
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY, SERIES B
Volume 10, Pages 407–451 (March 6, 2023)
https://doi.org/10.1090/btran/138

RATIONAL CURVES ON DEL PEZZO SURFACES IN POSITIVE

CHARACTERISTIC

ROYA BEHESHTI, BRIAN LEHMANN, ERIC RIEDL, AND SHO TANIMOTO

Abstract. We study the space of rational curves on del Pezzo surfaces in
positive characteristic. For most primes p we prove the irreducibility of the
moduli space of rational curves of a given nef class, extending results of Testa
in characteristic 0. We also investigate the principles of Geometric Manin’s
Conjecture for weak del Pezzo surfaces. In the course of this investigation, we
give examples of weak del Pezzo surfaces defined over F2(t) or F3(t) such that
the exceptional sets in Manin’s Conjecture are Zariski dense.

1. Introduction

Let S be a del Pezzo surface over an algebraically closed field k. Let M0,0(S) be

the Kontsevich moduli space of stable maps of genus 0 and let Rat(S) denote the
union of the irreducible components ofM0,0(S) which generically parametrize stable
maps from irreducible domains. (Here we endow each component with its reduced
structure.) We are interested in the “discrete” invariants of Rat(S): the number of
irreducible components of a given degree, the dimension of the components, and so
on.

In characteristic 0, the behavior of these invariants is predicted by Geometric
Manin’s Conjecture as formulated in [LT19]. [Tes05] and [Tes09] classified the
components of Rat(S) for “most” del Pezzo surfaces; in particular, Testa’s work
verifies Geometric Manin’s Conjecture for such surfaces. (As a secondary result, in
this paper we extend Testa’s classification to all del Pezzo surfaces in characteristic
0.)

Our main focus is del Pezzo surfaces in characteristic p. In particular, we would
like to analyze whether the framework of Geometric Manin’s Conjecture can be
extended to cover such surfaces. We classify the components of Rat(S) for “most”
del Pezzo surfaces in characteristic p and verify that the principles of Geometric
Manin’s Conjecture hold in these examples.

1.1. Summary of main results. Our first statement addresses the components
of Rat(S) which have larger than the expected dimension. We show that most weak
del Pezzo surfaces do not carry any dominant families of this type.
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Theorem 1.1. Let S be a weak del Pezzo surface over an algebraically closed field
such that a general member of | − KS | is smooth. Then the only components of
Rat(S) which have greater than the expected dimension will parametrize multiple
covers of rational curves C satisfying −KS · C ≤ 1. In particular, there are no
dominant families of rational curves with larger than the expected dimension.

The weak del Pezzo surfaces S for which Theorem 1.1 does not apply – that
is, the surfaces S such that every member of | − KS | is singular – are classified
by [KN22]. There are 3 infinite families and 11 sporadic examples; these examples
only occur in characteristic 2 or 3 and when S has degree at most 2. Note that for
such a surface S the curves in | −KS | are all rational and thus Theorem 1.1 must
fail. We will discuss these examples in more depth in Section 3.1 and Section 8.2.

Under more restrictive conditions, we show the stronger result that there are
no dominant irreducible components of Rat(S) yielding an inseparable family of
rational curves.

Theorem 1.2. Let S be a smooth del Pezzo surface of degree d over an algebraically
closed field k of characteristic p. Assume that either d ≥ 2 or d = 1 and p ≥ 11.
When d = 3, we assume furthermore that S is not the following exception:

(1) char(k) = 2 and S is the Fermat cubic surface x3 + y3 + z3 + w3 = 0.

When d = 2, we assume furthermore that S is not one of the following list of
exceptions:

(2) char(k) = 3 and S is the double cover of P2 ramified along the Klein quartic
curve, i.e., the curve defined by zx3 + xy3 + yz3 = 0.

(3) char(k) = 2 and S is a double cover of P2 defined by the equation w2 +
wy2 + g4 where g4 is a homogeneous polynomial in x, y, z.

Then every dominant component of Rat(S) is separable and generically parametrizes
free rational curves.

Remark 1.3. The surfaces described in the exceptions above do actually contain a
dominant inseparable family of rational curves.

Remark 1.4. It is interesting to note that the exceptional cases in Theorem 1.2
are exactly the del Pezzo surfaces of degree ≥ 2 that are not Frobenius split.
[Har98, Example 5.5] shows that the Fermat cubic surface in characteristic 2 is the
unique smooth cubic surface that is not F-split. [Sai17, Theorem 0.3] shows that the
smooth degree 2 del Pezzos that are not F-split are the double cover of P2 branched
over the Fermat quartic in characteristic 3 and the double covers of P2 branched
over the double line in characteristic 2. (The Fermat quartic in P2 in characteristic
3 is projectively equivalent to the equation given above by [Par86, Proposition 3.7].
See also [Elk99, Formula (1.11)].)

If we impose some further restrictions on the characteristic then we can com-
pletely classify components of Rat(S). Let δ(d) be the function defined by

(1.1) δ(d) =

⎧⎪⎨
⎪⎩
2 if d ≥ 4,

3 if d = 2, 3,

11 if d = 1.

The following statement extends results of [Tes05] and [Tes09] to positive charac-
teristic:
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Theorem 1.5. Let S be a smooth del Pezzo surface of degree d over an algebraically
closed field k of characteristic p. Assume that p ≥ δ(d). Furthermore when d = 2,
we assume that S is not isomorphic to the surface listed in Theorem 1.2(2).

Let β be a nef class on S satisfying −KS · β ≥ 3. Then:

• If β is not a multiple of a −KS-conic, then there is a unique component
M of M0,0(S, β) generically parametrizing stable maps with irreducible do-
mains. The general map parametrized by M is a birational map onto a free
curve.

• If β is a multiple of a smooth rational conic, then there is a unique compo-
nent M of M0,0(S, β) generically parametrizing stable maps with irreducible
domains. The general map parametrized by M is a finite cover of a smooth
conic.

• If d = 2 and β is a multiple of −KS, or d = 1 and there is a contraction of
a (−1)-curve φ : S → S′ such that β is a multiple of the pullback of −KS′ ,
then there are exactly two components of M0,0(S, β) parametrizing stable
maps with irreducible domains. One component generically parametrizes
birational maps onto free curves, the other generically parametrizes multiple
covers of −KS-conics.

• If d = 1 and β is a multiple of −2KS , then there are at least two components
of M0,0(S, β) parametrizing stable maps with irreducible domains. There is
a unique component that generically parametrizes birational maps onto free
curves, and the other components generically parametrize multiple covers
of −KS-conics.

Finally, we extend the results of [Tes05] to finish the classification of components
of Rat(S) of anticanonical degree ≥ 3 on arbitrary del Pezzo surfaces S of degree 1
in characteristic 0. Theorem 6.6 finishes the proof of the analogue of Theorem 1.5
in characteristic 0; in particular:

Theorem 1.6. Let S be a smooth del Pezzo surface of degree 1 over an algebraically
closed field of characteristic 0. Let α be a nef curve class on S satisfying −KS ·α ≥ 3
which is not a multiple of a smooth rational conic. Then Rat(S) contains a unique
component generically parametrizing birational maps onto free curves of numerical
class α.

1.2. Geometric Manin’s conjecture. In his unpublished notes [Bat88], Batyrev
developed a heuristic for Manin’s conjecture for Fano varieties over finite fields.
(This heuristic inspired Batyrev-Manin’s conjecture over number fields as formu-
lated in the series of papers [BM90], [Pey95], [BT98], [LST22].) Batyrev’s heuristic
relies on several geometric assumptions about the structure of the moduli space
of curves on a Fano variety. When working over an algebraically closed field of
characteristic 0, these assumptions were further revised and were systematized as
Geometric Manin’s Conjecture in [LT19].

Our main motivation for this paper is to test whether the principles of Geomet-
ric Manin’s Conjecture hold for surfaces in characteristic p. In brief, Geometric
Manin’s Conjecture predicts that the discrete invariants of Rat(S) – the number of
components and their dimensions – are controlled by a geometric quantity known
as the Fujita invariant.

Definition 1.7. Suppose thatX is a smooth projective variety over an algebraically
closed field equipped with a nef divisor L. The Fujita invariant a(X,L) is defined
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as follows. If L is not big, we set a(X,L) = ∞. Otherwise, we define

a(X,L) := min{t ∈ R | KX + tL is pseudo-effective}.

Definition 1.8. Let X be a smooth weak Fano variety over an algebraically closed
field. We say that a generically finite morphism f : Y → X from a smooth projec-
tive variety Y is a breaking map if a(Y,−f∗KX) > a(X,−KX).

Suppose that X is a weak Fano variety over an algebraically closed field of
characteristic 0. [LT19, Theorem 1.1] proves that for any component M of Rat(X)
with larger than the expected dimension, there is a breaking map f : Y → X and a
component N of Rat(Y ) such that pushforward under f maps N birationally onto
M .

The techniques used to prove [LT19, Theorem 1.1] do not work in characteristic
p. The main new obstruction is the existence of inseparable maps. On the one
hand, inseparable maps provide new “unexpected” examples of dominant breaking
maps. On the other hand, inseparable maps provide new “unexpected” families of
rational curves. The key question is whether such phenomena match up to preserve
the relationship between the two.

Theorem 1.9 verifies this correspondence for surfaces in characteristic p.

Theorem 1.9. Let S be a weak del Pezzo surface over an algebraically closed field
of characteristic p. Then the following are equivalent:

(1) S admits a dominant family of rational curves with larger than the expected
dimension.

(2) There is a dominant breaking map f : Y → S.

Remark 1.10. Note that Theorem 1.9 is slightly weaker than [LT19, Theorem 1.1]
because it does not address whether each family of rational curves with larger than
expected dimension factors through a breaking map. We expect this to be the case.

Remark 1.11. The example of Shioda hypersurfaces suggests that in higher di-
mensions the correct interpretation of Geometric Manin’s Conjecture may be more
subtle. We plan to return to this question in future work.

In fact, for a weak del Pezzo surface S we can completely classify all breaking
maps f : Y → S. The existence of such maps is closely related to the geometry of
the linear series | −KS | and | − 2KS |.

Theorem 1.12. Let S be a weak del Pezzo surface of degree d and suppose that
f : Y → S is a dominant generically finite morphism such that a(Y,−f∗KS) >
a(S,−KS). Then we are in one of the following situations:

(1) char(k) = 2 or 3, d = 1, and f is birationally equivalent to the base change
of a quasi-elliptic fibration by a non-separable map to the target curve. In
this case a(Y,−f∗KS) = 2 and the linear series | −KS | defines the quasi-
elliptic fibration (after blowing up the base point).

(2) char(k) = 2, d = 2, and f is birationally equivalent to a purely inseparable
morphism of degree 2 from P2 to the anticanonical model of S. In this case,
we have a(Y,−f∗KS) = 3/2 and |−KS | defines a purely inseparable degree
2 cover.

(3) char(k) = 2, d = 1, and f is birationally equivalent to a purely inseparable
morphism of degree 2 from the quadric cone Q to the anticanonical model
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of S. In this case, we have a(Y,−f∗KS) = 2 and | − 2KS | defines a purely
inseparable degree 2 cover.

(4) char(k) = 2, d = 1, and f is birationally equivalent to a non-separable
morphism of degree 4 from P2 to the anticanonical model of S. In this
case, we have a(Y,−f∗KS) = 3/2 and |−2KS | defines a purely inseparable
degree 2 cover.

When S is a del Pezzo surface then none of (1)-(4) can occur.

As shown by Theorem 1.9, the possible weak del Pezzo surfaces S in Theorem
1.12 are the same as the weak del Pezzo surfaces classified by [KN22, Theorem 1.4].
These examples are quite interesting; they show that over a function field there can
be a Zariski dense set of rational points which outpaces the exponential term in
the rate predicted by Manin’s Conjecture. (Conjecturally there is no Zariski dense
set with the analogous property over a number field. From the perspective of the
Fujita invariant, this discrepancy is predicted by the fact that [HJ17, Theorem 1.1]
fails in positive characteristic even in dimension 2. This is in contrast to positive
results for surfaces obtained in [LTT18] and [LT17].)

Example 1.13 ([KN20, Table 2]). Let the ground field k be F3. Let S′ be the
surface in the weighted projective space P(1, 1, 2, 3)(x:y:z:w) defined by

w2 + z3 − x2y2(x+ y)2 = 0.

Then this is a du Val del Pezzo surface with four A2 singularities [KN20, Table
2]. We denote its minimal resolution by S so that S is a weak del Pezzo surface of
degree 1.

Let β : S̃ → S be the blow-up of the base point for |−KS |. Then |−K
˜S | defines

a quasi-elliptic fibration, i.e., a fibration π : S̃ → B = P1 such that a general fiber
is a cuspidal rational curve. To construct the component of M0,0(S) parametrizing
fibers of π, one needs to take a purely inseparable base change by the Frobenius

map F : B′ = P1 → B = P1. Set Y = S̃×BB′ and let Ỹ → Y be the normalization

map. We denote by ρ : Ỹ → B′ the induced generically smooth fibration and by

f : Ỹ → S the induced inseparable generically finite map.
Now we take the base change to the field K = F3(t). We are interested in the

asymptotic growth of the number of K-rational points of SK of bounded height.

We claim that the images of the points on ỸK under fK yield a Zariski dense set
which grows faster than the expected growth rate (even in the exponential term).

Let CK be a geometrically integral fiber of ρK : ỸK → B′
K defined over K so

that CK
∼= P1

K . Note that we have a(CK ,−f∗
KKSK

) = 2 > a(SK ,−KSK
) = 1.

Thus the points on each such fiber CK grow at faster than the expected rate: there
will be ∼ q2d points on CK of anticanonical height ≤ d compared to the “expected”
number ∼ qddρ(SK)−1 for SK .

Since B′
K

∼= P1
K there will be a Zariski dense set of deformations of CK defined

over the ground field. Also note that CK(K) is Zariski dense as CK is isomorphic
to P1

K . Thus we need to remove a Zariski dense set of rational points on SK in
order to obtain the desired growth rate for rational points. (Although the set we
must remove is Zariski dense, it is a thin set since it comes from fK : YK → SK .)

Example 1.14. We work over F2. We will recall an example of a surface considered
in [KM99, end of Section 9] and in [CT18] due to the failure of the Kawamata-
Viehweg vanishing theorem.
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Suppose we blow up P2 at all seven F2-points. We will obtain a weak del Pezzo
surface S of degree 2. [CT18, Proposition 5.3] shows that the (−2)-curves on S
will be precisely the strict transforms of the seven F2-lines on P2. [CT18, Theorem
4.1] shows that | −KS | defines a purely inseparable degree 2 map to P2. This map
factors through the anticanonical model S′ of S which has seven A1-singularities.

Let w2 = f4(x, y, z) be the defining equation of S′ in the weighted projective
space P(1, 1, 1, 2) where f4 is a homogenous polynomial of degree 4. By construction
f4 has coefficients in F2. We define the morphism

f : P2 → S′ : (s : t : u) �→ (x : y : z : w) = (s2 : t2 : u2 : f4(s, t, u)).

Then the Frobenius map F : P2 → P2 factors through f .
Since −KS′ is the pullback of O(1) under the map S′ → P2, we see that

−f∗KS′ = O(2). Thus a(P2,−f∗KS′) = 3
2 while a(S′,−KS′) = a(S,−KS) = 1.

Again working over K = F2(t), the exceptional set for SK must contain a Zariski
dense subset of rational points fK(P2

K(K)) which have an asymptotic growth rate

of q
3
2d.

1.3. Our methods. To prove Theorem 1.1, first we check that components para-
metrizing stable maps of anticanonical degree ≤ 2 have expected dimension by
classifying these low degree rational curves (Lemma 3.2, Lemma 3.3, Lemma 3.4).
Then by employing Bend-and-Break argument (Lemma 5.1), we prove that every
dominant component of Rat(S) has expected dimension by using an inductive proof
on the degree of rational curves (Proposition 5.2).

A proof of Theorem 1.2 is similar. We first analyze separability of families
of −KS-conics and cubics in Section 4, then we use Bend-and-Break argument
(Lemma 5.1) to prove that every dominant component of Rat(S) parametrizes a
free rational curve (Proposition 5.3).

