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NEWTON–OKOUNKOV POLYTOPES OF FLAG VARIETIES

AND MARKED CHAIN-ORDER POLYTOPES

NAOKI FUJITA

Abstract. Marked chain-order polytopes are convex polytopes constructed
from a marked poset. They give a discrete family relating a marked order poly-
tope with a marked chain polytope. In this paper, we consider the Gelfand–
Tsetlin poset of type A, and realize the associated marked chain-order poly-
topes as Newton–Okounkov bodies of the flag variety. Our realization con-
nects previous realizations of Gelfand–Tsetlin polytopes and Feigin–Fourier–
Littelmann–Vinberg polytopes as Newton–Okounkov bodies in a uniform way.
As an application, we prove that the flag variety degenerates into the irre-

ducible normal projective toric variety corresponding to a marked chain-order
polytope. We also construct a specific basis of an irreducible highest weight
representation. The basis is naturally parametrized by the set of lattice points
in a marked chain-order polytope.
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1. Introduction

A Newton–Okounkov body Δ(X,L, ν) is a convex body defined from a projec-
tive variety X with a globally generated line bundle L on X and with a higher
rank valuation ν on the function field C(X). It was originally introduced by Ok-
ounkov [33–35] to study multiplicity functions for representations of a reductive
group, and afterward developed independently by Lazarsfeld–Mustaţă [31] and by
Kaveh–Khovanskii [25, 26] as a generalization of the notion of Newton polytopes
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for toric varieties to arbitrary projective varieties. A remarkable application is that
the theory of Newton–Okounkov bodies gives a systematic construction of toric
degenerations [1] and completely integrable systems [20]. In the present paper, we
restrict ourselves to the case of flag varieties. In this case, the following specific
polytopes can be realized as Newton–Okounkov bodies:

(i) Gelfand–Tsetlin polytopes [33, 34],
(ii) Berenstein–Littelmann–Zelevinsky’s string polytopes [24],
(iii) Nakashima–Zelevinsky polytopes [16],
(iv) Lusztig polytopes [6],
(v) Feigin–Fourier–Littelmann–Vinberg (FFLV) polytopes [11, 27, 28],
(vi) polytopes constructed from extended g-vectors in cluster theory [18].

Our aim of the present paper is to add a new family of convex polytopes to this list,
that is, we realize the marked chain-order polytopes associated with the Gelfand–
Tsetlin poset of type A as Newton–Okounkov bodies of the flag variety.

A marked chain-order polytope ΔC,O(Π,Π∗, λ) is a convex polytope constructed
from a marked poset (Π,Π∗, λ) with a partition Π \Π∗ = C �O under the assump-
tion that Π is finite and that Π∗ contains all maximal and minimal elements in
Π. It was introduced by Fang–Fourier [5] in some specific setting and by Fang–
Fourier–Litza–Pegel [7] in general setting as a family relating the marked order
polytope O(Π,Π∗, λ) with the marked chain polytope C(Π,Π∗, λ). We consider
this framework when (Π,Π∗, λ) is the Gelfand–Tsetlin poset (ΠA,Π

∗
A, λ) of type A.

To state our main result explicitly, let G = SLn+1(C), B ⊆ G the subgroup
of upper triangular matrices, W the Weyl group, and P+ the set of dominant
integral weights. We denote by X(w) ⊆ G/B the Schubert variety corresponding
to w ∈ W , by e ∈ W the identity element, and by w0 ∈ W the longest element.
Note that the full flag variety G/B coincides with the Schubert variety X(w0)
corresponding to w0. Let iA = (i1, i2, . . . , iN ) be a reduced word for w0 given
in (5.3), and set w≥k := siksik+1

· · · siN for 1 ≤ k ≤ N . For λ ∈ P+, denote
by Lλ the corresponding globally generated line bundle on X(w), by V (λ) the
irreducible highest weight G-module with highest weight λ, and by (ΠA,Π

∗
A, λ)

the associated Gelfand–Tsetlin poset (see Figure 2.1). Then the marked order
polytope O(ΠA,Π

∗
A, λ) coincides with the Gelfand–Tsetlin polytope GT (λ), which

was introduced by Gelfand–Tsetlin [19] to parametrize a specific basis of V (λ),
called the Gelfand–Tsetlin basis. The Gelfand–Tsetlin polytope GT (λ) can be
realized as a Newton–Okounkov body Δ(G/B,Lλ, νGT ) up to translations (see
[17,33]), where νGT is a valuation given by counting the orders of zeros/poles along
the following sequence of Schubert varieties:

(G/B =) X(w≥1) � X(w≥2) � · · · � X(w≥N ) � X(e) (= B/B).

In addition, the marked chain polytope C(ΠA,Π
∗
A, λ) coincides with the FFLV

polytope FFLV (λ), which was introduced by Feigin–Fourier–Littelmann [9] and
Vinberg [37] to study the PBW (Poincaré–Birkhoff–Witt) filtration on V (λ). Kir-
itchenko [27] proved that the FFLV polytope FFLV (λ) coincides with the Newton–
Okounkov body Δ(G/B,Lλ, νFFLV ) associated with a valuation νFFLV given by
counting the orders of zeros/poles along a sequence of translated Schubert varieties
(see (5.6) for the precise definition). Feigin–Fourier–Littelmann [11] also realized
FFLV (λ) as a Newton–Okounkov body Δ(G/B,Lλ, ν) using a different kind of
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valuation. In the present paper, we consider a sequence XC,O
• of partially trans-

lated Schubert varieties defined from a partition ΠA \Π∗
A = C �O; see (5.5) for the

precise definition. The following is the main result of this paper.

Theorem 1 (Theorem 6.1). For each partition ΠA \Π∗
A = C �O and λ ∈ P+, the

marked chain-order polytope ΔC,O(ΠA,Π
∗
A, λ) coincides with a Newton–Okounkov

body Δ(G/B,Lλ, ν
low
C,O) up to translations by integer vectors, where νlowC,O is a valu-

ation given by counting the orders of zeros/poles along the sequence XC,O
• .

Theorem 1 connects the previous realizations of Gelfand–Tsetlin polytopes [17,
33] and FFLV polytopes [27] as Newton–Okounkov bodies in a uniform way. As
an application of Theorem 1, we construct a specific C-basis of V (λ) which is
naturally parametrized by the set of lattice points in ΔC,O(ΠA,Π

∗
A, λ) (see Theo-

rem 6.8). This basis is an analog of an essential basis introduced by Feigin–Fourier–
Littelmann [9, 11] and by Fang–Fourier–Littelmann [6]. Let P++ denote the set of
regular dominant integral weights. We also use Theorem 1 to prove that Ander-
son’s construction [1] of toric degenerations can be applied to ΔC,O(ΠA,Π

∗
A, λ) as

follows.

Theorem 2 (Theorem 6.3). For each partition ΠA \ Π∗
A = C � O and λ ∈ P++,

there exists a flat degeneration of G/B to the irreducible normal projective toric
variety corresponding to the marked chain-order polytope ΔC,O(ΠA,Π

∗
A, λ).

Our proof of Theorem 2 shows that we can apply Harada–Kaveh’s theory [20]
to the marked chain-order polytope ΔC,O(ΠA,Π

∗
A, λ) for each partition ΠA \Π∗

A =
C �O and λ ∈ P++, which implies that there exists a completely integrable system
on G/B whose image coincides with ΔC,O(ΠA,Π

∗
A, λ). We also study the highest

term valuation νhighC,O defined from a partition ΠA \ Π∗
A = C � O; see Section 5.2

for the precise definition. Then the Newton–Okounkov body Δ(G/B,Lλ, ν
high
C,O ) is

unimodularly equivalent to the Gelfand–Tsetlin polytope GT (λ) for every partition
ΠA \Π∗

A = C �O (see Theorem 6.12). The situation is quite different from the case
of νlowC,O since the combinatorics of a marked chain-order polytope heavily depends

on the choice of a partition ΠA \Π∗
A = C � O.

The present paper is organized as follows. In Section 2, we recall the definition of
marked chain-order polytopes, and review their Minkowski decomposition property
proved in [8]. In Section 3, we recall some basic definitions and facts on flag varieties.
Section 4 is devoted to reviewing some basic facts on Kashiwara crystal bases for
fundamental representations, which are used in the proof of our main result. In
Section 5, we recall the definition of Newton–Okounkov bodies, and define our main
valuations. In Section 6, we prove Theorems 1, 2, and construct a specific basis
of V (λ) from the set of lattice points in a marked chain-order polytope. We also

discuss νhighC,O in this section. Section 7 is devoted to studying the case of Sp2n(C).
Through a concrete example, we show that Theorem 1 cannot be naturally extended
to this case.

2. Marked chain-order polytopes

In this section, we review some basic definitions and properties of marked chain-
order polytopes, following [7, 8]. Let Π be a finite poset (i.e. a finite partially
ordered set) equipped with a partial order �, and Π∗ ⊆ Π a subset of Π containing
all minimal and maximal elements in Π. Take an element λ = (λa)a∈Π∗ ∈ RΠ∗

,
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called a marking, such that λa ≤ λb if a � b in Π. The triple (Π,Π∗, λ) is called a
marked poset.

Definition 2.1 ([7, Section 1.3]). Fix a partition Π\Π∗ = C�O. Then the marked
chain-order polytope ΔC,O(Π,Π∗, λ) is defined as follows:

ΔC,O(Π,Π∗, λ) := {(xp)p∈Π\Π∗ ∈ RΠ\Π∗ | xp ≥ 0 for all p ∈ C,
�∑

i=1

xpi
≤ yb − ya for a� p1 � · · ·� p� � b

with pi ∈ C and a, b ∈ Π∗ �O},
where for c ∈ Π∗ � O, we set

yc :=

{
λc if c ∈ Π∗,

xc if c ∈ O,

and for p, q ∈ Π, q � p means that p covers q, that is, q ≺ p and there is no
q′ ∈ Π \ {p, q} with q ≺ q′ ≺ p.

If λ ∈ ZΠ∗
, then we see by [7, Proposition 2.4] that ΔC,O(Π,Π∗, λ) is an in-

tegral convex polytope for each partition Π \ Π∗ = C � O. By definition, the
marked chain-order polytope Δ∅,Π\Π∗(Π,Π∗, λ) (resp., ΔΠ\Π∗,∅(Π,Π∗, λ)) coincides
with the marked order polytope O(Π,Π∗, λ) (resp., the marked chain polytope
C(Π,Π∗, λ)) introduced in [2, Definition 1.2]. Generalizing Stanley’s transfer map
[36] for ordinary poset polytopes to marked poset polytopes, Ardila–Bliem–Salazar
[2, Theorem 3.4] gave a transfer map φ : O(Π,Π∗, λ) → C(Π,Π∗, λ), which is an
explicit bijective piecewise-affine map. Fang–Fourier–Litza–Pegel [7] constructed
analogous transfer maps for marked chain-order polytopes. More precisely, they
defined a piecewise-affine map φC,O : RΠ\Π∗ → RΠ\Π∗

, (xp)p 
→ (x′
p)p, by

x′
p :=

{
min({xp−xp′ |p′�p, p′∈Π\Π∗}∪{xp−λp′ |p′�p, p′∈Π∗}) if p ∈ C,
xp otherwise

for p ∈ Π \Π∗. Note that φ∅,Π\Π∗ is the identity map and that φΠ\Π∗,∅ is precisely
Ardila–Bliem–Salazar’s transfer map φ.

Theorem 2.2 (see [7, Theorem 2.1 and Corollary 2.5]). For each partition Π\Π∗ =
C � O, the piecewise-affine map φC,O gives a bijective map from O(Π,Π∗, λ) to
ΔC,O(Π,Π∗, λ), which induces a bijection between the sets of lattice points. As
a consequence, the Ehrhart polynomial of ΔC,O(Π,Π∗, λ) coincides with that of
O(Π,Π∗, λ).

