (fractional) bidegrees in which generators would have appeared had
they all existed already when • = 1.

Consider a point v ∈ Q2. Let Av ≤ E be the subalgebra generated by all
subspaces Vi with v(Vi) = v, and note that multiplication by Av preserves the
subspaces

(17) E(p,q)+•v[n+ •],

where we declare that Ea,b[c] = 0 unless a, b, c ∈ Z≥0. Thus E breaks up into a
collection of Av-submodules.

Lemma 4.1.2 (Corner criterion for finite generation). Let E∗,∗ be a bigraded
GTCA, generated by subspaces Vi ≤ Epi,qi [ni]. Suppose that for every point v ∈ Gen
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and fixed n ∈ N the corresponding generating subspace⊕
v(Vi)=v
ni=n

Vi

is finite dimensional. Then for every isolated corner v0 of the closed convex hull
Conv(Gen), the Av0-submodules E(p,q)+•v0 [n + •] that make up E∗,∗ are finitely-
generated.

Quantitatively, if L ⊂ R2 is a line meeting Conv(Gen) only at a corner v0 ∈
Gen, and there are no other points in Gen within distance ε > 0 from L, then
E(p,q)+•v0 [n+ •] is generated as an Av0-module by the finitely many products Vi1 ·
. . . · Vik with

∑
nij ≤ dist(nL,(p,q))

ε , and each for these is finite-dimensional.

Proof. Let L(x, y) = ax + by + c = 0 be a defining equation for a line L meeting

Conv(Gen) at the corner v0 ∈ Gen and is at least distance ε > 0 to any other point
in Gen. Normalize the equation L so that |L(v)| = dist(v, L) for every v ∈ R2

and takes nonnegative values on Gen. In particular, one has L(v) ≥ ε for all
v( �= v0) ∈ Gen.

Next, with the notation of Definition 4.1.1, define a ‘height’ function |e| := n ·
L(v(e)) = ap+bq+nc when e ∈ Ep,q[n]. Linearity in (p, q, n) implies |e·e′| = |e|+|e′|
for every two homogeneous elements of E. Furthermore, the hypotheses of the
previous paragraph imply

• |Vi| = 0 if and only if v(Vi) = v0,
• and otherwise |Vi| ≥ niε.

Consider the Av0-module E(p,q)+•v0 [n + •]: its height is given by the constant
λ := nL( pn ,

q
n ) since L(v0) = 0 (note that λ is well-defined even if n = 0). By the

assumption on E∗,∗, this subspace is generated by various products Vi1 . . . Vik . But
since the height is additive and nonnegative, products of generators that produce
elements of height λ must have |Vi| ≤ λ.

We claim that for every fixed λ ∈ R there are finitely many elements that generate
all spaces Vi with v(Vi) �= v0 and |Vi| ≤ λ. Indeed, the second property of the
height above implies niε ≤ λ, so ni ≤ λ/ε. Furthermore, the triangle bounded by

the cone angle of Conv(Gen) at v0 and L(x, y) ≤ λ is compact (see Figure 3), so
meets every lattice 1

nZ only at finitely many points. Since the generating spaces
Vi with |Vi| ≤ λ must correspond to bounded ni ≤ λ/ε and have v(Vi) among the
corresponding finite sets of lattice points, there is a finite list of elements in E that
generates all of them by hypothesis.

It follows that the Av0-module E(p,q)+•v0 [n+•] is generated under multiplication
by Av0 by a finite list of elements – those in products Vi1 . . . Vik of total height
λ. Again, the lower bound on nonzero height implies that in all such products
ε
∑

nij ≤ λ, bounding the possible degrees as claimed. �

In practice, one is most often interested in diagonals
⊕

p+q=i

Ep,q and their finite-

generation as modules over GTCAs. The following slight adjustment to the corner
criterion argument of Lemma 4.1.2 extends the finite-generation result to the entire
diagonal.

Lemma 4.1.3 (Slope −1 criterion for finite generation of diagonals). Let E∗,∗ be
as in Lemma 4.1.2 – a bigraded GTCA generated by subspaces Vi ≤ Epi,qi [ni] such
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v0 L(x, y) = λ

L(x, y) = 0

Figure 3. Triangle bounded by cone angle of v0 and L(x, y) ≤ λ

that for every v ∈ Gen and n ∈ N the corresponding generating subspace⊕
v(Vi)=v
ni=n

Vi

is finite dimensional.
If v0 = (r0, t0) is a corner of the closed convex hull Conv(Gen) and the line L

of slope (−1) through v0 is at least of distance ε > 0 to any other point in Gen (see
Figure 4 and compare with Lemma 4.1.2), then for every i ∈ Z the diagonals

(18)
⊕

p+q=i+•(r0+t0)

Ep,q[n+ •]

form a finitely-generated Av0-module. More explicitly, this module is generated by

products Vi1 · . . . · Vik with
∑

nij ≤ dist(nL,(i,0))
ε .

v0

L

ε

Figure 4. Slope −1 criterion at the corner v0 of Conv(Gen)

Proof. The setup here is a special case of the corner criterion of Lemma 4.1.2, and
the same proof holds to show finite generation of the diagonals. We shall keep
the same notation as in that proof, except that here the slope (−1) condition on L
implies that the line equation L(x, y) = 0 is of the special form L(x, y) = ax+ay+c.

Now, if Ep,q[n+ •] is a summand in the i-th diagonal as expressed in (18), then
its height is

|Ep,q[n+ •]| = a(p+ q) + (n+ •)c = ai+ nc+ •L(v0) = ai+ nc.
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In particular, the entire diagonal is built from summands with constant height
λ := ai + nc = nL(i/n, 0) = n dist(L, (i/n, 0)). Note that the latter distance is
equivalently described as the distance between the scaled line nL through nv0 and
the diagonal p+ q = i.

But in the proof of Lemma 4.1.2 we showed that the only elements of height λ are
products of the GTCA Av0 and the finitely many products of generating subspaces
Vi1 · . . . · Vik with

∑
nij ≤ λ

ε . It follows that the diagonals in question are each
finitely-generated as an Av0-module, and with generators in the said degrees. �

Example 4.1.4 (Generation locus of orbit configuration spaces). The product
formula in Theorem 3.7.2 (16) provides a list of (free) generators for the E1-page

of the spectral sequence that computes HBM
∗ (Conf•G(X,T )):

• Vi,n := HBM
i (X)⊗ H̃n−3(Πn) ≤ E1

n−1,i[n] for every i ≥ 0 and n ≥ 1, and,

• V[s],n := H̃n−2(DT
n (Gs, s)) ≤ E1

n,0[n] for orbit [s] ∈ S/G and every n ≥ 1.

Letting d be the degree of the top homology of X, the generation locus is thus

Gen =

{(
n− 1

n
,
i

n

)
: 0 ≤ i ≤ d, n ≥ 1

}
∪ {(1, 0)}.

Figure 5 shows a plot of the generation locus, in the case that the top homology of
X is in degree d = 3. Notice that, as n approaches infinity, the points converge to
the corner (1, 0).

Since for every fixed • = n there are only finitely many generating subspaces and
each is finite-dimensional, the hypotheses necessary for the corner criterion hold.
The two marked corners, at (0, 0) and (0, d), in Figure 5 are those isolated corners
that give rise to finitely-generated module structures on E1

∗,∗ according to Lemma
4.1.2.