To achieve Theorem 1.5, we first prove that under the assumption on char(k)
every dominant family of rational curves of anticanonical degree ≤ 3 contains a
free rational curve using some deformation theory of rational curves in positive
characteristic proved in [IIL20] (Theorem 4.4). To this end, one needs to bound
the arithmetic genus of rational curves of low degree on a del Pezzo surface S and
this is the main reason why our assumption on the characteristic of the ground field
depends on the degree of S. Then we look at 1-dimensional loci of stable maps of
anticanonical degree e passing through e − 2 general points, and prove that these
loci are contained in the smooth locus of M0,0(S) using an inductive argument
whose base case is settled by Theorem 4.4 (Lemma 7.3). Finally we lift everything
to characteristic 0 and use a specialization argument combined with [Tes09] to
conclude our main theorem. Theorem 1.6 is also obtained using a similar idea: the
irreducibility is known for general del Pezzo surfaces of degree 1 by [Tes05] and we
use a specialization argument to obtain the main theorem. We believe that this
specialization argument is new, and it has potential to be applicable to problems
on the space of rational curves on other Fano varieties.

Finally to obtain Theorem 1.12, we use the 2 dimensional Minimal Model Pro-
gram and classify smooth projective polarized surfaces with higher a-invariants
(Theorem 8.10). Then we use this result to deduce Theorem 1.12. Finally we
found examples of weak del Pezzo surfaces satisfying Theorem 1.12 in [KN22] and
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[KN20] which classified pathological examples of Du Val del Pezzo surfaces. Theo-
rem 1.9 follows from Theorem 1.12 and the analysis of low degree rational curves
in Section 3.

1.4. Previous works. There is a vast literature studying the space of rational
curves on various Fano varieties in characteristic 0. The most relevant results to
this paper are [Tes05] and [Tes09] which classified components of Rat(S) for most
del Pezzo surfaces S in characteristic 0. [LT22b] addressed this problem for curves
of genus ≥ 1 on del Pezzo surfaces. Readers interested in other classification results
should consult [BLRT22] and the references therein.

Let us focus on results in positive characteristic. First of all, there are many pa-
pers which study the separable rational connectedness of smooth Fano varieties in
characteristic p (for example [She10], [Zhu11], [CZ14], [GLP+15], [Tia15], [CR19],
[ST19], and [CS22]). János Kollár asked whether any smooth Fano variety is sep-
arably rationally connected, but this question is wide open at this moment. On
the other hand there are only a few results on the classification of irreducible com-
ponents of moduli spaces of rational curves on Fano varieties in characteristic p.
[BS18] discussed the irreducibility of moduli spaces of rational curves on low degree
hypersurfaces in positive characteristic using a function field version of the circle
method. Moduli spaces of rational curves on toric varieties are classified by Bourqui
in [Bou16] using the Cox ring method.

Examples of (weak) Fano varieties such that the exceptional set for Manin’s con-
jecture is Zariski dense are well-documented over number fields. The first example
was found by Batyrev and Tschinkel in [BT96], and recently more examples have
been found and proved in [LR19] and [BHB20]. [LST22] proposed a geometric
description of these exceptional sets over number fields and proved that they are
thin sets using the Minimal Model Program. The analogue of [LR19] in positive

characteristic has been studied in [M1̂9].

Notation. We will work throughout over a field denoted by k; usually k will be
algebraically closed. A variety over k is an integral separated scheme of finite type
over k.

For a smooth projective variety X over k, N1(X)Z denotes the space of divisors
up to numerical equivalence and N1(X)Z denotes the space of integral 1-cycles
up to numerical equivalence. For a projective morphism f : X → Y of schemes,
N1(X/Y )Z denotes the relative numerical Néron-Severi group of X over Y .

For a scheme X, a component of X means an irreducible component of X en-
dowed with its reduced structure.

Let X be a smooth projective variety over k and L be an ample line bundle on
X. An L-line (L-conic, or L-cubic) is a birational stable map f : P1 → X such that
deg f∗L = 1 (resp. = 2, or 3).

2. Preliminaries

We restrict our attention to dimension ≤ 3. In these dimensions we have reso-
lutions of singularities over any perfect field of characteristic p by [Abh56], [CP08],
and [CP09]. We also can run the Minimal Model Program freely in dimension 2 by
[Mum69], [BM77], and [BM76], and in dimension 3 if p > 5 by [HX15], [CTX15],
[Bir16], and [BW17].
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2.1. Classes of singularities. Let p be a closed point of a reduced (possibly
reducible) curve C over an algebraically closed field k. We say that p is a node if
we have a formal-local equivalence

ÔC,p
∼= k[[x, y]]/(xy).

If f : Z → X is a stable map which is birational onto its image and the image is a
nodal curve then the normal sheaf Nf/Z is locally free.

We say that p is a cusp if C is unibranch at p and we have a formal-local
equivalence

ÔC,p
∼= k[[x, y]]/(y2 + g3(x, y))

for some homogeneous cubic g3. If the characteristic is not 2, then every cusp is
formally-locally equivalent to the cusp defined by y2 = x3. If the characteristic is
equal to 2, then the family of cusps has moduli.

Suppose that f : Z → X is a birational map from an irreducible smooth curve
Z and p ∈ Z maps to a cusp in f(Z). If the characteristic is not 2, then the
normal sheaf Nf/X has a torsion subsheaf of length 1 at p. If the characteristic is
equal to 2, then the normal sheaf Nf/X has a torsion subsheaf of length 2 at p.

Indeed, the curve defined by the equation y2+ax3+ bx2y+ cxy2+dy3 has rational
parametrization

x =
t2

a+ bt+ ct2 + dt3
, y =

t3

a+ bt+ ct2 + dt3
,

and thus dx is either 0 or divisible by t2 and dy is divisible by t2.

Remark 2.1. Note that an irreducible arithmetic genus 1 curve C in a smooth
surface can only have nodes and cusps as singularities. Indeed, a cohomological
argument shows that the normalization of C must have genus 0, C can have at
most one singular point p, and the preimage of p under the normalization map
must have length 2. Letting ν : P1 → C denote the normalization map, there is a
three-dimensional subspace of |O(3)| which is constant on ν−1(p). This subspace
defines a map P1 → P2 whose image is a cubic isomorphic to C.

2.2. Deformation theory of stable maps. Fix an algebraically closed field k
and let X be a smooth projective variety defined over k. We denote the Kontsevich
moduli space of stable maps of genus 0 by M0,0(X). (See [BF97], [Beh97], and
[BM96] for the foundational theory of this coarse moduli space.)

Much of the theory of normal bundles to maps in characteristic 0 goes through
in characteristic p. We highlight here some useful previous results. Suppose that
C is a nodal arithmetic genus 0 curve mapping to X via a birational morphism f
which is a local immersion at each node of C. Under these hypotheses, the normal
sheaf is defined as an extension

0 → Ext1OC
(Q,OC) → Nf/X → HomOC

(K,OC) → 0,

where K and Q are the kernel and cokernel of f∗Ω1
X → Ω1

C . When C is irre-
ducible, the normal sheaf Nf/X is simply the cokernel of TC → f∗TX . The space

H0(C,Nf/X) is the tangent space to the moduli space M0,0(X) at the point corre-

sponding to f and H1(C,Nf/X) is the obstruction space for the moduli space at [f ]

([BF97], [Beh97], and [BM96]). In particular, the expected dimension of M0,0(X)
at C is given by

h0(C,Nf/X)− h1(C,Nf/X) = −KX .C + dimX − 3,
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and this is always a lower bound for the dimension of an irreducible component
containing C. It is natural to study Nf/X by comparing it to the normal sheaves
of the restriction of f to the components of C. We have Theorem 2.2 which we use
frequently:

Theorem 2.2 ([GHS03, Lemma 2.6]). Let C be a nodal curve of arithmetic genus
0 mapping to X via a birational morphism f that is a local immersion at every
node. Let g be the restriction of f to a component Ci. Then sections of the normal
sheaf Nf/X restricted to a component Ci are sections of Ng/X with simple poles
allowed at each node point in the direction of the other component. In particular,
if Ng/X is rank 1 (i.e. if X is a surface) then Nf/X |Ci

will simply be Ng/X with
the degree of the free part increased by the number of components meeting Ci.

Proof. The problem is local so we may assume that c is an embedded LCI curve.
Then the assertion follows from the discussion of [HT08, the bottom of Page 1265].

�

Proposition 2.3. Let E be a sheaf on a nodal curve C of arithmetic genus 0
satisfying the following two conditions:

• For each component Ci in C, H1(Ci, E|Ci
) = 0.

• Every component Ci, except possibly one component C0, satisfies that E|Ci

is globally generated.

Then H1(C,E) = 0.

Proof. Recall the exact sequence

0 → E → ⊕iE|Ci
→ ⊕jE|pj

→ 0.

The hypothesis that every component except C0 satisfies that E|Ci
is globally gen-

erated shows that the map H0(
∑

i E|Ci
) → H0(

∑
j E|pj

) is surjective. Thus, we see

that H1(C,E) is isomorphic to ⊕iH
1(Ci, E|Ci

), which vanishes by hypothesis. �

3. Low degree curves with higher than the expected dimension

Let S be a weak del Pezzo surface. Our first goal is to analyze when a family of
rational curves of anticanonical degree ≤ 2 has larger than the expected dimension.
This analysis will form the base case of an inductive argument which addresses
curves of arbitrary anticanonical degree.

Theorem 3.1. Let S be a weak del Pezzo surface of degree d over an algebraically
closed field k. When d = 2, we assume furthermore that S is not the following
exception:

(1) char(k) = 2 and | −KS | defines a purely inseparable generically finite mor-
phism f : S → P2.

When d = 1, we assume furthermore that S is not one of the following exceptions:

(2) char(k) = 2 or 3 and a general member of | −KS | is singular, or;
(3) char(k) = 2 and | − 2KS | defines a purely inseparable generically finite

morphism f : S → Q where Q is a quadric cone, or;
(4) char(k) = 2 and S admits a birational morphism to a surface as in (1)

above.
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Let M be a component of M0,0(S) generically parametrizing a family of birational
maps to curves C with −KS · C ≤ 2. Then M has the expected dimension unless
C is a (−2)-curve.

We will prove Theorem 3.1 by analyzing each anticanonical degree≤ 2 separately.

Lemma 3.2. Let S be a weak del Pezzo surface. Every rational curve C satisfying
−KS · C = 0 is a smooth (−2)-curve on S.

Proof. By the Hodge Index Theorem we see that C2 ≤ 0. The arithmetic genus
formula tells us that C2 = 2pa(C) − 2, so that C2 is even and is at least −2. If
C2 = 0 then by the Hodge Index Theorem C must be proportional to −KS , an
impossibility. Thus C2 = −2. We deduce that C has arithmetic genus 0 and thus
is smooth. �

Lemma 3.3. Let S be a weak del Pezzo surface of degree d. Suppose that M is a
component of M0,0(S) that parametrizes rational curves C with −KS ·C = 1. Then
either:

(1) C is a (−1)-curve.
(2) d = 1, dim(M) = 0, and C is a rational curve in | −KS |.
(3) d = 1, dim(M) = 1, and the curves parametrized by M yield a quasi-elliptic

fibration on the blow-up of S along the basepoint of | −KS |. Furthermore
in this case S cannot be a del Pezzo surface.

Proof. The Hodge Index Theorem tells us that dC2 − 1 ≤ 0. The arithmetic genus
formula tells us that C2− 1 = 2pa(C)− 2, so that C2 is odd and is at least −1. We
deduce that the only options are:

• C2 = −1, d arbitrary: in this case the arithmetic genus of C is 0, so C is a
(−1)-curve.

• C2 = 1, d = 1: in this case C ∈ | −KS | by the Hodge Index Theorem and
C has arithmetic genus 1. One possibility is that the general element of
| −KS | is a smooth elliptic curve, in which case we are in (2). The other
option is that every element of | − KS | is a singular rational curve. Note
that |−KS | is not basepoint free, since any pencil of cubic curves in P2 will
have nine base points. Moreover since (−KS)

2 = 1, two general members of
| −KS | intersect at one point which is not a singular point of either curve.
Thus when we resolve the base locus of |−KS | by blowing up a single point
the resulting fibration must be a quasi-elliptic fibration so that we are in
(3).

Finally, we note that families as in (3) do not exist on a del Pezzo surface of degree
1. It suffices to note that any quasi-elliptic pencil in the anticanonical system
must contain a non-integral curve. Indeed, by pushing these curves forward to P2

we obtain a family of rational curves through 9 fixed points and Bend-and-Break
guarantees that this family on P2 parametrizes a non-integral curve. �

Lemma 3.4. Let S be a weak del Pezzo surface of degree d. Suppose that M is a
component of M0,0(S) that generically parametrizes rational curves f : P1 → C ⊂ S
with −KS · C = 2 and f is birational. Then either:

(1) the component M parametrizes the fibers of a conic fibration. In this case
M has the expected dimension.
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(2) d = 2 and M parametrizes curves in | − KS |. If M has larger than the
expected dimension then | −KS | does not define a separable map.

(3) d = 1 and there is a birational map φ : S → S̃ where S̃ is a weak del Pezzo
surface of degree 2 such that M parametrizes rational curves in | − φ∗K

˜S |.
If M has larger than expected dimension then | − φ∗K

˜S | does not define a
separable map.

(4) d = 1 and M parametrizes curves in |−2KS |. If M has larger than expected
dimension then either | −KS | defines a quasi-elliptic fibration or | − 2KS |
does not define a separable map.

Proof. The Hodge Index Theorem tells us that dC2 − 4 ≤ 0. The arithmetic genus
formula shows that C2−2 = 2g−2, so that C2 is even and is at least 0. We deduce
that the only options are C2 = 0, 2, 4.

Case 1. C2 = 0, d arbitrary: in this case the arithmetic genus of C is 0 and
H0(S,O(C)) = 2. Thus curves of this type are the fibers of a conic fibration.

Case 2. C2 = 2, d = 1, 2: in this case the arithmetic genus of C is 1 and
deg(Nf/S) = 0. Suppose that d = 2. By the Hodge Index Theorem, C is a
member of |−KS |. If Φ|−KS | is separable, then [KN22, Proposition 4.4] shows that
a general element of | −KS | is smooth and we conclude that M has the expected
dimension.

Next suppose that d = 1. In this case, we claim that C is the pullback of a
curve under a birational map to a degree 2 weak del Pezzo surface. To see this,
it suffices to find a (−1)-curve which has vanishing intersection with C. We claim
that KS + C will be linearly equivalent to such a curve. Indeed, we have

(KS + C) · C = 0 (KS + C) ·KS = −1 (KS + C)2 = −1.

SinceH2(S,KS+C) vanishes by Serre duality, Riemann-Roch shows thatH0(S,KS

+ C) is non-zero. This means that KS + C is linearly equivalent to an effective
divisor and it follows from the above intersection numbers that it has the form
of E + D where E is a (−1)-curve and D is a non-negative linear combination of
(−2)-curves. Then since C is nef, we have C ·D = E ·D +D2 = 0. We also have
−1 = (E +D)2 = −1 + 2E ·D +D2. Thus we conclude that D2 = 0 proving that
D = 0 by the Hodge Index Theorem. Finally note that the deformations of C on
this degree 2 weak del Pezzo yield a family satisfying (2). Thus on our original
surface we are in situation (3).

Case 3. C2 = 4, d = 1: in this case the arithmetic genus of C is 2 and C ∈ |−2KS |.
We will let g : S → Q denote the morphism to the quadric cone defined by |−2KS |.
We let S′ denote the anticanonical model of S and g′ : S′ → Q the corresponding
finite degree 2 morphism.

To show that (4) holds, we must show that M has the expected dimension if
| − KS | does not define a quasi-elliptic fibration and | − 2KS | defines a separable
map. From now on we assume both these conditions. Let B ⊂ Q denote the
branch locus of g : S → Q. If char(k) ≥ 3 then B is the disjoint union of the cone
vertex with a curve B1 of degree 6. (If B1 contained the cone vertex then one can
show that S′ would have worse than canonical singularities, a contradiction.) If
char(k) = 2 then the cone vertex is contained in a dimension 1 component of B
whose reduced part is a degree 3 curve B1.
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Every irreducible rational curve C ∈ | − 2KS | will be singular, and thus the
restriction g|C cannot realize C as a simply branched cover of a smooth curve. We
conclude that C must satisfy one of the following conditions:

(1) g(C) goes through a singular point of B1.
(2) g(C) is a hyperplane section of Q which is tangent to the divisor B1 at a

smooth point of B1.