Remark 2.3. Under some condition on (Π,Π∗, λ), the author and Higashitani [15,
Theorem 5.3] proved that the transfer map φ : O(Π,Π∗, λ) → C(Π,Π∗, λ) can be
described as a dual operation of a combinatorial mutation up to unimodular equiv-
alence. This result is naturally extended to the map φC,O : RΠ\Π∗ → RΠ\Π∗

under
the same condition on (Π,Π∗, λ).

Let G := SLn+1(C) be the special linear group (of type An), and g := sln+1(C)
the Lie algebra of G. We identify the set I of vertices of the Dynkin diagram with
{1, 2, . . . , n} as follows:

An

1
�������	

2
�������	

n− 1
�������	

n
�������	 .
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Let us take a Borel subgroup B ⊆ G to be the subgroup of upper triangular
matrices. We denote by H ⊆ B the subgroup of diagonal matrices, and by h ⊆ g

the Lie algebra of H. Let h∗ := HomC(h,C) be the dual space of h, 〈·, ·〉 : h∗×h → C

the canonical pairing, P ⊆ h∗ the weight lattice for g, P+ ⊆ P the set of dominant
integral weights, and {�i | i ∈ I} ⊆ P+ the set of fundamental weights. For
λ = λ1�1 + · · · + λn�n ∈ P+ and 1 ≤ k ≤ n, write λ≥k :=

∑
k≤�≤n λ�. Then we

obtain a bijective map

(2.1)
P+ → {(d1, d2, . . . , dn) ∈ Zn | d1 ≥ d2 ≥ · · · ≥ dn ≥ 0},
λ 
→ (λ≥1, λ≥2, . . . , λ≥n).

In this paper, we restrict ourselves to the Gelfand–Tsetlin poset (ΠA,Π
∗
A, λ) of type

An whose marked Hasse diagram is given in Figure 2.1, where the circles (resp.,
the rectangles) denote the elements of ΠA \Π∗

A (resp., Π∗
A), and we write

ΠA \Π∗
A = {q(i)j | 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1− i}.

Note that the marking (λa)a∈Π∗
A
is given as (0, λ≥n, . . . , λ≥2, λ≥1) (cf. (2.1)), which

is also denoted by λ. By definition, the marked order polytope O(ΠA,Π
∗
A, λ) coin-

q
(n−1)
2

q
(1)
n

q
(n−2)
2

q
(2)
1

q
(1)
n−1

q
(2)
n−1

q
(n)
1

q
(n−1)
1

q
(1)
2

q
(1)
1

λ≥1

λ≥2

λ≥n

0

· · ·

· · ·

· · ·

· · ·

...

...· · ·

Figure 2.1. The marked Hasse diagram of the Gelfand–Tsetlin
poset (ΠA,Π

∗
A, λ) of type An

cides with the Gelfand–Tsetlin polytope GT (λ) (see [32, Section 5] for the defini-
tion), and the marked chain polytope C(ΠA,Π

∗
A, λ) coincides with the FFLV poly-

tope FFLV (λ) (see [9, equation (0.1)] for the definition). Let ΔZ

C,O(ΠA,Π
∗
A, λ)

denote the set of lattice points in ΔC,O(ΠA,Π
∗
A, λ). Then we see by Theorem 2.2

that

(2.2)
|ΔZ

C,O(ΠA,Π
∗
A, λ)| = |GT (λ) ∩ ZΠA\Π∗

A |
= dimC(V (λ)).
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For subsets X,Y ⊆ RΠ\Π∗
, define X + Y ⊆ RΠ\Π∗

to be the Minkowski sum:

X + Y := {x+ y | x ∈ X, y ∈ Y }.
The marked chain-order polytope ΔC,O(ΠA,Π

∗
A, λ) decomposes as the Minkowski

sum of those for fundamental weights as follows.

Theorem 2.4 (see [8, Theorem 18]). For each partition ΠA \ Π∗
A = C � O and

λ = λ1�1 + · · ·+ λn�n ∈ P+, the following equalities hold:

ΔC,O(ΠA,Π
∗
A, λ) = λ1ΔC,O(ΠA,Π

∗
A, �1) + · · ·+ λnΔC,O(ΠA,Π

∗
A, �n),

ΔZ

C,O(ΠA,Π
∗
A, λ) = λ1Δ

Z

C,O(ΠA,Π
∗
A, �1) + · · ·+ λnΔ

Z

C,O(ΠA,Π
∗
A, �n).

Example 2.5. Let n = 2, and a
(1)
1 , a

(2)
1 , a

(1)
2 denote the coordinate functions for

ΔC,O(ΠA,Π
∗
A, λ) ⊆ RΠA\Π∗

A � R3 corresponding to q
(1)
1 , q

(2)
1 , q

(1)
2 , respectively.

Then the marked order polytopeO(ΠA,Π
∗
A, λ) is given by the following inequalities:

0 ≤ a
(1)
1 ≤ a

(2)
1 ≤ a

(1)
2 ≤ λ≥1, a

(1)
1 ≤ λ≥2 ≤ a

(1)
2 ,

and the marked chain polytope C(ΠA,Π
∗
A, λ) is the set of (a

(1)
1 , a

(2)
1 , a

(1)
2 ) ∈ R3

≥0

satisfying the following inequalities:

a
(1)
1 ≤ λ≥2, a

(1)
2 ≤ λ≥1 − λ≥2, a

(1)
1 + a

(2)
1 + a

(1)
2 ≤ λ≥1.

In addition, the transfer map φ : O(ΠA,Π
∗
A, λ) → C(ΠA,Π

∗
A, λ) is given by

(a
(1)
1 , a

(2)
1 , a

(1)
2 ) 
→ (a

(1)
1 , a

(2)
1 − a

(1)
1 ,min{a(1)2 − a

(2)
1 , a

(1)
2 − λ≥2}).

Let us define a partition ΠA \Π∗
A = C �O by C = {q(2)1 } and O = {q(1)1 , q

(1)
2 }. Then

the marked chain-order polytope ΔC,O(ΠA,Π
∗
A, λ) is the set of (a

(1)
1 , a

(2)
1 , a

(1)
2 ) ∈ R3

satisfying the following inequalities:

0 ≤ a
(1)
1 ≤ λ≥2, λ≥2 ≤ a

(1)
2 ≤ λ≥1, 0 ≤ a

(2)
1 ≤ a

(1)
2 − a

(1)
1 .

In addition, the transfer map φC,O : O(ΠA,Π
∗
A, λ) → ΔC,O(ΠA,Π

∗
A, λ) is given by

(a
(1)
1 , a

(2)
1 , a

(1)
2 ) 
→ (a

(1)
1 , a

(2)
1 − a

(1)
1 , a

(1)
2 ).

3. Basic definitions on flag varieties

In this section, we review some basic definitions and facts on flag varieties. Recall
that G = SLn+1(C) and that B ⊆ G is the subgroup of upper triangular matrices.
Then the quotient space G/B is called the full flag variety, which is a nonsingular

projective variety. For λ ∈ P , there exists a unique character λ̃ : H → C× of H
such that dλ̃ = λ, where C× := C \ {0}. By composing this with the canonical

projection B � H, we obtain a character λ̃ : B → C× of B, which is also denoted
by λ̃. For λ ∈ P , define a line bundle Lλ on G/B as follows:

(3.1) Lλ := (G× C)/B,

where the right B-action on G × C is given by (g, c) · b := (gb, λ̃(b)c) for g ∈ G,
c ∈ C, and b ∈ B. If λ ∈ P+, then the line bundle Lλ on G/B is generated by
global sections (see [3, Proposition 1.4.1]). For λ ∈ P+, we denote by V (λ) the
irreducible highest weight G-module over C with highest weight λ and with highest
weight vector vλ. Define a morphism ρλ : G/B → P(V (λ)) by

ρλ(g mod B) := Cgvλ.
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Then we have ρ∗λ(O(1)) = Lλ. Hence the morphism ρλ induces a C-linear map

ρ∗λ : H
0(P(V (λ)),O(1)) → H0(G/B,Lλ).

Note that the spaceH0(P(V (λ)),O(1)) of global sections is naturally identified with
the dual G-module V (λ)∗ := HomC(V (λ),C). By the Borel–Weil theorem (see, for
instance, [29, Section 8.1.21 and Corollary 8.1.26]), we know that the C-linear map
ρ∗λ gives an isomorphism of G-modules from V (λ)∗ to H0(G/B,Lλ). Hence, for
σ, τ ∈ H0(G/B,Lλ) \ {0}, the rational function σ/τ ∈ C(G/B) \ {0} is given by

(3.2) (σ/τ )(g mod B) = σ(gvλ)/τ (gvλ)

for g ∈ G such that τ (gvλ) �= 0. Denoting the normalizer of H in G by NG(H),
the Weyl group W is defined to be the quotient group NG(H)/H. This group is
generated by the set {si | i ∈ I} of simple reflections. A sequence i = (i1, . . . , im) ∈
Im is called a reduced word for w ∈ W if w = si1 · · · sim and if m is the minimum
among such expressions of w. In this case, m is called the length of w, which is
denoted by 	(w).

Definition 3.1 (see, for instance, [21, Section II.13.3] and [29, Definition 7.1.13]).
For w ∈ W , we define a closed subvariety X(w) of G/B to be the Zariski closure of
Bw̃B/B in G/B, where w̃ ∈ NG(H) is a lift for w ∈ W = NG(H)/H. This variety
X(w) is called a Schubert variety.

For w ∈ W , the Schubert variety X(w) is a normal projective variety, and
we have dimC(X(w)) = 	(w) (see, for instance, [21, Sections II.13.3, II.14.15]).
Denoting the longest element in W by w0, we see that the Schubert variety X(w0)
coincides with G/B. For 1 ≤ i, j ≤ n + 1, let Ei,j denote the (n + 1) × (n + 1)-
matrix whose (i, j)-entry is 1 and other entries are all 0. Then we can take Chevalley
generators ei, fi, hi ∈ g, i ∈ I, as ei := Ei,i+1, fi := Ei+1,i, and hi := Ei,i−Ei+1,i+1.
For i ∈ I, set

si := exp(fi) exp(−ei) exp(fi)

= Ei+1,i − Ei,i+1 +
∑

1≤j≤n+1;j �=i,i+1

Ej,j ∈ NG(H),

which is a lift for si ∈ W . For w ∈ W = NG(H)/H, we define its lift w ∈ NG(H)
by

(3.3) w := si1si2 · · · sim ,

where (i1, i2, . . . , im) is a reduced word for w. The element w does not depend
on the choice of a reduced word (i1, i2, . . . , im) for w. If w is the identity element
e, then the lift e ∈ NG(H) is defined to be the identity matrix. Denote by τλ ∈
H0(G/B,Lλ) � V (λ)∗ the unique lowest weight vector satisfying the condition
that 〈τλ, vλ〉 = 1. For k ∈ I, the representations V (�k) and H0(G/B,L�k

) are
minuscule (see [30, Section 13.4]), that is, we have

V (�k) =
∑
w∈W

Cwv�k
and H0(G/B,L�k

) =
∑
w∈W

Cwτ�k
.