Also notice that when d = 1, the line of slope (−1) through the corner (0, 1)
passes through infinitely many points in the generation locus. In fact, the corner
(0, d) satisfies the conditions of Lemma 4.1.3 if and only if d �= 1.

The difference between the corner criterion Lemma 4.1.2 and the slope (−1) crite-
rion Lemma 4.1.3 becomes important when studying the homology of ConfnG(X,T ):
it may happen that every term E∞

(p,q)+•v0 by itself is a finitely-generated module,

but there are infinitely many of them that contribute to the module HBM
i+•v0 . This

kind of behavior leads to Definition 4.1.5.

Definition 4.1.5 (Filtered representation stability). Let A[•] be a GTCA and let
M [•] be an A-module equipped with a filtration F∗(M). There are two comple-
mentary notions of finite generation with respect to the filtration.

• M is bounded finitely generated if for every bound p on the filtration degree,
Fp(M) is a finitely generated A-module.

• M is truncated finitely generated if for every p, the quotient M/Fp(M) is
a finitely generated A-module.

Remark 4.1.6 (Shifted filtration). It will often be the case that the module M
in Definition 4.1.5 is a GTCA, and A is a sub-GTCA. If A[•] is concentrated in
filtration degree 
•, one makes the A-module structure on M compatible with the

filtration by shifting F̃pM [•] := Fp+�•M [•]. Then multiplication by A preserves the
filtration, and one can discuss filtered finite generation.
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•

•
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2
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· · ·1

0

1
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d = 3

Figure 5. Generation locus for the E1-page of the spectral se-
quence computing HBM

∗ (ConfnG(X,T )); see Example 4.1.4

Lemma 4.1.7 (Slope �= −1 criterion for finite generation of diagonals). Let E∗,∗ be
again as in Lemma 4.1.2 – a bigraded GTCA generated by subspaces Vi ≤ Epi,qi [ni]
such that for every v ∈ Gen and n ∈ N the corresponding generating subspace⊕

v(Vi)=v
ni=n

Vi

is finite dimensional.
Filter the diagonals by

F�

⎛⎝ ⊕
p+q=i

Ep,q

⎞⎠ =
⊕

p+q=i
p≤�

Ep,q.

Then for every isolated corner v0 = (r0, t0) of the closed convex hull Conv(Gen),
the Av0-module structures on the diagonals⊕

p+q=i+•(r0+t0)

Ep,q[n+ •]

are filtered finitely generated with respect to the shifted filtration F̃� = F�+•r0 .
More specifically, let L be a nonvertical line that meets Gen only at v0.

• Suppose Gen lies below L. If L has slope m > −1, then the diagonals are
bounded finitely generated. Otherwise, if m < −1, then the diagonals are
truncated finitely generated.

• If Gen lies above L, then the previous two cases are reversed.

Quantitatively, one could give explicit bounds on the values • at which generators
might appear in terms of the bounds in the corner criterion and the filtration degree

.
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Proof. Let L(x, y) = mx − y + c = 0 be an equation of a line that intersects the
convex hull of Gen only at the corner v0 = (r0, t0). If Gen lies below L, then
L(v) ≥ 0 for all v ∈ Gen and L(v0) = 0. Otherwise, if Gen lies above L, then
L(v) ≤ 0 for all v ∈ Gen and L(v0) = 0.

Let us assume that Gen lies below L; the other case is completely analogous
with all inequalities swapped. As in the proof of Lemma 4.1.2, define the height of
e ∈ Ep,q[n] to be

|e| = n · L(v(e)) = mp− q + nc.

Again, since the height is additive in all inputs (p, q, n), it is additive under mul-
tiplication. And since it is nonnegative on a generating set for E, it follows that
|e| ≥ 0 for every element.

Now, consider the diagonal ⊕
p+q=i+•(r0+t0)

Ep,q[n+ •].

For an element e ∈ Ep,q[n+ •] in this sum,

0 ≤ mp− q + (n+ •)c since |e| ≥ 0

= −(p+ q) + (n+ •)c+ (m+ 1)p

= −(i+ •(r0 + t0)) + (n+ •)c+ (m+ 1)p since e is on this diagonal

= −i+ •(−r0 − t0 + c) + nc+ (m+ 1)p

= −i+ •(−r0 −mr0) + nc+ (m+ 1)p since L(v0) = 0

= −i+ nc+ (m+ 1)(p− •r0)
which gives

(19) (m+ 1)(p− •r0) ≥ i− nc.

The diagonal is a direct sum of Av0-modules Ep0+•r0,q0+•t0 [n + •]. According
to the inequality (19), such a module contributes to the diagonal nontrivially only
when

(m+ 1)p0 ≥ i− nc.

When m > −1, this is equivalent to having a lower bound p0 ≥ i−nc
m+1 . By addi-

tionally bounding the filtration degree by 
 + •r0, one also imposes a restriction

 ≥ p0. These bounds on p0 leave only finitely many Av0-modules contributing
to the i-th diagonal, each of which is finitely-generated by the corner criterion in
Lemma 4.1.2. Thus, the diagonals are bounded finitely generated with respect to

the shifted filtration F̃� = F�+•r0 .
On the other hand, if m < −1, inequality (19) gives the restriction p0 ≤ i−nc

m+1 .
Then truncating the filtration would give an additional lower bound on p0, thus
again ensuring that only finitely many of these finitely generated Av0-modules con-
tribute to the i-th diagonal. The diagonals are therefore truncated finitely gener-
ated. �
4.2. Primary representation stability. The E1-page of the collision spectral
sequence gives access to only limited information regarding HBM

∗ (ConfnG(X,T )).
From this point on we handle nonvanishing differentials by employing the powerful
Noetherianity results for GTCAs. The primary and most important example of
this approach is given in Theorem B and has already appeared in various special
cases [Cas16,Pet17].
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Theorem 4.2.1 (Primary finite generation of homology). Assume that X is an

almost free G-space following the conventions of §1.4 with dimHBM
∗ (X) < ∞, and

let T ⊂ X be a finite G-invariant subset. Let HBM
d (X) �= 0 be the top nonvanishing

Borel-Moore homology group, and let

A := IndFBG(1) HBM
d (X)

be the GTCA freely generated by HBM
d (X). The cross product

HBM
d (X)⊗HBM

i (ConfkG(X,T )) → HBM
d+i (Conf

k+1
G (X,T ))

gives an action of A on the FBG-modules of constant codimension

HBM
d•−i(Conf

•
G(X,T ))

for every i ≥ 0, preserving the collision filtration.
When d ≥ 2, these A-modules are finitely generated. Explicitly, for every i ≥ 0

there exist finitely many classes

α1, . . . , αk ∈
∐
n∈N

HBM
dn−i(Conf

n
G(X,T ))

whose images under repeated multiplication by HBM
d (X) generate

HBM
dm−i(Conf

m
G (X,T ))

as a Sm[G]-representation for every m ∈ N.
Otherwise, when d = 1 these A-modules are bounded-finitely generated relative

to the collision filtration, i.e. every term

Fp H
BM
•−i (Conf

•
G(X,T ))

is finitely-generated.

