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RANK GROWTH OF ELLIPTIC CURVES OVER N-TH ROOT

EXTENSIONS

ARI SHNIDMAN AND ARIEL WEISS

Abstract. Fix an elliptic curve E over a number field F and an integer n
which is a power of 3. We study the growth of the Mordell–Weil rank of E after

base change to the fields Kd = F (
2n
√
d). If E admits a 3-isogeny, then we show

that the average “new rank” of E over Kd, appropriately defined, is bounded

as the height of d goes to infinity. When n = 3, we moreover show that

for many elliptic curves E/Q, there are no new points on E over Q(
6
√
d), for a

positive proportion of integers d. This is a horizontal analogue of a well-known
result of Cornut and Vatsal [Nontriviality of Rankin-Selberg L-functions and
CM points, L-functions and Galois representations, vol. 320, Cambridge Univ.
Press, Cambridge, 2007, pp. 121–186]. As a corollary, we show that Hilbert’s
tenth problem has a negative solution over a positive proportion of pure sextic

fields Q(
6
√
d).

The proofs combine our recent work on ranks of abelian varieties in cy-
clotomic twist families with a technique we call the “correlation trick”, which
applies in a more general context where one is trying to show simultaneous
vanishing of multiple Selmer groups. We also apply this technique to families
of twists of Prym surfaces, which leads to bounds on the number of rational
points in sextic twist families of bielliptic genus 3 curves.

1. Introduction

Let E be an elliptic curve over a number field F , and let K/F be a finite exten-
sion. Mazur and Rubin define E to be diophantine stable for K/F if E(K) = E(F ),
i.e. if there are no new rational points on E after base change to K [MR18]. There
has been much interest and speculation regarding how often E is diophantine stable
for K/F , as K varies through a family of Galois extensions K/F of fixed degree and
Galois group G [Dok07, DFK07, DT10,Kis12, FKK12,MR07,MR08,MR18, For19,
LOT21,KN21, BKR21]. Mazur and Rubin themselves showed that for a positive
density set of primes �, the curve E is diophantine stable for infinitely many Z/�nZ-
extensions K/F , under the mild hypothesis that EndF (E) = EndF̄ (E).

In this paper, we study a more refined notion of “new points”. Observe that there
may be points P ∈ E(K) defined over intermediate extensions L/F contained in
K. Moreover, there may be points P ∈ E(K) whose minimal field of definition is
K, but which are sums of points defined over smaller fields. These types of points
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are not really new, so we define the new part of E(K) to be the quotient

E(K/F )new := E(K)/
∑
L

E(L),

where the sum is over the subfields F ⊂ L � K.1 Note that E is diophantine stable
for K/F if and only if E(L/F )new = 0 for all extensions F � L contained in K.

1.1. Rank growth. Our first result shows that the average rank of E(Kd/F )new

is bounded, for certain elliptic curves E and for certain families of number fields
of the form Kd = F ( 2n

√
d). In other words, there are not too many new points on

average, as |NmF/Q(d)| → ∞.

Theorem 1.1. Let E/F be an elliptic curve admitting a 3-isogeny and fix a positive
integer n = 3m. As d runs over the elements of F×/F×2n of order 2n, ordered by
height, the average of rkE(Kd/F )new is bounded.

For the precise definition of height see Definition 3.1. To prove Theorem 1.1,
we construct, for each field Kd, an abelian variety Ad over F whose Mordell–Weil
rank is equal to the rank of E(Kd/F )new. This uses a version of Serre’s tensor
construction, as in [MRS07]. Each abelian variety Ad admits a μn-action, where
μn = 〈ζn〉 is the group scheme of n-th roots of unity, and the Ad’s are all μ2n-twists
of each other. Because E has a 3-isogeny, the Galois module A1[1− ζn] decomposes
as a direct sum of characters. This allows us to apply our recent result [SW21, Thm.
1.1], which bounds the average rank of abelian varieties in families of μ2n-twists. As
in [SW21], the upper bound on the average rank that is guaranteed by Theorem 1.1
can be made explicit, but the bound depends on the particular curve E.

In the spirit of Mazur and Rubin, we are more interested in proving that
E(Kd/F )new = 0 for infinitely many d. Actually, we consider the harder ques-
tion of whether this is true for a positive proportion of d ∈ F×/F×2n, which is
what we will need for our applications to Hilbert’s tenth problem below. When
n = 1 and F = Q, we have rkE(Kd/F )new = rkEd(F ), where Ed is the d-th qua-
dratic twist of E, and Goldfeld conjectures that 50% of these twists have rank 0.
This conjecture has been verified in many cases [BKLOS19,KL19,Li19]. Indeed, in
his Ph.D. thesis, Smith proves the conjecture for “most” elliptic curves E over Q
[Smi20].

In contrast, when n > 1, there may not be a single d for which rkE(Kd/F )new =
0, due to root number considerations. This phenomenon was already observed
by Dokchitser in [Dok07] for cubic twists. For example, if n = 3, the Birch and
Swinnerton-Dyer conjecture implies that for the elliptic curve E : y2+y = x3+x2+x
over Q of conductor 19, the group E(Kd/Q)new will have odd rank for all squarefree
integers d.

Despite these somewhat pathological examples, we prove that for many elliptic
curves, we indeed have E(Kd/Q)new = 0 for a positive proportion of d ∈ Q×/Q×6.
We consider elliptic curves with the model E : y2+axy+by = x3, whose discriminant
is b3(a3−27b). These are precisely the elliptic curves overQ with a rational 3-torsion
point, which is (0, 0) in this model.

1As we explain in Section 2.1, this definition is best behaved when K contains no proper
subextensions L/F whose normal closure is also a normal closure for K. This will always be the
case in the situations we consider.
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Theorem 1.2. Let a and b be coprime integers, and let E be the elliptic curve
y2 + axy + by = x3. Assume that 3 � ab and that either:

(i) there exists a prime q ≡ 2 (mod 3) such that q | a3 − 27b, or
(ii) there exist primes q1 ≡ 1 (mod 3) and q2 ≡ 2 (mod 3) such that q1 | a3−27b

and q2 | b.
Set Kd=Q( 6

√
d). Then for a positive proportion of integers d, we have rkE(Kd/Q)new

= 0.

More precisely, the lower density of integers d such that rkE(Kd/Q)new = 0 is
positive. Our proof gives an explicit lower bound on this lower density, but the
bound depends on E and tends to be quite small. For example, in Section 5.1, we
work out the details for the curve E : y2 + 2xy − y = x3 of conductor 35. In this
case, we exhibit a set T of squarefree integers, defined by finitely many congruence
conditions, such that a proportion of at least 1

18 of d ∈ T satisfy rkE(Kd/Q)new = 0.
In the setting of Theorem 1.2, the Galois group of the splitting field of Kd/Q is

the dihedral group D6 of order 12, with the subgroup C6 cut out by the imaginary
quadratic field Q(ζ3). In this context, the groups E(Kd/Q)new have a systematic
source of rational points, namely χd-components of Heegner points, where χd is
the corresponding ring class field character of order 6. In terms of L-functions, the
Birch and Swinnerton-Dyer conjecture predicts that the rank of E(Kd/Q)new is 0 if
and only if the twisted L-function L(E,χd, s) is non-vanishing at its central point
s = 1. Theorem 1.2 should be compared to the non-vanishing results of Cornut–
Vatsal [CV07], who showed that for every prime p of OK , and for all large enough n,
there exist ring class field characters χ of conductor pn such that L(E,χ, 1) is non-
vanishing. Our result is orthogonal to theirs (“horizontal” instead of “vertical”),
since we fix the order of the character while allowing many primes to divide the
conductor. Of course, we only consider a very special case, where K = Q(ζ3) and
the order of the characters is 6. Our general method could conceivably be adapted
to other quadratic fields, but that seems to require some new ideas (one would first
of all need to generalize [SW21] appropriately).

1.2. The correlation trick. The proof of Theorem 1.2 uses Theorem 1.1 as a
starting point, but requires significantly more. The abelian varieties Ad from the
proof of Theorem 1.1 are, in this case, abelian surfaces with multiplication by Z[ζ3].
In fact, they are twists of the Jacobian of the genus two curve

C : y2 = x6 + αx3 + 1,

where α = 108b/a3−2. Notice that Aut(C) contains the groupD6, and in particular
the automorphism ζ3(x, y) = (ζ3x, y) of order 3.2 The endomorphism 2ζ3 + 1 =√
−3 ∈ End(Ad) is only defined over Q(

√
−3), but it descends to a (3, 3)-isogeny

over Q, which factors into two 3-isogenies φd : Ad → Bd and ψd : Bd → A−27d.
Under the mild technical conditions of Theorem 1.2, we show that there exists a

positive density set T ⊂ Z, defined by congruence conditions, such that #Sel(φd) =

#Sel(φ̂d) and #Sel(ψd) = #Sel(ψ̂d) for all but finitely many d ∈ T . We reiterate
that without some kind of technical condition on E, the parity conjecture implies

2The non-hyperelliptic involution is (x : y : z) → (z : y : x), when written in weighted
projective coordinates.
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that Theorem 1.2 is false in general. When d ∈ T , we show that #Sel3(Ad) ≤
(#Sel(φd)#Sel(ψd))

2. Since

rkE(Kd/Q)new = rkAd(Q) ≤ dimF3
Sel3(Ad),

in order to prove Theorem 1.2, it is enough to show that Sel(φd) = Sel(ψd) = 0 for
a positive proportion of integers d ∈ T .

