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THE FUNDAMENTAL SOLUTION TO �b ON QUADRIC

MANIFOLDS WITH NONZERO EIGENVALUES

ALBERT BOGGESS AND ANDREW RAICH

Abstract. This paper is part of a continuing examination into the geomet-
ric and analytic properties of the Kohn Laplacian and its inverse on general
quadric submanifolds of Cn ×Cm. The goal of this article is explore the com-
plex Green operator in the case that the eigenvalues of the directional Levi
forms are nonvanishing. We (1) investigate the geometric conditions on M
which the eigenvalue condition forces, (2) establish optimal pointwise upper
bounds on complex Green operator and its derivatives, (3) explore the Lp

and Lp-Sobolev mapping properties of the associated kernels, and (4) provide
examples.

1. Introduction

In this paper, we investigate the complex Green operator N on quadric subman-
ifolds M ⊂ Cn × Cm for which all the eigenvalues of the directional Levi forms
are nonzero. The complex Green operator is the (relative) inverse to the Kohn
Laplacian �b. By definition, a quadric submanifold is defined as

(1) M = {(z, w) ∈ C
n × C

m : Imw = φ(z, z)}

where φ : Cn × Cn → Cm is a sesquilinear vector-valued quadratic form. The Levi
form in the direction of ν ∈ Sm−1, the unit sphere in Rm, is defined as φν(z, z) =
φ(z, z) · ν. The Kohn Laplacian is defined as �b = ∂̄b∂̄

∗
b + ∂̄∗

b ∂̄b where ∂̄b is the
usual tangential Cauchy-Riemann operator and ∂̄∗

b is its L2 adjoint. The (relative)
inverse to �b on (p, q)-forms, when it exists, is called the complex Green operator
and denoted by Np,q. The existence of the complex Green operator produces the
L2-minimizing solution operator to the ∂̄b-equation, ∂̄

∗
bNp,q, in a canonical fashion.

For background on the ∂̄b and �b-operators, please see [Bog91,CS01,BS17].
In this paper, our main interest is the class of quadrics with codimension m ≥ 2

where the matrix associated to the scalar Levi form, φν(z, z) has only nonzero
eigenvalues for each ν ∈ Sm−1. We show that the nonvanishing eigenvalue condition
forces n to be even (so replace n with 2n) with exactly half of the eigenvalues to
be positive and half negative. For 0 ≤ q ≤ 2n, we establish sharp upper bounds on
the size of N0,q and its derivatives in terms of the control geometry on M that are
analogous to the classical estimates on N for the Heisenberg group or the finite type
hypersurface type case (that is, m = 1) in C2 [NRSW89, Chr91a, Chr91b, FK88].
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This allows us to invoke the theory of homogeneous groups to prove Lp and Lp-
Sobolev mapping properties for appropriate derivatives of N . When q = n, �b is
not solvable by [PR03], but we can still estimate the canonical relative fundamental
solution for �b given by

∫∞
0

e−s�b(I−Sn) ds where Sn is the orthogonal projection
onto ker�b. We also provide several examples, illustrating our estimates.

More generally, when the eigenvalues are not bounded away from zero, the control
distance fails to govern estimates on N0,q. This failure is apparent in some general
hypersurface type CR manifolds as well as some simple higher codimension quadrics
[Mac88, NS06, BR21]. In higher codimension, the correct geometry is far from
understood as the singularities of N occur both on and off of the diagonal.

For a bit more background and history, the tangential Cauchy-Riemann operator,
or ∂̄b, and the associated Kohn Laplacian �b are arguably the most important
operators in several complex variables because they are intrinsically intertwined
with the complex geometry, topology, and analysis of CR manifolds. Solving the �b-
equation is often a product of hard analysis and sophisticated functional analysis,
and the solution produced by these techniques may have excellent function theoretic
properties but is not constructive (e.g., [Sha85,Koh86,HR11,HR15,CR21]). Often,
this approach is not (yet) sufficient to produce the estimates we seek on the solution
in the higher codimension setting. Hence we restrict to the class of quadrics, which
have a Lie group structure which helps provide a more explicit formula for the
solution that is suitable to estimate.