We first show that there cannot be a 2-dimensional family of rational curves as
in (1) above. In fact, we claim that there is not a 2-dimensional sublocus of M
parametrizing rational curves through a fixed point p ∈ S. Indeed, if there were
such a family, then by applying Bend-and-Break we would obtain a 1-dimensional
family of rational curves with class | −KS |. But Lemma 3.3 would then contradict
our assumption on | −KS |.

We next rule out a 2-dimensional family of rational curves as in (2) above. If C is
a nodal rational curve then its normal sheaf is locally free and thus the deformations
of C have the expected dimension. We conclude that if we have a 2-dimensional
family of deformations of C then a general deformation must have a cusp. The rest
of the argument depends on the characteristic.

Case 3a. First suppose that char(k) ≥ 3. If C is a cuspidal rational curve in |−2KS |
then its g-image is a hyperplane section of Q ⊂ P3 which has a point of tangency
of order ≥ 3 with B1. In other words, if M fails to have the expected dimension
then there is a two-dimensional family of planes meeting the curve B1 to order at
least three at some point. Since there is only a two-dimensional space of planes
containing a tangent line of B1, it follows that every tangent line to B1 must be
a flex. Thus the tangent lines to B1 meet Q to order at least 3 at a given point,
and in particular are all contained in Q. In other words, the lines of the ruling are
all tangent to B1, and this implies that every member of | −KS | is singular. This
contradicts with our assumption.

Case 3b. Next suppose that char(k) = 2. Since by assumption g is separable, the
anticanonical model S′ of S is defined by an equation of the form w2+wf3+f6 where
f3, f6 are homogeneous functions on P(1, 1, 2). We will use coordinates x0, x1, y on
the weighted projective space. First suppose that f3 is irreducible and reduced.
Then by applying the automorphism group of P(1, 1, 2) we may suppose that

f3 = x0y − x3
1.

Just as before, we rule out the possibility that every hyperplane section of the
quadric cone that is tangent to the curve defined by f3 = 0 has a cuspidal curve
as a preimage. The hyperplane sections of the quadric cone have equations of
the form a20x

2
0 + a11x0x1 + a02x

2
1 + cy. Since we are interested in the general

tangent plane, without loss of generality we may suppose that c = 1. Eliminating
y and computing the discriminant, we see that a plane will be tangent to f3 = 0
precisely when a20 = a11a02. When this condition is met, the tangency point is

(x0 : x1 : y) = (1 : a
1/2
11 : a

3/2
11 ).

From now on we will work on the affine patch x0 �= 0 isomorphic to A2. Locally

near the point p = (a
1/2
11 , a

3/2
11 ) the curve admits the rational parametrization

t �→
(
t+ a

1/2
11 , a02t

2 + a11t+ a
3/2
11

)
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sending 0 �→ p. Pulling back the defining equation for the double cover to this
rational curve, we see that the preimage is defined by the equation

w2 + w(t3 + (a
1/2
11 + a02)t

2) + f̃6(t),

where the constant term of f̃6 is

b600 + a
1/2
11 b510 + a11b420 + a

3/2
11 (b330 + b401) + a211(b240 + b311) + a

5/2
11 (b150 + b221)+

a311(b060 + b131 + b202) + a
7/2
11 (b041 + b112) + a411b022 + a

9/2
11 b003

and the linear coefficient is

b510 + a11(b330 + b401) + a211(b150 + b221) + a311(b112 + b041) + a411b003.

Note that this double cover of P1 defines a cuspidal curve if and only if the constant
and linear coefficients vanish. If a general hyperplane section (i.e. a general choice
of a11, a02) defines a cuspidal curve, we must have

b600 = b510 = b420 = b022 = b003 = 0,

b330 = b401 b150 = b221 b112 = b041 b240 = b311,

b060 + b131 + b202 = 0.

Equivalently, we have f6 = (x0y − x3
1)g3 for some cubic equation g3. Thus the

defining equation has the form

w2 + (x0y − x3
1)w + (x0y − x3

1)g.

Then replacing w by w + g, the equation becomes

w2 + (x0y − x3
1)w + g2.

Replacing w by w+c(x0y−x3
1), we may assume that g is a homogeneous polynomial

in x0, x1. Then (x0 : x1 : y : w) = (0 : 0 : 1 : 0) is a singular point of the surface.
On the patch where y = 1, locally analytically the equation looks like

w2 + (x0 − x3
1)w + g(x0, x1)

2

in A3/μ2.
Now we will prove that the singularity at (0, 0, 0) is worse than canonical. First

we claim that A3/μ2 has a terminal singularity. Indeed, A3/μ2 is isomorphic to

Spec(k[x2
0, x

2
1, w

2, x0x1, x0w, x1w]).

Let β : W → A3/μ2 be the blow-up of the origin and E be the exceptional divisor.

Then the discrepancy of E is 1/2. Let S̃ ⊂ W be the strict transform of S′ ⊂
A3/μ2. Since the equation for S′ has no constant term and no odd degree monomial

term, we can conclude that S′ is Cartier in A3/μ2 so that β∗S′ = S̃ + nE with

a positive integer n. Then the discrepancy of E ∩ S̃ in S̃ over S′ is 1
2 − n which

is negative, proving the claim. But the anticanonical model S′ must have only
canonical singularities, and we conclude that any S′ of this type cannot admit a
2-dimensional family of rational −KX -conics.

Case 3b’. The other possibility is that char(k) = 2 and that f3 is reducible or non-
reduced. Then by applying the automorphism group of P(1, 1, 2) we may suppose
that either

f3 = x0y or f3 = g(x0, x1)
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for some cubic g. First suppose f3 = x0y. Writing as before a20x
2
0 + a11x0x1 +

a02x
2
1+cy for the equation of a general hyperplane section, we see that the sections

tangent to f3 = 0 will satisfy either a02 = 0, c = 0, or a11 = 0. The tangent
point for every hyperplane section satisfying a02 = 0 is the point (0 : 1 : 0); since
we have already ruled out the case where each curve goes through the same point,
we cannot get a 2-dimensional family in the first case. In the second case the
hyperplane section is not integral, thus we do not need to consider this case. It
only remains to consider the case a11 = 0.

Assuming that a11 = 0, then arguing as before we see that if every tangent
to f3 = 0 yields a cuspidal curve then f6 is divisible by y. We next need to
check whether every member of this 2-dimensional family of cuspidal curves on S is
rational. Since c �= 0, by rescaling we may suppose without loss of generality that

c = 1 so that y = (αx0 + βx1)
2 where α = a

1/2
20 and β = a

1/2
02 . We then eliminate

the variable y so that the equation of our singular curve in Px0,x1,w(1, 1, 3) is given
by

w2 + x0(αx0 + βx1)
2w + (αx0 + βx1)

2g4(x0, x1)

for some degree 4 equation g. Since these curves have arithmetic genus 2, if they
are rational then they must have at least one other singularity besides the cusp. (It
is not possible for the equation above to define a worse-than-cuspidal singularity.)
The only option is that we have a singularity at x0 = 0, in which case g4 must be
divisible by x2

0 for any α, β. This implies that

b003 = b022 = b041 = b060 = b112 = b131 = b150 = 0.

Hence we conclude that f6 is divisible by x2
0y. Thus the point (0 : 0 : 1 : 0) in

P(1, 1, 2, 3) is contained in S and this is a singularity worse than canonical by the
argument above.

Suppose that f3 is reduced but f3 is a union of three lines. Then the only
hyperplane sections which are tangent to f3 = 0 will go through one of the singular
points. But we have already ruled out the case where each curve goes through the
same point, so this situation cannot give a 2-dimensional family of rational curves.

When f3 is non-reduced, we may assume that f3 = x2
0x1 or x3

0. When f3 = x2
0x1,

a hyperplane section tangent to f3 is given by

a20x
2
0 + a11x0x1 + a02x

2
1 = y

such that the tangent point is given by (0 : 1 : a02). If we can find a 2-dimensional
family of rational curves such that a02 is fixed, then we can conclude a contradiction
as before. So we may assume that a02 is generic. Then a rational parametrization
of the above section is given by

(x0 : x1 : y) = (t : s : a20t
2 + a11ts+ a02s

2).

For the resulting rational curve

w2 + t2sw + f6(t, s, a20t
2 + a11ts+ a02s

2)

to have a cusp, by arguing as above we see that f6 is divisible by x2
0. Thus the

point (0 : 0 : 1 : 0) is contained in S and this is a singularity worse than canonical
by the argument above.

Finally assume that f3 = x3
0. In this case by arguing as the case of f3 = x2

0x1,
we may conclude that f6 is divisible by x2

0. Thus one can deduce a contradiction
as before.
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�

Altogether Lemma 3.2, Lemma 3.3, and Lemma 3.4 immediately imply Theorem
3.1.

3.1. Pathological weak del Pezzo surfaces. We next classify the weak del Pezzo
surfaces S which admit a dominant family of rational curves of low degree which
has larger than the expected dimension. In view of later applications, we will split
these surfaces into 3 different types. We emphasize that these three types are not
mutually exclusive.

Our description will be based upon [KN22] and [KN20] which classify the weak
del Pezzo surfaces in characteristics 2 and 3 such that the anticanonical model has
Picard rank 1. [KN20, Table 1] gives a complete list of such surfaces based on the
type of singularities of the anticanonical model; we will refer to this table in our
discussion.

3.1.1. Type 1. The first type of pathological weak del Pezzo surface will satisfy the
following equivalent conditions:

Claim 3.5. Let S be a weak del Pezzo surface. Then the following are equivalent:

(1) S admits a dominant family of rational curves of anticanonical degree 1.
(2) S is a weak del Pezzo surface of degree 1 such that every element of |−KS |

is singular.
(3) S is a weak del Pezzo surface of degree 1 and if we blow up the basepoint

of | −KS | we obtain a quasi-elliptic fibration.

In particular such surfaces can only occur in characteristic 2 or 3.

Proof. The equivalence of (1) and (2) is an immediate consequence of Lemma 3.3.
To prove the equivalence of (2) and (3), we just need to note that if every element
of |−KS | is singular then it is not possible for all the singularities to coincide (since
the intersection number of two curves in the family should be 1). �

Over an algebraically closed field of characteristic 2 or 3, such surfaces have been
classified by [KN22, Theorem 1.4]. In characteristic 2 there are 3 infinite families
and 4 other surfaces whose singularity types are:

E8, D8, A1 + E7, 2A1 +D6, 2D4, 4A1 +D4, 8A1.

In characteristic 3 there are three surfaces whose singularity types are:

E8, A2 + E6, 4A2.

3.1.2. Type 2. The second type of pathological weak del Pezzo surface will satisfy
the following equivalent conditions:

Claim 3.6. Let S be a weak del Pezzo surface. Then the following are equivalent:

(1) S has degree 2 and admits a family of rational curves of anticanonical degree
2 with larger than the expected dimension.

(2) S has degree 2 and every element of | −KS | is singular.
(3) | −KS | defines a purely inseparable morphism g : S → P2.
(4) The anticanonical model S′ of S admits a purely inseparable map f : P2 →

S′ of degree 2 such that f∗(−K ′
S)

∼= O(2).

In particular such surfaces can only occur in characteristic 2.
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Proof. Lemma 3.4 shows that the only possible family of conics with larger than
expected dimension on a weak del Pezzo surface of degree 2 must lie in | − KS |.
Since this linear series has dimension 2, we see that (1) implies (2). Lemma 3.4
shows that (2) implies (3).

We next show that (3) implies (4). Let S′ denote the anticanonical model of
S. (3) asserts that | − KS | defines a purely inseparable morphism g : S → P2.
This necessarily implies that S has degree 2 and that g has degree 2. The Stein
factorization of g will be the anticanonical model S′ of S; in other words, S′ will
be the normalization of P2 inside the function field of S. Since K(S) is obtained
by adjoining a single square root to K(P2), we see that the Frobenius morphism
P2 → P2 factors through g. In this way we obtain a purely inseparable degree 2
map f : P2 → S′. Furthermore we have

f∗(−KS′) = f∗g∗O(1) = O(2).

Finally, we show that (4) implies (1). By taking intersection numbers it is clear
that S has degree 2. The lines on P2 will map to a two-dimensional family of curves
on S′ of anticanonical degree ≤ 2 with no basepoints. Since there is no such family
on S′ of anticanonical degree 1 by Lemma 3.3, we see that the restriction of f to
each line is birational. Thus S admits a two-dimensional family of rational curves
of anticanonical degree 2. �

Over an algebraically closed field of characteristic 2, the surfaces satisfying (2)
have been classified by [KN22, Theorem 1.4]. There are exactly 4 such surfaces,
whose singularity types are:

E7, A1 +D6, 3A1 +D4, 7A1.

3.1.3. Type 3. The third type of pathological weak del Pezzo surface will satisfy
the following equivalent conditions:

Claim 3.7. Let S be a weak del Pezzo surface. Then the following are equivalent:

(1) S has degree 1 and every element of | − 2KS | is a singular rational curve.
(2) S has degree 1 and the morphism to the quadric cone g : S → Q defined

by | − 2KS | is purely inseparable.
(3) The anticanonical model S′ of S admits a purely inseparable map f : Q →

S′ of degree 2 from the quadric cone Q such that f∗(−K ′
S)

∼= O(1).

In particular such surfaces can only occur in characteristic 2.

Proof. We first show that (1) implies (2). Suppose for a contradiction that the
morphism g : S → Q is separable. Note that g is finite on the complement of the
(−2)-curves in S. Let U ⊂ S be the open set which is the complement of the (−2)-
curves and the preimage of the singular locus of the branch divisor. Then U admits a
decomposition into locally closed subsets L1, L2 where L1 is the ramification divisor
and L2 is its complement. By construction L1, L2 are smooth and the restriction of
g to both L1 and L2 is a smooth morphism. By [Spr98, Corollary 4.6] we conclude
that the pullback of a general hyperplane in Q to U will be smooth. Since we
only removed the (−2)-curves and a codimension 2 set, the general pullback of a
hyperplane in U is also projective. Altogether we see that a general element in
| − 2KS | is smooth, contradicting (1).

The proof that (2) implies (3) follows from a Frobenius factoring argument as in
Claim 3.6.
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Finally, to see that (3) implies (1) we note that Q admits a 3-dimensional family
of rational curves of degree 2. These map to a 3-dimensional family of rational
curves on S′ of anticanonical degree ≤ 2 with no basepoints. Since by Lemma 3.3
there is no such family on S′ of anticanonical degree 1, we see that the restriction
of f to each rational curve is birational. Lemma 3.4 shows that a three-dimensional
family of rational curves of anticanonical degree 2 must lie in | − 2KS | and we
conclude that all the curves parametrized by | − 2KS | are singular. �

It turns out that Type 3 surfaces are exactly the same as the Type 1 surfaces
which have characteristic 2. We will demonstrate this in Proposition 8.13 after
developing the theory of a-covers.

For now, it will suffice to show that every Type 3 surface also has Type 1.
Suppose that Y is a Type 3 surface so that its anticanonical model S′ admits a
purely inseparable degree 2 map f : Q → S′ from the quadric cone. Each line on Q
maps birationally onto a −KS-line in S′. In particular by pulling back to S we see
there must be a one-dimensional family of −KS-lines. Thus Type 3 surfaces are a
subclass of Type 1 surfaces.

Combining this classification with Theorem 3.1, we obtain:

Corollary 3.8. Let S be a weak del Pezzo surface. If S carries a dominant family of
rational curves of anticanonical degree ≤ 2 with larger than the expected dimension
then S has Type 1, Type 2, or Type 3. In particular every curve parametrized by
| −KS | is singular.

Proof. Let us start with the first claim. According to Lemma 3.3 and Lemma 3.4
the only case which needs consideration is when S is a weak del Pezzo surface with
degree 1 that admits a birational map φ : S → T to a surface of Type 2 that
contracts a (−1)-curve. In this case every integral member of | −KT | is a rational
curve. Thus S also has this same property, and in particular must have Type 1.

Note that both Type 1 and Type 2 surfaces have the property that every element
of | −KS | is singular. Furthermore, every Type 3 surface also has Type 1 and thus
has the same property. This proves the second claim. �

4. Low degree curves and inseparable families

In this section first we focus our attention on del Pezzo surfaces S of degree ≥ 2.
Our goal is to classify the inseparable families of rational curves C on S which
satisfy −KS · C ≤ 3.

Theorem 4.1. Let S be a del Pezzo surface of degree ≥ 2. Let M be a component of
M0,0(S) generically parametrizing a dominant family of curves C with −KS ·C ≤ 3.
When d = 3, we assume furthermore that S is not the following exception:

(1) char(k) = 2 and S is the Fermat cubic surface w3 + x3 + y3 + z3 = 0.