Using the results of [SW21], we show that the average size of each of Sel(φd)
and Sel(ψd) is 2, for d ∈ T . Since these Selmer groups are F3-vector spaces, we
immediately deduce that each of these groups vanishes for at least 50% of d ∈ T .
The problem is that, a priori, we cannot rule out the possibility that the sets
{d ∈ T : Sel(φd) = 0} and {d ∈ T : Sel(ψd) = 0} intersect in a set of density
0. Thus, to complete the proof, it remains to rule out the unlikely pathological
scenario that half of d ∈ T satisfy #Sel(φd) = 1 and #Sel(ψd) = 3, and the other
half satisfy #Sel(φd) = 3 and #Sel(ψd) = 1. In other words, we must show that
the random variables #Sel(φd) and #Sel(ψd) are at least a tiny bit correlated,
e.g. that they are either both 1 or both greater than 1, for a positive proportion of
d ∈ T .

To prove this correlation, we use a third 3-isogeny ηd : Ad → Cd, whose Selmer
group Sel(ηd) can be interpreted as lying in the intersection of Sel(φd) and Sel(ψd).
We then apply the results of [SW21] to ηd to show that the average size of the
intersection is strictly greater than 1. However, this does not show that their
intersection is non-trivial a positive proportion of the time, since the bulk of the
average size could be supported on a 0-density set. The trick is to observe that
since

#Sel(φd) + #Sel(ψd) = min(#Sel(φd),#Sel(ψd)) + max(#Sel(φd),#Sel(ψd)),

we can infer that the average of their maximum size is strictly less than 2+2−1 = 3.
Since we are dealing with F3-vector spaces, this implies that Sel(φd) and Sel(ψd)
are both trivial for a positive proportion of d ∈ T . By the definition of T , we have
Sel3(Ad) = 0 for such d, and rk(Ad) = 0 as well, which proves the theorem.

1.3. Application to Hilbert’s tenth problem for pure sextic fields. Hilbert
asked whether there is a Turing machine that takes as input a polynomial equa-
tion over Z and correctly decides whether it has a solution over Z. Matijasevič
[Mat70], building on work of Davis–Putnam–Robinson [DPR61], showed that no
such algorithm exists, i.e. Hilbert’s tenth problem has a negative solution over Z.

There has been much work on the analogous question over rings of integers OK

of number fields K of degree larger than 1; see the introduction to [GFP20] for a
brief survey. It is believed that the answer should again be negative, and this has
been proven for number fields with at most one complex place. In particular, it
is known when K has degree 2 or 3, and for many K of degree 4 as well. While
the general case is still open, Mazur and Rubin have shown that a negative answer
follows from the finiteness of the Tate–Shafarevich group [MR10]. This uses a result
of Shlapentokh [Shl08] which states that Hilbert’s tenth problem over OK has a
negative answer if there exists an elliptic curve E/Q of positive rank such that
rkE(K) = rkE(Q), i.e. with no rank gain over K. We combine this criterion with
Theorem 1.2 to prove:
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Theorem 1.3. For a positive proportion of pure sextic fields K = Q( 6
√
d), ordered

by the height of d, the analogue of Hilbert’s tenth problem over OK has a negative
solution.

Recently, Garcia-Fritz and Pasten [GFP20] proved a similar result for an explicit

subset of fields of the form Q( 6
√
−p2q3), with p and q prime. The set of all such

fields has density 0 among all pure sextic fields, so Theorem 1.3 is a quantitative
improvement. On the other hand, our result does not give an explicit set of fields.
We prove Theorem 1.3 by applying Theorem 1.2 to a single elliptic curve, but to
maximize the proportion of pure sextic fields that our method gives, one could try
to use many different elliptic curves. We do not attempt such an analysis here.

1.4. Applications to twists of abelian surfaces. The correlation trick can be
applied in other settings where one needs to simultaneously bound Selmer groups
attached to two isogenies whose kernels are isomorphic (as group schemes). As an
example, we prove the existence of simple abelian surfaces with low rank in some
of the sextic twist families considered in [SW21], partially answering a question
we asked there. Recall that if C → E is a ramified double cover of curves, then
the Prym variety is the kernel of the induced map Jac(C) → Jac(E) on Jacobians.
As a special case, a smooth genus 3 curve of the form C : y3 = f(x2), with f(x)
quadratic, admits a double cover to the elliptic curve y3 = f(x). In this case, the
Prym variety is an abelian surface.

Theorem 1.4. Fix integers a > b > 0 and let Ad be the twist family of Prym
surfaces arising from the genus three bielliptic curves Cd : y

3 = (x2−da2)(x2−db2).
For a positive proportion of integers d, ordered by absolute value, we have rkAd ≤ 1.

As a corollary, we prove:

Theorem 1.5. Let Cd be any twist family as above. For a positive proportion of
d ∈ Q×/Q×6, we have #Cd(Q) ≤ 5.

Individual cases of these theorems were proven in [SW21, §1.2]; for other results
on average Mordell–Weil ranks in families of Prym surfaces see [Lag22] and [ABS22,
Thm. 1.13]. As usual, one can extract from the proofs of Theorem 1.4 (resp.
Theorem 1.5) an explicit lower bound on the proportion of twists with rkAd ≤
1 (resp. #Cd ≤ 5), a bound which in principle depends on a and b. For this
particular family of curves, it is conceivable that our bound could be made uniform,
independent of a and b, since the abelian surfaces Ad have everywhere potentially
good reduction. To prove this, one would want to prove a version of Tate’s algorithm
for these surfaces and various isogenous surfaces, or find some other way to access
their Tamagawa numbers. This is beyond the scope of this paper, but would be an
interesting future project.

Another large family of curves for which this intersection method applies is the
family of genus two curves C admitting potential

√
3-multiplication and a subgroup

(Z/3Z)2 ↪→ Jac(C)[3] which is isotropic with respect to the Weil pairing. This
family is parameterized by a twist of a certain Hilbert modular surface (since the√
3-multiplication is not defined over Q). An explicit rational parameterization

for this surface was given in [BFS21, §2], on the way to constructing a rational
parameterization for the Hilbert modular surface itself. We will not prove any
theorems about such abelian surfaces since the ideas are similar. In fact the proofs
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are easier in this case since these families only admit quadratic twists, not sextic
twists.

1.5. Outline. We begin in Section 2 by reinterpreting the notion of “new rank”
representation-theoretically. Using this interpretation, we construct an abelian va-
riety B/F such that Z[ζn] ⊂ EndF̄ B, and such that for d ∈ H1(F, μ2n), the rank
of the corresponding twist Bd/F encodes the new rank of E(Kd/F ). Although this
family of twists exactly encodes the new rank of E, the abelian variety B does not
satisfy the main hypothesis of [SW21, Thm. 1.1]. In Section 3, we construct an
isogenous abelian variety A/F that does satisfy this hypothesis. Hence, we may
apply [SW21, Thm. 1.1] and deduce Theorem 1.1.

In Section 4, we demonstrate in general how to use intersections of Selmer groups
to show that the two Selmer groups Sel(φd) and Sel(ψd) vanish simultaneously for a
positive proportion of d. The key result of this section is Theorem 4.4, whose proof
uses the correlation trick described above. Using this result, in Section 5, we prove
Theorem 1.2. In Section 5.1, we show how to make Theorem 4.4 quantitative, using
the curve E : y2+2xy−y = x3 as an example. In Section 6 we deduce Theorem 1.3
from Theorem 1.2. Finally, in Section 7, we apply Theorem 4.4 in the context of
Prym abelian surfaces to prove Theorem 1.4.

2. Encoding the new rank of E

Let F be a number field and let E be an elliptic curve over F . The goal of this
section is to construct, for each d ∈ F×/F×2n, an abelian variety Bd over F , whose
rank encodes the “new rank” of E for the extension Kd/F .

First, for any extension K/F , we define a slight variant of the new rank,
rkE(K/F )G-new, which we then interpret from a representation-theoretic point of

view. When K = Kd = F ( 2n
√
d), it will turn out that rkE(K/F )new =

rkE(K/F )G-new, so the results of this section will be relevant to the proof of The-
orem 1.1.

2.1. The new rank of an elliptic curve.

2.1.1. Galois extensions. LetK/F be a finite Galois extension and letG=Gal(K/F ).
The group E(K) is a G-module, and we define a G-module quotient that corre-
sponds to the “new points”.

Definition 2.1. Set E(K/F )G-new = E(K)/
∑

L E(L), where the sum is over the
subfields F ⊂ L � K that are Galois over F .

Since we are concerned only with ranks (and not torsion properties), we will
mostly consider the G-representation V := E(K)⊗Z Q. We can decompose V as a
Q[G]-module: V =

⊕
ρ Vρ, where the sum is over all irreducible Q-representations ρ

of G, and Vρ is the ρ-isotypic part of V , spanned by the images of all G-morphisms
from ρ to V .

Definition 2.2. Let V new denote the representation
⊕

η Vη, where the sum is over
all faithful irreducible Q-representations η of G.

Proposition 2.3. We have E(K/F )G-new ⊗Z Q � V new and rkE(K/F )G-new =
dimQ V new.



488 ARI SHNIDMAN AND ARIEL WEISS

Proof. Let L be a proper subextension of K that is Galois over F , and let H =
Gal(K/L). If W ⊂ V is any G-subrepresentation, then since H is normal in G, the
subspace WH ⊂ W of H fixed vectors is a G-subrepresentation.

Observe that a representation W of G is a direct sum of faithful irreducible
representations if and only if WH = 0 for every non-trivial normal subgroup H�G.
Thus, V new is the largest G-subrepresentation W of V such that WH = 0 for all
non-trivial normal subgroups H �G.

The kernel of the projection V → V new is spanned by the subrepresentations W
of V such that WH = W for some non-trivial H �G. In other words, the kernel is
spanned by the subspaces E(L)⊗Z Q, where L is a proper Galois subextension of
K/F . It follows that E(K/F )G-new ⊗Z Q = V new. �

Remark 2.4. For any field extension L/Q, define VL = E(K)⊗ZL and define V new
L in

the analogous way. Then the same argument shows that E(K/F )G-new⊗ZL = V new
L .