Proof. From the compatibility of the collision filtration with GTCA multiplica-
tion, it is clear that the cross product with classes in X respects the filtration.
Passing to the associated spectral sequence, one identifies the sub-GTCA A =
IndFBG(1) HBM

d (X) ≤ E1
∗,∗ in the product decomposition Theorem 3.7.2 (16) as the

one generated by this product operation. Since all differentials point to the left,
they must all vanish on A ⊆ E1

0,d•. Thus the entire spectral sequence is in fact one
of A-modules, and the A-action on homology is compatible with this structure.

We show by induction on r that every diagonal⊕
p+q=d•−i

Er
p,q[•]

is a (bounded-) finitely generated A-module. For the base case r = 1, note that A
contributes the point (0, d) ∈ Gen(E1) (see Figure 5) which is always an isolated
corner separated from other points by a horizontal line – this gives bounded-finite
generation by Lemma 4.1.7. Furthermore, if d ≥ 2 then the point (0, d) is separated
from the other points by a line of slope (−1), thus by the slope (−1) criterion in
Lemma 4.1.3 absolute finite generation follows.

For the induction step, since the differentials are A-linear, their kernel and cok-
ernel are A-submodules. Therefore, for the induction to proceed it would suffice to
know that the category of A-modules is locally Noetherian, i.e. submodules of a
finitely generated module are also finitely generated: then finite-generation would
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persist under computing the subquotients Er+1 = H(Er, ∂r). This Noetherianity
property indeed holds as a result of the work of Sam-Snowden, explained next.

Consider the case G = 1 first. For any ring R and D ∈ N, modules over
IndFB(1)(R

D) are equivalent to representations of the category FID (see [SS17, Prop.

7.2.5.]). Then [SS17, Cor. 7.1.5] is the claim that representations of FID over a
Noetherian ring are again Noetherian. Lastly, if U is any finitely generated R-
module, it receives a surjection RD � U and thus there is an induced map of
TCAs IndFB(1)(R

D) � IndFB(1)(U). Since the former TCA has a locally Noetherian

category of representations, it follows by restriction that the latter TCA has the
same property.

With a general finite group G, one can bootstrap from the TCA case in the
previous paragraph. This proceeds by observing that the restriction of GTCAs to
TCAs along the inclusion 1 ≤ G reflects finite generation of modules. Indeed, upon
restriction one only has to consider all Gn-translates of generators, of which there
would be finitely many.

Returning to our original problem of configuration spaces, Noetherianity of A-
modules allows the induction to proceed. Since every A-module occurring in E1 is
(locally) finitely-generated, every later page Er would also be comprised of finitely-
generated A-modules, and thus so will be E∞. Since the diagonal ⊕p+q=d•−iE

∞
p,q[•]

is the associated graded of HBM
d•−i, they are all (bounded-)finitely generated as

claimed. �

Remark 4.2.2 (Poincaré dual statement for manifolds). When X is an orientable
d-manifold, its orbit configuration space ConfnG(X,T ) is an orientable dn-manifold.
Poincaré duality gives an identification

HBM
d•−i(Conf

•
G(X,T )) ∼= Hi(Conf•G(X,T ))

and the cross product with the fundamental class [X] is conjugate to the ordinary

pullback along the projection Confn+1
G → ConfnG forgetting a point. Thus our

Theorem 4.2.1 recovers and extends classical representation stability for connected
oriented manifolds.

Remark 4.2.3 (Degrees of generators and relations). For finite generation to give
explicit applications, one must get a handle on the degrees at which generators and
relations appear. In Theorem 4.3.4, we examine the E1 page more thoroughly and
obtain explicit bounds on degrees at which generators may appear. We show that
the A-modules that make up the E1-page are all free, generated in known degrees
and satisfy no relations. Explicitly, the diagonal⊕

p+q=d•−i

E1
p,q[•]

is generated by elements in E1[n] with n ≤ i
ε for ε = min(d−1

2 , k) where k ≥ 1 is

least such that HBM
d−k �= 0.

From this point, one would need to bound the effect differentials might have.
This is standard practice in representation stability, and proceeds using the notions
of injectivity and surjectivity degree (see e.g. [CEF15, §3.1] or [Wil14, §4.2]). We
will not address this more quantitative aspect of stability in this work.
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Let us now relate the finite generation results of Theorem 4.2.1 with representa-
tion theory, and constrain the irreducible decompositions of the sequence of repre-
sentations Sn[G] � HBM

dn−i(Conf
n
G(X,T )). When the top homology HBM

d (X) is an
irreducible representation of G (e.g. the trivial representation), and under the mild
hypotheses of Theorem 4.2.1, there is a nice characterization for these irreducible
decompositions. Similar descriptions are possible when HBM

d (X) is reducible, but
these get messy and hard to write down explicitly.

We will first recall some representation theory of the wreath product group
Sn[G] (see [Ker71] for an exposition). Given an Sn-representation V and a G-
representation U , denote V [U ] := V ⊗ U⊗n, a representation of Sn[G].

Suppose that U1, . . . , U� is a complete list of irreducible representations ofG. The
irreducible representations of Sn[G] are characterized by the induction products
Sλ1 [U1] ·Sλ2 [U2] · · ·Sλ� [U�], where λ1, . . . , λ� are integer partitions with |λ1|+ · · ·+
|λ�| = n and Sλi is the irreducible representation of S|λi| corresponding to the
partition λi. Let us denote

V (λ1, . . . , λ�) := Sλ1 [U1] · Sλ2 [U2] · · ·Sλ� [U�].

Given an integer partition λ = (a1, . . . , ak) and an integer m ≥ |λ| + a1, define a
partition λ〈m〉 = (m − |λ|, a1, . . . , ak). Considering the Young diagram of λ, this
operation adds a top row to the diagram, obtaining a partition of m.

Theorem 4.2.4 (Multiplicity stability). Assume that X is an almost free G-space

following the conventions of §1.4 with dimHBM
∗ (X) < ∞, and let T ⊂ X be a finite

G-invariant subset. Let HBM
d (X) �= 0 be the top nonvanishing homology group, and

assume that HBM
d (X) is an irreducible G-representation; without loss of generality

we may assume HBM
d (X) = U1.

When d ≥ 2, there exists a finite set Λ of 
-tuples of partitions and positive
integers c(λ) for each λ = (λ1, . . . , λ�) ∈ Λ such that for all n � 1,

HBM
dn−i(Conf

n
G(X,T )) =

⊕
λ=(λ1,...,λ�)∈Λ

V (λ1〈n〉, λ2, . . . , λ�)
⊕c(λ).

Furthermore, all λ = (λ1, . . . , λ�) ∈ Λ satisfy the bound |λ1|+ · · ·+ |λ�| ≤ i/ε with

ε = min(d−1
2 , k) where k ≥ 1 is least such that HBM

d−k(X) �= 0.
When d = 1 the same multiplicity stability result holds after bounding the colli-

sion filtration to degree p, now with partition bound
∑

|λj | ≤
√
2
2 (i+ 2p).