4. Crystal bases for fundamental representations

In this section, we recall some basic facts on the Kashiwara crystal basis for a
fundamental representation, which are used in Section 6.2. See Kashiwara’s survey
[22] for more details. For k ∈ I, the crystal basis B(�k) is a specific combinatorial



N–O POLYTOPES AND MARKED CHAIN-ORDER POLYTOPES 459

skeleton of V (�k), which is equipped with specific operators {ẽi | i ∈ I} ∪ {f̃i |
i ∈ I}, called Kashiwara operators. An explicit description of B(�k) using Young
tableaux is given in [23, Section 3.3]. More precisely, the crystal basis B(�k) is
identified with

{(j1, j2, . . . , jk) | 1 ≤ j1 < j2 < · · · < jk ≤ n+ 1}
as a set, where (j1, j2, . . . , jk) corresponds to the Young tableau with only one col-
umn of k boxes whose entries are j1, j2, . . . , jk. In addition, the actions of Kashiwara
operators are given by

ẽi(j1, j2, . . . , jk) =

⎧⎨⎩(j1, . . . , j�−1, j� − 1, j�+1, . . . , jk)
if j� = i+ 1 for some 	
and j�−1 �= i,

0 otherwise,

f̃i(j1, j2, . . . , jk) =

⎧⎨⎩(j1, . . . , j�−1, j� + 1, j�+1, . . . , jk)
if j� = i for some 	
and j�+1 �= i+ 1,

0 otherwise

for 1 ≤ i ≤ n and (j1, j2, . . . , jk) ∈ B(�k), where 0 is an additional element which
is not contained in B(�k), and we set j0 := 0, jk+1 := n+ 2. If we set

εi(b) := max{a ∈ Z≥0 | ẽai b �= 0} and ϕi(b) := max{a ∈ Z≥0 | f̃a
i b �= 0}

for 1 ≤ i ≤ n and b ∈ B(�k), then it follows that

εi(b) =

{
1 if ẽib �= 0,

0 otherwise,

ϕi(b) =

{
1 if f̃ib �= 0,

0 otherwise.

Example 4.1. The crystal basis B(�1) is realized as follows:

(1)
f̃1−→ (2)

f̃2−→ · · · f̃n−1−−−→ (n)
f̃n−→ (n+ 1).

Example 4.2. Let G = SL4(C). Then the crystal basis B(�2) is realized as follows:

(2, 3)

f̃3

���
��

��
��

�

(1, 2)
f̃2 �� (1, 3)

f̃1
����������

f̃3 ���
��

��
��

�
(2, 4)

f̃2 �� (3, 4).

(1, 4)

f̃1

����������

Let {Glow
�k

(b) | b ∈ B(�k)} ⊆ V (�k) denote (the specialization at q = 1 of)
the lower global basis (see [22, Section 12.3]), and {Gup

�k
(b) | b ∈ B(�k)} ⊆

H0(G/B,L�k
) � V (�k)

∗ its dual basis. Then we have

eiG
low
�k

(b) =

{
c1G

low
�k

(ẽib) if ẽib �= 0,

0 otherwise,

fiG
low
�k

(b) =

{
c2G

low
�k

(f̃ib) if f̃ib �= 0,

0 otherwise
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for some c1, c2 ∈ C× (see [22, Section 12.4]). If we write

wt(b) :=
∑

1≤i≤n

(ϕi(b)− εi(b))�i

for b ∈ B(�k), then wt(b) coincides with the weight of Glow
�k

(b) (see [22, equation
(4.3)]). Let b�k

∈ B(�k) denote the element corresponding to (1, 2, . . . , k). Then
we have wt(b�k

) = �k, which implies that Glow
�k

(b�k
) ∈ C×v�k

. For 1 ≤ i ≤ n,
define si : B(�k) → B(�k) by

sib :=

{
f̃
〈wt(b),hi〉
i b if 〈wt(b), hi〉 ≥ 0,

ẽ
−〈wt(b),hi〉
i b otherwise.

Then we have s2i b = b and wt(sib) = si wt(b) for all b ∈ B(�k) (see [22, equa-
tion (11.2)]). Note that the Weyl group W is isomorphic to the symmetric group
Sn+1 by identifying the simple reflection si with the transposition (i i+ 1). Then
si(j1, j2, . . . , jk) is given by rearranging si(j1), si(j2), . . . , si(jk) in ascending order
for all (j1, j2, . . . , jk) ∈ B(�k). Since the representation V (�k) is minuscule, it
holds for b ∈ B(�k) that

siG
low
�k

(b) ∈ C×Glow
�k

(sib).

5. Newton–Okounkov bodies

In Section 5.1, we recall the definitions of higher rank valuations and Newton–
Okounkov bodies, following [24, 26]. In Section 5.2, we define our main valuations
and review some previous realizations of Gelfand–Tsetlin polytopes [17, 33] and
FFLV polytopes [27] as Newton–Okounkov bodies.

5.1. Basic definitions on Newton–Okounkov bodies. Let R be a C-algebra
without nonzero zero-divisors. We fix N ∈ Z>0 and a total order ≤ on ZN respect-
ing the addition.

Definition 5.1. A map ν : R \ {0} → ZN is called a valuation on R with values in
ZN if for each σ, τ ∈ R \ {0} and c ∈ C×, it holds that

(i) ν(σ · τ ) = ν(σ) + ν(τ ),
(ii) ν(c · σ) = ν(σ),
(iii) ν(σ + τ ) ≥ min{ν(σ), ν(τ )} unless σ + τ = 0.

For a ∈ ZN and a valuation ν on R with values in ZN , define a C-subspace
Ra ⊆ R by

Ra := {σ ∈ R \ {0} | ν(σ) ≥ a} ∪ {0}.
Then we set R̂a := Ra/

⋃
a<b Rb, which is called the leaf above a ∈ ZN . A

valuation ν is said to have 1-dimensional leaves if dimC(R̂a) = 0 or 1 for all
a ∈ ZN .

Example 5.2. Let C(z1, . . . , zN ) be the field of rational functions in N variables,
and take a total order ≤ on ZN to be the lexicographic order, that is, (a1, . . . , aN ) <
(a′1, . . . , a

′
N ) if and only if there exists 1 ≤ k ≤ N such that

a1 = a′1, . . . , ak−1 = a′k−1, ak < a′k.
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The lexicographic order ≤ on ZN gives a total order (denoted by the same symbol
≤) on the set of Laurent monomials in z1, . . . , zN by

za1
1 · · · zaN

N ≤ z
a′
1

1 · · · za
′
N

N if and only if (a1, . . . , aN ) ≤ (a′1, . . . , a
′
N ).

We define two maps νlowz1>···>zN , νhighz1>···>zN : C(z1, . . . , zN ) \ {0} → ZN by

• νlowz1>···>zN (f) := (a1, . . . , aN ) and νhighz1>···>zN (f) := −(a′1, . . . , a
′
N ) for

f = cza1
1 · · · zaN

N + (higher terms)

= c′z
a′
1

1 · · · za
′
N

N + (lower terms) ∈ C[z1, . . . , zN ] \ {0},

where c, c′ ∈ C×, and we mean by “(higher terms)” (resp., “(lower terms)”)
a linear combination of monomials bigger than za1

1 · · · zaN

N (resp., smaller

than z
a′
1

1 · · · za
′
N

N ) with respect to the total order ≤,

• νlowz1>···>zN (f/g) := νlowz1>···>zN (f) − νlowz1>···>zN (g) and νhighz1>···>zN (f/g) :=

νhighz1>···>zN (f)−νhighz1>···>zN (g) for all nonzero polynomials f, g∈C[z1, . . . , zN ] \
{0}.

Then the map νlowz1>···>zN (resp., νhighz1>···>zN ) is a valuation with respect to the lex-
icographic order ≤ whose leaves are all 1-dimensional, which is called the lowest
term valuation (resp., the highest term valuation) with respect to the lexicographic
order z1 > · · · > zN .

The following is a fundamental property of valuations with 1-dimensional leaves.

Proposition 5.3 (see, for instance, [24, Proposition 1.9]). Let ν : R \ {0} → ZN

be a valuation with 1-dimensional leaves, and V ⊆ R a finite-dimensional C-linear
subspace.

(1) There exists a C-basis B of V such that the values ν(b), b ∈ B, are all
distinct.

(2) The equality ν(V \{0}) = {ν(b) | b ∈ B} holds; in particular, the cardinality
of ν(V \ {0}) coincides with dimC(V ).

Let X be an irreducible normal projective variety over C, L a line bundle on X
generated by global sections, and N := dimC(X).

Definition 5.4 (see [26, Definition 1.10]). Take a valuation ν : C(X) \ {0} → ZN

with 1-dimensional leaves, and fix a nonzero section τ ∈ H0(X,L). We define a
semigroup S(X,L, ν, τ ) ⊆ Z>0 × ZN by

S(X,L, ν, τ ) :=
⋃

k∈Z>0

{(k, ν(σ/τk)) | σ ∈ H0(X,L⊗k) \ {0}},

and let C(X,L, ν, τ ) ⊆ R≥0 × RN denote the smallest real closed cone containing
S(X,L, ν, τ ). Define a convex set Δ(X,L, ν, τ ) ⊆ RN by

Δ(X,L, ν, τ ) := {a ∈ RN | (1,a) ∈ C(X,L, ν, τ )},
which is called the Newton–Okounkov body of (X,L) associated with ν and τ . In
the notation of [26, Definition 1.10], the Newton–Okounkov body Δ(X,L, ν, τ ) is
Δ(S,M) for S := S(X,L, ν, τ ) and M := L(S)∩(R≥0×RN ), where L(S) ⊆ R×RN

denotes the smallest R-linear subspace containing S (see also [26, Section 3.2] and
[24, Section 1.2]).
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Remark 5.5. For another nonzero section τ ′ ∈ H0(X,L), we have

S(X,L, ν, τ ′) ∩ ({k} × ZN ) = (S(X,L, ν, τ ) ∩ ({k} × ZN )) + (0, kν(τ/τ ′))

for all k ∈ Z>0, which implies that

Δ(X,L, ν, τ ′) = Δ(X,L, ν, τ ) + ν(τ/τ ′).

Hence Δ(X,L, ν, τ ) does not depend on the choice of τ up to translations. This is
the reason why we denote it simply by Δ(X,L, ν) in Introduction.

Since S(X,L, ν, τ ) is a semigroup, the definition of Newton–Okounkov bodies
implies that

(5.1) Δ(X,L⊗k, ν, τk) = kΔ(X,L, ν, τ )

for all k ∈ Z>0. In addition, it follows by [26, Theorem 2.30] that the Newton–
Okounkov body Δ(X,L, ν, τ ) is a convex body, i.e., a compact convex set. Since
L is generated by global sections, we obtain a morphism X → P(H0(X,L)∗); the
closure of its image is denoted by YL.

Theorem 5.6 ([26, Corollary 3.2]). The real dimension d := dimR(Δ(X,L, ν, τ ))
equals the complex dimension of YL. In addition, the degree deg(YL) of the closed
embedding YL ↪→ P(H0(X,L)∗) coincides with 1

d! · Vold(Δ(X,L, ν, τ )), where
Vold(Δ(X,L, ν, τ )) denotes the d-dimensional volume of Δ(X,L, ν, τ ) with respect
to the lattice generated by⋃

k∈Z>0

{ν(σ/τk)− ν(σ′/τk) | σ, σ′ ∈ H0(X,L⊗k) \ {0}} ⊆ ZN .

By the additivity of ν, we see that

(5.2) Δ(X,L1, ν, τ1) + Δ(X,L2, ν, τ2) ⊆ Δ(X,L1 ⊗ L2, ν, τ1 · τ2)

for all globally generated line bundles L1,L2 on X and nonzero sections τ1 ∈
H0(X,L1), τ2 ∈ H0(X,L2). Let

X• : X = X0 � X1 � · · · � XN

be a sequence of irreducible normal closed subvarieties of X such that dimC(Xk) =
N − k for 0 ≤ k ≤ N . Denote by ηk the generic point of Xk for 1 ≤ k ≤ N .
Since Xk is normal for all 0 ≤ k ≤ N − 1, the stalk Oηk+1,Xk

of the structure
sheaf OXk

at ηk+1 is a discrete valuation ring with quotient field C(Xk). Let
ordXk+1

: C(Xk)\{0} → Z denote the corresponding valuation, and take a generator
uk+1 ∈ C(Xk) of the unique maximal ideal of Oηk+1,Xk

. We define a map

νX• : C(X) \ {0} → ZN , f 
→ (a1, . . . , aN ),

as follows (see [33, Section 2.1]). The first coordinate a1 is given by a1 := ordX1
(f),

which implies that (u−a1
1 f)|X1

∈ C(X1) \ {0}. Then the second coordinate a2 is
given by a2 := ordX2

((u−a1
1 f)|X1

). Continuing in this way, we define all ak. This
is the definition of νX• . Then the map νX• is a valuation with respect to the
lexicographic order, which has 1-dimensional leaves.