Remark 2.5. Let W = IndG 1 be the regular representation. As a representation
of G, we can write W =

⊕
ρ Wρ, where the sum is over the irreducible rational

representations ρ of G. As before, let W new =
⊕

η Wη be the subrepresentation of
W , where the sum is over all faithful irreducible rational representations η of G.
Let V�(E) = T�(E)⊗Z�

Q� be the �-adic Galois representation attached to E. Then
the (equivariant) Birch and Swinnerton-Dyer conjecture predicts the equality

rkE(K/F )G-new ?
= ords=1 L(V�(E)⊗W new, s),

where V�(E)⊗W new is viewed as a representation of Gal(F/F ). Note that this L-
function is defined over F . On the other hand, it does not seem that E(K/F )new, as
defined in the introduction, should correspond to an L-function over F in general.

2.1.2. Non-Galois extensions. Let K/F be an arbitrary finite extension of number

fields. For any extension L/F contained in K we write L̃ for its Galois closure over

F . We let N = K̃ be the Galois closure of K itself.

Definition 2.6. Let E(K/F )G-new = E(K)/
∑

L E(L), where the sum is over the
subfields F ⊂ L � K, such that the Galois closure of L is a proper subfield of N .

Let V (N) = E(N) ⊗Z Q, and define V (N)new =
⊕

η Vη, as in the previous

section, where η runs over the faithful irreducible Q-representations of Gal(N/F ).
By Proposition 2.3, we have a short exact sequence of Gal(N/F )-representations

(2.1) 0 → V (N)old → V (N) → V (N)new → 0,

where

(2.2) V (N)old =
∑

F⊂L�N

L/F Galois

E(L)⊗Z Q.

The G-new points of E for K/F are compatible with the G-new points of E for
N/F in the following sense.

Proposition 2.7. We have E(K/F )G-new ⊗Z Q = (V (N)new)Gal(N/K).

Proof. From (2.1), we have a short exact sequence of vector spaces

0 → (V (N)old)Gal(N/K) → V (N)Gal(N/K) → (V (N)new)Gal(N/K) → 0.
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Since

E(K/F )G-new ⊗Z Q =
E(K)⊗Z Q∑

F⊂L�K

˜L �=N

E(L)⊗Z Q
,

it remains to show that

(V (N)old)Gal(N/K) =

⎛⎜⎜⎝ ∑
F⊂L�N

L/F Galois

E(L)⊗Z Q

⎞⎟⎟⎠
Gal(N/K)

=
∑

F⊂L�K

˜L�=N

E(L)⊗Z Q.

We have

(V (N)old)Gal(N/K) =

(⊕
μ

Vμ

)Gal(N/K)

=
⊕
μ

V Gal(N/K)
μ ,

where the sum is over all Q-representations of Gal(N/F ) that are not faithful.
Let μ be a non-faithful representation of Gal(N/F ) with kernel Gal(N/L) for

some non-trivial Galois extension L/F . Then L∩K is a subfield of K whose Galois

closure is a proper subfield of N . By definition, V
Gal(N/L)
μ = Vμ. Hence,

V Gal(N/K)
μ = V Gal(N/K)·Gal(N/L)

μ = V Gal(N/L∩K)
μ ⊂ E(L ∩K)⊗Z Q.

It follows that

(V (N)old)Gal(N/K) =
⊕
μ

V Gal(N/K)
μ ⊂

∑
F⊂L�K

˜L�=N

E(L)⊗Z Q.

Conversely, if F ⊂ L � N , then

E(L)Gal(N/K) = E(L)Gal(N/K)·Gal(N/L) = E(L)Gal(N/L∩K) = E(L ∩K).

Moreover, if L/F is Galois, then the Galois closure of L ∩K is not N . Hence, by
(2.2), we see that

(V (N)old)Gal(N/K) =

⎛⎜⎜⎝ ∑
F⊂L�N

L/F Galois

E(L)⊗Z Q

⎞⎟⎟⎠
Gal(N/K)

⊃
∑

F⊂L�N

L/F Galois

E(L ∩K)⊗Z Q

=
∑

F⊂L�K

˜L�=N

E(L)⊗Z Q,

which finishes the proof. �

2.2. Abelian varieties with ζ-multiplication. We recall the definition of an
abelian variety over F with ζ-multiplication and its twists; for further details, see

[SW21, §2]. Let A/F be an abelian variety, and let ζ = ζn ∈ F
×

be a primitive
n-th root of unity, where n is an odd prime power.

Definition 2.8. An abelian variety A/F has ζn-multiplication if there is a GF -
equivariant injective ring homomorphism Z[ζn] ↪→ EndF̄ A.
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If d ∈ F×, then we define Ad to be twist of A corresponding to the cocycle that
is the image of d under

F× → F×/F×2n � H1(F, μ2n) → H1(F,AutF̄ (A)).

If A has ζ-multiplication, then the endomorphism 1 − ζ : AF (ζ) → AF (ζ) over

F (ζ) descends to an isogeny defined over F , which we denote by π : A → A(1)

[SW21, §2]. The abelian variety A(1) is the twist of A corresponding to the cocycle

σ �→ 1−ζσ

1−ζ ∈ H1(F,Z[ζ]×) [SW21, Lem. 2.3]. In particular, if ζ = ζ3, A
(1) ∼= A−27,

but, in general, A(1) is not isomorphic to Ad for any d.

The abelian variety A(1) also has ζ-multiplication, and we let πd : Ad → A
(1)
d

denote the twist of π corresponding to d ∈ F×/F×2n.

2.3. An auxiliary abelian variety. Let n = 3m for some m ≥ 1 and let ζ = ζn.
Fix an element d ∈ F×/F×2n of order 2n, and let Kd = F ( 2n

√
d). We will define an

abelian variety B/F with ζ-multiplication, such that rkBd(F ) = rkE(Kd/F )new.
View Z[ζ] as a right GF -module. Following [MRS07, Thm. 1.8], we define the

abelian variety

B := Z[ζ]⊗Z E

over F , which has dimension 2 · 3m−1. By [MRS07, Cor. 1.7], there are GF -
equivariant ring embeddings Z[ζ] ↪→ EndZ(Z[ζ]) ↪→ EndF̄ (B), so that B has ζ-
multiplication. Concretely, the ζ-multiplication on B is by left multiplication on
the Z[ζ]-factor.

Example 2.9. Suppose that m = 1 and F = Q. Then Z[ζ] is a rank two Z-
module and B is an abelian surface. The embedding τ : E ↪→ B defined by P �→
1⊗ P , has cokernel B/τ (E) isomorphic to (Z[ζ]/Z)⊗ E. The latter is isomorphic
to the quadratic twist E−3, since Z[ζ]/Z is free of rank one with Galois action
factoring through Gal(Q(ζ)/Q) = Gal(Q(

√
−3)/Q). On the other hand, we can

embed E−3 in B via P �→
√
−3 ⊗ P . If E and E−3 are not isogenous, then both

HomQ(E,B) and HomQ(E−3, B) must have rank one. They are visibly generated
by the two inclusions already mentioned. Since the composition E−3 ↪→ B → E−3

is multiplication by 2, the map B → E−3 has no section, and the intersection of
E and E−3 in B is via the isomorphism η : E[2] � E−3[2]. The upshot is that
B � (E × E−3)/Δ, where Δ is the graph of η. By specialization, this is true even
if E is isogenous to E−3.

Lemma 2.10. If i ∈ (Z/2nZ)×, then Bd � Bdi for any d ∈ F×/F×2n.

Proof. Let Id = Z[ζ] with the following twisted Galois action: if σ ∈ GF and
x ∈ Id, we define

xσd =
2n
√
d

2n
√
d
σ x

σ,

where xσ is the usual Galois action on Z[ζ]. Viewing Id as a Z-module with a GF

action, we can define the abelian variety Id ⊗Z E.
We show that this abelian variety is isomorphic to Bd. Over F ( 2n

√
d), the isomor-

phism Id → I1 = Z[ζ] defines an isomorphism ψ : Id ⊗Z E → B by [MRS07, Cor.

1.9]. The cocycle ψσψ−1 ∈ Aut(B) is the map σ �→
2n√

d
σ

2n√
d
. Indeed, if x ⊗ P ∈ B,
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then

ψσψ−1(x⊗ P ) = σ ◦ ψ ◦ σ−1
d ◦ ψ−1(x⊗ P )

= σ ◦ ψ(
2n
√
d

2n
√
d
σ−1 x

σ−1 ⊗ P σ−1

)

=
2n
√
d
σ

2n
√
d
(x⊗ P ).

By Kummer theory, this is precisely the cocycle which classifies Bd. Hence, Id ⊗Z

E � Bd.
Now, as Z[GF ]-modules, there is an isomorphism Id � Idi given by −ζ �→ (−ζ)i.

Hence, by [MRS07, Cor. 1.9], Bd � Bdi . �

Proposition 2.11. Let d ∈ F×/F×2n. If d has order 2n as an element of
F (ζ)×/F (ζ)×2n, then rkE(Kd/F )new = rkBd(F ).

Proof. First suppose that ζ ∈ F , so that Kd/F is Galois, and let G = Gal(Kd/F ).
For this extension, we have E(Kd/F )new = E(Kd/F )G-new, so we can use the
representation-theoretic interpretation of Section 2.1.

By the assumption that d has order 2n, we have G � C2n. Let ε : G → C×

be the character σ �→ 2n
√
d
σ−1

, so that the set of faithful irreducible C-valued
representations of G is {εi : i ∈ (Z/2nZ)×}. By Proposition 2.3 and the subsequent
remark, we have

E(Kd/F )new ⊗Z C =
⊕

i∈(Z/2nZ)×

Vi,

where

Vi :=
{
v ∈ E(Kd)⊗Z C : σ(v) = εi(σ)v, ∀σ ∈ G

}
.