Proof. From Theorem 4.2.1 the module HBM
d•−i(Conf

•
G(X,T )) is finitely generated

under repeated multiplication by HBM
d (X) ∼= U1. Let {Vj}gj=1 enumerate the collec-

tion of generating irreducible representations, say Vj occurs in configurations of nj-

points. Explicitly, for every n ≥ 1 the Sn[G]-representation HBM
dn−i(Conf

n
G(X,T ))

is a quotient of the sum of the induction products

(20) Vj � (U1 � . . .� U1︸ ︷︷ ︸
k times

) = Vj · S(k)[U1],

where S(k) is the trivial representation of Sk and k = n− nj .
By the classification of irreducibles Vj = Sμ1 [U1] · Sμ2 [U2] · · ·Sμ� [U�] for some

partitions satisfying |μ1|+ . . .+ |μ�| = nj . Thus the induction product in (20) is

(Sμ1 [U1] · Sμ2 [U2] · · ·Sμ� [U�]) · S(k)[U1] ∼= (Sμ1 · S(k))[U1] · Sμ2 [U2] · · ·Sμ� [U�].



STABILITY PHENOMENA IN ORBIT CONFIGURATION SPACES 275

The branching rules for Sμ1 ·S(k) work just as for symmetric groups, and hence the
decomposition of such a product stabilizes as in ordinary representation stability for
FI-modules. More explicitly, [SS16, Proposition 3.1.3] explains that when U1 is the
trivial representation, a module as we have above is equivalent to a representation
of the category FI×FB�−1, with every factor acting on a corresponding term in the
induction product. In particular, the multiplicities associated with U1 follow the
usual pattern of multiplicities in FI modules. But a quick inspection of their proof
shows that it carries over to having U1 be any irreducible of G.

Lastly, when d ≥ 2 Lemma 4.1.3 gives a bound on the generator degree of the
E1-page of the collision spectral sequence: nj ≤ i/ε, and when d = 1 one gets
the filtration dependent bound from the proof of Lemma 4.1.7. These bound the
partition lengths appearing on E1, and therefore also the ones in homology. �

Our setup gives rise to symmetric group representations in two different ways:
either by restricting the action Sn[G] � ConfGn (X,T ) to Sn ≤ Sn[G] or by for-
getting the G action on X altogether and considering the ordinary configuration
space Confn(X,T ) with its symmetric group action.

In both cases, the algebraic structure that arises in Theorem 4.2.1 is what’s
known in the literature as an FID-module, where D is the dimension of the top non-
vanishing Borel-Moore homology HBM

d (X). These are representations of a certain
category FID described explicitly in [SS17], whose finitely generated representations
have been studied extensively by Ramos [Ram17]. Their work implies stability pat-

terns in the representations Sn � HBM
dn−i(Conf

G
n (X,T )), mainly injectivity and

surjectivity properties of the maps HBM
dn−i → HBM

d(n+1)−i and constraints on their

irreducible decompositions (see [Ram17, Theorem A] for details). In particular, we
obtain the following statement using [Ram17, Theorems B and 2.15].

Corollary 4.2.5 (Restricting to the symmetric group action). Assume that X

is an almost free G-space following the conventions of §1.4 with dimHBM
∗ (X) <

∞, and let T ⊂ X be a finite G-invariant subset. Let HBM
d (X) �= 0 be the top

nonvanishing homology, and set D = dimHBM
d (X). For d ≥ 2 and any i ≥ 0,

consider HBM
dn−i(Conf

G
n (X,T )) as a representation of the symmetric group Sn.

(1) For any partition λ, there exists a polynomial Pλ(t) with degPλ < D
such that the multiplicity of the irreducible Sn-representation V (λ〈n〉) in

HBM
dn−i(Conf

G
n (X,T )) is equal to Pλ(n) for all n � 1.

(2) There exist polynomials p1(t), . . . , pD(t) such that for all n � 1,

dimHBM
dn−i(Conf

G
n (X,T )) = p1(n) + p2(n)2

n + . . .+ pD(n)Dn.

When d = 1, the same holds after bounding the collision filtration to degree p.

4.3. Secondary and higher representation stability. In [MW16], Miller and
Wilson discovered a phenomenon of secondary representation stability: for a man-
ifold M with boundary, their construction gives rise to a stabilization map

Hi(Conf
n(M)) → Hi+1(Conf

n+2(M))

by introducing a pair of orbiting points near the boundary of M . They then show
that after “factoring out” a primary stabilization given by introducing one point
near the boundary (whose Poincaré dual map is a right inverse to our primary stabi-
lization – more details in §4.4) their new stabilization map gives isomorphisms with
improved stable range. Following their example, this section explores secondary
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operations on the sequence of representations HBM
∗ (Conf•G(X,T )) that become im-

portant after factoring out the primary stabilization action of the previous section,
though we prove new theorems only in the special case of i-acyclic spaces, for which
the collision spectral sequence already collapses at the E1-page. Examples to which
our analysis will apply are the affine and toric root system arrangements, which in
large part motivated this project.

When the collision spectral sequence collapses at E1 one essentially gets a for-
mula for the homology as a GTCA (up to an extension problem). In this regard
invariants such as Betti numbers and multiplicities of irreducible representations
are in principle completely computable, though some qualitative questions are still
hard to answer in practice. The main purpose of this section is therefore different:
we seek to understand the various stabilization operations and quantify finite gen-
eration under them. One potential broader application of this analysis is to the
study of “derived generators”, also called FI-hyperhomology in some contexts, see
Remark 4.3.2 for more details.

Consider the many module structures on the E1-page of our spectral sequence
that arise from the product factorization (16) in Theorem 3.7.2. For efficiency of
notation, let us break somewhat from the notation of §4.1 and write

An
i := IndFBGG×Sn

HBM
i (X)� H̃n−3(Πn)

for the term that appears in the n-th factor of (16). Note that this is precisely the
subalgebra of E1 generated by Vi,n from Example 4.1.4, and A1

d is the algebra of
primary stabilization operations studied in §4.2.

Now, every pair (i, n) gives an action by multiplication

An
i [•]⊗ E1

p,q[m] → E1
p+(n−1) •

n ,q+i •
n
[m+ •]

making the E1-page into a direct sum of An
i -modules labeled by triples (p, q,m).

In fact, the product factorization in (16) shows that every one of these modules is
free.

Definition 4.3.1 (Factoring out an action). For any GTCA A and any A-module
E, extracting the generators for E amounts to computing the quotient by the
“augmentation ideal”

(E/A>0E)[•] = E[•]/

⎛⎜⎝ ∑
i+j=•
i>0

A[i]E[j]

⎞⎟⎠ .

We refer to this operation as factoring out the A-action.

Remark 4.3.2 (Factoring out is zeroth FI-homology). This operation of ‘factoring
out’ and its derived functors are ubiquitous in the representation stability literature
(see e.g. [CE17,LR18]). For example, in the case that G = 1 and A = 1•, an A-
module is nothing but an FI-module. Then factoring out the A-action is precisely
what [CEF15, Def. 2.3.7.] calls FI-homology HFI

0 (−).
Note that when working with rational coefficients, all modules appearing in our

E1-page are projective. It follows that factoring out actions at the level of E1

computes the associated derived functor – a generalization of FI-hyperhomology.
In particular, all results below about vanishing ranges and generator degrees for
E1 imply the same vanishing ranges for the derived factoring-out functors. For
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FI-modules such vanishing results have been translated back to stable range calcu-
lations by Gan-Li [GL19], and have been utilized in the case of configuration spaces
of closed manifolds by Miller-Wilson [MW20]).

We should also point out recent work by Ho [Ho20] which obtains essentially
the same bounds presented below using a completely different approach via factor-
ization homology, though he only considers rational coefficients. See [Ho20] for a
more complete discussion of the derived factoring-out functors and their vanishing
ranges in the context of configuration spaces.