In our opinion, one of the most beautiful results is the computation of Np,q on
the Heisenberg group by Folland and Stein [FS74]. The problem, though, is that
their technique does not easily generalize, especially to higher codimension. Conse-
quently, one of main approaches to the �b-problem on these manifolds is through
the �b-heat equation. The first results in this direction were for the sub-Laplacian
on the Heisenberg group by Hulanicki [Hul76] and Gaveau [Gav77]. More results
followed for �b on quadrics of increasing generality [BR09,YZ08,CCT06,BGG96,
BGG00,Eld09] culminating (so far) with our paper [BR11] where we compute the
�b-heat kernel on a general quadric. Virtually all of these results rely on the fact
that we can identify M with its tangent space at the orgin, Cn×Rm, and push the
problem forward onto C

n ×R
m. The problem with these papers (ours included) is

that if we put coordinates (z, t) on M , the solution is only given up to a partial
Fourier transform in t. Given that [FS74] is the gold standard (for us), we are
taking the formula from [BR11] and trying to undo the Fourier transform and in-
tegrate out the time variable. This allows us to recover to both the projection onto
ker�b as well as N0,q. In the earlier parts of the series, [BR13,BR22,BR20,BR21],
we started with the formula for �b-heat kernel and generated an integral formula
for both the diagonal part of the complex Green operator as well as the projection
onto ker�b. We also categorized the class of quadrics of codimension 2 in C

4 into
three �b-invariant groups and computed 0th order asymptotics for the kernels for
each of these groups. We noticed that in one case, where the directional Leviform
has nonvanishing eigenvalues, the complex Green operator was both solvable and
hypoelliptic. Additionally, the estimates were particularly good, allowing us to
prove continuity results in Lp-Sobolev spaces, 1 < p < ∞. In many respects, the
current paper is a generalization of this case.

In addition to our series of papers, Mendoza proves the following: Let M be a
CR manifold of CR codimension > 1 whose Levi form is everywhere nondegenerate.
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Then �b computed with respect to any Hermitian metric is hypoelliptic in all
degrees except those corresponding to the number of positive or negative eigenvalues
of the Levi form [Men]. Additionally, in the special case that φ(z, z) is a sum of
squares, Nagel, Ricci, and Stein [NRS01] proved pointwise upper bounds on both
the complex Green operator and the projections onto ker�b, and they established
the Lp theory in addition.

The outline of the paper is as follows. In the next section, we state our main
results, primarily Theorem 2.1. We continue in Section 3 where we define our
notation and explore the geometric consequences of our hypotheses. The proof of
Theorem 2.1 for q �= n is spread over Sections 4–11. In Section 12, we discuss the
adjustments to adapt the argument for the q = n case. We conclude the paper with
several new examples in Section 13.

2. Main results

Define the projection π : C2n×Cm → C2n×Rm by π(z, t+ is) = (z, t). For each
quadric M ⊂ C2n × Cm, the projection π induces a CR structure and Lie group
structure on C2n × Rm, and we call this Lie group G (or GM ). The projection is
therefore a CR isomorphism and we use the same notation for objects on M and
their pushfowards/pullbacks on G.

We introduce only the notation necessary to state the main results. Define the
norm function ρ : C2n × Rm → [0,∞) by

ρ(z, t) = max{|z|, |t|1/2} ≈ |z|+ |t|1/2.
For a multiindex I = (I1, I2) ∈ N

4n+m
0 , the multiindex I1 ∈ N4n

0 records the
differentiation in the z and z̄-variables, and I2 ∈ Nm

0 records the t-derivatives.
Given such a multiindex I, define the weighted order of I by 〈I〉 = |I1|+ 2|I2| and
the order of I by |I| = |I1|+ |I2|.

Theorem 2.1. Let M ⊂ C2n × Cm be a quadric submanifold defined by (1) with
associated projection G, and assume that eigenvalues of the directional Levi forms
are nonzero. Let 0 ≤ q ≤ 2n and N = N0,q. For any multiindex I ∈ N

4n+m
0 , there

exists a constant CI > 0 so that

|DIN(z, t)| ≤ CI

ρ(z, t)2(2n+m−1)+〈I〉 .

Remark 2.2.

(1) The homogeneous dimension of M is 2(2n + m), and we are inverting an
order two operator (with respect to ρ). This explains the power of ρ in the
denominator of Theorem 2.1.

(2) The case q = n is special because ker�b �= 0. The relative fundamental
solution that we estimate is

∫∞
0

e−s�b(I − Sn) ds where Sn : L2
0,n(M) →

ker�b ∩ L2
0,n(M) is the orthogonal projection.

Let W k,p(M) denote the Sobolev space of forms on M with z, z̄ and t derivatives
of order k are in Lp(M).