On the other hand, we can view B(Kd) as a finitely generated Z[ζ][G]-module.
As in the proof of [MRS07, Thm. 2.2], we have B(Kd) = (E ⊗Z Z[ζ])(Kd) =
E(Kd)⊗Z Z[ζ]. Hence, as C-vector spaces, we have B(Kd)⊗Z[ζ] C = E(Kd)⊗Z C.

Thus, we may view Vi as a subspace of B(Kd)⊗Z C. But since Bdi is the twist
of B corresponding to the cocycle εi, we have

Vi = Bdi(F )⊗Z[ζ] C,

and hence

dimC Vi = rkZ[ζ] Bdi(F ) =
1

2 · 3m−1
rkBdi(F ).

It follows that

rkE(Kd/F )new =
1

2 · 3m−1

∑
i∈(Z/2nZ)×

rkBdi(F ) = rkBd(F ),

where the final equality follows from Lemma 2.10.
Now suppose that ζ /∈ F , let Kd = F ( 2n

√
d), and let Nd = Kd(ζ) be its Galois

closure. Then we have E(Nd/F )G-new = E(Nd/F (ζ))G-new. Indeed, by assumption,
d has order 2n in F (ζ)×/F (ζ)×2n. Hence, if L/F is a Galois extension with L � Nd,
then L(ζ)/F (ζ) is a Galois extension and L(ζ) � Nd.

Therefore, as before, we have

E(Nd/F )G-new ⊗ C = E(Nd/F (ζ))G-new ⊗ C =
⊕

i∈(Z/2nZ)×

Bdi(F (ζ))⊗Z[ζ] C.
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By Proposition 2.7, we have

E(Kd/F )G-new ⊗ C = (E(Nd/F )G-new ⊗ C)Gal(Nd/Kd) =
⊕

i∈(Z/2nZ)×

Bdi(F )⊗Z[ζ] C.

It follows that

rkE(Kd/F )new = rkE(Kd/F )G-new =
1

2 · 3m−1

∑
i∈(Z/2nZ)×

rkBdi(F ) = rkBd(F ),

where the final equality follows from Lemma 2.10. �

3. The average rank of Bd

In this section we prove Theorem 1.1. Let E be as in the theorem and let B be the
abelian variety defined in Section 2.3. By Proposition 2.11, to prove Theorem 1.1,
it is enough to prove that the average rank of Bd(F ) is bounded.

3.1. Average ranks in cyclotomic twist families. We recall a general average
rank result for a twist family of an abelian variety A/F with ζ-multiplication (see
Section 2.2).

There is a natural height function on F×/F×2n, which we now define. Let M∞
be the set of archimedean places of F . For each d ∈ F×/F×2n we choose a lift
d0 ∈ F×, and then define the ideal I = {a ∈ F : a2nd0 ∈ OF }.

Definition 3.1. The height of d is H(d) = Nm(I)2n
∏

v∈M∞
|d0|v.

This definition is independent of the lift d0, by the product formula. If F = Q,
then H(d) = |d0|, where d0 is the unique 2n-th power free integer representing d.
For any X > 0, the set

ΣX = {d ∈ F×/F×2n : H(d) < X}
is finite. Thus, we can define the average rank of Ad(F ) to be

avgd rkAd(F ) = lim
X→∞

avg
d∈ΣX

rkAd(F ).

If the limsup is finite, we say that the average rank of Ad(F ) is bounded.
Recall from Section 2.2 that there exists an isogeny π : A → A(1), which is a

descent of 1− ζ to F . Let A[π] denote the kernel of this isogeny.

Theorem 3.2 ([SW21, Thm. 1.1]). Let A be an abelian variety with ζ3m-multiplica-
tion over F . If the GF -module A[π] is a direct sum of characters, then avgd rkAd(F )
is bounded.

3.2. An isogenous abelian variety. To apply Theorem 3.2 to the abelian variety
B, we would need to know that the GF -representation B[π] is a direct sum of
characters. However, Lemma 3.3 shows that this is not the case in general.

Lemma 3.3. There is an isomorphism of F3[GF ]-modules B[π]
∼−→ E−3[3].

Proof. By [MRS07, Thm. 2.2], there is a GF -equivariant isomorphism

B[3] � Z[ζ]⊗Z E[3] � Z[ζ]/3Z[ζ]⊗Z E[3].

Let p = (1− ζ)Z[ζ], so that pr = 3Z[ζ], for r = 2 · 3m−1. Then

B[π] � pr−1/pr ⊗Z E[3] � p−1/Z[ζ]⊗Z E[3].
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Let χ : GF → Z×
3 ↪→ Z3[ζ]

× denote the 3-adic cyclotomic character, and let χ ≡ χ
(mod 1− ζ) be the mod 3 cyclotomic character. Using the identity(

1− ζχ(σ)

1− ζ

)
= 1 + ζ + · · ·+ ζχ(σ)−1 ≡ χ(σ) (mod (1− ζ)),

we see that the GF -action on the one-dimensional F3-vector space p−1/Z[ζ] is by
χ. Thus,

B[π] � χ⊗Z E[3] � (χ⊗ E)[3] � E−3[3].

Explicitly, if P ∈ E[3](F ), then 3
1−ζ ⊗ P ∈ B[π](F ). �

Hence, to apply Theorem 3.2, we instead consider an abelian variety A that
is isogenous to B, for which A[π] is completely reducible. Recall that E admits
a 3-isogeny θ : E → E′. Let τ : E−3[θ−3] ↪→ B[π] be the embedding induced by
Lemma 3.3.

Definition 3.4. Define A = B/τ (E−3[θ−3]).

By [SW21, Lem. 2.6], the fact that E−3[θ−3] ⊂ B[π] ensures that A also has
ζ-multiplication. We use a slight abuse of notation and write π = πA : A → A(1)

for the descent of 1− ζ ∈ EndF̄ (A) to F .

Lemma 3.5. There is an isomorphism A[π] � E′
−3[θ̂−3]×E[θ] of F3[GF ]-modules.

Proof. We can identify E′
−3[θ̂−3] � E−3[3]/E−3[θ−3] ⊂ A. Its image in A[π] is

represented by elements of the form 3
1−ζ ⊗ P . On the other hand, we can embed

E[θ] ↪→ A by sending Q to the image of 3
(1−ζ)2 ⊗Q in A. This element is evidently

killed by π, since 3
1−ζ ⊗E[θ] is 0 in A. The image of this copy of E[θ] is also visibly

independent of E′
−3[θ̂−3]. �

Proof of Theorem 1.1. By Lemma 3.5, the finite GF -module A[π] is a direct sum of
characters. Hence, by Theorem 3.2, the average avgd rkAd(F ) is bounded. Since Ad

and Bd are isogenous, it follows that avgd rkBd(F ) is bounded. Now, all but finitely
many d ∈ F×/F×2n of order 2n have order 2n in F (ζ) as well. Indeed, the kernel
of the map F×/F×2n → F (ζ)×/F (ζ)×2n is isomorphic to H1(Gal(F (ζ)/F ), μ2n),
which is a finite group. For these d, we have rkBd(F ) = rkE(Kd/F )new, by
Proposition 2.11, so the average rank of E(Kd/F )new is indeed bounded. �

4. Intersecting Selmer groups and the correlation trick

We consider a general situation involving twist families of abelian surfaces with
ζ3-multiplication. The main result of the section is Theorem 4.4, which will be used
in the proof of Theorem 1.2.

4.1. Set-up. Let F be a number field, and let ζ = ζ3 be a primitive cube root of

unity in F
×
. Let A/F be an abelian surface with ζ-multiplication, as in Section 2.2.

We assume that A admits a polarization λ : A → Â whose degree is not divisible by
3 and such that the Rosati involution α �→ λ−1α̂λ on End(A) restricts to complex
conjugation on the subring Z[ζ]. We also assume that A[π](F ) = 〈P,Q〉, or in other
words, that A[π] has trivial GF -action.

For each d ∈ F×, recall that Ad is the twist of A corresponding to the cocycle

ξσ = 6
√
d
σ−1

in H1(F, μ6). The isomorphism Aut(A) → Aut(Â) sending f �→ f̂−1
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induces an isomorphism H1(F,Aut(A)) � H1(F,Aut(Â)), which we will denote by

ξ �→ ξ̂−1.

Definition 4.1. Define (Â)d to be the twist of Â corresponding to the cocycle ξ̂−1.

Lemma 4.2. Let Âd be the dual of Ad. Then (Â)d � Âd.

Proof. Let f : A → Ad be an isomorphism over K. Then, by definition, we have

ξσ = f−1fσ. By duality, we have an isomorphism f̂ : Âd → Â. Consider the cocycle

f̂(f̂−1)σ corresponding to the twist Âd. Then

f̂(f̂−1)σ = ̂(f−1)σf = ( ̂f−1fσ−1)σ = ξ̂σσ−1 = ξ̂−1
σ .

Here, the final equality comes from the cocyle relation 1 = ξ1 = ξσσ−1ξσ. Thus, the

cocycle corresponding to Âd is ξ̂−1, the same cocycle used to define (Â)d. It follows

that Âd � (Â)d. �

For each d ∈ F×, let πd : Ad → A−27d be the d-th twist of π : A → A(1) = A−27.
The endomorphism [3] : Ad → Ad factors as u ◦ π−27d ◦ πd, for some automorphism

u. Let π̂d : Â−27d → Âd denote the isogeny dual to πd.

Lemma 4.3. We have Sel(π−27d) � Sel(π̂d).