Example 4.3.3 (Factoring-out for free GTCAs). For a free module E = A ⊗ V ,
one clearly gets

A⊗ V/(A>0 ⊗ V ) ∼= V

since A is unital. This could be understood as formally deleting the ‘A⊗’ factor
from the product factorization of E.

In the context of our GTCAs An
i acting on E1, a quotient E1/(An

i )>0E
1 simply

removes the term HBM
i (X)⊗H̃n−3(Πn) appearing in the product (16). Furthermore,

since (16) also implies that the various An
i -actions on E1 commute (possibly up

to signs), one can still define an Am
j -action on any quotient E1/(An

i )>0E
1 and

these remain projective Am
j -modules. This observation will enter our discussion of

secondary and higher stability below.

With the understanding that representation stability is interpreted as finite gen-
eration of modules over GTCAs, further actions of GTCAs on the spaces of gen-
erators for E1 exhibiting them as finitely generated modules are thus understood
as secondary representation stability. The next result manifests this procedure to
uncover many layers of finitely-generated module structures on E1.

Theorem 4.3.4 (Finite generation of diagonals in E1). Assume that X is an

almost free G-space following the conventions of §1.4 with dimHBM
∗ (X) < ∞,

and let T ⊂ X be a finite G-invariant subset. Let E1
∗,∗ be the GTCA comput-

ing HBM
∗ (ConfnG(X,T )), and for each pair (i, n) let An

i be the sub-GTCA freely

generated by HBM
i (X) ⊗ H̃n−3(Πn). The diagonals in E1

∗,∗ admit multiple struc-
tures of a (bounded) finitely-generated module over the sub-GTCAs An

i , obtained by
the following iterative procedure.

Set E = E1
∗,∗ and let Gen(E) be the generation locus of E (see Example 4.1.4

and Figure 5).

(1) Find the points v(An
i ) =

(
n−1
n , i

n

)
∈ Gen(E) of maximal taxi-cab norm.

If v := v(An
i ) is the unique point in Gen(E) of maximal norm, then the

diagonals

(21)
⊕

p+q=‖v‖•−j

Ep,q[m+ •]

form a finitely-generated free An
i -module for every pair (j,m) ∈ N2. More-

over, all generators appear in E[k] for k ≤ m‖v‖+j
ε where ε is the difference

between the two largest taxi-cab norms in Gen(E).
Otherwise, if there are multiple points of maximal norm, pick the one

with minimal x-coordinate, say v(An
i ) ∈ Gen(E). Then the free An

i -module
in (21) is only bounded finitely generated with respect to the appropriately
shifted filtration as in Remark 4.1.6).
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(2) A description of the (free) generators is attained by factoring out the action
of An

i . By replacing E with the quotient E/(An
i )>0E and returning to Step

(1), the space of generators will itself admit further structures of finitely-
generated free modules.

Remark 4.3.5 (Geometric view of Theorem 4.3.4). Before the proof, we describe
the procedure geometrically. One starts by sweeping in a line of slope (−1) from far
above Gen(E). The first point in Gen(E) that the line hits will give rise to finitely-
generated module structures on diagonals. If the line first hits multiple points, then
the one farthest to the left gives bounded finite generation. Then factor out the
action of this extremal point and iterate the procedure.

Proof. First note that the only accumulation point of Gen(E1
∗,∗) is (1, 0). Away

from this point, Gen(E1
∗,∗) is a bounded discrete set. Thus when applying the

geometric criteria for finite generation given in Lemmas 4.1.3 and 4.1.7, one need
not worry about separating a line from Gen(E) as long as the line does not pass
through (1, 0). The same reasoning applies to E at any iterate of the procedure, as
the set Gen(E) is a subset of Gen(E1

∗,∗).
Now suppose that E∗,∗ is given at any iterate of the procedure. Then by Example

4.3.3, E∗,∗ is still freely generated by a subcollection of the GTCAs {An
i }(n,i).

Recall that in the taxi-cab metric, a sphere around (0, 0) intersected with the
first quadrant is a line of slope (−1). This implies that the line of slope (−1)
passing through one of the points in Gen(E) with maximal taxi-cab norm must
pass through all points in Gen(E) with maximal norm. Denote this line by L.

Let v ∈ Gen(E) be the point on L with least x-coordinate (minimization of x
happens on the discrete part of Gen(E) and thus a minimum exists). Then any
line L′ through v with slope −1 + ε passes through v alone if ε > 0 is sufficiently
small, and avoids (1, 0). Thus by the corner criterion in Lemma 4.1.7, every diag-
onal becomes a finitely generated Av-module after bounding the (shifted) collision
filtration degree.

If, in addition, the point v ∈ Gen(E) is the unique point of maximal norm, then
the slope (−1) criterion in Lemma 4.1.3 applies and shows that the Av-action on
the diagonals is already finitely-generated. As for the claimed bound on generator
degrees, the slope criterion also gives the bound n ≤ dist(mL, (j, 0))/ε. But the
distance between a line of slope (−1) and a point, both in the first quadrant, is the

difference of their taxi-cab norms divided by
√
2. Since both the numerator and

the denominator are given by such distances, the roots cancel. A quick check shows
that the same distance formula holds when j is negative. �
Remark 4.3.6. The reader is warned that the An

i -module structures on the E1-page
are not in general compatible with the differentials, except for the cases with n = 1
– stabilizations by adding one point moving along a cycle. The problem is of course
that An

i ≤ E1 might not itself lie in the kernel of all differentials, and thus will not
commute with them.

One should therefore not expect to see these actions at the level of homology,
or even on any page Er with r > 1. However, since a spectral sequence gives a
sort of an upper bound on homology, one can still extract representation theoretic
information without any further assumptions (see e.g. Theorem 4.2.4).

Theorem 4.3.4 gives concrete information about homology in many special cases.
Mainly, when the collision spectral sequence collapses already at the E1-page: in
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this case the GTCA E1 essentially gives a formula for the Borel-Moore homology
of the orbit configuration space, up to a possible extension problem. However,
Theorem 4.3.4 unpacks the product decomposition and converts it into a quantita-
tive statement about degrees of generators, which is difficult to see in the product
decomposition of Theorem 3.7.2 directly.

A central class of examples in which this collapse occurs is called i-acyclic spaces :
spacesX in which the natural map H∗(X) → HBM

∗ (X) is trivial (see [Ara16,Pet18]).
These spaces include all orientable manifolds on which the cup product restricts to
zero on compactly supported cohomology H∗

c(X) – in particular the cases of affine
and toric arrangements (when X is C or C×).

Corollary 4.3.7 (Higher finite generation for i-acyclic spaces). Suppose that X is
an i-acyclic space, i.e. H∗

c(X) → H∗(X) vanishes, such as an orientable manifold
with trivial cup product on H∗

c(X) or any space of the form X ′×R. Assume further

that dimHBM
∗ (X) < ∞ (see also the conventions of §1.4), and let T ⊂ X be a finite

G-invariant subset.
Then the various GTCAs An

i , freely generated by HBM
i (X)⊗ H̃n−3(Πn), act on

the associated graded homology grF HBM
∗ (Conf•G(X,T )) giving rise to a sequence

of (bounded) finitely generated free module structures, by following the procedure of
Theorem 4.3.4.