Remark 5.7. The valuation νX• depends on the choice of u1, . . . , uN , but the corre-
sponding Newton–Okounkov body Δ(X,L, νX• , τ ) is independent up to unimodular
equivalence.
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5.2. Newton–Okounkov bodies of flag varieties. In this subsection, we re-
strict ourselves to Newton–Okounkov bodies of flag varieties, and define our main

valuations. Set N := n(n+1)
2 , and define a reduced word iA = (i1, . . . , iN ) ∈ IN for

the longest element w0 ∈ W by

(5.3) iA := (1, 2, 1, 3, 2, 1, . . . , n, n− 1, . . . , 1).

We write w≥N+1 := e, and set w≥k := siksik+1
· · · siN for 1 ≤ k ≤ N . Arrange the

elements of ΠA \Π∗
A as

(5.4) (q1, q2, . . . , qN ) := (q
(1)
1 , q

(2)
1 , q

(1)
2 , q

(3)
1 , q

(2)
2 , q

(1)
3 , . . . , q

(n)
1 , q

(n−1)
2 , . . . , q(1)n ).

Then a partition ΠA\Π∗
A=C�O is identified with a partition of the set {1, 2, . . . , N};

we regard this set {1, 2, . . . , N} as the set of positions of entries in iA. Using the
arrangement (5.4), we identify RΠA\Π∗

A with RN . Take a partition ΠA\Π∗
A = C�O.

For 1 ≤ k ≤ N , we define uk ∈ W by

uk :=

{
sik if qk ∈ C,
e if qk ∈ O,

and set u≤k := u1u2 · · ·uk ∈ W . Then let XC,O
• denote the following sequence of

irreducible normal closed subvarieties of G/B:

(5.5) (G/B =) X(w≥1) � u≤1X(w≥2) � u≤2X(w≥3) �

· · · � u≤NX(w≥N+1) (= u≤NB/B),

where recall the lift w ∈ NG(H) for w ∈ W defined in (3.3). If C = ∅ and

O = ΠA \Π∗
A, then X

∅,ΠA\Π∗
A• is the following sequence of Schubert varieties:

(G/B =) X(w≥1) � X(w≥2) � X(w≥3) � · · · � X(w≥N+1) (= B/B).

If C = ΠA \ Π∗
A and O = ∅, then X

ΠA\Π∗
A,∅

• is the following sequence of translated
Schubert varieties:
(5.6)
(G/B=) X(w≥1)�si1X(w≥2) � si1si2X(w≥3)� · · ·�w0X(w≥N+1) (=w0B/B),

which was studied by Kiritchenko [27]. For 1 ≤ k ≤ N and t ∈ C, we define
Ωk(t) ∈ G by Ωk(t) := uk exp(tfik), and set

ΩC,O(t1, . . . , tN ) := Ω1(t1) · Ω2(t2) · · ·ΩN (tN ) ∈ G

for (t1, . . . , tN ) ∈ CN . Then it is easy to see by [21, Chapter II.13] that for 1 ≤ k ≤
N , we obtain a birational morphism

CN−k+1 → u≤k−1X(w≥k),

(tk, tk+1, . . . , tN ) 
→ Ωk(tk) · Ωk+1(tk+1) · · ·ΩN (tN ) mod B,

and the rational function tk ∈ C(tk, . . . , tN ) � C(u≤k−1X(w≥k)) gives a generator
of the unique maximal ideal of the stalk Oηk,u≤k−1X(w≥k) of the structure sheaf

Ou≤k−1X(w≥k) at ηk, where ηk denotes the generic point of u≤kX(w≥k+1). Consid-
ering the case k = 1, we see that the following morphism is birational:

Ω̂C,O : CN → G/B, (t1, . . . , tN ) 
→ ΩC,O(t1, . . . , tN ) mod B.

Using this birational morphism, we identify the function field C(G/B) with the
field C(t1, . . . , tN ) of rational functions in t1, . . . , tN .
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Example 5.8. Let G = SL4(C), and (C,O) = ({q5, q6}, {q1, q2, q3, q4}). Then the

sequence XC,O
• is given by

(G/B =) X(w≥1) � X(w≥2) � · · · � X(w≥5) (= X(s2s1)) � s2X(s1)

� s2s1X(e) (= s2s1B/B).

In addition, we have

ΩC,O(t1, . . . , t6) = exp(t1f1) exp(t2f2) exp(t3f1) exp(t4f3)s2 exp(t5f2)s1 exp(t6f1)

=

⎛⎜⎜⎝
−t6 −1 0 0

−t5 − t1t6 − t3t6 −t1 − t3 −1 0
1− t2t5 − t2t3t6 −t2t3 −t2 0

t4 0 0 1

⎞⎟⎟⎠ ,

which gives an identification C(G/B) � C(t1, . . . , t6).

Let νlowC,O and νhighC,O denote the valuations on C(G/B) � C(t1, . . . , tN ) defined to

be νlowt1>···>tN and νhight1>···>tN on C(t1, . . . , tN ), respectively (see Example 5.2). The

valuation νlowC,O is identical to the valuation νXC,O
•

associated with the sequenceXC,O
• .

Let us consider two extreme cases (C,O) = (∅,ΠA \Π∗
A) and (C,O) = (ΠA \Π∗

A, ∅).
Then we obtain the Gelfand–Tsetlin polytopes GT (λ) and the FFLV polytopes
FFLV (λ) for all λ ∈ P+ as the corresponding Newton–Okounkov bodies as follows.

Theorem 5.9 (see [33, Section 3.1], [17, Proposition 3.29, Corollary 5.3], and
[14, Example 3.12]). Let (C,O) = (∅,ΠA \ Π∗

A), and λ ∈ P+. Then the Newton–
Okounkov body Δ(G/B,Lλ, ν

low
∅,ΠA\Π∗

A
, τλ) coincides with the translated Gelfand–

Tsetlin polytope GT (λ)− ahigh
λ , where

ahigh
λ := (0, 0, λ≥n︸ ︷︷ ︸

2

, 0, λ≥n, λ≥n−1︸ ︷︷ ︸
3

, . . . , 0, λ≥n, λ≥n−1, . . . , λ≥2︸ ︷︷ ︸
n

) ∈ ZN .

Remark 5.10. The lowest term valuation νlow∅,ΠA\Π∗
A
in Theorem 5.9 is defined from

the reduced word iA. By [17, Corollary 5.3], Theorem 5.9 is naturally extended to
an arbitrary reduced word of general Lie type and to the corresponding Schubert

variety if we replace the translated Gelfand–Tsetlin polytope GT (λ)−ahigh
λ with a

Nakashima–Zelevinsky polytope.

Theorem 5.11 ([27, Theorem 2.1]). Let (C,O) = (ΠA \Π∗
A, ∅), and λ ∈ P+. Then

the Newton–Okounkov body Δ(G/B,Lλ, ν
low
ΠA\Π∗

A,∅, w0τλ) coincides with the FFLV

polytope FFLV (λ).

Remark 5.12. The proof of Theorem 5.11 in [27, Theorem 2.1] uses some geometric
arguments. A more combinatorial proof is given in [28, Section 3].

We write
wC,O := ΩC,O(0, . . . , 0) = u1 · u2 · · ·uN ∈ NG(H),

and set
wC,O := wC,O mod H = u1u2 · · ·uN ∈ W.

Note that wC,O �= wC,O in general. For λ ∈ P+, denote by V (λ,wC,O) the C-
subspace of V (λ) spanned by weight vectors whose weights are different from wC,Oλ.
Then, since wC,Ovλ is an extremal weight vector, it follows that

V (λ) = V (λ,wC,O)⊕ CwC,Ovλ.
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We define τ
(C,O)
λ ∈ H0(G/B,Lλ) = V (λ)∗ by

(5.7)
τ
(C,O)
λ (wC,Ovλ) = 1 and

τ
(C,O)
λ (v) = 0 for all v ∈ V (λ,wC,O).

For σ ∈ H0(G/B,Lλ) = V (λ)∗, define ΥC,O(σ) ∈ C[t1, . . . , tN ] by

(5.8) ΥC,O(σ) := σ(ΩC,O(t1, . . . , tN )vλ).

Lemma 5.13. For each λ ∈ P+ and σ ∈ H0(G/B,Lλ), it holds that

νlowC,O(σ/τ
(C,O)
λ ) = νlowC,O(ΥC,O(σ)).

Proof. By the definition of τ
(C,O)
λ , the constant term of ΥC,O(τ

(C,O)
λ ) ∈ C[t1, . . . , tN ]

is given by

τ
(C,O)
λ (ΩC,O(0, . . . , 0)vλ) = τ

(C,O)
λ (wC,Ovλ) = 1.

In particular, we have ΥC,O(τ
(C,O)
λ ) �= 0 and νlowC,O(ΥC,O(τ

(C,O)
λ )) = (0, . . . , 0). By

(3.2), it holds in C(G/B) = C(t1, . . . , tN ) that

σ/τ
(C,O)
λ = ΥC,O(σ)/ΥC,O(τ

(C,O)
λ ),

which implies that

νlowC,O(σ/τ
(C,O)
λ ) = νlowC,O(ΥC,O(σ))− νlowC,O(ΥC,O(τ

(C,O)
λ )) = νlowC,O(ΥC,O(σ)).

This proves the lemma. �

6. Main result

In this section, we realize the marked chain-order polytope ΔC,O(ΠA,Π
∗
A, λ) as a

Newton–Okounkov body of (G/B,Lλ). In Section 6.1, we give the statement of our
main result and its application to toric degenerations. The proof of our main result
is given in Section 6.2. Section 6.3 is devoted to constructing a specific basis of V (λ)
which is naturally parametrized by the set of lattice points in ΔC,O(ΠA,Π

∗
A, λ). In

Section 6.4, we compare our main result with the highest term valuation νhighC,O .

6.1. Statement and applications. The following is the main result of the present
paper.

Theorem 6.1. For each partition ΠA\Π∗
A = C�O, λ ∈ P+, and τ ∈ H0(G/B,Lλ)\

{0}, the Newton–Okounkov body Δ(G/B,Lλ, ν
low
C,O, τ ) coincides with the marked

chain-order polytope ΔC,O(ΠA,Π
∗
A, λ) up to translations by integer vectors.

We give a proof of Theorem 6.1 in the next subsection. In the rest of this
subsection, we see some applications of Theorem 6.1.

Corollary 6.2. Let ΠA\Π∗
A = C�O be a partition, λ ∈ P+, and τ ∈ H0(G/B,Lλ)\

{0}.
(1) The semigroup S(G/B,Lλ, ν

low
C,O, τ ) is finitely generated and saturated.

(2) The real closed cone C(G/B,Lλ, ν
low
C,O, τ ) is a rational convex polyhedral

cone, and the following equality holds:

S(G/B,Lλ, ν
low
C,O, τ ) = C(G/B,Lλ, ν

low
C,O, τ ) ∩ (Z>0 × ZN ).
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(3) The Newton–Okounkov body Δ(G/B,Lλ, ν
low
C,O, τ ) is an integral convex poly-

tope, and it holds that

Δ(G/B,Lλ, ν
low
C,O, τ ) ∩ ZN = {νlowC,O(σ/τ ) | σ ∈ H0(G/B,Lλ) \ {0}}.