Proof. Let K = F (ζ, 6
√
d) and let f : AK → (Ad)K be an isomorphism. By [How01,

Prop. 2.2] and the condition on the Rosati involution, the polarization f̂−1λKf−1 of
(Ad)K descends to a polarization of Ad over F , which we will denote by λd : Ad →
Âd. Consider the diagram

Ad Âd

A−27d Â−27d

λd

πd π̂−27d

λ−27d

The definition of λd and the condition on the Rosati involution shows that this
diagram commutes. In particular, Sel(λ−27d ◦ πd) � Sel(π̂−27d ◦ λd), and since λd

is prime-to-3, it follows that Sel(πd) � Sel(π̂−27d). �

By the Lemma and the equality [3] = u ◦ π−27 ◦ πd, to control Sel3(Ad) it is
enough to control the two Selmer groups Sel(πd) and Sel(π̂d).

4.2. Selmer ratios. Let α : X → Y be an isogeny of abelian varieties over F . The
global Selmer ratio of α is by definition the product c(α) =

∏
v cv(α) of local Selmer

ratios

cv(α) =
#coker (X(Fv) → Y (Fv))

#ker (X(Fv) → Y (Fv))
,

one for each place v of F . If deg(α) is a power of 3, then for v � 3∞, we have cv(α) =
cv(Y )/cv(X), where cv(X) is the Tamagawa number of X over Fv [Sch96, Lem.
3.8]. Thus, up to some subtle factors at places v above 3 and ∞, the number c(α)
is the ratio of the global Tamagawa numbers c(Y )/c(X). In particular, we have
cv(α) ∈ 3Z, and cv(α) = 1 for all but finitely many v.
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Let α̂ : Ŷ → X̂ be the dual isogeny. Then the Greenberg-Wiles formula [NSW08,
8.7.9] reads

(4.1) c(α) =
#Sel(α)

#Sel(α̂)
· #Ŷ [α̂](F )

#X[α](F )
.

4.3. The correlation trick. By Lemma 4.3, we have
(4.2)
rkAd(F )≤dimF3

Sel3(Ad)≤dimF3
(Sel(πd)⊕Sel(π−27d))=dimF3

(Sel(πd)⊕Sel(π̂d)).

Now, since A[π](F ) = 〈P,Q〉, we can factor πd in multiple ways as a chain of
3-isogenies: (

A
〈P 〉

)
d

Ad

(
A

〈P+Q〉

)
d

A−27d

(
A
〈Q〉

)
d

φ′
dφd

ψd

ηd η′
d

ψ′
d

and by duality, we obtain a corresponding factorisation for π̂:(̂
A
〈P 〉

)
d

Â−27d
̂(

A
〈P+Q〉

)
d

Âd

(̂
A
〈Q〉

)
d

̂φd
̂φ′
d

̂ψ′
d

η̂′
d η̂d

̂ψd

Theorem 4.4 is the main result of this section:

Theorem 4.4. Let A/F be as above. Suppose that the set

T = {d ∈ F×/F×6 : c(φd) = c(φ′
d) = c(ψd) = c(ψ′

d) = 1}

has positive density. Then for a positive lower density of d ∈ F×/F×6, we have
rkAd(F ) = 0.

Lemma 4.5 ([SW21, Lem. 6.2]). Let F be any field, and suppose that there is a
commutative diagram of isogenies of abelian varieties over F ,

A B1

B2 C

φ1

φ2 ψ2

ψ1
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such that φ2 maps A[φ1] isomorphically onto B2[ψ1]. Then ψ2 induces an injec-
tion

B1(F )

φ1(A(F ))
↪→ C(F )

ψ1(B2(F ))
.

As a consequence, if F is a number field, then the map φ2 induces an embedding
Sel(φ1) ↪→ Sel(ψ1).

Corollary 4.6. For almost all d ∈ T , we have Sel(φd) = Sel(ψ′
d) and Sel(φ′

d) =
Sel(ψd).

Proof. By Lemma 4.5, we have Sel(φd) ↪→ Sel(ψ′
d) and Sel(ψ̂′

d) ↪→ Sel(φ̂d). For
almost all d ∈ T , the abelian varieties in the diagram have no non-trivial ratio-

nal 3-torsion points, so by (4.1) we have #Sel(φd) = #Sel(φ̂d) and #Sel(ψ′
d) =

#Sel(ψ̂′
d). Thus

#Sel(φd) ≤ #Sel(ψ′
d) = #Sel(ψ̂′

d) ≤ #Sel(φ̂d) = #Sel(φd).

It follows that Sel(φd) = Sel(ψ′
d). The proof of the second equality is identical. �

Proof of Theorem 4.4. By [SW21, Thm. 5.2], we have

avgd∈T #Sel(φd) = avgd∈T #Sel(φ′
d) = 2,

and by [SW21, Thm. 5.3], avgd∈T #Sel(ηd)>1. Let mind=min(#Sel(φd),#Sel(φ′
d))

and maxd = max(#Sel(φd),#Sel(φ′
d)). By Lemma 4.5 and the above diagram,

we have #Sel(ηd) ≤ #Sel(φ′
d) and #Sel(ηd) ≤ #Sel(ψ′

d) for almost all d ∈ T .
Therefore, by Corollary 4.6, we have #Sel(ηd) ≤ mind for almost all d ∈ T . Hence
lim inf avgd∈T mind > 1, where

lim inf avgd∈T mind := lim inf
X→∞

∑
d∈T,|d|≤X mind∑
d∈T,|D|≤X 1

.

On the other hand, we have

4 = avgd∈T #Sel(φd) + avgd∈T #Sel(φ′
d)

= avgd∈T (mind +maxd)

≥ lim inf avgd∈T mind + lim inf avgd∈T maxd

> 1 + lim inf avgd∈T maxd,

so that lim inf avgd∈T maxd < 3. This immediately implies that for a positive lower
density of twists d ∈ T , we have

#Sel(φd) = #Sel(φ′
d) = 1.

More quantitatively, let s0 be the proportion of d ∈ T such that maxd = 1. Then

(4.3) s0 + 3(1− s0) < 3

and hence s0 > 0. By the Greenberg–Wiles formula and the definition of T , we

have #Sel(φ̂d) = #Sel(φ̂′
d) = 1 for almost all such d as well. By (4.2), we have

#Sel3(Ad) = 1 for all such d, and hence rkAd(F ) = 0 as well. �
Remark 4.7. Suppose that for some m ∈ Z≥0, c(ηd) ≥ 3−m for all d ∈ T . Then, by
[SW21, Thm. 5.2], we have avgd∈T #Sel(ηd) ≥ 1 + 3−m, and (4.3) becomes

s0 + 3(1− s0) ≤ 3− 3−m.

It follows that s0 ≥ 1
2·3m .
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5. Proof of Theorem 1.2

Recall that E : y2+axy+by = x3 is an elliptic curve over Q with a point (0, 0) of
order 3. Let θ : E → E′ = E/〈(0, 0)〉 be the corresponding 3-isogeny. Let ζ = ζ3 be
a primitive cube root of unity. In Definition 3.4, we defined an abelian variety A/Q
with ζ-multiplication, such that for each d ∈ Q×/Q×6, the rank of Ad(Q) is equal
to rkE(Kd/Q)new (see Proposition 2.11). To prove Theorem 1.2, we will show that
rkAd(Q) = 0 for a positive proportion of twists.

By Lemma 3.5, we have A[π] � E′
−3[θ̂−3]×E[θ]. We have E[θ] = 〈(0, 0)〉, and by

duality, we have E[θ] � E′
−3[θ̂−3] as GF -modules. Let P and Q denote the images

in A[π] of generators of E[θ] and E′
−3[θ̂−3]. Then A[π](Q) = 〈P,Q〉, and we are in

the setting of Theorem 4.4. Before proceeding, we need to verify that A admits a
prime-to-3 polarization satisfying the assumptions of Theorem 4.4.

Lemma 5.1. Let C be the hyperelliptic curve y2 = x6 + αx3 + 1, where α =
108b/a3 − 2. Then A � Jac(C) and the ζ-multiplication on A is induced from the
order 3 automorphism (x, y) �→ (ζx, y) of C.

Proof. Set E+ = E and E− = E′
−3. It is convenient to use the following symmetric

models

E± : y2 = x3 + (3x+ 2± α)2.

The double covers f± : C → E± given by

(x : y : z) �→
(
(α± 2)xz

(x∓ z)2
,
(α± 2)y

(x∓ z)3

)
may be used to define a morphism f = f∗

+ − f∗
− : E+ × E− → Pic0(C) � Jac(C),

by pullback of divisors. Note that C has an involution τ : (x : y : z) �→ (z : y : x)
and the two double covers above are the quotients by τ and ιτ , where ι is the
hyperelliptic involution. The kernel of f is therefore the intersection f∗

+E
+∩f∗

−E
−,

consisting of divisors fixed by both of these involutions. Thus, the kernel is precisely
f∗
+E

+[2] ∩ f∗
−E

−[2]. Hence, Jac(C) � (E+ × E−)/Γ, where Γ is the graph of the
isomorphism E+[2] � E−[2].

On the other hand, the abelian surface B = Z[ζ] ⊗ E is isomorphic to (E ×
E−3)/Δ, where Δ is the graph of E[2] � E−3[2], by Example 2.9. This gives the
claimed isomorphism

A � B/E−3[θ−3] � (E+ × E−)/Γ � Jac(C).

To see that the ζ-actions match up, it is enough to show that A[1 − ζ] maps
to Jac(C)[1 − ζ] (for the respective automorphisms ζ on each) under the above
isomorphism. By Lemma 3.5, we have A[1 − ζ] � E+[θ+] × E−[θ−]. This is also
Jac(C)[1 − ζ], since the divisors fixed by ζ are generated by the difference of the
four points on C where xz = 0, and these visibly map to θ-torsion points of E±,
since these are the points where x = 0. �

Remark 5.2. The genus two curves y2 = x6 + αx3 + 1 were considered in [BFT14],
where it is remarked that these are precisely the genus two curves with two inde-
pendent 3-torsion divisors supported on at most 4 points.