Most significantly, let HBM
d (X) �= 0 denote the top nonzero homology. Then

for every k < d
2 − 1 stabilizing by cross product with HBM

d−k(X) gives free module

structures on HBM
(d−k)•−j(Conf

•
G(X,T )) finitely-generated from classes at which • <

j after factoring out the actions of HBM
d−i (X) for 0 ≤ i < k.

If d is even, the same finite generation results hold for k = d
2 − 1 but with

generators only bounded by • ≤ 2j. When d is odd, multiplication by HBM
d+1
2
(X) only

gives finitely generated free modules at bounded collision filtration degree.

Proof. Petersen shows in [Pet18] that the collision spectral sequence collapses at

E1 for i-acyclic spaces. Thus every term HBM
i (X) ⊗ H̃n−3(Πn) ⊆ E1

n−1,i[n] is

isomorphic to a subspace of HBM
i+n−1(Conf

n
G(X,T )) under a choice of splitting of the

collision filtration. In this way, the GTCA multiplication on homology equips it
with an action of An

i , compatible with the An
i -module action on E1 up to extensions.

Now, since finite generation persists under extensions, the homology will be finitely-
generated whenever the diagonals of E1 are so. The latter cases are described in
Theorem 4.3.4.

In particular, for every k < d
2 − 1, the k-th iterate of the procedure picks the

point of maximal taxi-cab norm (0, d−k) ∈ Gen(E). This corresponds to the action

of multiplication by HBM
d−k(X), now seen to freely generate HBM

(d−k)•−j(Conf
•
G(X,T ))

modulo the actions by HBM
d−i (X) for i < k. The generators for this action are

constrained to lie in • ≤ j.
The k = �d

2 −1�-th step in the iterative process of Theorem 4.3.4 again picks out

stabilization by HBM
d−k(X), but differs between even and odd d. In the even case,

the point of Gen(E) with second smallest norm is
(
1
2 ,

d
2

)
at distance ε = 1/2, thus

giving the worse bound on generators. In the odd case, this point has the same
maximal norm d − k, and therefore stabilization by HBM

d−k(X) only gives bounded
finite generation. �
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Example 4.3.8. The above kind of secondary and higher stability is better behaved
and is more interesting when the homological dimension d is large, e.g. for manifolds
of large dimension d. For example, when

d = 1: even the primary stabilization only gives finitely generated modules
after bounding the collision filtration degree.

d = 2: primary stabilization means that the modules HBM
d•−j(Conf

•
G(X,T )) are

finitely generated by classes in configurations of ≤ 2j points.
d = 3: primary stabilization gives finite generation of HBM

d•−j(Conf
•
G(X,T ))

with improved bounds on generation degrees, now coming from configura-
tions of ≤ j points. There is also secondary stabilization by HBM

d−1(X), but
it only gives bounded finite generation.

d = 4: now the secondary stabilization by HBM
d−1(X) gives finite generation

with generators coming from configurations of ≤ 2j points.
d = 5: the secondary stabilization operation gives finite generation with the

improved bound of ≤ j on generation degrees. Now there is also tertiary
stabilization by HBM

d−2(X) giving bounded finite generation.

And this process continues in the predictable way.

Remark 4.3.9 (Improving the stable range). The intended way to conceptualize
Theorem 4.3.4 and Corollary 4.3.7 is as follows. One thinks of the actions of An

i as

various stabilization operations, comparing Confk to Confk+n. The first of these
stabilizations mentioned in Theorem 4.3.4 is multiplication by HBM

top (X) – this is
the primary stabilization action of §4.2, and the finite generation of Theorem 4.2.1
is interpreted as primary representation stability.

Then the statement about finite generation for the later actions should be un-
derstood as secondary stability – showing that there is yet another finite list of
generators that strictly improves the range of generation. This improvement is
quantified by saying that the slope of stability has decreased.

Definition 4.3.10 (Slope). We say that, for a fixed pair (j0, n0), the sequence

of homology groups HBM
j0+k•(Conf

n0+�•
G (X,T )) has slope k

� . Graphically, this is the
slope of the line passing through the groups when drawn on a grid with

(i, j) �→ HBM
i (ConfjG(X,T )).

A quantitative goal of representation stability is to control the behavior of these
sequences lying on slopes as small as possible. In our picture of the generation locus
Gen(E) (see Figure 5), the slope of diagonals under an Av-action is precisely the
taxi-cab norm ‖v‖ – hence the minimization process of Theorem 4.3.4.

For experts more familiar with (co)homological stability of configuration spaces
of manifolds, under Poincaré duality our slope d − s corresponds to the classical
slope s for a d-manifold. In particular, our attempt to understand Borel-Moore
homology at small slopes corresponds classically to working with large slopes.

Now one can understand Theorem C as a restatement of Corollary 4.3.7 using
the slope terminology: allowing a larger GTCA to act on homology reduces the
generation slope as follows.

Proof of Theorem C. In Corollary 4.3.7 we show that the module

HBM
(d−k)•−j(Conf

•
G(X,T ))
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is generated under multiplication by HBM
d−k(X) with generators satisfying • < j,

modulo the image of multiplications by HBM
d−i (X) for 0 ≤ i < k. Equivalently,

HBM
(d−k)n−j(Conf

n
G(X,T )) is generated by the image of multiplication by HBM

d−i (X)
for 0 ≤ i ≤ k whenever j < n.

Write j′ = kn+j, then one has a surjection onto HBM
dn−j′(Conf

n
G(X,T )) whenever

n > j = j′ − kn, or j′ < (k + 1)n as claimed. �

Let us remark on the case of a general space X for which differentials might
not vanish, and study higher stability in its configuration space. After passing to
a subquotient of E1, the bounds we give on degrees of generators may no longer
apply, and without them it is not clear whether surjectivity at decreased slopes as in
Theorem C holds in any form. We believe that properly addressing the homological
algebra of the derived ‘factoring-out’ functors will likely reproduce analogous results
in general, especially in light of the fact that the E1-page is built from free modules
that are acyclic for factoring out at least for Q-coefficients (see Remark 4.3.2).

Conjecture 4.3.11 (Proposed high dimensional secondary stability). Assume that

X is an almost free G-space following the conventions of §1.4 with dimHBM
∗ (X) <

∞, let T ⊂ X be a finite G-invariant subset, and let HBM
d (X) �= 0 be the top

nonvanishing homology group.
Then for all k < d−1

2 , the homology HBM
(d−k)•−j(Conf

•
G(X,T )) modulo the repre-

sentations generated by cross product actions

HBM
d−i (X)⊗HBM

∗ (Conf•G(X,T )) → HBM
∗+d−i(Conf

•+1
G (X,T ))

for all i = 0, . . . , k − 1 satisfies the same finite generation results under multipli-
cation by HBM

d−k(X) as the primary stabilization in Theorem 4.2.1.

If k = d−1
2 then finite generation after factoring out the previous actions holds

only at bounded collision filtration degrees.

These are stability statements for respective slope d − k (see Remark 4.3.9),
which under Poincaré duality translates to slope k in ordinary cohomology.

For experts we suggest that a central technical result that could prove Conjecture
4.3.11 is the generalization of [GL19, Theorem 5] from FI-modules to FId-modules,
i.e. for modules over TCAs generated by more than one element.