When d = 2, we assume furthermore that S is not one of the following list of
exceptions:

(2) char(k) = 3 and S is the double cover of P2 ramified along the curve zx3 +
xy3 + yz3.

(3) char(k) = 2 and S is a double cover of P2 defined by the equation w2 +
wy2 + g4 where g4 is a homogeneous polynomial in x, y, z.

Then M parametrizes a separable family of curves
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To prove Theorem 4.1, first note that by Lemma 3.2 and Lemma 3.3 we only
need to consider dominant families of rational curves of anticanonical degrees 2 and
3. We will analyze each case separately.

Lemma 4.2. Let S be a del Pezzo surface of degree d ≥ 2. Suppose that M is a
component of M0,0(S) that parametrizes a dominant family of rational curves C
with −KS · C = 2. Then either:

(1) the component M parametrizes the fibers of a conic fibration and the general
fiber is a free rational curve.

(2) d = 2, dim(M) = 1, and either
(a) M parametrizes a separable family of rational curves in | −KS |, or
(b) char(k) = 3, S is the double cover of P2 ramified along the curve

zx3+xy3+yz3, and M is the dual curve of this quartic parametrizing
an inseparable family of rational curves in | −KS |, or

(c) char(k) = 2, S is a double cover of P2 defined by the equation w2 +
wg2 + g4 where g2 = 	2 is a double line, and M parametrizes the
preimages of a 1-dimensional family of lines in P2 where for any point
p ∈ V (	) the slope of the line through p is determined by the derivatives
of g4 at p. This family is inseparable.

Proof. Since M parametrizes a dominant family, a general member f : P1 → C ⊂ S
parameterized by M cannot be a multiple cover of a line. Thus f : P1 → C is
birational.

As in Lemma 3.4 the Hodge Index Theorem implies that C2 = 0, 2, 4. Further-
more, as explained in Lemma 3.4 in the C2 = 0 case the curves are fibers of a conic
fibration. Since a general fiber is smooth, the normal sheaf is locally free which
implies that such a rational curve is free. The C2 = 4 case can only occur when
d = 1 and thus is not a concern for us.

The only remaining case to consider is when C2 = 2 and d = 2. In this case the
curve C lies in | −KS |; the arithmetic genus of C is 1 and deg(Nf/S) = 0. We will
argue separately the cases when char(k) > 2 and when char(k) = 2.

Case 1. First suppose that the ground field k has characteristic p ≥ 3. The anti-
canonical linear series defines a double cover f : S → P2 that is ramified along a
smooth quartic curve B. The f -images of the curves parametrized by M will be the
lines in P2 which are tangent to B and thus M will be the dual curve to B. This
family of lines will define a non-separable cover if and only if the general curve has
normal bundle O(−1)⊕ k(p), and hence is a cuspidal curve. This occurs precisely
when the line is flex to the branch curve B. By [Hef89, (4.5)], this is equivalent to
the curve being non-reflexive (which means that the Gauss map to the curve B is
purely inseparable).

[Par86] analyzes the smooth plane curves B in characteristic p ≥ 3 which are
non-reflexive. [Par86, Corollary 2.2] shows that if B is smooth and non-reflexive
of degree 4 then char(k) = 3. [Par86, Proposition 3.7] shows that every smooth
reflexive curve of degree 4 is projectively equivalent to zx3 + xy3 + yz3.

Case 2. Next suppose that the ground field k has characteristic 2. In this case
it is still true that the anticanonical linear series defines a separable double cover
f : S → P2 whose branch divisor B is a double conic. (However, it is possible for
this conic to be singular.) The equation for S has the form w2 + wg2 + g4 where
g2, g4 are homogeneous functions of degree 2, 4 respectively and B is defined by g22 .
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Suppose we take a line 	 ⊂ P2 not contained in B and set C = f−1	. We wish to
know when C is cuspidal. Since the map C → 	 is generically étale, C can only be
singular along 	 ∩ B. We claim that C can only have a cusp when it is tangent to
the conic defined by g2 = 0. Indeed, suppose that p ∈ B∩ 	 and change coordinates
via w �→ w − α so that w vanishes at p. (Note that this coordinate transformation
might change g4 but will not change g2.) Let x be a local coordinate for p on 	. If
g2|� is not x2, then locally g2 can be taken to be proportional to x, but then the
curve w2 + wx+ g4 will have at worst a nodal singularity. Thus if the preimage of
	 is cuspidal then 	 must be tangent to the conic defined by g2 = 0 along the image
of the cusp.

We now separate into three further subcases:

Case 2a. g2 defines a smooth conic. After a coordinate change we may suppose
that the equation for S has the form w2 + w(yz − x2) + g4. We will write g4 =∑

i+j+k=4 aijkx
iyjzk.

The family of tangent lines to yz−x2 = 0 have equations of the form b1y+b2z = 0.
Since we are interested in what happens to a general line in this 1-parameter family,
we may for simplicity assume that the equation of the line is z = by. Then the
restriction of the equation defining S to the line 	 can be written as

w2 + w(by2 − x2) + a400x
4 + (a310 + a301b)x

3y + (a220 + a211b+ a202b
2)x2y2

+ (a130 + a121b+ a112b
2 + a103b

3)xy3

+ (a040 + a031b+ a022b
2 + a013b

3 + a004b
4)y4.

The tangency point p has coordinates (
√
b : 1) on the line and over this point

w2 = a004b
4 + a103b

3
√
b+ (a202 + a013)b

3 + (a301 + a112)b
2
√
b

+ (a400 + a211 + a022)b
2 + (a310 + a121)b

√
b+ (a220 + a031)b+ a130

√
b+ a040.

Rewriting the equation around the point (
√
b : 1) and substituting w′ = w−α where

α is the square root of the right-hand side of the previous equation, we obtain

w′2 + w′(x−
√
b)2 + a400(x−

√
b)4 + (a310 + a301b)(x−

√
b)3

+ (a220 + a310
√
b+ a211b+ a301b

√
b+ a202b

2)(x−
√
b)2 + α(x−

√
b)2

+ (a130 + (a121 + a310)b+ (a112 + a301)b
2 + a103b

3)(x−
√
b).

For this equation to define a cusp, the coefficients of (x−
√
b) must vanish. Further-

more, we can only have a purely inseparable family when each of these lines yields
a cusp regardless of the value of b. This forces the coefficients to be identically zero:

a130 = a103 = 0 a121 = a310 a112 = a301.

However, any surface S defined by an equation whose coefficients satisfy these
conditions will be singular. Indeed, consider the chart where z = 1. On this chart
we have

d/dw = y − x2,

d/dx = a310y(x
2 − y) + a301(x

2 − y),

d/dy = w + a310x
3 + a211x

2 + a031y
2 + a112x+ a013
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and we are looking for points on S where all three equations simultaneously vanish.
Note that the vanishing of d/dw implies the vanishing of d/dx. Thus S will always
have a singular point; indeed, isolating y in the equation for d/dw and w in the
equation for d/dy and substituting into the equation for S we obtain a polynomial
in x whose roots will correspond to singular points of S.

Case 2b. g2 defines a reducible conic. After a coordinate change we may sup-
pose that the equation for S has the form w2 + w(yz) + g4. We will write g4 =∑

i+j+k=4 aijkx
iyjzk.

The family of tangent lines to yz = 0 have equations of the form by + cz = 0.
Since we are interested in what happens to a general line in this 1-parameter family,
we may for simplicity assume that the equation of the line is by = z. Then the
restriction of the equation defining S to the line 	 can be written as

w2 + w(by2) + a400x
4 + (a310 + a301b)x

3y + (a220 + a211b+ a202b
2)x2y2

+ (a130 + a121b+ a112b
2 + a103b

3)xy3

+ (a040 + a031b+ a022b
2 + a013b

3 + a004b
4)y4.

We are interested in the behavior over the point (1 : 0) so that w =
√
a400. Rewrit-

ing the equation so that it is centered around this point, we see that every line will
yield a cusp precisely when a310 = a301 = 0. However, these conditions force S to
be singular over the point (1 : 0 : 0).

Case 2c. g2 defines a non-reduced conic. After a coordinate change we may
suppose that the equation for S has the form w2 + wy2 + g4. We will write
g4 =

∑
i+j+k=4 aijkx

iyjzk.

Note that every line is tangent to the curve y2 = 0. We would like to understand
the situation when there is a 1-parameter family of lines whose preimages are cus-
pidal. Since the equation of S is symmetric in x and z, without loss of generality
we may assume that the general line in our family has an equation of the form
z = bx + cy. Then the restriction of the equation defining S to the line 	 can be
written as

w2 + wy2 + (a400 + a301b+ a202b
2 + a103b

3 + a004b
4)x4

+ (a310 + a301c+ a211b+ a112b
2 + a013b

3 + a103b
2c)x3y

+ (a220 + a211c+ a121b+ a202c
2 + a022b

2 + a103bc
2 + a013b

2c)x2y2

+ (a130 + a121c+ a031b+ a112c
2 + a103c

3 + a013bc
2)xy3

+ (a040 + a031c+ a022c
2 + a013c

3 + a004c
4)y4.

Arguing as in the other cases, this equation will define a cusp precisely when the
coefficient of x3y vanishes. Furthermore, we want to ensure that there is a 1-
dimensional family of lines for which these coefficients vanish. This gives the con-
dition

c(a301 + a103b
2) = a310 + a211b+ a112b

2 + a013b
3

for our 1-dimensional family. Note that the intersection of the line z = bx+cy with
the line y = 0 is given by the point p = (1 : 0 : b). Then it is easy to check that

c =
dg4/dy(p)

dg4/dx(p)
.

�
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Next we turn to rational curves of anticanonical degree 3.

Lemma 4.3. Let S be a del Pezzo surface of degree d ≥ 2. Suppose that M is a
component of M0,0(S) that parametrizes a dominant family of rational curves C
with −KS · C = 3. Then either:

(1) the component M defines a separable family of stable maps which are gener-
ically birational maps to smooth free curves.

(2) d = 3, dim(M) = 2, and either
(a) M parametrizes a separable family of rational curves in | −KS |, or
(b) char(k) = 2, S is the Fermat cubic surface in P3, and M is the dual

variety parametrizing hyperplanes tangent to S. In this case, the family
is inseparable.

(3) d = 2, dim(M) = 2 and either
(a) M parametrizes a separable family of rational curves, or
(b) char(k) = 2, S is the blow-up of the Fermat cubic surface S′ in P3, and

M is birational to the dual variety of S′ and parametrizes the pullbacks
of rational members of |−KS′ |. In this case, the family is inseparable.

Proof. Since M parametrizes a dominant family, a general member f : P1 → C ⊂ S
parameterized by M cannot be a multiple cover of a line. Thus f : P1 → C is
birational.

The Hodge Index Theorem tells us that dC2 − 9 ≤ 0. The arithmetic genus
formula tells us that C2 − 3 = 2g − 2, so that C2 is odd and is at least 1. Since by
assumption d ≥ 2, we also have that C2 ≤ 3. We deduce that the only options are:

Case 1. C2 = 1, d arbitrary: in this case the arithmetic genus of C is 0, so C is
free. In fact, C must be the strict transform of a general line under a birational
map to P2. Such families are separable and have the expected dimension.

Case 2. C2 = 3, d = 2, 3: In this case the arithmetic genus of C is 1 and
deg(Nf/S) = 1. Since C is a deformation of an elliptic curve, this implies that
either Nf/S = O(1), Nf/S = O ⊕ k(p), or (in characteristic 2 only) Nf/S =

O(−1) ⊕ k[t]/(t2) where the torsion part is supported on p. If k has character-
istic > 2 then the normal sheaf of a general stable map is globally generated and
thus M is a separable family.

We also need to address separability when char(k) = 2, d = 2 or 3, and S
is a del Pezzo surface. First suppose that d = 3. In this case S is a smooth
cubic hypersurface defined by an equation f =

∑
yijklx

i
0x

j
1x

k
2x

l
3. By Section 2.1

the family of rational curves obtained by singular hyperplane sections of S will be
inseparable if and only if the general such curve is cuspidal.

Suppose P is the plane defined by the equation
∑3

i=0 zixi = 0. Using standard
facts about elliptic curves (see for example [Tat74]), we see that intersection P ∩ S
will be singular if and only if the discriminant Δ of f |P vanishes and in this case it
will be cuspidal if and only if c4 vanishes. A computation shows that

c4 = y40111z
4
0 +y41011z

4
1 +y41101z

4
2 +y41110z

4
3 = (y0111z0+y1011z1+y1101z2+y1110z3)

4.

If every singular hyperplane section of S is cuspidal, then the dual variety must
contain the plane defined by c4 = 0 or c4 must be identically zero. However, the
first option is impossible due to the classification of “strange hypersurfaces” in
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[KP91, Theorem 7]. Thus the cubic surfaces S for which every singular hyperplane
section is cuspidal are exactly those which satisfy

y0111 = y1011 = y1101 = y1110 = 0.

We then claim that every smooth cubic satisfying this condition is projectively
equivalent to the Fermat cubic surface. Note that the locus of cubic surfaces satis-
fying this condition is invariant under the action of PGL4(k). For any cubic surface
S, Aut(S) injects into the group of automorphisms of configurations of (−1)-curves
on S, so Aut(S) is a finite group. (See [DD19] for this claim.) Therefore the orbit
of S under PGL4(k) will be 15-dimensional. Since the projective space of cubic
surfaces satisfying the above condition is also 15-dimensional, the claim follows.

Next suppose that d = 2. We claim that in this case C is the pullback of a curve
under a birational map to a degree 3 del Pezzo surface. To see this, it suffices to
find a (−1)-curve which has vanishing intersection with C. We claim that KS +C
will be linearly equivalent to such a curve. Indeed, we have

(KS + C) · C = 0 (KS + C) ·KS = −1 (KS + C)2 = −1.

SinceH2(S,KS+C) vanishes by Serre duality, Riemann-Roch shows thatH0(S,KS

+ C) is non-zero, finishing the argument. We conclude that the family of rational
curves containing C is separable unless S is the blow-up of the Fermat cubic surface.

�

Proof of Theorem 4.1. Combining Lemma 4.2 and Lemma 4.3, we only need to
show that if S is a degree 2 del Pezzo surface in characteristic 2 obtained by blowing
up the Fermat cubic surface then the ramification locus of the map S → P2 defined
by |−KS | is a double line. Note that every smooth hyperplane section of the Fermat
cubic surface is a supersingular elliptic curve (see [Hom97, Theorem 1.1]). Thus
every smooth curve in | −KS | also has the same property. Then [Sai17, Theorem
0.3] proves the desired property of the anticanonical linear series of S. �

We next show that there are no issues with separability when the characteristic
is sufficiently large. Recall from (1.1) that the function δ(d) is defined by:

δ(d) =

⎧⎪⎨
⎪⎩
2 if d ≥ 4,

3 if d = 2, 3,

11 if d = 1.

Theorem 4.4. Let k be an algebraically closed field of characteristic p. Let S be
a del Pezzo surface of degree d over k. Assume that p ≥ δ(d). When d = 2 and
p = 3, we further assume that S is not isomorphic to the del Pezzo surface listed
in Theorem 4.1(2).

Then any dominant family of rational curves on S of anticanonical degree ≤ 3
contains a free rational curve. In particular, any dominant component parametriz-
ing rational curves of anticanonical degree ≤ 3 is separable so that it has expected
dimension.

Proof. Since the surfaces under consideration do not admit a dominant family of
−KS-lines, we see that a general map in a dominant family of maps of degree ≤ 3
must be birational onto its image.

When d ≥ 3, every −KS-conic is smooth and every −KS-cubic has at most 1
cusp. Thus it follows from a normal bundle calculation that such curves are free.
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When d = 2 and p = 3, −KS-conics are handled by Lemma 4.2 and every −KS-
cubic has at most one cusp and thus is free. So we only need to consider when
d = 1 and p ≥ 11 or d = 2 and p ≥ 5. Let us discuss the case of d = 1 as the other
case is similar.

Let M be any component of M0,0(S) which parametrizes a dominant family of
stable maps of anticanonical degree ≤ 3 such that the general map has irreducible
domain and is birational onto its image in S. Let T be the normalization of a curve
inM which parametrizes a dominant family of irreducible curves. It suffices to show
that the restriction of the tangent bundle of S to a general curve parametrized by
T is globally generated.