Corollary 5.3. A is principally polarized and its polarization is preserved by ζ.
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To say that the principal polarization λ : A → Â is preserved by ζ is equivalent
to the condition that the corresponding Rosati involution on End(A) restricts to
complex conjugation on Z[ζ]. Thus, A satisfies the conditions of Theorem 4.4.

Recall the commutative diagram

A
〈P 〉

A A
〈P+Q〉 A−27

A
〈Q〉

φ′
φ

ψ

η η′

ψ′

from Theorem 4.4. Up to 2-isogenies, this diagram becomes

E′
−3 × E′

E′
−3 × E A

〈P+Q〉 E−3 × E′

E−3 × E

̂θ−3×11×θ

̂θ−3×1

η η′

1×θ

Let f be the conductor of E and let Σ be the set of integers d such that:

• For all p, we have vp(d) ∈ {0, 1, 3, 5}.
• If p | 3f, then d ∈ Q×3

p .

In the next few lemmas, we compute the local Selmer ratios cp(φd), cp(φ
′
d),

cp(ψd), and cp(ψ
′
d), for all p and all d ∈ Σ.

Lemma 5.4. If d ∈ Σ and if p � 3fd, then cp(φd) = cp(φ
′
d) = cp(ψd) = cp(ψ

′
d) = 1

Proof. By [Sch96, Lem. 3.8], we have cp(φd) =
cp(Bd)
cp(Ad)

, where cp(Bd) and cp(Ad)

are the local Tamagawa numbers. Since Ad and Bd have good reduction at p, this
equals 1. The remaining cases are identical. �

Lemma 5.5. If d ∈ Σ and if p | d, then cp(φd) = cp(φ
′
d) = cp(ψd) = cp(ψ

′
d) =

cp(ηd) = 1

Proof. Let α ∈ {φ, φ′, ψ, ψ′, η}. By assumption, A[α] is trivial is a GQ-module.
Hence, Ad[αd] � χd, where χd : GQ → F×

3 is the quadratic character cutting out

Qp(
√
d), which is non-trivial, since vp(d) is odd. Hence, the image of the Kummer

map lies in H1(Qp, χd), which by [SW21, Lem. 4.6], is trivial. Similarly, since d is
not a square, Ad[αd](Qp) = 0. Hence, cp(αd) = 1. �

Lemma 5.6. If d ∈ Σ and p | 3f, we have cp(φd) = cp(ψ
′
d) = cp(θd) and cp(ψd) =

cp(φ
′
d) = cp(θ̂−3d). Here, θd is the d-th quadratic twist of θ : E → E′.

Proof. The condition that d ∈ Q×3
p implies that over Qp, all the abelian varieties

in the above diagram are isogenous to products of elliptic curves. For example, up
to 2-isogenies, we have Ad ≈ Ed × E′

−3d and φd ≈ 1 × θd, and so cp(φd) = cp(θd).
The other equalities follow by an identical analysis. �
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Corollary 5.7. For all d ∈ Σ and for all p, we have cp(φd) = cp(ψ
′
d) and cp(φ

′
d) =

cp(ψd).

Proof. This follows from the previous three lemmas. �

Lemma 5.8. We have c3(φd) = 1 and c3(φ
′
d) = 3 for all d ∈ Σ.

Proof. Since d is a cube in Q3, we have c3(φd) = c3(θd) and c3(φ
′
d) = c3(θ̂−3d).

By [Sch96, Lem. 3.8], we have c(θd) = c(E′
d)/c(Ed)γ, where γ−1 is the normalized

absolute value of the determinant of the map Lie(E) → Lie(E ′) on tangent spaces
of the Néron models over Zp.

Since 3 � ab, E has good reduction over Q3. The 3-torsion point (0, 0) on E
reduces to a non-trivial point in E(F3), so the reduction is ordinary. It follows
from [BKLOS19, Thm. 10.5] that c(E′

d)/c(Ed) = 1 and γ = 1. We therefore
have c3(φd) = 1. For c3(φ

′
d) the argument is similar, except the generator of

ker(φ′
d) � ker(θ̂−3d) reduces to the identity over F3 (since over F3, the kernel is the

Cartier dual of Z/3Z, which is μ3) and so γ−1 = 3 and c3(φ
′
d) = 3. �

Lemma 5.9. We have c∞(φd) = c∞(φ′
d) = c∞(ηd) =

{
1
3 d > 0

1 d < 0.

Proof. Write B = A
〈P 〉 . The numerator of c∞(φd) is equal to # im(Bd(R) →

H1(Gal(C/R), Ad[φd])). Since #Ad[φd]=3 is odd, we haveH1(Gal(C/R), Ad[φd])=
0, so this numerator is 1. The denominator is #Ad[φd](R) which is 3 if and only if
d is a square in R, i.e. if d > 0. The arguments for φ′

d and ηd are identical. �

Lemma 5.10. Let d ∈ Σ. If p � 3d divides f, then cp(φd) and cp(φ
′
d) are as in the

following table:

p | a3 − 27b p | b
cp(φd) cp(φ

′
d) cp(φd) cp(φ

′
d)

p = 2

d ∈ Z×2
p

−3d ∈ Z×2
p

d,−3d /∈ Z×2
p

1

3

1

1
3

1

1

1
3

1

1

1

3

1

p ≡ 1 (mod 3)
d ∈ Z×2

p

d /∈ Z×2
p

3

1

1
3

1

1
3

1

3

1

p ≡ 2 (mod 3)
d ∈ Z×2

p

d /∈ Z×2
p

1

3

1
3

1

1
3

1

1

3

Proof. As before, since d ∈ Σ, we have cp(φd) = cp(θd) and cp(φ
′
d) = cp(θ̂−3d). The

assumption that (a, b) = 1 ensures that E is semistable (as we will see momentarily),
and hence has multiplicative reduction (since p | f, by assumption). We need to
determine whether E has split or non-split multiplicative reduction.

First suppose that p �= 2. We have E : y2 + axy + by = x3. If p | b, then modulo
p, E has equation (

Y − ax

2

)(
Y +

ax

2

)
= x3,



500 ARI SHNIDMAN AND ARIEL WEISS

where Y = y+ ax
2 , i.e. E has split multiplicative reduction. Similarly, if p | a3−27b,

then modulo p, E has equation

Y 2 +
a2

12
X2 = X3

with Y = y+ 1
2 (ax+ b) and X = x+ a2

9 . Thus E has split multiplicative reduction
if and only if −3 is a square in Qp, i.e. if p ≡ 1 (mod 3).

When p = 2, we compute that −c4
c6

≡ 1 (mod 8) when 2 | b, and −c4
c6

≡ −3

(mod 8) when 2 | a3 − 27b. By Hensel’s lemma, −c4
c6

is a square in Q2 if and only

if it is a square in Z/8Z. From this, one checks that if 2 | b, then E has split
multiplicative reduction, while if 2 | a3 − 27b, then E−3 has split multiplicative
reduction.

We see that Ed and E′
d have non-split multiplicative reduction whenever p | b

and d /∈ Q×2
p or p | a3 − 27b and −3d /∈ Q×2

p . In such cases, c(φd) = c(θd) = 1 by
[BKLOS19, Prop. 10.4].

Otherwise, the formula in loc. cit. gives cp(θd) =
vp(j(E

′
d))

vp(j(Ed))
=

vp(j(E
′))

vp(j(E)) . We have

j(E) =
a3(a3 − 24b)3

b3(a3 − 27b)
and j(E′) =

a3(a3 + 216b)3

b(a3 − 27b)3
.

Since p �= 3 and (a, b) = 1, p can only divide the denominator of these j-invariants,
and the remaining entries for cp(φd) are easily computed. To compute the entries
for cp(φ

′
d), we use the fact that

cp(φ
′
d) = cp(θ̂−3d) = cp(θ−3d)

−1 = cp(φ−3d)
−1,

so that the values of cp(φ
′
d) can be computed using the values of cp(φ−3d). �

Proof of Theorem 1.2. Let A be the abelian surface defined in Definition 3.4, with
m = 1. Let Σ be the set of integers defined above. For 100% of d ∈ Σ, d has
order 6 in Q(ζ3)

×/Q(ζ3)
×6. Hence, by Proposition 2.11, we have rkE(Kd/Q)new =

rkAd(Q) for such d. Thus, it is sufficient to show that rkAd(Q) = 0 for a positive
proportion of d in Σ.

By Corollary 5.3 and Lemma 3.5, we are in the setting of Theorem 4.4. Hence,
it is sufficient to show that the set T in the statement of Theorem 4.4 has positive
density.

Define a subset T ′ ⊂ Σ as follows, based on the two possible cases considered in
the theorem:

(i) Suppose that there exists a prime q ≡ 2 (mod 3) with q | a3 − 27b. Then
d ∈ T ′ if and only if:

• if p | f and p �= q, then
– if p = 2, then either 2 | d or d,−3d /∈ Z×2

2 .
– if p ≡ 1 (mod 3), then p | d or d /∈ Z×2

p .
– if p ≡ 2 (mod 3), then p | d.

• either d < 0 and d ∈ Z×2
q , or d > 0 and −3d ∈ Z×2

q .
(ii) Suppose that there exist primes q1 ≡ 1 (mod 3) and q2 ≡ 2 (mod 3) such

that q1 | a3 − 27b and q2 | b. Then d ∈ T ′ if and only if:
• if p | f and p /∈ {q1, q2}, then

– if p = 2, then either 2 | d or d,−3d /∈ Z×2
2 .