Theorem 2.3. Let M ⊂ C
2n × C

m be a quadric submanifold defined by (1) with
associated projection G, and assume that eigenvalues of the directional Levi forms
are nonzero. Let 0 ≤ q ≤ 2n and N = N0,q. Given a multiindex I ∈ N

4n+m
0 so that

〈I〉 = 2, the operator DIN0,q is exactly regular on W k,p(M) for all k ≥ 0 and all
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1 < p < ∞. In other words, DIN0,q extends to a bounded operator on W k,p(M).
In particular, DIN0,q is a hypoelliptic operator.

Proof. The proof follows easily following the approach of [BR20, Section 3]. Iden-
tifying M with C2n × Rm, we can view M as a homogeneous group with norm
function ρ(z, t). From Theorem 2.1, it follows that the integration kernel of DIN0,q

and its derivatives have the appropriate pointwise decay. A second consequence of
Theorem 2.1 is thatDIN0,q is a tempered distribution, and combining this fact with
the natural dilation structure and that DIN0,q is a convolution operator shows that
DIN0,q is uniformly bounded on normalized bump functions. This is exactly what
is required to establish the Lp boundedness, 1 < p < ∞. From the fact that DIN0,q

is a convolution operator, boundedness on W k,p(Cn×Rm) follows immediately. �

3. Notation and hypotheses

Suppose that M is the quadric submanifold

M = {(z, w) ∈ C
n × C

m : Imw = φ(z, z)}.
Recall that for ν ∈ Sm−1, φν(z, z) = φ(z, z) · ν = z∗Aνz where Aν is a Hermitian
symmetric matrix.

Proposition 3.1. If m ≥ 2 and if the eigenvalues of Aν are all nonzero for each
ν ∈ Sm−1, then n must be even. Furthermore for each ν ∈ Sm−1, half of the
eigenvalues of Aν are positive and half of the eigenvalues are negative, counting
multiplicity.

Proof. Note that if λ is an eigenvalue for Aν , then −λ is an eigenvalue for A−ν . If
n is odd, then detA−ν = − detAν . If m ≥ 2, this change of sign in the determinant
means that detAν′ = 0 for some other ν′ ∈ Sm−1. Therefore, the assumption that
all of eigenvalues are nonzero for each ν ∈ Sm−1 implies that n must be even.

Also note that all the eigenvalues of Aν are real. Let pν(λ) = det(Aν − λI) be
the characteristic polynomial for Aν . Let Pν be the set of the positive roots of pν .
We are assuming that Pν is bounded away from zero for all ν ∈ Sm−1. Let K be
a compact disc in the open right half plane which contains Pν in its interior for all
ν ∈ Sm−1. The number of roots in Pν is given by the Argument Principle:

Number of positive roots of pν =
1

2πi

∮
∂K

p′ν(λ) dλ

pν(λ)
.

This is clearly a continuous integer-valued function of ν ∈ Sm−1 which is a con-
nected set for m ≥ 2. Therefore, the number of positive roots of pν is constant
for all ν ∈ Sm−1. Since n is even and A−ν = −Aν , we see that p−ν(−λ) = pν(λ).
Therefore if the number of positive roots of pν is k, then the number of negative
roots of p−ν(·) is also k, which in turn implies that the number of positive roots of
p−ν is n− k. Since the number of positive roots is constant in ν, we conclude that
k = n− k, and hence k = n/2. �

3.1. The complex Green operator. As a consequence of the above discussion,
we assume the following:

• For each ν ∈ Sm−1, there are n positive eigenvalues μν
j for j in some index

set P ν of cardinality n from the set {1, 2, . . . , 2n} and n negative eigenvalues
μν
k for k ∈ (P ν)c, the complement of P ν .
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Remark 3.2. Given that our eigenvalues stay bounded away from 0 independently
of ν ∈ Sm−1, we may arrange the indices so that P ν = P is independent of ν.

Denote the set of increasing q-tuples by Iq = {K = (k1, . . . , kq) ∈ Nq : 1 ≤ k1 <
k2 < · · · < kq ≤ 2n}. To write the fundamental solution for �b [BR22] applied
to a (0, q)-form of the form fK dz̄K for a fixed K ∈ Iq, we need to establish some

notation. Fix λ ∈ Rm \ {0} and set ν = λ
|λ| ∈ Sm−1. We write z ∈ Cn in terms of

the unit eigenvectors of φλ which means that zλj = zνj is given by

zν = Z(ν, z) = U(ν)∗ · z
where U(ν) is the matrix whose columns are the eigenvectors, vνk , 1 ≤ k ≤ 2n of the
directional Levi form φν , and · represents matrix multiplication with z written as
a column vector. Note that the corresponding orthonormal basis of (0, 1)-covectors
for this basis is

dZ̄j(ν, z), 1 ≤ j ≤ 2n, where dZ̄(ν, z) = U(ν)T · dz̄
where dz̄ is written as a column vector of (0, 1)-forms and the superscript T stands
for transpose. Note that zν = Z(ν, z) depends smoothly on z ∈ C

n but only locally
integrable as a function of ν ∈ Sm−1 [Rai11].