4.4. Stabilization by an orbiting pair. The stabilizations in Corollary 4.3.7
above come from the first !d−1

2 " iterations of the procedure in Theorem 4.3.4.
Pushing the procedure past this point and stabilizing by the top homology term
associated with n = 2 in Factorization (16) reveals a new phenomenon, akin to
Miller–Wilson’s secondary stability by introducing a pair of orbiting points [MW16].
In this section, we need Hypothesis 4.4.1:

Hypothesis 4.4.1 (Acyclic diagonal). Let X be a G-space with dimHBM
∗ (X) < ∞,

and let HBM
d (X) �= 0 be the top nonvanishing homology group. Further assume that

the diagonal Δ∗ : HBM
d (X) → HBM

d (X2) is zero on the top homology (e.g. i-acyclic
orientable manifolds, see [Pet18]).

To see the connection between the next stabilization operation and the introduc-
tion of a pair of orbiting points, consider first the case of an oriented d-manifold M
with G trivial and the class of two closely-orbiting points in Hd−1(Conf

2(M)). In
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Borel-Moore homology, a Poincaré-dual to this class is represented by any Borel-
Moore coboundary of the diagonal, i.e. any (d + 1)-chain in M2 whose boundary
is supported on the diagonal and represents its fundamental class [Δ], as explained
next.

For M = Rd one has Conf2(Rd) # Sd−1. Thus H∗(Conf
2(Rd)) is concentrated in

degree d−1 and generated by the class of orbiting points. The long exact sequence
of the inclusions Conf2(Rd) ⊂ R2d ⊃ Δ:

. . . HBM
d+1(R

2d) HBM
d+1(Conf

2(Rd)) HBM
d (Δ) HBM

d (R2d) . . .

0 [c] [Δ] 0

shows that HBM
d+1(Conf

2(Rd)) is generated by any chain in R2d whose boundary is
supported on the diagonal and ∂(c) = [Δ]. Therefore, such a class [c] is the unique
dual to the class of orbiting points.

For a general d-manifold M , consider again the long exact sequence of the in-
clusions Conf2(M) ⊂ M2 ⊃ Δ. Our assumption that Δ∗ is zero on top homology
precisely guarantees that there exists a chain c ∈ CBM

d+1 (M
2) whose boundary is

supported on the diagonal and ∂(c) = [Δ], by exactness:

. . . HBM
d+1(Conf

2(M)) HBM
d (Δ) HBM

d (M2) . . .
Δ∗

[c] [Δ] [Δ] = 0.

To see that [c] is dual to the class of orbiting points in M , first consider a small
ball Rd ∼= U ⊂ M . Passing to configurations Conf2(Rd) → Conf2(M), the class of
closely orbiting points in M is the image of a similar class for U . Since ΔM ∩U2 =
ΔU , it follows that c restricts to the Poincaré dual class of the orbiting pair in U .
A push-pull formula for the restriction from Conf2(M) to Conf2(U) shows that c
indeed gives a dual to the orbiting pair in M as well.

Geometrically, one can think of a chain in M2 whose boundary is the diagonal
as prescribing a coherent trajectory of two distinct points from being coincident to
leaving M through the boundary. Such a trajectory pairs with the class in which
the two points orbit each other precisely once.

In our E1 page, a chain representing a dual for the orbiting pair is represented
by the fundamental class

[M ] ∈ HBM
d (M) ∼= E1

1,d[2].

The differential on E1 is precisely the map induced by the diagonal inclusion M
Δ
↪→

M2, thus [M ] above has the desired boundary.
To summarize, while the primary stability involves multiplication by [M ] ∈

HBM
d (M) ∼= E1

0,d[1] – a dual to the class of any point in M , there is a secondary

stabilization map given by multiplication with [M ] ∈ E1
1,d[2] – this one dual to

introducing a pair of closely orbiting points. To understand the exact relation
with Miller-Wilson’s stabilization operators, consider multiplication maps by two
Poincaré dual classes. These operations, say T on Hi and TBM on HBM

dim−i, have

the property that on the intersection pairing Hi ⊗HBM
dim−i one gets

〈Tα, TBMβ〉 = 〈α, β〉.
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Therefore the dual to each map is a right-inverse (a retraction) of the other, e.g.
T ∗ ◦ TBM = Id. In particular, both maps T and TBM are injective, and if either
one is surjective so will be the other. With this in mind, the argument above shows
that the action of the GTCA A2

d = IndFB(2) H
BM
d (M) is related with Miller-Wilson’s

secondary stability map in this way, and this relation makes Miller-Wilson’s stability
results equivalent to ours whenever both maps are defined.

Now, the above description assumed that we had a manifold with trivial group
action; consider next a G-space X under Hypothesis 4.4.1. Let Z be a (G ×S2)-

stable complement to the image
(
HBM

d+1(X
2) → HBM

d+1(Conf
2(X))

)
. As is evident

from the long exact sequence of the pair Δ ⊂ X2 mentioned in the previous few
paragraphs, Z is equivariantly isomorphic to HBM

d (X). The discussion above also
shows that when X is a manifold, Z specializes to a Poincaré dual space to the
classes of closely orbiting pairs.

The open inclusion Conf2G(X,T ) ↪→ Conf2(X) = Conf21(X, ∅) induces a restric-

tion map HBM
d+1(Conf

2
1(X, ∅)) → HBM

d+1(Conf
2
G(X,T )) that is clearly compatible with

the collision filtrations and the description of the associated spectral sequences. In
particular, the induced restriction map on E1

1,d[2] becomes

HBM
d (X) = Ind1

2
�S2

1×S2
HBM

d (X) → IndG
2
�S2

G×S2
HBM

d (X).

This identifies the restriction of Z ≤ HBM
d+1(Conf

2(X)) to Conf2G(X,T ) with the

subspace HBM
d (X) ≤ E1

d,1[2] from which the term is induced.

Theorem 4.4.2 (Stabilization by orbiting pair analogue). Let X be a G-space of
homological dimension d ≥ 2 satisfying the additional Hypothesis 4.4.1, and let Z
be the restriction to HBM

d+1(Conf
2
G(X,T )) of a (G × S2)-stable complement to the

image of the map
(
HBM

d+1(X
2) → HBM

d+1(Conf
2(X))

)
. The cross product

Z ⊗HBM
j (ConfmG (X,T )) → HBM

(d+1)+j(Conf
m+2
G (X,T ))

makes the homology into modules

(22) HBM
(d+1)•−i(Conf

2•
G (X,T )) and HBM

(d+1)•−j(Conf
2•+j
G (X,T ))

over the GTCA IndFBGG×S2
Z for the various values of j ∈ Z (possibly < 0).

If X is i-acyclic then every homology module under iterated multiplication by
Z is free and finitely generated by classes coming from configurations with • ≤ 2j
modulo images of the cross product actions

HBM
d−i (X)⊗HBM

∗ (Conf•G(X,T )) → HBM
∗+d−i(Conf

•+1
G (X,T ))

for all 0 ≤ i ≤ d−1
2 .

Proof. By the iterative process described in Theorem 4.3.4 one deduces that after
factoring out the cross product action by HBM

d−k(X) for 0 ≤ k ≤ d−1
2 , the multiplica-

tion by HBM
d (X) ≤ E1

1,d[2] makes the E1 page into a collection of finitely generated

and free modules over the GTCA IndFBGG×S2
HBM

d (X). Furthermore, the bounds on
generators given in Theorem 4.3.4 specialize for the modules in (22) to 2j, as one
sees by looking at the generation locus in Figure 5 and observing that the minimal
difference of taxi-cab norms between ( 12 ,

d
2 ) and any point below it in Gen(E) is 1

2 .