– if p ≡ 1 (mod 3), then p | d or d /∈ Z×2
p .

– if p ≡ 2 (mod 3), then p | d.
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• d ∈ Z×2
q1 .

• either d < 0 and d ∈ Z×2
q2 , or d > 0 and −3d ∈ Z×2

q2 .

By Lemmas 5.4–5.5 and 5.8–5.10, we have c(φd) = c(φ′
d) = 1, for all d ∈ T ′. By

Corollary 5.7, we see that c(ψd) = c(ψ′
d) = 1 as well. Hence, T ′ ⊂ T . Since T ′ has

positive density, the result follows from Theorem 4.4. �
5.1. An explicit example. Consider the elliptic curve E : y2 + 2xy − y = x3 of
conductor 35. Then E satisfies hypothesis (i) of Theorem 1.2. We compute a lower
bound on the proportion of d such that rkE(Kd/Q)new = 0. In this case, we can
assume for simplicity that d is squarefree.3

Proposition 5.11. Let T be the set of squarefree integers d such that all of the
following hold:

• d ≡ ±1,±8,±10 (mod 27);
• d ≡ −1, 0 (mod 7);
• if d < 0, then d ≡ ±1 (mod 5); and
• if d > 0, then d ≡ ±2 (mod 5).

Then for a proportion of at least 1/18 elements d ∈ T , we have rkE(Kd/Q)new = 0.

Proof. Observe that T is the set of squarefree integers d such that:

• d ∈ Z×3
3 ;

• either 7 | d or d ∈ Z×3
7 \ Z×6

7 ;
• if d < 0, then d ∈ Z×6

5 ; and
• if d > 0 then d ∈ Z×3

5 \ Z×6
5 .

The set T is contained in the set T ′ defined in part (i) of the proof of Theorem 1.2.
Hence, T is contained in the set in the statement of Theorem 4.4.

Let η, φ, φ′ be the isogenies from the above commutative diagram. We compute
the Selmer ratio c(ηd) for d ∈ T . By Lemma 5.5, we have cp(ηd) = 1 for all d ∈ T ,
unless p ∈ {3, 5, 7,∞}. Moreover,

cp(ηd) =
#coker ηd(Qp)

#ker ηd(Qp)
≥ 1

#Ad[ηd](Qp)
.

Now #Ad[ηd](Qp) = 1 if and only if d /∈ Q×2
p . If d ∈ T , then d /∈ Q×2

7 . Thus

c7(ηd) ≥ 1. Otherwise, we have c3(ηd) ≥ 1
3 and c∞(ηd)c5(ηd) ≥ 1

3 . Thus, for all

d ∈ T , we have c(ηd) ≥ 1
9 .

By [SW21, Thm. 5.2], we have avgd∈T #Sel(ηd) ≥ 1+ 1
9 . On the other hand, as

in the proof of Theorem 4.4 (see also Remark 4.7), we have

1 +
1

9
≤ avgd∈T #Sel(ηd) ≤ avgd∈T mind = 4− avgd∈T maxd,

where mind = min(#Sel(φd),#Sel(φ′
d)) and maxd = max(#Sel(φd),#Sel(φ′

d)).
Hence

avgd∈T maxd ≤ 3− 1

9
.

Let s0 be the proportion of d ∈ T with maxd = 1. Then

s0 + 3(1− s0) ≤ avgd∈T maxd ≤ 3− 1

9

3For elliptic curves with many odd primes p ≡ 2 (mod 3) of bad reduction, we must consider
sets T ′ which are not contained in the set of squarefree integers, as in the proof of Theorem 1.2.
In this example, we can restrict to just squarefree integers, as there is only one such prime.
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from which it follows that s0 ≥ 1
18 .

We see that for a set of d ∈ T of relative density 1
18 , we have maxd = 1,

i.e. #Sel(φd) = #Sel(φ′
d) = 1. As in the proof of Theorem 4.4, we see that

rkE(Kd/Q)new = 0 for such d. �

6. Application to Hilbert’s tenth problem over pure sextic fields

Before giving the proof of Theorem 1.3, we recall from [GFP20] some facts related
to diophantine sets over a ring R (i.e. sets characterized as solutions to polynomial
equations over R) and Hilbert’s tenth problem over number fields.

Definition 6.1. We say that a subset S ⊂ Rn is diophantine over R if there
exist integers k,m and polynomials F1, . . . , Fk ∈ R[x1, . . . , xn, y1, . . . , ym] that sat-
isfy the following property: (a1, . . . an) ∈ S if and only if there exists an element
(b1, . . . , bm)∈Am such that for every j=1, . . . , k, we have Fj(a1, . . . , an, b1, . . . , bm)
= 0.

Definition 6.2. An extension K/F is integrally diophantine if OF is diophantine
in OK .

It is well-known that if K/Q is integrally diophantine, then Hilbert’s tenth prob-
lem has a negative solution over OK , so we aim to show that many pure sextic
fields are integrally diophantine. Such sextic fields contain subfields, and we will
use:

Lemma 6.3 ([GFP20, Lem. 3.1]). The property of being integrally diophantine is
transitive in towers of number fields.

We will also use the following result of Shlapentokh [Shl08]:

Theorem 6.4. Let K/F be a finite extension of number fields. If there exists
an elliptic curve E/F such that rkE(F ) = rkE(K) > 0, then K/F is integrally
diophantine.

As well as a recent result of Smith [Smi20]:

Theorem 6.5. Let E/Q be an elliptic curve with E[2](Q) �� Z/2Z. Then for 100%
of integers d, we have rkEd = (−1)dimF2 Sel2(Ed), where Ed is the d-th quadratic
twist of E. In particular, for 100% of integers d, if Ed has even 2-Selmer rank,
then rkE(Q(

√
d)) = rkE(Q).

Proof of Theorem 1.3. Let E = Ea,b be an elliptic curve over Q satisfying the
conditions of Theorem 1.2 and having positive rank. We also insist that E[2](Q) ��
Z/2Z. For example, we may take E = E4,−5 : y

2 + 4xy − 5y = x3. Theorem 1.2
gives that for a set of positive lower density Σ ⊂ Z of sixth-power-free integers d,
the new rank of E/Kd is 0, where Kd = Q( 6

√
d).

Lemma 6.6. For all d ∈ Σ, the 2-Selmer group Sel2(Ed) has even F2-dimension.

Proof. Let θd : Ed → E′
d be the 3-isogeny. By the construction in the proof of

Theorem 1.2, the Selmer ratio c(θd) =
∏

p cp(θd) =
∏

p cp(φd) = c(φd) is equal to 1

for all d ∈ Σ. Indeed, if p | 3f, where f is the conductor of E, then cp(θd) = cp(φd)
by Lemma 5.6. And if p � 3f, then cp(θd) = cp(φd) = 1 by the same arguments as
Lemmas 5.4 and 5.5. The formula

log3 c(θd) ≡ dimF3
Sel3(Ed)− dimF3

Ed[3](Q) (mod 2)
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(see [BES20, Prop. 49(b)]) shows that dimF3
Sel3(Ed) is even for all but finitely

many d ∈ Σ. By the 3- and 2-parity theorems (due to Dokchitser–Dokchitser
[DD10] and Monsky [Mon96], respectively), it follows that dimF2

Sel2(Ed) is also
even. �

Hence by Theorem 6.5, the rank of Ed is 0 for 100% of d ∈ Σ. Let F = Q( 3
√
d).

Since rkE(Q(
√
d)) = rkE(Q) and rkE(Kd/Q)new = 0, we see that 0 < rkE(F ) =

rkE(Kd), and hence Kd/F is integrally diophantine by Theorem 6.4. Since every
cubic field (or more generally, any number field with at most one complex place) is
known to be integrally diophantine, it follows from Lemma 6.3 that Kd/Q is inte-
grally diophantine as well. Hence Hilbert’s tenth problem has a negative solution
over OKd

. �

7. Ranks of QM abelian surfaces

We recall some facts from [SW21, §10] and then give a proof of Theorem 1.4.
Let a > b be distinct positive integers, and let f(x) = (x − a2)(x − b2). Then

y3 = f(x2) is an affine model of a smooth projective plane quartic curve C that
admits a double cover π : C → E to the elliptic curve E : y3 = f(x). Let A be
the Prym variety, i.e. the kernel of the map J = Jac(C) → E induced by Albanese
functoriality. The ζ3-multiplication on J induces ζ3-multiplication on A, so we may
speak of the sextic twists Ad. In fact, Ad is simply the Prym variety of Cd : y

3 =
(x2 − da2)(x2 − db2), which covers the elliptic curve Ed : y

3 = (x− da2)(x− db2).
Recall that π is the descent of 1− ζ3 to Q, or in other words, a descent of

√
−3.

Note that A[π] � (Z/3Z)2 is spanned by the rational points P = (a, 0) − (−a, 0)
and Q = (b, 0)− (−b, 0).

The Prym variety A need not be principally polarized over Q, but it admits a

polarization λ : A → Â whose kernel is order 4 [Mum74]. By [SW21, Lem. 10.4], the
Rosati involution restricts to complex conjugation on the subring Z[ζ3] ⊂ End(A).
Thus, we are in the setting of Theorem 4.4.