Proof. By Theorem 6.1, there exists aλ ∈ ZN such that

Δ(G/B,Lλ, ν
low
C,O, τ ) = ΔC,O(ΠA,Π

∗
A, λ)− aλ,

which implies that Δ(G/B,Lλ, ν
low
C,O, τ ) is an integral convex polytope. By (5.1)

and Theorem 2.4, we obtain that

Δ(G/B,L⊗k
λ , νlowC,O, τ

k) = kΔ(G/B,Lλ, ν
low
C,O, τ )

= ΔC,O(ΠA,Π
∗
A, kλ)− kaλ

for all k ∈ Z>0. Note that L⊗k
λ = Lkλ. By (2.2), the number of lattice points in

ΔC,O(ΠA,Π
∗
A, kλ) coincides with dimC(H

0(G/B,Lkλ)) for each k ∈ Z>0. Hence
we see by Proposition 5.3 (2) that

{νlowC,O(σ/τ
k) | σ ∈ H0(G/B,Lkλ) \ {0}} = (ΔC,O(ΠA,Π

∗
A, kλ) ∩ ZN )− kaλ.

Then part (3) follows by the case k = 1. In addition, we obtain that

S(G/B,Lλ, ν
low
C,O, τ ) =

⋃
k∈Z>0

{(k,a− kaλ) | a ∈ ΔC,O(ΠA,Π
∗
A, kλ) ∩ ZN}.

Hence we see by the definition of ΔC,O(ΠA,Π
∗
A, kλ) that S(G/B,Lλ, ν

low
C,O, τ ) can

be written as an intersection of a rational convex polyhedral cone C with Z>0×ZN .
Then it follows that C = C(G/B,Lλ, ν

low
C,O, τ ), which implies part (2). Finally, part

(1) follows from part (2) by Gordan’s lemma (see, for instance, [4, Proposition
1.2.17]). This proves the corollary. �

Let P++ :=
∑

i∈I Z>0�i ⊆ P+ be the set of regular dominant integral weights.
For λ ∈ P++, the line bundle Lλ onG/B is very ample (see, for instance, [21, Section
II.8.5]). Hence it follows by Theorem 5.6 that the real dimension of
Δ(G/B,Lλ, ν

low
C,O, τ ) coincides with N . We say that G/B admits a flat degeneration

to a variety X if there exists a flat morphism π : X → Spec(C[t]) of schemes such
that the scheme-theoretic fiber π−1(t) (resp., π−1(0)) over a closed point t ∈ C\{0}
(resp., the origin 0 ∈ C) is isomorphic to G/B (resp., X). If X is a toric variety,
then a flat degeneration to X is called a toric degeneration. Our main result (The-
orem 6.1) allows us to apply Anderson’s construction [1] of toric degenerations to
ΔC,O(ΠA,Π

∗
A, λ) as follows.

Theorem 6.3. For each partition ΠA\Π∗
A = C�O and λ ∈ P++, there exists a flat

degeneration of G/B to the irreducible normal projective toric variety corresponding
to the marked chain-order polytope ΔC,O(ΠA,Π

∗
A, λ).

Proof. Let C[S(G/B,Lλ, ν
low
C,O, τ )] denote the semigroup ring of S(G/B,Lλ, ν

low
C,O, τ ).

By [1, Theorem 1] and Corollary 6.2 (1), we obtain a flat degeneration of G/B
to Proj(C[S(G/B,Lλ, ν

low
C,O, τ )]), where the Z>0-grading of S(G/B,Lλ, ν

low
C,O, τ ) in-

duces a Z≥0-grading of C[S(G/B,Lλ, ν
low
C,O, τ )]. By [4, Theorem 1.3.5] and Corol-

lary 6.2 (1), it follows that Proj(C[S(G/B,Lλ, ν
low
C,O, τ )]) is normal; hence it is iso-

morphic to the irreducible normal projective toric variety corresponding to the in-
tegral convex polytope Δ(G/B,Lλ, ν

low
C,O, τ ). From these, we conclude the theorem

by Theorem 6.1. �
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6.2. Proof of Theorem 6.1. Fix 1 ≤ k ≤ n, and define

d�k
= (d

(1)
1 , d

(2)
1 , d

(1)
2 , d

(3)
1 , d

(2)
2 , d

(1)
3 , . . . , d

(n)
1 , d

(n−1)
2 , . . . , d(1)n ) ∈ {0, 1}N

by

d
(m)
� :=

{
1 if n− k + 2 ≤ 	 and q

(m)
� ∈ O,

0 otherwise.

Then we first prove that

ΔC,O(ΠA,Π
∗
A, �k)− d�k

⊆ Δ(G/B,L�k
, νlowC,O, τ )

for some nonzero section τ ∈ H0(G/B,L�k
). By definition, the marked chain-order

polytope ΔC,O(ΠA,Π
∗
A, �k) coincides with the set of

(a
(1)
1 , a

(2)
1 , a

(1)
2 , a

(3)
1 , a

(2)
2 , a

(1)
3 , . . . , a

(n)
1 , a

(n−1)
2 , . . . , a(1)n ) ∈ RN

≥0

satisfying the following conditions:

• a
(m)
� = 0 if 	+m ≤ n− k + 1,

• a
(m)
� = 0 if n− k + 2 ≤ 	 and q

(m)
� ∈ C,

• a
(m)
� = 1 if n− k + 2 ≤ 	 and q

(m)
� ∈ O,

• (a
(m)
� | 1 ≤ 	 ≤ n− k+1, n− k− 	+2 ≤ m ≤ n+1− 	) is contained in the

marked chain-order polytope ΔCk,Ok
(Πk,Π

∗
k, μk), where the marked poset

(Πk,Π
∗
k, μk) is defined by the marked Hasse diagram given in Figure 6.1,

and the partition Πk\Π∗
k = Ck�Ok is the one induced from ΠA\Π∗

A = C�O.

q
(n−1)
2

1

q
(n−2)
2

q
(n−k+1)
1

q
(k−1)
n−k+1

q
(k)
n−k+1

q
(n)
1

q
(n−1)
1

q
(n−k)
2

0

0

1

0

1

q
(1)
n−k+1

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·· · ·

Figure 6.1. The marked Hasse diagram of the marked poset (Πk,Π
∗
k, μk)
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Recall the C-basis {Gup
�k

(b) | b ∈ B(�k)} of H0(G/B,L�k
) defined in Section 4.

Then, for b ∈ B(�k), it follows that

ΥC,O(G
up
�k

(b)) = Gup
�k

(b)(ΩC,O(t1, . . . , tN )v�k
) (by (5.8))

=
∑

a=(a1,...,aN )∈ZN
≥0

1

a1! · · · aN !
ta1
1 · · · taN

N Gup
�k

(b)(u1f
a1

i1
· · ·uNfaN

iN
v�k

).

In addition, we have Gup
�k

(b)(u1f
a1
i1

· · ·uNfaN

iN
v�k

) �= 0 if and only if

u1f̃
a1
i1

· · ·uN f̃aN
iN

b�k
= b,

where eb′ := b′ for the identity element e ∈ W and b′ ∈ B(�k). In particular, the
following holds.

Lemma 6.4. The values νlowC,O(ΥC,O(G
up
�k

(b))), b ∈ B(�k), are all distinct.

Fix b ∈ B(�k), and write νlowC,O(ΥC,O(G
up
�k

(b))) = (a1, . . . , aN ). Let us prove that

(a1, . . . , aN )∈ΔC,O(ΠA,Π
∗
A, �k)−d�k

. Since we haveGup
�k

(b)(u1f
a1
i1

· · ·uNfaN

iN
v�k

)
�= 0, it follows that

u1f̃
a1
i1

· · ·uN f̃aN
iN

b�k
= b,

and hence that

b�k
= ẽaN

iN
uN · · · ẽa1

i1
u1b.

For 0 ≤ 	 ≤ N , define b(�) ∈ B(�k) by

b(�) := ẽa�
i�
u� · · · ẽa1

i1
u1b.

In particular, we have b(0) = b and b(N) = b�k
. Let us write

b(�) = (j
(�)
1 , j

(�)
2 , . . . , j

(�)
k )

for 0 ≤ 	 ≤ N as in Section 4. Recalling the arrangement (5.4) of the elements
of ΠA \ Π∗

A, define 1 ≤ z� ≤ n + 1 − i� for 1 ≤ 	 ≤ N by the condition that

q� = q
(i�)
z� . Then we write a

(i�)
z� := a�, b

(i�)
z� := b(�), and u

(i�)
z� := u� for 1 ≤ 	 ≤ N .

Set Nm := m(m+1)
2 for 0 ≤ m ≤ n. In particular, we have Nn = N .

Lemma 6.5. For n − k + 1 ≤ m ≤ n and 1 ≤ q ≤ m − (n − k), the equality

j
(Nm)
q = q holds.

Proof. Since we have 1 ≤ j
(Nm)
1 < · · · < j

(Nm)
k , it suffices to show that j

(Nm)
m−(n−k) ≤

m− (n− k) for all n− k + 1 ≤ m ≤ n. Assume for a contradiction that

(6.1) j
(Nm)
m−(n−k) > m− (n− k)

for some n− k + 1 ≤ m ≤ n. If m = n, then it follows by (6.1) that

(6.2) j
(N)
k = j

(Nn)
n−(n−k) > n− (n− k) = k,

which contradicts to the equality b(N) = b�k
. Hence we may assume that m < n.

Then, since we have

b(Nm+n−k+1) = ẽ
aNm+n−k+1

iNm+n−k+1
uNm+n−k+1 · · · ẽaNm+1

iNm+1
uNm+1b

(Nm)

and

(iNm+n−k+1, iNm+n−k, . . . , iNm+1) = (m− (n− k) + 1,m− (n− k) + 2, . . . ,m+1),
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it follows by (6.1) that j
(Nm+n−k+1)
m−(n−k) > m− (n− k), and hence that

(6.3) j
(Nm+n−k+1)
m−(n−k)+1 > m− (n− k) + 1.

Since we have

b(Nm+1) = ẽ
aNm+1

iNm+1
uNm+1

· · · ẽaNm+n−k+2

iNm+n−k+2
uNm+n−k+2b

(Nm+n−k+1)

and

(iNm+1
, iNm+1−1, . . . , iNm+n−k+2) = (1, 2, . . . ,m− (n− k)),

it holds by (6.3) that j
(Nm+1)
m−(n−k)+1 > m− (n− k) + 1. Repeating this argument, we

obtain (6.2) which gives a contradiction. This proves the lemma. �

Let us define (â1, â2, . . . , âN ) ∈ {0, 1}N as follows. We first set â� := 0 for
all 1 ≤ 	 ≤ Nn−k. Then, assuming that (â1, â2, . . . , âNm−1

) is defined for some
n− k+1 ≤ m ≤ n, let us determine (âNm−1+1, âNm−1+2, . . . , âNm

). To do that, we

define b̂(�) ∈ B(�k) for 0 ≤ 	 ≤ N by

b̂(�) := ẽâ�
i�
u� · · · ẽâ1

i1
u1b

under the assumption that â1, . . . , â� are defined, and write

b̂(�) = (ĵ
(�)
1 , ĵ

(�)
2 , . . . , ĵ

(�)
k ).