Let C denote the normalization of the one-pointed family over T equipped with
the evaluation map ev : C → S. By [IIL20, Lemma 6.1] we have a diagram

C
s

��

g �� C′

s′

��

ev′
�� S

T
h �� T ′

that satisfies the following properties:

(1) C′ and T ′ are normal.
(2) k(T ′) is algebraically closed in k(C′).
(3) s′ is a proper flat morphism such that the reduced subscheme underlying

the fiber over a general closed point is a (possibly singular) irreducible
rational curve.

(4) g and h are finite morphisms.
(5) ev = ev′ ◦ g and ev′ is a separable map.

We claim that every fiber of s′ over a general closed point of T ′ is smooth. First,
[B0̆1, Lemma 7.2] shows that condition (2) above implies that k(C′) is a separable
extension of k(T ′). In particular this implies that a general fiber C ′ of s′ is reduced.
Next, by [IIL20, Proposition 5.2] the sum of the δ-invariants at the closed points
of a general fiber C ′ is the same as the arithmetic genus. Thus by [IIL20, Theorem
5.7] it suffices to show that the arithmetic genus of C ′ is strictly less than (p−1)/2.
Since the map ev takes a general fiber of s birationally onto its image, the same
is true of ev′. This implies that the arithmetic genus of a fiber of s′ is at most
the arithmetic genus of its image in S. By the Hodge Index Theorem, a curve of
anticanonical degree ≤ 3 on a weak del Pezzo surface satisfies dC2 ≤ (−KS ·C)2 and
thus has arithmetic genus < 11−1

2 = 5. Since by assumption p ≥ 11 we conclude
that the general fiber of s′ is smooth.

Since ev′ is a dominant separable morphism and the general fiber of s′ is smooth,
we deduce that the restriction of the tangent bundle of S to a general fiber of
s′ is globally generated. Since g takes a general fiber of s birationally onto the
corresponding fiber of s′, the same property holds for the general fiber of s. �

As a corollary, we have the following statement:

Corollary 4.5. Let k be an algebraically closed field of characteristic p. Let S be a
del Pezzo surface of degree d over k. Assume that p ≥ δ(d). When d = 2 and p = 3,
we further assume that S is not isomorphic to the surface listed in Theorem 4.1(2).
Then any rational curve of anticanonical degree ≤ 3 containing a general point is
a free rational curve.
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Let us add Lemma 4.6 for a later application:

Lemma 4.6. Let S be a del Pezzo surface of degree 1 over an algebraically closed
field k of characteristic p. Assume that p ≥ 11. Then a general member of a
dominant family of −KS-conics meets with any −KS-line transversally and meets
with any −KS-conic transversally.

Proof. First of all, note that by Theorem 4.4 all components ofM0,0(S) parametriz-
ing −KS-lines and conics have the expected dimension and all dominant compo-
nents of M0,0(S) parametrizing −KS-conics are separable.

Let C1 be a −KS-conic and C2 be a −KS-line. Then note that C2
1 = 0, 2, or

4. We also have C2
2 = −1 or 1. By the Hodge Index Theorem the determinant of

the intersection matrix of −KS , C1, C2 is non-negative (regardless of the rank of
this matrix). Combining this fact with the above consideration, we conclude that
C1 · C2 < 11.

Let p : C → N be a component ofM0,0(S) parameterizing C1 with the evaluation
map f : C → S. A general curve parametrized by N is free and so after shrinking
N we may assume that the separable morphism f is unramified. Indeed, after
shrinking N so that N only parametrizes free curves, the evaluation map f is étale
by [Kol96, II.3.5.4 Corollary] and a flat descent argument. Thus we conclude that
f−1(C2) is reduced. Since C1 · C2 < 11, our assumption on the characteristic
implies that every dominant component of f−1(C2) maps separably to N , so the
intersection of f−1(C2) and a general fiber of p is reduced. This implies that a
general C1 meets with C2 transversally.

Next let C1, C2 be two −KS-conics. Then one can prove that C1.C2 < 11.
Repeating the argument above, we obtain transversality for a general conic meeting
a conic. �

The statement of Lemma 4.6 fails in characteristic 2:

Example 4.7. It is possible on a del Pezzo surface S that there is a fixed −KS-
line which is tangent to every −KS-conic in a given 1-dimensional family. For
example, let k be an algebraically closed field of characteristic 2. Consider the
curve C ⊂ P1

x × P1
y defined by

x2
0y1 = x2

1y0.

This is an integral smooth rational curve. Consider the morphism π : P1×P1 → P1

mapping (x, y) �→ y. Then every fiber of π|C : C → P1 is non-reduced. We blow up
5 general points on C and obtain a smooth cubic surface β : S → P1 × P1. Then
the strict transform of C is a (−1)-curve and every irreducible fiber of π ◦ β is a
−KS-conic which is tangent to C.

5. Inductive arguments using Bend-and-Break

Let k be an algebraically closed field (of arbitrary characteristic). We would like
to classify all dominant families of rational curves on a weak del Pezzo surface S
which either have larger than the expected dimension, or (more generally) fail to
be separable. Using Bend-and-Break we will reduce the classification problem to
smaller degrees, eventually working downward to the base cases discussed in Section
3 and Section 4.

Lemma 5.1 is the key tool.



RATIONAL CURVES ON DEL PEZZO SURFACES 431

Lemma 5.1. Let S be a weak del Pezzo surface over k. Fix a positive integer d ≥ 4.
Assume that every irreducible component of M0,0(S) that generically parametrizes
a dominant family of birational maps onto irreducible curves with anticanonical
degree < d has the expected dimension.

Suppose that M ⊂ M0,0(S) is an irreducible component that generically parame-
trizes a dominant family of birational maps onto irreducible curves of anticanonical
degree d. Fix dim(M) − 1 general points of S. Then M parametrizes a stable
map f : Z → S where Z has two different irreducible components Z1, Z2 ⊂ Z
such that f(Z1) ∪ f(Z2) contains all dim(M) − 1 distinguished points and f |Z1

,
f |Z2

are general members of dominant families of birational stable maps in lower
anticanonical degree.

If furthermore S is a del Pezzo surface, then we can ensure that Z1, Z2 are the
only components of Z.

The proof is modeled on [Tes09, Lemma 1.14].

Proof. Set r = dim(M). If we fix r−1 general points of S then by Bend-and-Break
M parametrizes a stable map f with reducible domain whose image contains these
r− 1 points. Furthermore, by [LT22a, Lemma 4.1] (which works in arbitrary char-
acteristic) we may find such a stable map f such that there are at least two different
irreducible components of the domain of f such the image of each component con-
tains one of our fixed points, and moreover the two points contained by the two
components are different. In particular, due to the generality of the points there
must be at least two irreducible components of the domain of f whose deformations
dominate S.

Let Z1, . . . , Zs be the irreducible components of the domain of f whose images
deform in a dominant family and let C1, . . . , Cs be their images in S. The previous
paragraph shows that s ≥ 2. By assumption every family of birational stable maps
with irreducible domains of lower degree has the expected dimension. In particular,
if we define di := −KS · Ci then Ci can contain at most di − 1 general points of
S. On the other hand, we know that all r − 1 general points must be contained in
the image of f . Since r ≥ d − 1 ≥ (

∑
di) − 1, we see that there can be at most

two such components Ci. We conclude that s = 2. Furthermore, since each Ci

is going through the maximal possible number of general points in S, by choosing
our points general we may ensure that C1 and C2 are general in their respective
families. Since d = d1 + d2 by the argument above, we must have that f |Zi

is
birational for i = 1, 2.

Suppose furthermore that S is a del Pezzo surface. Since the argument above
shows that d = d1 + d2 we see that there can be no other curves in the image of
f . �

We can now address the existence of families of rational curves with larger-than-
expected dimension.

Proposition 5.2. Let S be a weak del Pezzo surface over k. Assume that every
dominant component of M0,0(S) generically parametrizing birational maps to ra-
tional curves of anticanonical degree ≤ 2 has the expected dimension. Let M ⊂
M0,0(S) be any component that generically parametrizes a dominant family of bi-
rational maps onto irreducible curves C. Then M has the expected dimension.
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Proof. We prove the statement by induction on the anticanonical degree. The base
case when −KS · C ≤ 2 is true by assumption.

Suppose that −KS ·C = 3. If the deformations of C had larger than the expected
dimension, then by applying Bend-and-Break as in the proof of Lemma 5.1 we see
that S must also carry a dominant family of rational curves of degree ≤ 2 which
has higher than the expected dimension. This gives a contradiction.

Suppose that −KS · C ≥ 4. Set r = dim(M). By Bend-and-Break we find a
stable map parametrized by M with reducible domain through r− 1 general points
of S. By Lemma 5.1 there are two curves C1, C2 in the image of f which deform in
a dominant family and contain all r − 1 general points. Letting d1, d2 denote the
anticanonical degrees of the curves, we have

r − 1 ≤ (d1 − 1) + (d2 − 1) ≤ −KS · C − 2 ≤ r − 1

and thus r = −KS · C − 1. �

Proof of Theorem 1.1. Combine Corollary 3.8 and Proposition 5.2. �

Next we consider whether or not families of high degree rational curves are
separable.

Proposition 5.3. Let S be a del Pezzo surface over k. Assume that every dominant
component of M0,0(S) generically parametrizing birational maps to rational curves

of anticanonical degree ≤ 3 is separable. Let M ⊂ M0,0(S) be any component
that generically parametrizes a dominant family of birational maps onto irreducible
curves C. Then M generically parametrizes a free curve.

Proof. Let C be a general member of M and let −KS · C = d. We prove our
statement by induction on d. By assumption the desired statement holds when
d ≤ 3.

When d ≥ 4, we apply Bend-and-Break and Lemma 5.1 to find a stable map f :
Z → S parametrized by M whose domain has exactly two irreducible components.
Furthermore Lemma 5.1 guarantees that the images C1, C2 are general in their
respective families, hence free.

Let B be a general curve in M0,0(S) through f . After perhaps replacing B by a
cover, we obtain a universal family U over B equipped with a map g : U → S such
that the central fiber is Z and g|Z = f . Since a general fiber of U → B is isomorphic
to P1, this map admits a section. Thus there is a line bundle L on U which has
degree −1 against one component of Z and degree 0 against the other. Then we
have H1(Z, g∗TS ⊗ L|Z) = 0. By upper semicontinuity of cohomology groups we
deduce that the general map parametrized by M is free. Indeed, let h : C → S be
a general stable map parametrized by B. Then H1(C, h∗TS ⊗O(−1)) = 0. Thus if
we write h∗TS = O(a1)⊕O(a2), then we must have ai ≥ 0 proving that h : C → S
is free. �

Proof of Theorem 1.2. Combine Theorem 4.1 and Proposition 5.3. �

6. Del Pezzo surfaces of degree 1 in characteristic 0

In this section we work over a fixed algebraically closed field k of characteristic 0.

Let S be a del Pezzo surface over k and β a class in N1(S)Z. Denote by M
bir

(S, β)
the closure of the locus in the Kontsevich spaceM0,0(S, β) parametrizing generically
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injective maps with irreducible domains. Our goal in this section is to prove the

irreducibility of M
bir

(S, β).
[Tes05] proved this result when S has degree ≥ 2 or when S is general of degree

1:

Theorem 6.1 ([Tes05, Section 2.2 and Theorem 4.5]). Let S be a del Pezzo surface
of degree d over an algebraically closed field of characteristic 0. Suppose that either
d ≥ 2 or d = 1 and S is general in moduli. Then for every numerical class β on S

the scheme M
bir

(S, β) is either irreducible or empty.

We focus on the last case of arbitrary del Pezzo surfaces of degree 1. We will
use the following result:

Proposition 6.2 ([Tes05, Proposition 4.6]). Let S be a del Pezzo surface over an
algebraically closed field of characteristic 0. Suppose that β is a nef numerical class

on S. If β is not the multiple of a −KS-conic, then M
bir

(S, β) is non-empty.

We will prove the irreducibility of M
bir

(S, β) by deforming to a general del Pezzo
surface of degree 1. The key construction is the following:

Lemma 6.3. Suppose that S is a del Pezzo surface over an algebraically closed field

of characteristic 0 and β ∈ N1(S)Z is such that e := −KS · β ≥ 3 and M
bir

(S, β)
is non-empty. Let q1, . . . , qe−2 be general points in S and let B be the locus in

M
bir

(S, β) parametrizing morphisms whose images pass through q1, . . . , qe−2. Then
B is of dimension 1 and lies in the smooth locus of M0,0(S, β). There are finitely
many maps parametrized by B with reducible domains.

Proof. Let f : Z → S be a stable map parametrized by B. If Z is irreducible, then
f is free and so (Z, f) a smooth point of the moduli space. Suppose Z is reducible.
Let Z1, . . . , Zm, m ≥ 2 be the irreducible components of Z not contracted by f and
let ei = deg f |Zi

and fi = f |Zi
. Suppose f1, . . . , fk are free maps and fk+1, . . . , fm

are non-free. Then the image of Zi, 1 ≤ i ≤ k, can pass through at most ei − 1
general points. So e−2 ≤ e1+ · · ·+ek−k. On the other hand

∑m
i=1 ei = e, so there

are two possibilities: either (1) m = k = 2 or (2) k = 1,m = 2, e1 = e − 1, e2 = 1.
And in either case there cannot be a contracted component. In the first case, the
image of Zi, i = 1, 2, has to pass through ei − 1 of the points, and so there are
finitely many choices for each fi. Since the images of f1 and f2 pass through general
points, they are free and so f is a smooth point of the moduli space.

In the second case, the image of Z2 is a −KS-line, and the image of Z1 passes
through q1, . . . , qe−2, so f1 is general in its moduli and Nf1 = O(e− 3). Since there
are finitely many lines on S, [BLRT22, Proposition 2.8] shows that the images of Z1

and Z2 meet transversally. Thus f is a local immersion in an open neighborhood
of the node of Z. If the image of Z2 is a (−1)-curve or a nodal curve, then Nf1 =
O(e− 3) and Nf2 = O(−1), so Nf |Z1

= O(e− 2), and Nf |Z2
= O. If the image of

Z2 has a cusp, then Nf1 = O(e− 3) and Nf2 = O(−2)⊕ k(p) where p is the point
at which f is ramified. Therefore, Nf |Z1

= O(e − 2), and Nf |Z2
= O(−1) ⊕ k(p).

In both cases (Z, f) is a smooth point of the moduli space. �
Proposition 6.4. Suppose S is a del Pezzo surface over an algebraically closed field
of characteristic 0 of degree 9− d ≥ 1. Fix β ∈ N1(S)Z such that e := −KS ·β ≥ 3.

Then for general points q1, . . . , qe−2 on S, the locus B in M
bir

(S, β) parametrizing
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morphisms whose images pass through q1, . . . , qe−2 is either empty or a connected
curve.

Proof. Fix a blow-down map π : S → P2. Write β = mH−k1E1−· · ·−kdEd where
H is the pullback of the hyperplane class via π, the Ei are π-exceptional divisors,

and ki ≥ 0. First suppose S is general. By [Tes05] M
bir

(S, β) is irreducible. Let

U be the open subset of M
bir

(S, β) parametrizing generically injective morphisms
from P1 to S. By composing with the blow-down π : S → P2 we get an embedding
from U to the Hilbert scheme of curves of degree m in P2. We let PN denote the
projective space of curves of degree m in P2, so we get a morphism U → PN and

thus a rational map α : M
bir

(S, β) ��� PN . Resolving the indeterminacy locus of

α, we get morphisms α̃ : M̃ → PN and p : M̃ → M
bir

(S, β) such that α̃ = α ◦ p.
The image of α is (e − 1)-dimensional and the images of q1, . . . , qe−2 in P2 give a
linear subvariety Λ of codimension ≤ e− 2 in PN parametrizing curves of degree m
passing through them. By [FL81, Theorem 2.1], α̃−1(Λ) is connected. By Lemma
6.3, a general point in every irreducible component of B has an irreducible domain
and is therefore in the domain of α. Since B = p(α̃−1(Λ)), we conclude that B is
connected as well.