The endomorphism [3] : A → A factors as [3] = π−27 ◦ π. Hence, for each
d ∈ Q×/Q×6,

rk(Ad) ≤ dimF3
Sel3(Ad) ≤ dimF3

(Sel(πd)⊕Sel(π−27d)) = dimF3
(Sel(πd)⊕Sel(π̂d)),

where the last equality follows from Lemma 4.3.
As in Section 4, for each d ∈ Q×/Q×6, the isogeny πd factors as(

A
〈P 〉

)
d

Ad

(
A

〈P+Q〉

)
d

A−27d

(
A
〈Q〉

)
d

φ′
dφd

ψd

ηd η′
d

ψ′
d

Let f be the conductor of A, and let Σ be the set of squarefree d ∈ Q×/Q×6 such
that d,−3d /∈ Q×2

p for all p | 3f. To prove Theorem 1.4, we first compute the four
Tamagawa ratios c(φd), c(φ

′
d), c(ψd), c(ψ

′
d).
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Lemma 7.1. Let α ∈ {φ, φ′, ψ, ψ′}. If d ∈ Σ and if p � 3∞, then cp(αd) = 1.

Proof. If p � f, then since d is squarefree, the result follows from [SW21, Thm. 4.7]. If
p | f, then, by assumption, d,−3d /∈ Q×2

p . We have kerα � Z/3Z, so kerαd(Qp) = 0.

By [SW21, Thm. 4.6], H1(Q, kerαd) = 0 as well. Hence cp(αd) = 1. �

Lemma 7.2. Let α ∈ {φ, φ′, ψ, ψ′}. Then c∞(αd) =

{
1
3 d > 0

1 d < 0.

Proof. The proof is identical to Lemma 5.9. �

Now, from the factorisation [3] = πd ◦ π−27d, we see that

c3(φd)c3(φ
′
d)c3(φ−27d)c3(φ

′
−27d) = c3([3]) = 9.

By [SW21, Lem. 10.5] and the assumption that d,−3d /∈ Q×2
3 , it follows that each

of these four ratios are integers. Hence, exactly two of them are 3 and two of them
are 1.

Lemma 7.3. Let Σ′ be the set of d ∈ Σ such that c3(φd) �= c3(φ
′
d). If Σ′ has

positive density, then for a positive proportion of d ∈ Σ′, we have rkAd(Q) ≤ 1.

Proof. If d ∈ Σ′, then by the above discussion, one of c3(φd) and c3(φ
′
d) is 1 and

the other is 3. By Lemmas 7.1 and 7.2, it follows that for each d ∈ Σ′, one of c(φd)
and c(φ′

d) is 1 and the other is 3±1. Without loss of generality, we can assume that
c(φd) = 1. By [SW21, Prop. 5.4], for at least 1

2 of d ∈ Σ′, we have Sel(φd) = 0 =

Sel(φ̂d), and for at least 5
6 of d ∈ Σ′, we have dimF3

Sel(φ′
d) ⊕ Sel(φ̂′

d) = 1. Thus,

for at least 5
6 − 1

2 = 1
3 of d ∈ Σ′, we have

dimF3
Sel3(Ad) ≤ dim(Sel(πd)⊕ Sel(π̂d))

≤ dim(Sel(φd)⊕ Sel(φ̂d)⊕ Sel(φ′
d)⊕ Sel(φ̂′

d)) ≤ 1,

which implies that rkAd(Q) ≤ 1. �

Proof of Theorem 1.4. By Lemma 7.3, it remains to show that if Σ′ has density 0,
then rkAd(Q) ≤ 1 for a positive proportion of d ∈ Σ. So assume that Σ′ has density
0, and let T be the set of d ∈ Σ such that c(φd) = c(φ′

d) = c(ψd) = c(ψ′
d) = 1. By

Theorem 4.4, it is sufficient to show that T has positive density, in which case, for
a positive proportion of d ∈ Q×/Q×6, we have rkAd(Q) = 0.

First note that if d ∈ Σ \ Σ′ and if c(φd) = c(φ′
d) = 1, then c(ψd) = c(ψ′

d) = 1.
Indeed, c3(πd) = c3(φd)c3(φ

′
d) = c3(ψd)c3(ψ

′
d). Since d /∈ Σ′, we have c3(φd) =

c3(φ
′
d), and since all four of c3(φd), c3(φ

′
d), c3(ψd), c3(ψ

′
d) are either 1 or 3, we see

that c3(φd) = c3(φ
′
d) = c3(ψd) = c3(ψ

′
d). Hence, by Lemmas 7.1 and 7.2, we have

c(φd) = c(φ′
d) = c(ψd) = c(ψ′

d) for all d ∈ Σ \ Σ′.
Assume at first that there exists a positive density of d ∈ Σ such that c3(φd) =

c3(φ
′
d) = 3. For any such d, if d > 0, then c∞(φd) = c∞(φ′

d) = 1
3 , so c(φd) =

c(φ′
d) = 1, and so T has postive density. If d < 0, then let k ∈ Z be such that

k ∈ Z×2
p for all p | 3f and k < 0. Then dk ∈ Σ, dk > 0, and c3(φdk) = c3(φ

′
dk) = 3.

Thus dk ∈ T . A similar analysis shows that if c3(φd) = c3(φ
′
d) = 1 then T again

has positive density. The result now follows from Theorem 4.4. �

Proof of Theorem 1.5. Given Theorem 1.4, the proof is exactly as in [SW21, Thm.
1.7] �
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[Mat70] Ju. V. Matijasevič, The Diophantineness of enumerable sets (Russian), Dokl. Akad.
Nauk SSSR 191 (1970), 279–282. MR0258744

[Mon96] P. Monsky, Generalizing the Birch-Stephens theorem. I. Modular curves, Math. Z.
221 (1996), no. 3, 415–420. MR1381589

[MR07] Barry Mazur and Karl Rubin, Finding large Selmer rank via an arithmetic theory of
local constants, Ann. of Math. (2) 166 (2007), no. 2, 579–612. MR2373150

[MR08] Barry Mazur and Karl Rubin, Growth of Selmer rank in nonabelian extensions of
number fields, Duke Math. J. 143 (2008), no. 3, 437–461, DOI 10.1215/00127094-
2008-025. MR2423759

[MR10] Barry Mazur and Karl Rubin, Ranks of twists of elliptic curves and Hilbert’s tenth
problem, Invent. Math. 181 (2010), no. 3, 541–575. MR2660452

[MR18] Barry Mazur and Karl Rubin, Diophantine stability, Amer. J. Math. 140 (2018),
no. 3, 571–616. With an appendix by Michael Larsen. MR3805014

[MRS07] B. Mazur, K. Rubin, and A. Silverberg, Twisting commutative algebraic groups, J.
Algebra 314 (2007), no. 1, 419–438, DOI 10.1016/j.jalgebra.2007.02.052. MR2331769

[Mum74] David Mumford, Prym varieties. I, Contributions to analysis (a collection of pa-
pers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 325–350.
MR0379510

[NSW08] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of num-
ber fields, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008, DOI

10.1007/978-3-540-37889-1. MR2392026
[Sch96] Edward F. Schaefer, Class groups and Selmer groups, J. Number Theory 56 (1996),

no. 1, 79–114, DOI 10.1006/jnth.1996.0006. MR1370197
[Shl08] Alexandra Shlapentokh, Elliptic curves retaining their rank in finite extensions and

Hilbert’s tenth problem for rings of algebraic numbers, Trans. Amer. Math. Soc. 360
(2008), no. 7, 3541–3555, DOI 10.1090/S0002-9947-08-04302-X. MR2386235

[Li19] Chao Li, 2-Selmer groups, 2-class groups and rational points on elliptic curves, Trans.
Amer. Math. Soc. 371 (2019), no. 7, 4631–4653, DOI 10.1090/tran/7373. MR3934463

[Smi20] Alexander Smith, �∞-Selmer Groups in Degree � Twist Families, Harvard Univer-
sity, Graduate School of Arts & Sciences (2020).

[SW21] Ari Shnidman and Ariel Weiss, Ranks of abelian varieties in cyclotomic twist families
(2021).arXiv:2107.06803

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Edmund J.

Safra Campus, Jerusalem 9190401, Israel

Email address: ariel.shnidman@mail.huji.ac.il

Department of Mathematics, Ben-Gurion University of the Negev, Be’er Sheva

8410501, Israel

Email address: arielweiss@post.bgu.ac.il

https://www.ams.org/mathscinet-getitem?mr=3954912
https://arxiv.org/abs/2001.03547
https://www.ams.org/mathscinet-getitem?mr=4365991
https://www.ams.org/mathscinet-getitem?mr=0258744
https://www.ams.org/mathscinet-getitem?mr=1381589
https://www.ams.org/mathscinet-getitem?mr=2373150
https://www.ams.org/mathscinet-getitem?mr=2423759
https://www.ams.org/mathscinet-getitem?mr=2660452
https://www.ams.org/mathscinet-getitem?mr=3805014
https://www.ams.org/mathscinet-getitem?mr=2331769
https://www.ams.org/mathscinet-getitem?mr=0379510
https://www.ams.org/mathscinet-getitem?mr=2392026
https://www.ams.org/mathscinet-getitem?mr=1370197
https://www.ams.org/mathscinet-getitem?mr=2386235
https://www.ams.org/mathscinet-getitem?mr=3934463
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365902
https://arxiv.org/abs/2107.06803

	1. Introduction
	1.1. Rank growth
	1.2. The correlation trick
	1.3. Application to Hilbert’s tenth problem for pure sextic fields
	1.4. Applications to twists of abelian surfaces
	1.5. Outline

	2. Encoding the new rank of 𝐸
	2.1. The new rank of an elliptic curve
	2.2. Abelian varieties with 𝜁-multiplication
	2.3. An auxiliary abelian variety

	3. The average rank of 𝐵_{𝑑}
	3.1. Average ranks in cyclotomic twist families
	3.2. An isogenous abelian variety

	4. Intersecting Selmer groups and the correlation trick
	4.1. Set-up
	4.2. Selmer ratios
	4.3. The correlation trick

	5. Proof of Theorem 1.2
	5.1. An explicit example

	6. Application to Hilbert’s tenth problem over pure sextic fields
	7. Ranks of QM abelian surfaces
	Acknowledgments
	References