Then let us set

• âNm−1+� = 0 for 1 ≤ 	 ≤ m− γm + 1 such that qNm−1+� ∈ O,
• âNm−1+� = 1 for m− γm + 2 ≤ 	 ≤ n− k + 1 such that qNm−1+� ∈ O,
• âNm−1+� = 0 for n− k + 2 ≤ 	 ≤ m such that qNm−1+� ∈ O,
• âNm−1+� = 0 for 1 ≤ 	 ≤ m such that 	 �= m− γm + 1 and qNm−1+� ∈ C,
• âNm−1+m−γm+1 = 0 if ĵ

(Nm−1+m−γm)
m−(n−k)+1 = γm + 1 and qNm−1+m−γm+1 ∈ C,

• âNm−1+m−γm+1 = 1 if ĵ
(Nm−1+m−γm)
m−(n−k)+1 �= γm + 1 and qNm−1+m−γm+1 ∈ C,

where γm := ĵ
(Nm−1)
m−(n−k).

Lemma 6.6. The equality a� = â� holds for all 1 ≤ 	 ≤ N .

Proof. Since we have

b̂(Nn−k+1) = ẽ
âNn−k+1

iNn−k+1
uNn−k+1

· · · ẽâNn−k+1

iNn−k+1
uNn−k+1b̂

(Nn−k),

it follows by the definition of (âNn−k+1, âNn−k+2, . . . , âNn−k+1
) that ĵ

(Nn−k+1)
1 = 1.

Then, since it holds that

b̂(Nn−k+2) = ẽ
âNn−k+2

iNn−k+2
uNn−k+2

· · · ẽâNn−k+1+1

iNn−k+1+1
uNn−k+1+1b̂

(Nn−k+1),

we see by the definition of (âNn−k+1+1, âNn−k+1+2, . . . , âNn−k+2
) that ĵ

(Nn−k+2)
1 = 1

and ĵ
(Nn−k+2)
2 = 2. Continuing in this way, we deduce that

b̂(N) = ẽâN
iN

uN · · · ẽâ1
i1
u1b = (1, 2, . . . , k) = b�k

.

Hence the definition of νlowC,O(ΥC,O(G
up
�k

(b))) = (a1, . . . , aN ) implies that

(a1, a2, . . . , aN ) ≤ (â1, â2, . . . , âN )
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with respect to the lexicographic order. In particular, we have a� = 0 for all
1 ≤ 	 ≤ Nn−k, which implies that

b(Nn−k) = uNn−k
· · ·u1b = b̂(Nn−k)

and that

(aNn−k+1, aNn−k+2, . . . , aNn−k+1
) ≤ (âNn−k+1, âNn−k+2, . . . , âNn−k+1

).

If (aNn−k+1, aNn−k+2, . . . , aNn−k+1
) < (âNn−k+1, âNn−k+2, . . . , âNn−k+1

), then it is

easy to see that j
(Nn−k+1)
1 �= 1 by the definition of (âNn−k+1, âNn−k+2, . . . , âNn−k+1

)
since we have

(j
(Nn−k+1)
1 , j

(Nn−k+1)
2 , . . . , j

(Nn−k+1)
k )=b(Nn−k+1)

= ẽ
aNn−k+1

iNn−k+1
uNn−k+1

· · · ẽaNn−k+1

iNn−k+1
uNn−k+1b

(Nn−k)

= ẽ
aNn−k+1

iNn−k+1
uNn−k+1

· · · ẽaNn−k+1

iNn−k+1
uNn−k+1b̂

(Nn−k).

This gives a contradiction since we have j
(Nn−k+1)
1 = 1 by Lemma 6.5. Hence it

follows that

(aNn−k+1, aNn−k+2, . . . , aNn−k+1
) = (âNn−k+1, âNn−k+2, . . . , âNn−k+1

).

Repeating this argument, we conclude the assertion of the lemma. �

Lemma 6.7. It holds that γm+1 > γm for all n− k+ 1 ≤ m ≤ n− 1. In addition,
if γm+1 = γm + 1 for some n− k + 1 ≤ m ≤ n− 1, then âNm−1+m−γm+1 = 0.

Proof. Since we have

(iNm−1+1, iNm−1+2, . . . , iNm
) = (m,m− 1, . . . , 1),

it follows that

γm = ĵ
(Nm−1)
m−(n−k) = ĵ

(Nm−1+m−γm)
m−(n−k) < ĵ

(Nm−1+m−γm)
m−(n−k)+1 = ĵ

(Nm)
m−(n−k)+1 = γm+1.

In addition, if γm+1 = γm+1, then we have ĵ
(Nm−1+m−γm)
m−(n−k)+1 = γm+1, which implies

that âNm−1+m−γm+1 = 0 by definition. This proves the lemma. �

By Lemma 6.7 and the definition of (â1, â2, . . . , âN ), we deduce that

(â1, â2, . . . , âN ) ∈ ΔC,O(ΠA,Π
∗
A, �k)− d�k

,

which implies by Lemma 6.6 that

νlowC,O(ΥC,O(G
up
�k

(b))) = (a1, a2, . . . , aN ) ∈ ΔC,O(ΠA,Π
∗
A, �k)− d�k

.

Since the number of lattice points in ΔC,O(ΠA,Π
∗
A, �k) coincides with the cardi-

nality of B(�k) by (2.2), it follows by Lemma 6.4 that

(ΔC,O(ΠA,Π
∗
A, �k)− d�k

) ∩ ZN = {νlowC,O(ΥC,O(G
up
�k

(b))) | b ∈ B(�k)},
and hence that

ΔC,O(ΠA,Π
∗
A, �k)− d�k

= Conv((ΔC,O(ΠA,Π
∗
A, �k)− d�k

) ∩ ZN )

= Conv({νlowC,O(ΥC,O(G
up
�k

(b))) | b ∈ B(�k)})
⊆ Δ(G/B,L�k

, νlowC,O, τ
(C,O)
�k

) (by Lemma 5.13).
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For λ = λ1�1 + · · ·+ λn�n ∈ P+, the definition of τ
(C,O)
λ implies that

τ
(C,O)
λ = (τ (C,O)

�1
)λ1 · · · (τ (C,O)

�n
)λn .

Writing

dλ := λ1d�1
+ · · ·+ λnd�n

,

it follows by Theorem 2.4 that

ΔC,O(ΠA,Π
∗
A, λ)− dλ = λ1(ΔC,O(ΠA,Π

∗
A, �1)− d�1

) + · · ·
+ λn(ΔC,O(ΠA,Π

∗
A, �n)− d�n

)

⊆ λ1Δ(G/B,L�1
, νlowC,O, τ

(C,O)
�1

) + · · ·
+ λnΔ(G/B,L�n

, νlowC,O, τ
(C,O)
�n

)

⊆ Δ(G/B,Lλ, ν
low
C,O, τ

(C,O)
λ ) (by (5.2)).

Since the volumes of ΔC,O(ΠA,Π
∗
A, λ) and Δ(G/B,Lλ, ν

low
C,O, τ

(C,O)
λ ) coincide by

Theorems 2.2 and 5.6, we deduce that

(6.4) ΔC,O(ΠA,Π
∗
A, λ)− dλ = Δ(G/B,Lλ, ν

low
C,O, τ

(C,O)
λ ).

This completes the proof of Theorem 6.1.

6.3. Bases parametrized by lattice points in marked chain-order poly-
topes. For each partition ΠA \Π∗

A = C � O and λ ∈ P+, we write

Δ̂C,O(λ) := ΔC,O(ΠA,Π
∗
A, λ)− dλ.

Then it follows by (6.4) that Δ̂C,O(λ) = Δ(G/B,Lλ, ν
low
C,O, τ

(C,O)
λ ). Note that

Δ̂C,O(λ) ⊆ RN
≥0 by the definition of dλ. For each a = (a1, . . . , aN ) ∈ ZN

≥0, de-

fine v
(C,O)
λ (a) ∈ V (λ) by

v
(C,O)
λ (a) := u1f

(a1)
i1

· · ·uNf
(aN )
iN

vλ,

where f
(a)
i denotes the divided power

fa
i

a! for i ∈ I and a ∈ Z≥0. Now we obtain

a specific C-basis of V (λ) parametrized by the set of lattice points in Δ̂C,O(λ) as
follows.

Theorem 6.8. For each partition ΠA\Π∗
A = C�O and λ ∈ P+, the set {v(C,O)

λ (a) |
a ∈ Δ̂C,O(λ) ∩ ZN} forms a C-basis of V (λ).

Proof. It follows by Proposition 5.3 and Corollary 6.2 (3) that there exists a C-

basis {σa | a ∈ Δ̂C,O(λ) ∩ ZN} of H0(G/B,Lλ) such that νlowC,O(σa/τ
(C,O)
λ ) = a

for all a ∈ Δ̂C,O(λ) ∩ ZN . Assume for a contradiction that the set {v(C,O)
λ (a) |

a ∈ Δ̂C,O(λ) ∩ ZN} is linearly dependent. Then there exist 	 ∈ Z>0, a1, . . . ,a� ∈
Δ̂C,O(λ) ∩ ZN , and c1, . . . , c� ∈ C× such that a1, . . . ,a� are all distinct and such
that

(6.5) c1v
(C,O)
λ (a1) + · · ·+ c�v

(C,O)
λ (a�) = 0.
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Without loss of generality, we may assume that a1 > a2 > · · · > a� with respect
to the lexicographic order. Note that

(6.6)

ΥC,O(σa1
) = σa1

(ΩC,O(t1, . . . , tN )vλ) (by (5.8))

=
∑

a=(a1,...,aN )∈ZN
≥0

σa1
(v

(C,O)
λ (a))ta1

1 · · · taN

N .

Since we have νlowC,O(ΥC,O(σa1
)) = νlowC,O(σa1

/τ
(C,O)
λ ) = a1 by Lemma 5.13, it follows

by (6.6) that σa1
(v

(C,O)
λ (a1)) �= 0 and that σa1

(v
(C,O)
λ (a)) = 0 for all a < a1. In

particular, we have σa1
(v

(C,O)
λ (a2)) = · · · = σa1

(v
(C,O)
λ (a�)) = 0, which implies that

σa1
(c1v

(C,O)
λ (a1) + · · ·+ c�v

(C,O)
λ (a�)) = c1σa1

(v
(C,O)
λ (a1)).

Since σa1
(v

(C,O)
λ (a1)) �= 0, we conclude by (6.5) that c1 = 0, which gives a contra-

diction. From this, we know that the set {v(C,O)
λ (a) | a ∈ Δ̂C,O(λ)∩ZN} is linearly

independent. Then the assertion of the theorem follows by (2.2). �
Let {αi | i ∈ I} ⊆ P be the set of simple roots,

Φ+ := {αi + αi+1 + · · ·+ αj | 1 ≤ i ≤ j ≤ n} ⊆ P

the set of positive roots, and fβ ∈ g a negative root vector corresponding to β ∈ Φ+.

Remark 6.9. Our basis {v(C,O)
λ (a) | a ∈ Δ̂C,O(λ) ∩ ZN} of V (λ) is an analog of

an essential basis introduced by Feigin–Fourier–Littelmann [9, 11] and by Fang–
Fourier–Littelmann [6, Section 9.1]. Following [6, Definition 2], a sequence S =
(β1, . . . , βN ) ∈ ΦN

+ is called a birational sequence if the following morphism is
birational:

CN → G/B, (t1, . . . , tN ) 
→ exp(t1fβ1
) · · · exp(tNfβN

) mod B.

An essential basis of V (λ) is a C-basis consisting of essential vectors defined from
a birational sequence S and from a specific total order on ZN

≥0 (see [6, Definition 7

and Remark 5]). It is parametrized by the set of lattice points in the corresponding
Newton–Okounkov body of (G/B,Lλ) under some conditions (see [6, Remark 9
and Proposition 8]). Note that a birational sequence S = (β1, . . . , βN ) corresponds
to a birational morphism CN → G/B given as a product of 1-parameter subgroups

corresponding to fβ1
, . . . , fβN

, while our birational morphism Ω̂C,O : CN → G/B
is defined to be a product of such 1-parameter subgroups with translations by
u1, . . . , uN . The definition of essential bases in [6, Section 9.1] can be generalized
to a birational morphism of the form

CN → G/B, (t1, . . . , tN ) 
→ w1 exp(t1fβ1
) · · ·wN exp(tNfβN

),

for some w1, . . . , wN ∈ W and β1, . . . , βN ∈ Φ+. Then our basis in Theorem 6.8
can be understood as such generalized essential basis.