Now suppose that S is an arbitrary del Pezzo surface of degree 9− d. Let Vd be
the open subvariety of Hilbd(P2) parametrizing d points in general position in P2

(in the usual sense for del Pezzo surfaces), Z the universal Hilbert scheme over Vd

and S the blow-up of P2 × Vd with center Z. Then there is a point u ∈ Vd such
that S = Su. Denote by q′1, . . . , q

′
e−2 the images of q1, . . . , qe−2 in P2. For any map

f : P1 → Su whose image passes through q1, . . . , qe−2 we have H1(Nf (−e+2)) = 0,
so the deformations of f yield a family of stable maps from P1 to the fibers of
S → Vd passing through the preimages of q′1, . . . , q

′
e−2 which has the expected

dimension. Let M be the family of stable maps to fibers of S → Vd passing
through the preimages of q′1, . . . , q

′
e−1. We claim that every irreducible component

of M dominates Vd. This follows from a dimension calculation: we know that each
fiber of M → Vd is at most 1-dimensional. A normal bundle calculation shows
that each component of M has dimension at least dim(Vd) + 1. Together these
observations prove the claim.

Consider the map from M to Vd. Since the general fiber of this map is con-
nected and every component of M dominates Vd, we see that M is also connected.
Since Vd is smooth and the fiber over a general point of Vd is connected, the Stein
factorization of the proper map M → Vd is trivial and thus the fiber over every
closed point u is connected. �

Theorem 6.5. If S is a smooth del Pezzo surface of degree 1 over an algebraically
closed field of characteristic 0, then for every β ∈ N1(S)Z with −KS · β ≥ 3,

M
bir

(S, β) is either irreducible or empty.

Proof. Suppose that M
bir

(S, β) is non-empty. Let e = −KS · β, and pick e − 2
general points q1, . . . , qe−2 in S. Lemma 6.3 shows that in every component of

M
bir

(S, β) there is a 1-parameter family of curves parametrizing curves through
q1, . . . , qe−2. The union B of all such 1-parameter families is connected by Propo-

sition 6.4. Suppose that M
bir

(S, β) is reducible and let M1, . . . ,Mk denote the
irreducible components. Since B is connected and Mi∩B �= ∅ for every component
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Mi, we see that there must be a point b ∈ B which is contained in two different
irreducible components. In particular, b must be a singular point of M0,0(S, β).
But this is not possible by Lemma 6.3. �

If β is a multiple of a −KS-conic, then it is easy to see that M0,0(β) will admit a
component that generically parametrizes multiple covers of the corresponding conic
fibration. Altogether we have:

Theorem 6.6. Let S be a smooth del Pezzo surface of degree 1 over an algebraically
closed field of characteristic 0. Let β be a nef class on S satisfying −KS · β ≥ 3.
Then:

(1) If β is not a multiple of a −KS-conic, then there is a unique component
M of M0,0(S, β) generically parametrizing stable maps with irreducible do-
mains. The general map parametrized by M is a birational map onto a free
curve.

(2) If β is a multiple of a smooth rational conic, then there is a unique com-
ponent of M0,0(S, β) generically parametrizing stable maps with irreducible
domains. The general map parametrized by M is a finite cover of a smooth
conic.

(3) If there is a contraction of a (−1)-curve φ : S → S′ such that β is the
pullback of −KS′ , then there are exactly two components of M0,0(S, β)
parametrizing stable maps with irreducible domains. One component gener-
ically parametrizes birational maps onto free curves, the other generically
parametrizes multiple covers of conics.

(4) If β is a multiple of −2KS then there are at least two components of
M0,0(S, β) parametrizing stable maps with irreducible domains. There is
a unique component generically parametrizing birational maps onto free
curves, and the others generically parametrize multiple covers of conics.

Proof. By [Tes05, Proposition 4.6] there exists a free curve of class β, and thus a
component M ⊂ M0,0(S, β) generically parametrizing free curves.

Suppose that the general curve parametrized by M is not birational onto its
image. If we let m denote the anticanonical degree of the (reduced) image and b
the degree of the general map parametrized by M , then

dim(M) = (m− 1) + (2b− 2).

Since we also know that M has at least the expected dimension mb− 1, we deduce
that m = 2. Thus if M generically parametrizes non-birational maps, the images of
these maps must be conics. Conversely, since every nef class α satisfying −KS ·α = 2
is represented by a free conic, multiple covers of conics will always yield a component
of M0,,0(S,mα). Note that if α is the class of a smooth rational conic, then the
moduli space of conics of class α is irreducible. Similarly, if α is the pullback of
the anticanonical divisor on a degree 2 del Pezzo under a birational map, then the
moduli space of conics of class α is the dual curve of the branch divisor for the
induced map to P2 and thus must be irreducible.

It only remains to analyze the case when M generically parametrizes birational

maps. By Theorem 6.5 we know that M
bir

(S, β) is either irreducible or empty. We
also know that β is represented by a stable map with an irreducible domain by
[Tes05, Proposition 4.6]. Thus we obtain the desired property if β is not a multiple
of a conic. Since a smooth rational conic is a fiber of a morphism to P1, it is clear
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that a multiple of a smooth rational conic is not represented by any irreducible
rational curves. If β is pulled back from a degree 2 del Pezzo surface S′, then by
gluing free curves representing | −KS′ |, smoothing, and taking a strict transform
we find an irreducible rational curve of class β. If β is a multiple of | − 2KS |, then
by gluing free curves in | − 2KS | and smoothing we see that β is represented by an
irreducible rational curve. �

7. Irreducibility of moduli spaces in characteristic p

Let S be a del Pezzo surface defined over an algebraically closed field k of char-

acteristic p. Denote by M
bir

(S, β) the closure of the locus in the Kontsevich space
M0,0(S, β) parametrizing generically birational maps with irreducible domains. As

in the previous section, our goal is to show that M
bir

(S, β) is irreducible under
suitable hypotheses. Our strategy is to deform to characteristic 0.

7.1. Existence of stable maps with irreducible domains. We first need to
show the existence of stable maps with irreducible domains which map birationally
onto their image. We will mimic the approach of [Tes05]. The first step is:

Lemma 7.1 ([Tes05, Corollary 2.5]). Let S be a del Pezzo surface of degree d ≤ 8
over an algebraically closed field. Let D be a nef Cartier divisor on X. Then there
is a sequence of contractions of (−1)-curves

S = Yd → Yd+1 → . . . → Y8,

non-negative integers nd, nd+1, . . . , n7, and a nef divisor D′ on Y8 such that

D = nd(−KYd
) + nd+1φ

∗
d+1(−KYd+1

) + . . .+ n7φ
∗
7(−KY7

) + φ∗
8D

′,

where φd+i : Yd → Yd+i is the composition of the birational maps in the above
sequence.

Proof. Recall that the description of del Pezzo surfaces as blow-ups of P2 is exactly
the same in characteristic p and characteristic 0. Since the proof of [Tes05, Corollary
2.5] only uses the combinatorics of these blow-ups, the proof works equally well in
any characteristic. �

Proposition 7.2 ([Tes05, Proposition 4.6]). Let S be a del Pezzo surface over an
algebraically closed field. When the degree of S is 1 we assume that the characteristic
of the ground field is not equal to 2. We further assume that every dominant com-
ponent of M0,0(S) that generically parametrizes birational maps to rational curves
of anticanonical degree ≤ 3 is separable. Then every nef class α is represented by
a stable map f : P1 → S which is a free curve.

Proof. First we must address the nef classes α satisfying −KS ·α = 1. By the Hodge
Index Theorem this can only occur when S has degree 1 and α = −KS . Note that
P2 contains a cubic rational curve through any 8 points. Since −KS is primitive,
by taking a strict transform we see that α is represented by an irreducible rational
curve.

The more interesting case is when −KS · α ≥ 4. As in Lemma 7.1 we can write

D = nd(−KYd
) + nd+1φ

∗
d+1(−KYd+1

) + . . .+ n7φ
∗
7(−KY7

) + φ∗
8D

′,

where each Yi is a del Pezzo surface of degree i.
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We claim that if i ≥ 4 then | −KYi
| is represented by a free rational curve. The

existence of an irreducible rational curve in the anticanonical linear system follows
from the fact that these are the strict transforms of plane cubics passing through
the points we blow up. A general member is free by Proposition 5.3.

Note that by assumption |−KY2
| and |−KY3

| are also represented by free rational
curves (if d ≤ 3).

We now construct a chain of rational curves representing D. If d ≥ 2, we
construct the chain by taking nd general free curves in | −KYd

|, then connecting it
to a chain of nd+1 general free curves in φ∗

d+1| −KYd+1
|, and so on until we reach

Y7. Since a del Pezzo surface of degree 8 is either P1 ×P1 or the blow-up of P2 at a
point, it is also clear that D′ is represented by a free rational curve. Altogether, if
d ≥ 2 then D is represented by a stable map which maps birationally onto a chain of
free rational curves. By smoothing we obtain a stable map with irreducible domain
mapping to a free curve.

When d = 1 and n1 = 0 the argument is similar. If n1 ≥ 2, then we can write
n1 = 2m1 + 3m2 for some non-negative integers m1,m2. By assumption | − 2KS |
and | − 3KS | are both represented by free rational curves, and we conclude by a
similar argument as before. Finally, if n1 = 1, C ∈ | −KY1

| has the normal sheaf
O(−1) or O(−2)⊕ k(p). (Recall that we are assuming that the characteristic �= 2
so that O(−3) ⊕ k[t]/(t2) is not possible.) Note that each −φ∗

iKYi
for i > 1 and

φ∗
8D

′ can be expressed as a positive sum of at least two (−1)-curves. Thus we may
represent the class D as a comb whose handle is C and whose teeth are a collection
of (−1)-curves Ej . Since Ej · C = 1, the (−1)-curves meet C transversally. Since
there are at least two (−1)-curves, Theorem 2.2 shows that the resulting comb
is a smooth point of the moduli space. We can smooth it so that we obtain an
irreducible free curve, proving the claim. �

7.2. Deforming to characteristic 0.

Lemma 7.3. Suppose that S is a smooth del Pezzo surface of degree d defined over
an algebraically closed field k of characteristic p. Assume that p ≥ δ(d). When
d = 2 and p = 3, we further assume that S is not isomorphic to the surface listed
in Theorem 4.1(2).

Let β ∈ N1(S)Z be a nef class such that e := −KS ·β ≥ 3 and M
bir

(S, β) is non-

empty. Let q1, . . . , qe−2 be general points in S and let B be the locus in M
bir

(S, β)
parametrizing stable maps whose images pass through q1, . . . , qe−2. Then B is of
dimension 1 and lies in the smooth locus of M0,0(S, β). Furthermore only finitely
many maps parametrized by B have reducible domains.

Proof. Proposition 5.2 shows that every component of M
bir

(S, β) has the expected
dimension. Since general points will impose general conditions on a family of curves,
we see that B has dimension 1.

We prove the remaining statements by induction on e. When e = 3, let f : Z → S
be a stable map of degree 3 passing through a general point. If Z is irreducible,
then (Z, f) is a smooth point of the moduli space by Corollary 4.5. Assume that Z
is reducible. Then Z consists of a −KS-conic Z1 and a −KS-line Z2 with fi = f |Zi

.
Assume that d ≥ 2. Then the image of Z2 is a (−1)-curve, so it is smooth. It follows
from Proposition 2.3 that (Z, f) is a smooth point of the moduli space. If d = 1,
then it follows from Lemma 4.6 that the images of Z1 and Z2 meet transversally.
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Thus we conclude that f is a local immersion in an open neighborhood of the node
of Z. If the image of Z2 is a (−1)-curve or a nodal curve, then Nf1 = O and
Nf2 = O(−1), so Nf |Z1

= O(1), and Nf |Z2
= O. If the image of Z2 has a cusp,

then Nf1 = O and Nf2 = O(−2)⊕ k(p) where p is the point at which f is ramified.
Therefore, Nf |Z1

= O(1), and Nf |Z2
= O(−1) ⊕ k(p). In both cases (Z, f) is a

smooth point of the moduli space.
We now prove the induction step. Choose e ≥ 4 and assume our assertion

is true for stable maps of anticanonical degree < e. Let (Z, f) be a stable map
parametrized by B. If Z is irreducible, then we claim that (Z, f) is a smooth point
of the moduli space. Suppose otherwise, so that the singular locus of M0,0(S) meets
the curve B at a point representing a map with irreducible domain. As we vary
the choice of e − 2 general points q1, . . . , qe−2, the curves B define a flat family of

subvarieties of M
bir

(S, β). Since a flat family of subvarieties will intersect any other
subvariety in the expected dimension, there must be a component V of the singular
locus of M0,0(S) which has codimension 1 in M0,0(S) and generically parametrizes
birational stable maps with irreducible domains. Pick general points q′1, · · · , q′e−3

and consider a 1-dimensional locus of V generically parametrizing irreducible curves
passing through q′1, · · · , q′e−3. Arguing as in Lemma 5.1, f breaks into a stable map
with reducible domain, and there are the following possible types of breaking curves
(Z ′, g), where the Z ′

i denote the irreducible components of Z ′:

(1) Z ′ = Z ′
1 ∪ Z ′

2 with −KS · Z ′
1 = d1 > 2, −KS · Z ′

2 = d2 > 1 such that Z ′
1

contains d1 − 2 general points and Z ′
2 contains d2 − 1 general points or;

(2) Z ′ = Z ′
1 ∪ Z ′

2 ∪ Z ′
3 with −KS · Z ′

1 = d1 > 1, −KS · Z ′
2 = d2 > 1, and

−KS · Z ′
3 = d3 > 1 such that each Z ′

i contains di − 1 general points, or;
(3) Z ′ = Z ′

1 ∪ Z ′
2 ∪ Z ′

3 with −KS · Z ′
1 = d1 > 1, −KS · Z ′

2 = d2 > 1, and
−KS · Z ′

3 = 1 such that Z ′
1 contains d1 − 1 general points and Z ′

2 contains
d2 − 1 general points.

In the first case, the induction hypothesis shows that Z ′
1 and Z ′

2 are smooth points
of the moduli space. This implies that h1(Z ′

i, g
∗TS |Z′

i
) = 0. Furthermore, Z ′

2 is

general in its moduli so it must be free. Thus we conclude that h1(Z ′, g∗TS) = 0.
Then (Z ′, g) is a smooth point of M0,0(S), a contradiction. In the second case,
the Zi’s are general in moduli so they are free. Thus (Z ′, g) is a smooth point of
moduli space, a contradiction. In the third case, Z ′

1 and Z ′
2 must be free. When

d ≥ 2, Z ′
3 is a smooth curve. Hence it follows from Proposition 2.3 that (Z ′, g) is a

smooth point of the moduli space. Assume that d = 1. We claim that the images of
Z ′
1, Z

′
2, Z

′
3 meet transversally with each other. When the degree of Z ′

1 is greater than
2, then Z ′

1 is very free by the induction hypothesis. Thus transversality of Z ′
1 with

Z ′
2 and Z ′

3 is clear. Similarly for Z ′
2, so without loss of generality we may assume

that Z ′
1 and Z ′

2 are −KS-conics. Then transversality follows from Lemma 4.6.
Arguing as above, we conclude that (Z ′, g) is a smooth point of the moduli space,
a contradiction. Altogether, for a general choice of q1, · · · , qe−2 points of the form
(Z, f) in B with Z irreducible are smooth points of the moduli space.

Now suppose Z is reducible. Let Z1, . . . , Zm, m ≥ 2 be the non-contracted
irreducible components of Z, and let ei = deg f |Zi

and fi = f |Zi
. Suppose f1, . . . , fk

are the maps containing at least one of the general points and fk+1, . . . , fm are the
maps containing none of the general points. Then for 1 ≤ i ≤ k the image of Zi

can pass through at most ei− 1 general points. So e− 2 ≤ e1+ · · ·+ ek −k. On the
other hand

∑m
i=1 ei = e, so there are two possibilities: either (1) m = k = 2 or (2)
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k = 1,m = 2, e1 = e − 1, e2 = 1. And in either case there cannot be a contracted
component. In the first case, the image of Zi, i = 1, 2, has to pass through ei−1 of
the points, and so there are finitely many choices for each fi. Since the images of
f1 and f2 pass through the maximum number of general points, they are free and
so (Z, f) is a smooth point of the moduli space.

In the second case, the image of Z2 is a −KS-line, and the image of Z1 passes
through q1, . . . , qe−2, so f1 is general in its moduli and Nf1 = O(e − 3). If d ≥ 2,
then (Z, f) is a smooth point of the moduli space as above. Suppose that d = 1.
Since there are finitely many lines on S the images of Z1 and Z2 meet transversally.
Indeed, assume to the contrary that Z1 is tangent to Z2. Since Z1 is general in
its moduli, this is only possible when Z1 is a −KS-conic. However this contradicts
with our assumption on char(k) and Lemma 4.6.