Now, our choice of Z ≤ HBM
d+1(Conf

2(X)) is naturally identified with the gen-

erating subspace HBM
d (X) ≤ E1

d,1[2] after passing to the associated graded of the
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collision filtration. In particular, the cross product with Z coincides with the multi-
plication of the previous paragraph, thus making E1 into finitely generated modules
over IndFBGG×S2

Z.
When X is an i-acyclic space, Remark 3.7.5 states that all differentials of the

collision spectral sequence vanish. Thus the finite generation and bounds on the
E1-page imply the same bounds on homology, thus completing the proof for such
spaces. �

For a spaceX not satisfying the i-acyclicity assumption the unknown differentials
pose a challenge. However, when dimHBM

d (X) = 1, the Noetherianity of TCAs
could allow us to get around this difficulty. Unfortunately, this theory is only well-
developed for the case of a trivial group G and for TCAs generated by a single
element over a field of characteristic 0; hence we consider only this case below.
Suppose therefore that dimHBM

d (X) = 1. The TCA A2
d acting on homology is the

free graded-commutative TCA generated by a one-dimensional S2-representation.
Such TCAs are exactly one of following known in the literature as Sym(Sym2(C)),
Sym(Λ2(C)), Λ(Sym2(C)), and Λ(Λ2(C)). In [NSS16, NSS19], Nagpal, Sam, and
Snowden prove that over a field of characteristic 0, all four TCAs possess the
Noetherian property. Since after factoring out the actions of the TCAs A1

d−i for

0 ≤ i ≤ d−1
2 every module in the E1 page is finitely generated, the same property

extends to their subquotient modules. To get the same result applied to homology
one would have to understand the effect that factoring out stabilization actions
has at the level of homology, and whether finite generation persists through such
operations.

Conjecture 4.4.3. Theorem 4.4.2 holds without the assumption that X is i-acyclic,
though now with nonfree modules over IndFBG×S2

Z and with worse bounds on where
generators appear.

4.4.1. Potential generalizations. As mentioned in §1, Theorem 4.4.2 is analogous
to the work of Miller and Wilson on secondary representation stability [MW16].
One major advantage of their approach is that they proved their stability result
without the assumption that Δ∗ = 0. We believe that a more refined version of
Theorem 4.4.2 is possible, replacing Z with kerΔ∗, but the homological algebra
involved would pose too great of a distraction at this point of this already lengthy
document. It is our hope to address the general case in a sequel.

Another expected extension of this result for non-i-acyclic spaces is when G
is not the trivial group. With the current available technology of representation
stability, such a result is out of reach. But the product factorization in Theorem
3.7.2 suggests that one could hope to bootstrap the G = 1 case up to a general G
without much trouble. Such an extension is also a potential subject of a sequel.

4.5. Additional forms of stability. The geometric criteria for finite generation
in §4.1 reveal two new types stabilization actions that are associated with finite
generation.

4.5.1. Bottom-left corner stabilization. In Corollary 4.3.7, we described a succession
of stabilization actions that arise from lines touching the top of the generation locus
in Figure 5. An analogous process proceeds when considering lines touching the
bottom of Gen(E).
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Theorem 4.5.1 (Bottom-corner stabilization process). Assume that X is an al-

most free G-space following the conventions of §1.4 with dimHBM
i (X) < ∞ for

each i, and let T ⊂ X be a finite G-invariant subset. Then the cross product

HBM
0 (X)⊗HBM

i (ConfnG(X,T )) → HBM
i (Confn+1

G (X,T ))

endows HBM
i (Conf•G(X,T )) with the structure of a finitely generated module over

the GTCA IndHBM
0 (X).

If X is a d-dimensional manifold, under Poincaré duality this translates to a
finitely-generated module structure in every fixed codimension Hd•−i(Conf•G(X,T ))

under cross product by the volume forms in Hd(X).
Proceeding to secondary operations, in the case of i-acyclic spaces the consecutive

cross products by HBM
k (X) with k=1, 2,. . . endow the homology HBM

k•−i(Conf
•
G(X,T ))

with a filtered-finite generation structure relative to the collision filtration after fac-
toring out the multiplication by HBM

j (X) for j < k.

Proof. For the multiplication by HBM
0 (X) the same proof as for Theorem 4.3.4

applies by replacing the slope (−1) line touching Gen(E) from above with one
touching from below.

Then for secondary and higher stabilization, fix k ≥ 1. Factoring out the mul-
tiplication by HBM

j (X) for j < k removes the corresponding points (0, j) from
Gen(E), thus forming an isolated corner at (0, k). The criterion of slope �= −1 in

Lemma 4.1.7 states that multiplication by HBM
k (X) endows the remaining diag-

onals in the E1 page with the structure of a bounded-finitely generated module.
From that point, the same Noetherianity argument as in Theorem 4.2.1 shows that
the homology is also bounded-finitely generated after factoring out the previous
multiplication actions. �

4.5.2. Truncated-finite generation. The complementary notion to bounded finite
generation is finite generation after truncation. Whenever the stabilization process
of Theorem 4.3.4 failed to produce finite generation (when there were multiple
points on of Gen(E) of maximal taxi-cab norm) we have chosen to stabilize with
the left-most point, thus giving bounded-finite generation by Lemma 4.1.7. We
could have alternatively chosen to continue the process by picking the right-most
point, giving instead truncated-finite generation. This approach gives a completely
analogous version of Theorem 4.3.4, and in fact one could mix the two versions
freely.

Proposition 4.5.2 (Stabilization with locally finite generation). Consider the
setup of Theorem 4.3.4 and the iterative stabilization process described therein. If at
any iterate one encounters multiple points of maximal taxi-cab norm, they may pick
the right-most point instead of the instruction in Step (1) to pick the one furthest
to the left. Under such a choice every diagonal of E∗,∗ forms a free module that is
finitely generated after truncating the (shifted) collision filtration.

To understand the module of (free) generators, proceed to Step (2) of Theorem
4.3.4 without any further adjustments.

Proof. An analogous argument as in the proof of Theorem 4.3.4 works, but here
one will consider a line of slope −1− ε separating the right-most point of maximal
taxi-cab norm from the rest. Thus by Lemma 4.1.7 truncated-finite generation
follows. �
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Even more, after the primary stabilization action has been factored out, one
could have proceeded to stabilize with the “orbiting pair” action mentioned in
Theorem 4.4.2 to get the same theorem but with truncated-finite generation taking
the place of factoring out the cross products by HBM

d−k(X). This is a direct conse-
quence of Lemma 4.1.7, after observing that without the top corner in Figure 5 a
new corner is formed at

(
1
2 ,

d
2

)
.

There is however a substantial reason to prefer the version of Theorem 4.3.4
as presented above: GTCAs generated in low degrees are much better understood
compared to general ones. For example, any GTCA that is finitely generated
in degree 1 is Noetherian, thus giving hope that the finite-generation results of
Corollary 4.3.7 would apply to general spaces, while for TCAs generated in degree
≥ 3 not much is known. The generation locus in Example 4.1.4 has the property
that points further to the left come from configurations of smaller numbers of points,
and thus give better control over differentials by the above comment.
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