Example 6.10. If C = ∅ and O = ΠA \Π∗
A, then we have

v
(∅,ΠA\Π∗

A)
λ (a) = f

(a1)
i1

f
(a2)
i2

· · · f (aN )
iN

vλ

for a = (a1, . . . , aN ) ∈ ZN
≥0, and the C-basis {v(∅,ΠA\Π∗

A)
λ (a) | a ∈ Δ̂∅,ΠA\Π∗

A
(λ) ∩

ZN} of V (λ) coincides with the essential basis in [6, Section 9.1] associated with the
birational sequence S := (αi1 , αi2 , . . . , αiN ) and with the homogeneous lexicographic
order on ZN

≥0 (see [6, Example 9]).
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Example 6.11. If C = ΠA \Π∗
A and O = ∅, then we have

v
(ΠA\Π∗

A,∅)
λ (a) = si1f

(a1)
i1

si2f
(a2)
i2

· · · siN f
(aN )
iN

vλ

∈ C×w0f
a1

β1
fa2

β2
· · · faN

βN
vλ,

where we write β� := siN siN−1
· · · si�+1

(αi�) ∈ Φ+ for 1 ≤ 	 ≤ N . Since we have

(βN , . . . , β1) = (α1, α1+α2, . . . , α1+ · · ·+αn, α2, α2+α3, . . . , αn−1, αn−1+αn, αn),

the C-basis {v(ΠA\Π∗
A,∅)

λ (a) | a ∈ Δ̂ΠA\Π∗
A,∅(λ) ∩ ZN} of V (λ) coincides with a

C-basis given in [9, Theorem 3] up to the action by w0 and scalar multiples.

6.4. Comparison with highest term valuations. In this subsection, we study

the highest term valuation νhighC,O defined in Section 5.2 from a partition ΠA \Π∗
A =

C �O. When C = ∅ and O = ΠA \Π∗
A, then the highest term valuation νhigh∅,ΠA\Π∗

A
is

studied by Kaveh [24] who proved in [24, Corollary 4.2] that the Newton–Okounkov

body Δ(G/B,Lλ, ν
high
∅,ΠA\Π∗

A
, τλ) is unimodularly equivalent to the string polytope

associated with iA and λ. This string polytope is unimodularly equivalent to the
Gelfand–Tsetlin polytope GT (λ) by [32, Corollary 5]. When C = ΠA \Π∗

A and O =

∅, then νhighΠA\Π∗
A,∅ is the same as the highest term valuation studied in [13, Section

6]. In a way similar to the proof of [13, Theorem 6.2 (2)], we deduce the following.

Theorem 6.12. For each partition ΠA \ Π∗
A = C � O and λ ∈ P+, the Newton–

Okounkov body Δ(G/B,Lλ, ν
high
C,O , τ

(C,O)
λ ) is unimodularly equivalent to the Gelfand–

Tsetlin polytope GT (λ). In particular, it is independent of the choice of a partition
ΠA \Π∗

A = C � O up to unimodular equivalence.

The situation is quite different from the case of νlowC,O since the combinatorics
of a marked chain-order polytope heavily depends on the choice of a partition
ΠA \ Π∗

A = C � O. Indeed, the Gelfand–Tsetlin polytope GT (λ) and the FFLV
polytope FFLV (λ) have different numbers of facets in general (see [12, Theorem
1]).

Remark 6.13. The highest term valuation νhighC,O is defined from the reduced word

iA and from a partition ΠA \ Π∗
A = C � O which corresponds to a partition of the

positions of elements in iA. Since we discuss Bott–Samelson varieties of general Lie
type in [13, Theorem 6.2 (2)], Theorem 6.12 is naturally extended to an arbitrary
reduced word of general Lie type and to the corresponding Bott–Samelson variety
if we replace GT (λ) with a generalized string polytope.

7. Type C case

In this section, we discuss the case of the symplectic group Sp2n(C) (of type
Cn). We review some previous realizations of Gelfand–Tsetlin polytopes [34] and
FFLV polytopes [28] of type Cn as Newton–Okounkov bodies, and observe that our
main result (Theorem 6.1) cannot be naturally extended to type Cn even in the
case n = 2. Set

w0 :=

⎛⎜⎜⎜⎜⎜⎝
0 0 0 · · · −1
...

...
... . .

. ...
0 0 1 · · · 0
0 −1 0 · · · 0
1 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠ ∈ SL2n(C),



474 NAOKI FUJITA

and define an algebraic group automorphism ω : SL2n(C)
∼−→ SL2n(C) by

ω(A) := w−1
0 (AT )−1w0

for A ∈ SL2n(C), where AT denotes the transpose of A. Then the fixed point
subgroup

SL2n(C)
ω := {A ∈ SL2n(C) | ω(A) = A}

coincides with the symplectic group

Sp2n(C) := {A ∈ SL2n(C) | ATw0A = w0}
with respect to the skew-symmetric matrix w0. In addition, the subgroup BCn

⊆
SL2n(C)

ω consisting of upper triangular matrices is a Borel subgroup of Sp2n(C);
hence the full flag variety of type Cn is given as Sp2n(C)/BCn

. Let U−
Cn

(resp., HCn
)

denote the subgroup of SL2n(C)
ω consisting of unipotent lower triangular matrices

(resp., consisting of diagonal matrices). Then U−
Cn

coincides with the unipotent
radical of the Borel subgroup of Sp2n(C) which is opposite to BCn

with respect to
the maximal torus HCn

. Let sp2n(C) be the Lie algebra of Sp2n(C), and P+ the set
of dominant integral weights for sp2n(C). For each λ ∈ P+, we obtain a globally
generated line bundle Lλ on Sp2n(C)/BCn

as in (3.1). Let us identify the set ICn

of vertices of the Dynkin diagram of type Cn with {1, 2, . . . , n} as follows:

Cn

1
�������	

2
�������	��

n− 1
�������	

n
�������	 .

Let {�i | i ∈ ICn
} denote the set of fundamental weights, N(HCn

) the normalizer
of HCn

in Sp2n(C), and WCn
:= N(HCn

)/HCn
the Weyl group which is generated

by the set {si | i ∈ ICn
} of simple reflections. We write N := n2, and define a

reduced word iC = (i1, . . . , iN ) for the longest element w0 ∈ WCn
as follows:

iC := (1, 2, 1, 2︸ ︷︷ ︸
3

, 3, 2, 1, 2, 3︸ ︷︷ ︸
5

, . . . , n, n− 1, . . . , 1, . . . , n− 1, n︸ ︷︷ ︸
2n−1

).

For 1 ≤ i, j ≤ 2n, let Ei,j denote the 2n × 2n-matrix whose (i, j)-entry is 1 and
other entries are all 0. Then we can take Chevalley generators ei, fi, hi ∈ sp2n(C),
i ∈ ICn

, as

e1 := En,n+1, f1 := En+1,n, h1 := En,n − En+1,n+1,

ei := En−i+1,n−i+2 + En+i−1,n+i, fi := En−i+2,n−i+1 + En+i,n+i−1,

hi := En−i+1,n−i+1 − En−i+2,n−i+2 + En+i−1,n+i−1 − En+i,n+i

for 2 ≤ i ≤ n. For 1 ≤ i ≤ n, define a lift si ∈ N(HCn
) for si ∈ WCn

by
si := exp(fi) exp(−ei) exp(fi). For λ ∈ P+ and 1 ≤ k ≤ n, we write λ≤k :=∑

1≤�≤k〈λ, h�〉. Let us consider the Gelfand–Tsetlin poset (ΠC ,Π
∗
C , λ) of type Cn

whose Hasse diagram is given in Figure 7.1, where the circles (resp., the rectangles)
denote the elements of ΠC \Π∗

C (resp., Π∗
C), and we write

ΠC \Π∗
C = {q(i)j | 1 ≤ i ≤ n, 1 ≤ j ≤ 2i− 1}.

Note that the marking (λa)a∈Π∗
C
is given as (0, . . . , 0︸ ︷︷ ︸

n

, λ≤1, λ≤2, . . . , λ≤n), which is

also denoted by λ. By definition, the marked order polytopeO(ΠC ,Π
∗
C , λ) coincides

with the Gelfand–Tsetlin polytope GTCn
(λ) of type Cn (see [32, Section 6] for the

definition), and the marked chain polytope C(ΠC ,Π
∗
C , λ) coincides with the FFLV

polytope FFLVCn
(λ) of type Cn (see [10, equation (2.2)] for the definition). For
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q
(n)
3

q
(n)
2n−1

q
(2)
2

q
(n)
2n−2

q
(2)
3

q
(n)
2

q
(1)
1q

(n)
1 q

(2)
1

q
(n)
2n−3

λ≤n

λ≤2

λ≤1

000

· · ·

· · ·

· · ·

...

· · ·

· · ·

· · ·

Figure 7.1. The marked Hasse diagram of the Gelfand–Tsetlin
poset (ΠC ,Π

∗
C , λ) of type Cn

all x = (xi,j | 1 ≤ i ≤ n, i ≤ j ≤ 2n− i) ∈ CN , there exists a unique element (yi,j |
1 ≤ j ≤ n− 1, j +1 ≤ i ≤ 2n− j) ∈ Cn(n−1) such that A(x) = (ai,j)i,j ∈ Sp2n(C),
where

ai,j :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xi,j if i ≤ j ≤ 2n− i,

yi,j if j + 1 ≤ i ≤ 2n− j,

(−1)i if i+ j = 2n+ 1,

0 if i+ j > 2n+ 1.

Then the map CN → w0U
−
Cn

, x 
→ A(x), is an isomorphism of varieties, and the
following morphism is birational:

CN → Sp2n(C)/BCn
, x 
→ A(x) mod BCn

.

Example 7.1. Let n = 3. Then we have

A(x) =

⎛⎜⎜⎜⎜⎜⎜⎝
x1,1 x1,2 x1,3 x1,4 x1,5 −1
y2,1 x2,2 x2,3 x2,4 1 0
y3,1 y3,2 x3,3 −1 0 0
y4,1 y4,2 1 0 0 0
y5,1 −1 0 0 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where

y5,1 = x1,5, y4,2 = x2,4, y4,1 = x1,4 − x1,5x2,4,

y3,2 = x2,3 + x2,4x3,3, y3,1 = x1,3 − x1,5x2,3 + x1,4x3,3 − x1,5x2,4x3,3,

y2,1 = x1,2 − x1,5x2,2 + x1,4x2,3 − x1,3x2,4.

We arrange the coordinates of x as

(x1, x2, . . . , xN ) := (x1,2n−1, x1,2n−2, . . . , x1,1, x2,2n−2, x2,2n−3, . . . , xn−1,n−1, xn,n).
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Let us consider the lowest term valuation νlowx1>···>xN
on C(x1, . . . , xN ) with re-

spect to the lexicographic order x1 > · · · > xN (see Example 5.2). The valuation
νlowx1>···>xN

is slightly different from the one defined in [28, Section 3.2]. However,
the proof of [28, Theorem 3.3] can also be applied to this valuation, and we obtain
the following.

Theorem 7.2 (see the proof of [28, Theorem 3.3]). Let λ ∈ P+, and take a
nonzero section τ ∈ H0(Sp2n(C)/BCn

,Lλ). Then the Newton–Okounkov body
Δ(Sp2n(C)/BCn

,Lλ, ν
low
x1>···>xN

, τ ) coincides with the FFLV polytope FFLVCn
(λ)

up to translations by integer vectors.