Thus we conclude that f is a local immersion in an open neighborhood of the
node of Z. If the image of Z2 is a (−1)-curve or a nodal curve, then Nf1 = O(e−3)
and Nf2 = O(−1), so Nf |Z1

= O(e− 2), and Nf |Z2
= O. If the image of Z2 has a

cusp, then Nf1 = O(e− 3) and Nf2 = O(−2)⊕ k(p) where p is the point at which
f is ramified. Therefore, Nf |Z1

= O(e − 2), and Nf |Z2
= O(−1) ⊕ k(p). In both

cases (Z, f) is a smooth point of the moduli space. �

Theorem 7.4. Let S be a smooth del Pezzo surface of degree d over an algebraically
closed field k of characteristic p, and let β be a nef curve class of anticanonical
degree e ≥ 3. We assume that p ≥ δ(d). When d = 2 and p = 3, we further assume

that S is not isomorphic to the surface listed in Theorem 4.1(2). Then M
bir

(S, β)
is irreducible or empty.

Proof. Suppose M
bir

(S, β) is non-empty. We may assume that S is defined over
a subfield k′ ⊂ k such that k′ is finitely generated over the prime field Fp and
N1(S)Z = N1(S ⊗ k)Z. After replacing k′ by a finite extension inside k we may
assume that S is k′-rational and in particular that S(k′) is Zariski dense in S. After
taking another finite extension of k′ inside k if necessary, there is a normal complete
local ring R which is of finite type over Zp with residue field k′ and generic point
η and a smooth surface S over SpecR such that S ⊗R k′ = S. Let F1 ⊂ Se−2 be a
proper closed subset containing all sets of e−2 closed points which fail to be general
in the sense of Lemma 7.3 when applied to Sk′ . Next let F2 ⊂ (S ⊗R K(η))e−2

be a proper closed subset containing all sets of e − 2 closed points which fail to
be general in the sense of Lemma 7.3 when applied to S ⊗R K(η). We take the
Zariski closure F2 ⊂ S ×R · · · ×R S of F2. We define U as the Zariski open subset
of S ×R · · · ×R S which is the complement of F1 ∪ F2.

Choose points q1, . . . , qe−2 defined over k′ in S whose product lies in U . Since S
is smooth, we may apply Hensel’s lemma to find sections q̃1, . . . , q̃e−2 of S → SpecR
such that q̃i⊗Rk′ = qi. By construction the product of the e−2 points q̃i⊗RK(η)’s
in S ⊗R K(η) is contained in U .

We will write βS ∈ N1(S/SpecR)Z for the image of β under the pushforward

N1(S)Z → N1(S/SpecR)Z. Let M̃ be the locus in M0,0(S/SpecR, βS) parametriz-
ing stable maps f whose images meet with the images of q̃1, . . . , q̃e−2. Then by

[Kol96, II.1.7 Theorem] the dimension of M̃ is greater than or equal to

1 + dim R.
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Indeed, [Kol96, II.1.7 Theorem] implies that a component N of M0,0(S/SpecR, βS)

which contains a component of M̃ has dimension greater than or equal to e − 1 +
dim R. We consider a component N (e−1) ⊂ M0,e−1(S/SpecR, βS) aboveN and the

evaluation map eve−1 : N (e−1) → Se−1. Then M̃ is the preimage of the product

of the images of q̃1, · · · , q̃e−2. We conclude that M̃ has dimension greater than

or equal to 1 + dim R. On the other hand every fiber of M̃ → SpecR has at
most dimension 1 because of Lemma 7.3. Altogether, we have shown that every

component of M̃ dominantly maps to SpecR.

By Proposition 6.4, the geometric generic fiber of M̃ → SpecR, i.e., M̃⊗RK(η),

is connected. Since SpecR is normal, the Stein factorization of M̃ → SpecR is
trivial so that all the geometric fibers are connected. In particular the geometric

fiber of M̃ over the closed point of R is connected. Lemma 7.3 shows that every
point of this fiber is contained in the smooth locus of M0,0(Sk′). Then the same

argument as in Theorem 6.5 shows that M
bir

(Sk′ , β) is irreducible. Since Sk′ is
constructed from S by a base change of the ground field, our assertion follows. �

Theorem 7.5. Let S be a smooth del Pezzo surface of degree d over an algebraically
closed field of characteristic p. Assume that p ≥ δ(d). When d = 2 and p = 3, we
further assume that S is not isomorphic to the surface listed in Theorem 4.1(2).

Let β be a nef class on S satisfying −KS · β ≥ 3. Then:

(1) If β is not a multiple of a −KS-conic, then there is a unique component
M of M0,0(S, β) generically parametrizing stable maps with irreducible do-
mains. The general map parametrized by M is a birational map onto a free
curve.

(2) If β is a multiple of a smooth rational conic, then there is a unique compo-
nent M of M0,0(S, β) generically parametrizing stable maps with irreducible
domains. The general map parametrized by M is a finite cover of a smooth
conic.

(3) If d = 2 and β is a multiple of −KS, or if d = 1 and there is a contraction of
a (−1)-curve φ : S → S′ such that β is a multiple of the pullback of −KS′ ,
then there are exactly two components of M0,0(S, β) parametrizing stable
maps with irreducible domains. One component generically parametrizes
birational maps onto free curves, the other generically parametrizes multiple
covers of −KS-conics.

(4) If d = 1 and β is a multiple of −2KS then there are at least two com-
ponents of M0,0(S, β) parametrizing stable maps with irreducible domains.
There is a unique component generically parametrizing birational maps onto
free curves, and the others generically parametrize multiple covers of −KS-
conics.

The proof is essentially the same as the proof of Theorem 6.6.

Proof. By Proposition 7.2 we know that M0,0(S, β) is represented by a stable map
with irreducible domain. Let M be a component generically parametrizing stable
maps with irreducible domains. When the general map parametrized by M is not
birational, we argue just as in the proof of Theorem 6.6. In particular this proves
that such maps can only exist when β is the multiple of a −KS-conic.
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It only remains to classify the irreducible components of M
bir

(S, β). By The-

orem 7.4 M
bir

(S, β) is either irreducible or empty. If β is not a multiple of the
class of a conic, then Proposition 7.2 shows that β is represented by a stable map
with irreducible domain and the previous paragraph shows that this map must be

birational. Thus M
bir

(S, β) is non-empty, hence irreducible. The case when β is
a multiple of a smooth rational conic is the same as in the proof of Theorem 6.6.
If d = 2 and β is a multiple of −KS , recall that | − KS | is represented by a free
curve by Theorem 4.4. By gluing and smoothing a chain of such curves we find an
irreducible rational curve of class β. If d = 1 and β is a pullback under a map φ
then we can find an irreducible rational curve of class β by appealing to the degree
2 case. If d = 1 and β is a multiple of −2KS , then | − 2KS | is represented by a free
rational curve by Theorem 4.4. �

8. The Fujita invariant for surfaces in characteristic p

In this section we study the Fujita invariant (which we will also call the a-
invariant) for surfaces in characteristic p. Our goal is to prove a classification
theorem and to control the behavior of the Fujita invariant under finite covers.
Throughout we work over an algebraically closed field k of characteristic p.

Definition 8.1 ([HTT15, Definition 2.2]). Let X be a smooth projective variety
and let L be a big and nef Q-divisor on X. The Fujita invariant (which we will
also call the a-invariant) is

a(X,L) := min{t ∈ R | t[L] + [KX ] ∈ Eff
1
(X)}.

If L is nef but not big, we set a(X,L) = ∞.

By [HTT15, Proposition 2.7], a(X,L) does not change when pulling back L by
a birational map between smooth varieties. Thus, when X is a singular projective
variety which admits a resolution of singularities, we define the Fujita invariant for

X by pulling back to a smooth birational model φ : X̃ → X:

a(X,L) := a(X̃, φ∗L).

Definition 8.1 does not depend on the choice of φ.

Remark 8.2. Suppose that X is a smooth projective variety and L is a big and
nef divisor on X. Then a(X,L) > 0 if and only if X admits a dominant family of
rational curves satisfying KX · C < 0. This follows from Theorem 8.3:

Theorem 8.3 ([MM86, Theorem 1], [BDPP13, 0.3 Corollary], [Das20, Theorem
1.6]). Let X be a smooth projective variety over an algebraically closed field. Then
KX is not pseudo-effective if and only if X admits a dominant family of rational
curves satisfying KX · C < 0.

The rationality of the Fujita invariant is proved in characteristic 0 for three-
folds by Batyrev in [Bat92] and for higher dimensional varieties in [BCHM10]. For
varieties of low dimension in characteristic p, it follows from the work of [Das20].

Theorem 8.4 ([Das20]). Let X be a smooth projective variety of dimension ≤ 3
and L be a big and nef Q-divisor on X. We also assume that the characteristic p of
the ground field k is > 5 when the dimension of X is 3. Then a(X,L) is rational.

To derive this statement from [Das20], we will need a well-known lemma:
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Lemma 8.5. Let X be a smooth projective variety of dimension ≤ 3 and L be a
big and nef Q-divisor on X. Let a be any positive real number. Then there exists
an effective Q-divisor 0 ≤ L′ ∼Q L such that (X, aL′) is a terminal pair.

Proof. It follows from [KM98, Proposition 2.61] that there exists an effective divisor
E such that for any rational number 0 < ε � 1, Aε = L − εE is ample. Let

β : X̃ → X be a log resolution for (X,E) whose existence is guaranteed by [CP09]
and [Cut09] in dimension 3. Let F be an effective exceptional divisor such that −F
is β-ample. Then we have

β∗L = β∗Aε + εβ∗E = β∗Aε − εF + ε(β∗E + F ).

For 0 < ε � 1, (X̃, aε(β∗E + F )) is a terminal pair and β∗Aε − εF is ample. Thus
one can find a general ample Q-divisor A′

ε ∼Q β∗Aε − εF such that the support of
A′

ε + ε(β∗E +F ) is a snc divisor and every coefficient of aA′
ε is strictly less than 1.

Let L′ = β∗A
′
ε + εE. By the negativity lemma, we have β∗L′ = A′

ε + ε(β∗E + F ).
Thus when ε is sufficiently small, (X, aL′) is a terminal pair by [KM98, Corollary
2.32]. �

Proof of Theorem 8.4. We only prove the case of dimension 3. After rescaling of
L we may assume that a(X,L) > 1. We pick L′ = A′ + εE as in the proof of
Lemma 8.5 with a = a(X,L). Let V be the subspace of the space of R-divisors
which is generated by A′, E. Using the arguments in Lemma 8.5 one can find
an ample Q-divisor A such that A does not share any component with A′ and
E, A ∼Q A′, and KX + A + (a − 1)A′ + aεE is terminal. Then it follows from
[Das20, Theorem 1.2] that the pseudo-effective polytope EA(V ) in V is a rational
polytope. Since A+ (a− 1)A′ + aεE +KX is on the boundary of this polytope, we
conclude that a is rational. �

The following notion plays a central role in the study of Fujita invariants:

Definition 8.6. Let X be a smooth projective variety of dimension ≤ 3 such that
KX is not pseudo-effective. Let L be a big and nef Q-Cartier divisor on X. We say
(X,L) is adjoint rigid if a(X,L)L+KX has Iitaka dimension 0.

When X is singular and admits a resolution of singularities β : X̃ → X, we say

(X,L) is adjoint rigid if (X̃, β∗L) is adjoint rigid. Definition 8.6 does not depend
on the choice of β.

Lemma 8.7. Let f : Y → X be a dominant separable generically finite morphism
of smooth varieties and let L be a big and nef Q-divisor on X. Then a(Y, f∗L) ≤
a(X,L).

Proof. By the Riemann-Hurwitz formula there is an effective ramification divisor
R such that KY = f∗KX +R. Thus

KY + a(X,L)f∗L = f∗(KX + a(X,L)L) +R

is pseudo-effective, proving the desired inequality. �

Note that the result of Lemma 8.7 may fail for inseparable maps. A well-known
example is given by a unirational parametrization of a K3 surface: a smooth rational
surface has positive a-invariant with respect to any polarization but a K3 surface
has a-invariant 0.
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8.1. Surfaces with large a-invariant. We next classify the pairs of a smooth
projective surface S and a divisor L such that a(S,L) > 1. Since the minimal
model program works just as in characteristic 0, there are essentially no differences
in the characteristic p situation. For completeness we will include a quick proof of
every assertion.

Proposition 8.8 ([LTT18, Proposition 5.9]). Let S be a smooth uniruled projective
surface over k and let L be a big and nef Q-divisor on S.

(1) Suppose that κ(KS+a(S,L)L) = 1. Let F be a general fiber of the canonical
map for (S, a(S,L)L). Then

a(S,L) = a(F,L) =
2

L · F .

(2) Suppose that κ(KS + a(S,L)L) = 0. Then there is a birational morphism
φ : S → S′ where S′ is a smooth weak del Pezzo surface such that −KS′ ∼Q

a(S,L)φ∗L.

Proof. We run the minimal model program for (S, a(S,L)L) to obtain a birational
morphism φ : S → S′. Since L is a big and nef divisor each birational step of
the MMP is a contraction of a (−1)-curve and the end result S′ is smooth. We
know that KS′ + a(S,L)φ∗L is semiample but not big so that its Iitaka dimension
must be 0 or 1. When the Iitaka dimension is 0, we obtain the desired statement.
When the Iitaka dimension is 1 then by the classification of surfaces we know
that the corresponding map must have general fiber isomorphic to P1. Indeed, let
π : S′ → B be the semiample fibration of KS′ + a(S,L)φ∗L. Pick a sufficiently
small ε > 0 and perform a relative (KS′ +(a(S,L)−ε)φ∗L)-MMP over B. Then the
outcome is a Mori fiber space so one may appeal to the classification of Mori fiber
spaces in dimension 2. In particular, in this situation KS′ + a(S,L)φ∗L vanishes
when restricted to a general fiber F , yielding the desired description of the a-
invariant. �

Corollary 8.9. Let S be a smooth uniruled projective surface and let L denote a
big and nef divisor on S. Then

a(S,L) ∈
{

2

n

∣∣∣∣n ∈ N

}
∪
{

3

n

∣∣∣∣n ∈ N

}
.

Proof. In Case (1) of Proposition 8.8 we see directly that a(S,L) has the form 2/n.
In Case (2) of Proposition 8.8, S′ will admit a curve of anticanonical degree 2 unless
S′ ∼= P2, in which case S′ will admit a curve of anticanonical degree 3. For such a
curve C we have

a(S,L) =
−KS′ · C
φ∗L · C

and we deduce the desired expression. �

As a consequence we can easily classify the pairs (S,L) with large a-invariant.

Theorem 8.10. Let S be a smooth uniruled projective surface and let L denote a
big and nef divisor on S. If a(S,L) > 1 then

a(S,L) ∈
{
3, 2,

3

2

}
.

Furthermore
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(1) If a(S,L) = 3 then there is a birational morphism φ : S → P2 such that
L = φ∗O(1).

(2) If a(S,L) = 2 and (S,L) is adjoint rigid then there is a birational morphism
φ : S → Q such that Q is either a smooth quadric or a quadric cone in P3

and L = φ∗OP3(1).
(3) If a(S,L) = 2 and (S,L) is not adjoint rigid then there is a birational

morphism φ : S → S′ where S′ is a ruled surface and L is the pullback of a
big and nef divisor with degree 1 along the fibers of the ruling of S′.

(4) If a(S,L) = 3/2 then there is a birational morphism φ : S → P2 such that
L = φ∗O(2).

Proof. Just as in Proposition 8.8 we run the MMP for (S, a(S,L)L) and repeatedly
contract (−1)-curves to obtain φ : S → S′. Suppose that E is the (−1)-curve
contracted by the first step of the MMP. Since a(S,L) > 1 and (KS+a(S,L)L)·E <
0, we see that L · E = 0. Thus L is pulled back from the target of the first step of
the MMP. Repeating this logic inductively, we see there is some big and nef divisor
L′ on S′ such that L = φ∗L′. Using the classification of weak del Pezzo surfaces
we obtain the description of the theorem. �

8.2. Covers which increase the a-invariant. Suppose that S is a weak del Pezzo
surface. As discussed in Section 1, we expect that the “pathological” dominant
families of rational curves on X are controlled by generically finite maps f : Y → S
such that a(Y,−f∗KS) > a(S,−KS) = 1. Our goal in this section is to classify the
situations in which the a-invariant of Y is strictly larger than that of S.