Arrange the elements of ΠC \Π∗
C as

(7.1)
(q1, q2, . . . , qN )

:= (q
(1)
1 , q

(2)
2 , q

(2)
1 , q

(2)
3 , q

(3)
2 , . . . , q

(n−1)
2n−3 , q

(n)
2 , . . . , q(n)n , q

(n)
1 , q

(n)
n+1, . . . , q

(n)
2n−1).

Then a partition ΠC\Π∗
C=C�O is identified with a partition of the set {1, 2, . . . , N};

we regard this set {1, 2, . . . , N} as the set of positions of entries in iC . Using the
arrangement (7.1), we identify RΠC\Π∗

C with RN . As in type An case, each partition
ΠC \ Π∗

C = C � O gives a map ΩC,O : CN → Sp2n(C), which induces a birational
morphism

Ω̂C,O : CN → Sp2n(C)/BCn
, t 
→ ΩC,O(t) mod BCn

.

Using this birational morphism, we identify the function field C(Sp2n(C)/BCn
) with

the field C(t1, . . . , tN ) of rational functions in t1, . . . , tN . For each permutation

σ ∈ SN , let ν
(C,O)
tσ(1)>···>tσ(N)

denote the lowest term valuation νlowtσ(1)>···>tσ(N)
on

C(tσ(1), . . . , tσ(N)) with respect to the lexicographic order tσ(1) > · · · > tσ(N) (see
Example 5.2). As in type An case, the Gelfand–Tsetlin polytopes GTCn

(λ) and
the FFLV polytopes FFLVCn

(λ) for λ ∈ P+ can be realized as Newton–Okounkov

bodies associated with valuations of the form ν
(C,O)
tσ(1)>···>tσ(N)

. We rearrange the

coordinates of t as

(t′1, t
′
2, . . . , t

′
N )

:=(tN , tN−1, . . . , tN−n+2, tN−n, . . . , t(n−1)2+1, tN−n+1, t(n−1)2 , . . . , t4, t2, t3, t1).

If C = ΠC \Π∗
C and O = ∅, then it follows that ΩΠC\Π∗

C ,∅(t) ∈ w0U
−
Cn

for all t ∈ CN ,

and the map CN → w0U
−
Cn

, t 
→ ΩΠC\Π∗
C ,∅(t), is an isomorphism of varieties. In

addition, if A(x) = ΩΠC\Π∗
C ,∅(t), then we see that

(7.2) x� =

⎧⎨⎩(−1)n(t′� +
∑

1≤c≤k(−1)c−1t′�−k+c−1t
′
�−k−c)

if N − 	 = k2

for some 0 ≤ k < n,

(−1)�t′� otherwise

for 1 ≤ 	 ≤ N .
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Example 7.3. Let n = 3. Then we have

ΩΠC\Π∗
C ,∅(t)

=

⎛⎜⎜⎜⎜⎜⎜⎝
−t7 − t6t8 + t5t9 t5 −t6 t8 −t9 −1

t5 + t4t6 − t2t8 − t3t9 − t2t4t9 −t3 − t2t4 −t2 t4 1 0
−t6 − t1t8 − t2t9 − t1t4t9 −t2 − t1t4 −t1 −1 0 0

t8 + t4t9 t4 1 0 0 0
−t9 −1 0 0 0 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Lemma 7.4. For each f ∈ C(Sp2n(C)/BCn
) \ {0}, it holds that

ν
(ΠC\Π∗

C ,∅)
t′1>···>t′N

(f) = νlowx1>···>xN
(f).

Proof. By the definition of valuations, it suffices to prove the equality for every
nonzero polynomial

f =
∑

a=(a1,...,aN )∈ZN
≥0

cax
a1
1 · · ·xaN

N ∈ C[x1, . . . , xN ] \ {0},

where ca ∈ C. For each (a1, . . . , aN ) ∈ ZN
≥0, we deduce by (7.2) that

ν
(ΠC\Π∗

C ,∅)
t′1>···>t′N

(xa1
1 · · ·xaN

N ) = (a1, . . . , aN )

= νlowx1>···>xN
(xa1

1 · · ·xaN

N ),

which implies that ν
(ΠC\Π∗

C ,∅)
t′1>···>t′N

(f) = νlowx1>···>xN
(f). This proves the lemma. �

The following is an immediate consequence of Theorem 7.2 and Lemma 7.4.

Corollary 7.5. For each λ ∈ P+ and τ ∈ H0(Sp2n(C)/BCn
,Lλ)\{0}, the Newton–

Okounkov body Δ(Sp2n(C)/BCn
,Lλ, ν

(ΠC\Π∗
C ,∅)

t′1>···>t′N
, τ ) coincides with the FFLV poly-

tope FFLVCn
(λ) up to translations by integer vectors.

Let us consider the case C = ∅ and O = ΠC \ Π∗
C . In this case, Okounkov [34]

realized GTCn
(λ) using the valuation ν

(∅,ΠC\Π∗
C)

tN>···>t1 as follows.

Theorem 7.6 ([34, Theorem 2]). For each λ ∈ P+ and τ ∈ H0(Sp2n(C)/BCn
,Lλ)\

{0}, the Newton–Okounkov body Δ(Sp2n(C)/BCn
,Lλ, ν

(∅,ΠC\Π∗
C)

tN>···>t1 , τ ) is unimodu-
larly equivalent to the Gelfand–Tsetlin polytope GTCn

(λ).

However, Theorem 6.1 cannot be naturally extended to Sp2n(C) even in the case
n = 2 as we see below. Let n = 2, and take ρ ∈ P+ to be �1 +�2. We consider
the following three partitions of ΠC \Π∗

C = {q1, . . . , q4}:
(C1,O1) :=(∅,ΠC \Π∗

C), (C2,O2) :=(ΠC \Π∗
C , ∅), (C3,O3) :=({q3, q4}, {q1, q2}).

Then the marked chain-order polytope

Δ(C1,O1)(ΠC ,Π
∗
C , ρ) (resp.,Δ(C2,O2)(ΠC ,Π

∗
C , ρ))

is the Gelfand–Tsetlin polytope GTC2
(ρ) (resp., the FFLV polytope FFLVC2

(ρ)).
In addition, the marked chain-order polytope Δ(C3,O3)(ΠC ,Π

∗
C , ρ) is the set of

(a1, . . . , a4) ∈ R4
≥0 satisfying the following inequalities:

a1 ≤ 1, a4 ≤ 1, a1 ≤ a2 ≤ 2− a4, a3 ≤ a2.
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Then the marked chain-order polytopes Δ(Ck,Ok)(ΠC ,Π
∗
C , ρ), 1 ≤ k ≤ 3, are all

unimodularly equivalent to each other. For each 1 ≤ k ≤ 3, define τ
(Ck,Ok)
ρ ∈

H0(Sp4(C)/BC2
,Lρ) as in (5.7). Then the Newton–Okounkov bodies

Δ(Sp4(C)/BC2
,Lρ, ν

(Ck,Ok)
tσ(1)>···>tσ(4)

, τ
(Ck,Ok)
ρ ) for 1 ≤ k ≤ 3 and σ ∈ S4 are given

in Table 1. In this table, the Newton–Okounkov bodies are divided into four types:
GT , NZ, Δ, and ×. We mean by “GT” that the Newton–Okounkov body is uni-
modularly equivalent to the Gelfand–Tsetlin polytope GTC2

(ρ). In addition, the
type “NZ” implies that the Newton–Okounkov body is unimodularly equivalent to
the Nakashima–Zelevinsky polytope NZiC (ρ) associated with ρ and iC = (1, 2, 1, 2)
(see [16, Example 5.10]). More concretely, the Nakashima–Zelevinsky polytope
NZiC (ρ) is given as the set of (a1, . . . , a4) ∈ R4

≥0 satisfying the following inequali-
ties:

a4 ≤ 1, a3 ≤ a4 + 1, a2 ≤ min{a3 + 1, 2a3}, 2a1 ≤ min{a2, 2}.

Table 1. The Newton–Okounkov bodies
Δ(Sp4(C)/BC2

,Lρ, ν
(Ck,Ok)
tσ(1)>···>tσ(4)

, τ
(Ck,Ok)
ρ ) for 1 ≤ k ≤ 3

and σ ∈ S4

lexicographic orders (C1,O1) (C2,O2) (C3,O3)
t1 > t2 > t3 > t4 NZ NZ NZ
t1 > t2 > t4 > t3 NZ NZ NZ
t1 > t3 > t2 > t4 NZ × ×
t1 > t3 > t4 > t2 × × ×
t1 > t4 > t2 > t3 × NZ NZ
t1 > t4 > t3 > t2 × NZ NZ
t2 > t1 > t3 > t4 NZ Δ NZ
t2 > t1 > t4 > t3 NZ Δ NZ
t2 > t3 > t1 > t4 GT Δ NZ
t2 > t3 > t4 > t1 GT Δ NZ
t2 > t4 > t1 > t3 NZ Δ NZ
t2 > t4 > t3 > t1 GT Δ NZ
t3 > t1 > t2 > t4 GT × ×
t3 > t1 > t4 > t2 GT × ×
t3 > t2 > t1 > t4 GT NZ ×
t3 > t2 > t4 > t1 GT NZ ×
t3 > t4 > t1 > t2 GT × ×
t3 > t4 > t2 > t1 GT × ×
t4 > t1 > t2 > t3 NZ NZ NZ
t4 > t1 > t3 > t2 NZ NZ NZ
t4 > t2 > t1 > t3 NZ GT NZ
t4 > t2 > t3 > t1 GT GT NZ
t4 > t3 > t1 > t2 GT NZ NZ
t4 > t3 > t2 > t1 GT NZ NZ

This polytope NZiC (ρ) has 11 vertices, and hence it is not unimodularly equivalent
to the Gelfand–Tsetlin polytope GTC2

(ρ) which has 12 vertices. We mean by
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“Δ” that the Newton–Okounkov body coincides with the set of (a1, . . . , a4) ∈ R4
≥0

satisfying the following inequalities:

a2 ≤ 1, a4 ≤ 1, a1 ≤ 1 + a4 − a2, a3 ≤ 2− a2 − a4.

This is an integral convex polytope with 12 vertices, but it is not unimodularly
equivalent to the Gelfand–Tsetlin polytope GTC2

(ρ). Finally, the type “×” means

that the Newton–Okounkov body Δ(Sp4(C)/BC2
,Lρ, ν

(Ck,Ok)
tσ(1)>···>tσ(4)

, τ
(Ck,Ok)
ρ ) is

strictly bigger than the convex hull of 16 points in the set

{ν(Ck,Ok)
tσ(1)>···>tσ(4)

(τ/τ (Ck,Ok)
ρ ) | τ ∈ H0(Sp4(C)/BC2

,Lρ) \ {0}};

see also Proposition 5.3 (2). More precisely, this convex hull has volume 5
6 for this

type × while the volume of the Newton–Okounkov body is 1. For the previous three
types GT , NZ, and Δ, the Newton–Okounkov body is precisely the convex hull
of such 16 points. Summarizing, Newton–Okounkov bodies with different types
are not unimodularly equivalent to each other. In particular, we see by Table

1 that the Newton–Okounkov body Δ(Sp4(C)/BC2
,Lρ, ν

(C3,O3)
tσ(1)>···>tσ(4)

, τ
(C3,O3)
ρ ) is

not unimodularly equivalent to Δ(C3,O3)(ΠC ,Π
∗
C , ρ) for any σ ∈ S4. This implies

that Theorem 6.1 cannot be naturally extended to the marked chain-order polytope
Δ(C3,O3)(ΠC ,Π

∗
C , ρ).
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