Theorem 8.11. Let S be a weak del Pezzo surface and suppose that f : Y → S is a
dominant generically finite morphism such that a(Y,−f∗KS) > a(S,−KS). Then
we are in one of the following situations:

(1) (Y,−f∗KS) is not adjoint rigid, a(Y,−f∗KS) = 2, and the image of a
general fiber of the Iitaka fibration for a(Y,−f∗KS)(−f∗KS) + KY is a
curve C on S satisfying −KS ·C = 1. In this case f is birationally equivalent
to the base-change of a quasi-elliptic fibration by a non-separable map to
the base curve.

(2) char(k) = 2, S is a weak del Pezzo surface of degree 2, and f is birationally
equivalent to a purely inseparable morphism of degree 2 from P2 to the
anticanonical model of S. We have a(Y,−f∗KS) = 3/2 in this case.

(3) char(k) = 2, S is a weak del Pezzo surface of degree 1, and f is birationally
equivalent to a purely inseparable morphism of degree 2 from the quadric
cone Q to the anticanonical model of S. We have a(Y,−f∗KS) = 2 in this
case.

(4) char(k) = 2, S is a weak del Pezzo surface of degree 1, and f is bira-
tionally equivalent to a non-separable morphism of degree 4 from P2 to the
anticanonical model of S. We have a(Y,−f∗KS) = 3/2 in this case.

Proof. First note that if f : Y → S is separable then KY − f∗KS is an effective
divisor so that a(Y,−f∗KS) ≤ a(S,−KS). Since we are interested in situations
where this inequality fails the map f must be non-separable.

Theorem 8.10 classifies the situations where a(Y,−f∗KS) > 1. When Y is not
adjoint rigid, the rest of the properties in the first sentence of (1) are immediate
from Theorem 8.10. Since S carries a 1-dimensional family of −KS-lines, Lemma
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3.3 shows that S must have degree 1 and that the curves C on S are singular
members of |−KS |. Resolving this linear series, we see that the fibers of the Iitaka
fibration on Y map birationally to the fibers of a quasi-elliptic fibration on the
blow-up of S. Furthermore f must be non-separable by Lemma 8.7. Altogether
this proves the second sentence.

Next we consider the case when Y is adjoint rigid. Let φ : Y → Y ′ be the
map to a weak del Pezzo surface constructed by Theorem 8.10 by running the
(KY −a(Y,−f∗KS)f

∗KS)-MMP. Since each (−1)-curve we contract while running
the MMP will have vanishing intersection against the pushforward of−f∗KS , we see
that −f∗KS = φ∗L′ for some divisor L′ on Y ′. This implies that any φ-exceptional
curve on Y is either contracted by f or is mapped to a (−2)-curve on S. If we
let ψ : S → S′ denote the contraction of all the (−2)-curves on S, then there is a
generically finite morphism f ′ : Y ′ → S′ forming a commuting diagram

Y

φ

��

f �� S

ψ

��
Y ′ f ′

�� S′

From the equation

KY ′ ∼Q a(Y,−f∗KS)φ∗f
∗KS ∼Q a(Y,−f∗KS)φ∗f

∗ψ∗KS′ ,

we see that KY ′ ∼Q a(Y,−f∗KS)f
′∗KS′ .

Theorem 8.10 shows that there are three types of adjoint rigid surfaces with
a-invariant larger than 1. We argue separately for each case:

• a(Y,−f∗KS) = 3. Theorem 8.10 shows that there is a birational morphism
g : Y ′ → P2 such that −f ′∗KS′ ∼ g∗H where H is the hyperplane class
on P2. As explained above this divisor is also proportional to KY ′ . Thus
the only possibility is that g is an isomorphism, Y ′ ∼= P2, and −f ′∗KS′ ∼
H. Then deg(f ′) · (−KS′)2 = (−f ′∗KS′)2 = 1 so that f ′ is birational, a
contradiction.

• a(Y,−f∗KS) = 2. Theorem 8.10 shows that there is a birational morphism
g : Y ′ → T where T ∼= P1 ×P1 or the quadric cone Q such that −f ′∗KS′ ∼
g∗H where H is the restriction of the hyperplane class on P3. As explained
above this divisor is also proportional to KY ′ . Thus we must have either
Y ′ ∼= P1 × P1 or F2 and −2f ′∗KS′ ∼ KY ′ . When Y ′ is F2, we replace Y ′

by the quadric cone Q. We see that deg(f ′) · (−KS′)2 = (−f ′∗KS′)2 = 2.
The only possibility is that f ′ has degree 2 and that S′ is a singular degree
1 weak del Pezzo. In particular, our ground field must have characteristic
2.

Suppose for a contradiction that Y = P1 × P1. Then the calculation
above shows that each family of lines on Y maps to a one-dimensional
family of rational curves on S′ of anticanonical degree 1. Furthermore
these two families cannot coincide (since their numerical classes on S′ are
different). But by Lemma 3.3 it is only possible for S to carry one such
family, showing that such a map cannot exist.

• a(Y,−f∗KS) =
3
2 . Theorem 8.10 shows that there is a birational morphism

g : Y ′ → P2 such that −f ′∗KS′ ∼ g∗2H where H is the hyperplane class on
P2. As explained above this divisor is also proportional to KY ′ . Thus the
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only possibility is that g is an isomorphism, Y ′ ∼= P2 and −f ′∗KS′ ∼ 2H.
Then deg(f ′) · (−KS′)2 = (−f ′∗KS′)2 = 4. Thus we see that S′ must be
a singular weak del Pezzo surface of degree 2 or 1 with Picard rank 1 and
that f ′ must be non-separable and must have degree 2 or 4 respectively. In
particular, our ground field must have characteristic 2.

�
Using our earlier classification of pathological del Pezzo surfaces, we can give an

even more precise description of the possible dominant morphisms which increase
the a-invariant.

Corollary 8.12. Let S be a weak del Pezzo surface and suppose that f : Y → S is
a dominant generically finite morphism such that a(Y,−f∗KS) > a(S,−KS).

(1) If we are in the setting of Theorem 8.11(1), then S has Type 1.
(2) If we are in the setting of Theorem 8.11(2), then S has Type 2.
(3) If we are in the setting of Theorem 8.11(3), then S has Type 3.
(4) If we are in the setting of Theorem 8.11(4), then S has Type 1 or Type 3.

Proof. Theorem 8.11 gives 4 possible situations. In Case 1 (respectively Case 2,
Case 3) it follows from Claim 3.5 (resp. Claim 3.6, Claim 3.7) that S has Type 1
(resp. Type 2, Type 3). It only remains to consider Case 4.

Let S′ denote the anticanonical model of S and suppose there is a non-separable
degree 4 morphism f : P2 → S′ such that f∗(−KS) ∼= O(2). Then the image in S′

of the lines on P2 yields a 2-dimensional family of −KS-conics. We then conclude
by Corollary 3.8. �

To finish off the classification, we make one final remark:

Proposition 8.13. The Type 3 surfaces are exactly the same as the Type 1 surfaces
in characteristic 2.

Proof. As discussed earlier, a Type 3 surface has Type 1. Indeed, by definition a
Type 3 surface S has an anticanonical model S′ which admits a purely inseparable
degree 2 map f : Q → S′ from the quadric cone. The images of the lines on Q are
−KS-lines on S′, and we conclude that S has Type 1 by Lemma 3.3.

Conversely, we show that every Type 1 surface in characteristic 2 has Type 3.

Let S be a Type 1 surface in characteristic 2, let φ : S̃ → S be the blow-up of

the basepoint of | − KS | with exceptional divisor E, and let π : S̃ → P1 be the
resolution of the rational map defined by | −KS |. Consider the diagram

Y

p

��

g �� S̃

π

��
P1 F �� P1

where F denotes the Frobenius map and Y is the normalization of S̃ ×P1 P1. Then
g is a purely inseparable degree 2 morphism, Y is smooth, and the general fiber of
p is isomorphic to P1. Set D = g∗E. Since E is a section of π, D is a section of p.
Note that D2 = g∗E2 = −2 so that D is a (−2)-curve on Y .

Since the fibers of p have intersection −1 against f∗KS , we see that a(Y,−f∗KS)
≥ 2 where f : Y → S denote the composition of g and the birational map to S.
Theorem 8.11 then shows that the equality must be attained. Furthermore, note
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that (KY − 2f∗KS) ·D = 0. We conclude that KY − 2f∗KS is adjoint rigid. Thus
we must be in Case (3) of Theorem 8.11. Corollary 8.12 shows that S has Type
3. �

8.2.1. Breaking maps and rational curves. Finally let us remark that the existence
of breaking maps implies the existence of families of rational curves with larger than
the expected dimension. In other words, the compatibility we have found between
dominant covers with larger a-invariant and the presence of families with too large
dimension is not just a coincidence.

Proposition 8.14. Let X be a smooth weak Fano variety defined over k and let
f : Y → X be a breaking map from a smooth projective variety Y . Suppose that
there is a component M of M0,0(Y ) generically parameterizing a dominant family
of rational curves g : P1 → Y such that deg(g∗(KY − a(Y,−f∗KX)f∗KX)) = 0.
Then the family of rational curves on X obtained by applying f to the stable maps
in M has higher than expected dimension.

Proof. Since any component of M0,0(Y ) has at least the expected dimension, we
have

dim M ≥ deg(−g∗KY ) + dim Y − 3.

On the other hand since we have

deg(−g∗KY ) = a(Y,−f∗KX) deg(−g∗f∗KX)

and a(Y,−f∗KX) > 1, we conclude that

dim M > deg(−g∗f∗KX) + dim X − 3.

�

Since for every breaking map f : Y → S in Theorem 8.11 the surface Y admits
infinitely many families of free curves satisfying the assumption of Proposition 8.14,
we see that each surface S in the theorem admits infinitely many families of rational
curves with higher than the expected dimension.
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Supér. (4) 48 (2015), no. 5, 1239–1272, DOI 10.24033/asens.2269. MR3429479

[Cut09] Steven Dale Cutkosky, Resolution of singularities for 3-folds in positive characteristic,
Amer. J. Math. 131 (2009), no. 1, 59–127, DOI 10.1353/ajm.0.0036. MR2488485

[CZ14] Qile Chen and Yi Zhu, Very free curves on Fano complete intersections, Algebr. Geom.
1 (2014), no. 5, 558–572, DOI 10.14231/AG-2014-024. MR3296805

[Das20] Omprokash Das, Finiteness of log minimal models and nef curves on 3-folds in char-
acteristic p > 5, Nagoya Math. J. 239 (2020), 76–109, DOI 10.1017/nmj.2018.28.
MR4138896

[DD19] I. Dolgachev and A. Duncan, Automorphisms of cubic surfaces in positive character-
istic, Izv. Ross. Akad. Nauk Ser. Mat. 83 (2019), no. 3, 15–92, DOI 10.4213/im8803;
English transl., Izv. Math. 83 (2019), no. 3, 424–500. MR3954305

[Elk99] Noam D. Elkies, The Klein quartic in number theory, The eightfold way, Math.
Sci. Res. Inst. Publ., vol. 35, Cambridge Univ. Press, Cambridge, 1999, pp. 51–101.
MR1722413

[FL81] William Fulton and Robert Lazarsfeld, Connectivity and its applications in algebraic
geometry, Algebraic geometry (Chicago, Ill., 1980), Lecture Notes in Math., vol. 862,
Springer, Berlin-New York, 1981, pp. 26–92. MR644817

[GHS03] Tom Graber, Joe Harris, and Jason Starr, Families of rationally connected varieties,
J. Amer. Math. Soc. 16 (2003), no. 1, 57–67, DOI 10.1090/S0894-0347-02-00402-2.
MR1937199

[GLP+15] Yoshinori Gongyo, Zhiyuan Li, Zsolt Patakfalvi, Karl Schwede, Hiromu Tanaka, and
Runhong Zong, On rational connectedness of globally F -regular threefolds, Adv. Math.

280 (2015), 47–78, DOI 10.1016/j.aim.2015.04.012. MR3350212
[Har98] Nobuo Hara, A characterization of rational singularities in terms of injectivity of

Frobenius maps, Amer. J. Math. 120 (1998), no. 5, 981–996. MR1646049
[Hef89] Abramo Hefez, Nonreflexive curves, Compositio Math. 69 (1989), no. 1, 3–35.

MR986811
[HJ17] Christopher D. Hacon and Chen Jiang, On Fujita invariants of subvarieties of a

uniruled variety, Algebr. Geom. 4 (2017), no. 3, 304–310, DOI 10.14231/AG-2017-
017. MR3652082

[Hom97] Masaaki Homma, A combinatorial characterization of the Fermat cubic sur-
face in characteristic 2, Geom. Dedicata 64 (1997), no. 3, 311–318, DOI
10.1023/A:1004940812105. MR1440564

[HT08] Brendan Hassett and Yuri Tschinkel, Potential density of rational points for K3
surfaces over function fields, Amer. J. Math. 130 (2008), no. 5, 1263–1278, DOI
10.1353/ajm.0.0023. MR2450208

[HTT15] Brendan Hassett, Sho Tanimoto, and Yuri Tschinkel, Balanced line bundles and equi-
variant compactifications of homogeneous spaces, Int. Math. Res. Not. IMRN 15
(2015), 6375–6410, DOI 10.1093/imrn/rnu129. MR3384482

https://www.ams.org/mathscinet-getitem?mr=2427629
https://www.ams.org/mathscinet-getitem?mr=2494751
https://www.ams.org/mathscinet-getitem?mr=3918047
https://www.ams.org/mathscinet-getitem?mr=4474636
https://www.ams.org/mathscinet-getitem?mr=3769378
https://www.ams.org/mathscinet-getitem?mr=3429479
https://www.ams.org/mathscinet-getitem?mr=2488485
https://www.ams.org/mathscinet-getitem?mr=3296805
https://www.ams.org/mathscinet-getitem?mr=4138896
https://www.ams.org/mathscinet-getitem?mr=3954305
https://www.ams.org/mathscinet-getitem?mr=1722413
https://www.ams.org/mathscinet-getitem?mr=644817
https://www.ams.org/mathscinet-getitem?mr=1937199
https://www.ams.org/mathscinet-getitem?mr=3350212
https://www.ams.org/mathscinet-getitem?mr=1646049
https://www.ams.org/mathscinet-getitem?mr=986811
https://www.ams.org/mathscinet-getitem?mr=3652082
https://www.ams.org/mathscinet-getitem?mr=1440564
https://www.ams.org/mathscinet-getitem?mr=2450208
https://www.ams.org/mathscinet-getitem?mr=3384482


450 ROYA BEHESHTI ET AL.

[HX15] Christopher D. Hacon and Chenyang Xu, On the three dimensional minimal model
program in positive characteristic, J. Amer. Math. Soc. 28 (2015), no. 3, 711–744,
DOI 10.1090/S0894-0347-2014-00809-2. MR3327534

[IIL20] Kazuhiro Ito, Tetsushi Ito, and Christian Liedtke, Deformations of rational curves in
positive characteristic, J. Reine Angew. Math. 769 (2020), 55–86, DOI 10.1515/crelle-
2020-0003. MR4178750

[KM98] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cam-

bridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998.
With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998
Japanese original, DOI 10.1017/CBO9780511662560. MR1658959

[KM99] Seán Keel and James McKernan, Rational curves on quasi-projective surfaces,
Mem. Amer. Math. Soc. 140 (1999), no. 669, viii+153, DOI 10.1090/memo/0669.
MR1610249

[KN20] T. Kawakami and M. Nagaoka, Classification of Du Val del Pezzo surfaces of Picard
rank one in positive characteristic, arXiv:2012.09405, 2020.

[KN22] Tatsuro Kawakami and Masaru Nagaoka, Pathologies and liftability of Du Val del
Pezzo surfaces in positive characteristic, Math. Z. 301 (2022), no. 3, 2975–3017, DOI
10.1007/s00209-022-02998-6. MR4437346

[Kol96] János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Re-
sults in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in
Mathematics], vol. 32, Springer-Verlag, Berlin, 1996, DOI 10.1007/978-3-662-03276-3.
MR1440180

[KP91] Steven Kleiman and Ragni Piene, On the inseparability of the Gauss map, Enu-
merative algebraic geometry (Copenhagen, 1989), Contemp. Math., vol. 123, Amer.
Math. Soc., Providence, RI, 1991, pp. 107–129, DOI 10.1090/conm/123/1143550.
MR1143550
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