For each K ∈ Iq, we will need to express dz̄K , in terms of dZ̄(ν, z)L for L ∈ Iq.
We have

(2) dz̄K =
∑
L∈Iq

det(Ū(ν)K,L) dZ̄(ν, z)L

where Ū(ν)K,L is the q × q minor Ū(ν) comprised of elements in the rows K and
columns L. Note that if q = 2n, then the above sum only has one term and
det(Ū(ν)K,K) = 1. In addition, I0 = ∅, so the sum (2) does not appear.

Until Section 12, we work under the assumption that 0 ≤ q ≤ 2n is fixed and
q �= n. Since the |μν

j | are bounded uniformly away from zero for ν in the unit sphere,
it is straightforward to show that the integrability hypothesis on the associated heat
kernel in [BR22, Theorem 2.3] is satisfied. Therefore, the fundamental solution to
�b on (0, q)-forms spanned by dz̄K is given by convolution with the kernel

NK(z, t)

(3)

= Kn,m

∑
L∈Iq

∫
ν∈Sm−1

det(Ū(ν)K,L) dZ̄(ν, z)L

×
∫ 1

r=0

( ∏
j∈Lc∩P
j∈L∩Pc

r|μ
ν
j ||μν

j |
(1− r|μ

ν
j |)

∏
k∈L∩P

k∈Lc∩Pc

|μν
k|

(1− r|μ
ν
k|)

)
1

(A(r, ν, z)− iν · t)2n+m−1

dr dν

r

where dν is surface measure on the unit sphere Sm−1, the dimensional constant

(4) Kn,m =
42n(2n+m− 2)!

2(2π)m+2n
,

and

A(r, ν, z) =
2n∑
j=1

|μν
j |

(
1 + r|μ

ν
j |

1− r|μ
ν
j |

)
|zνj |2.
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Taking derivatives in zk or t� is relatively straight forward because z only appears
in A(r, ν, z) and t only appears in the ν · t term. In particular, we compute that for
1 ≤ k ≤ 2n,

(5)
∂

∂zk
A(r, ν, z) =

2n∑
j=1

|μν
j |

(
1 + r|μ

ν
j |

1− r|μ
ν
j |

)
U(ν)∗j,k · Zj(ν, z).

Similarly, ∂2A(r,ν,z)
∂zk1

∂zk2
= 0 as are all third (and higher) order derivatives. Also,

(6)
∂

∂zk1
∂z̄k2

A(r, ν, z) =
2n∑
j=1

|μν
j |

(
1 + r|μ

ν
j |

1− r|μ
ν
j |

)
U(ν)∗j,k1

· U(ν)∗j,k2
.

A key fact which will be used later is the following: If P (u) is a polynomial in
u ∈ C, then

(7)
2n∑
j=1

P (μν
j )|Zj(ν, z)|2 = z∗ · U(ν) · P (Dν) · U(ν)∗ · z = z∗ · P (Aν) · z

where Dν is the diagonal matrix with the eigenvalues of Aν as its diagonal entries.
The importance of this equation is as follows. The right side is a quadratic expres-
sion in z and z̄ with coefficients that are polynomials in the coordinates of ν (since
Aν depends linearly on ν).

3.2. Derivative notation. We define a multiindex I = (I1, I2) ∈ N
4n+m
0 where

I1 ∈ N4n
0 is multiindex that records the z and z̄-derivatives and I2 ∈ Nm

0 records
the t-derivatives. Recall that the weighted order of I is 〈I〉 = |I1| + 2|I2| and
the order of I is |I| = |I1| + |I2|. Each derivative in a t-variable introduces a
component of ν into the numerator and increases the power of (A(r, ν, z) − iν · t)
in the denominator by 1. A derivative in a z-variable is more complicated to write
down – either the power of (A(r, ν, z)− iν · t) increases by one in the denominator
and a component of ∇zA(r, ν, z) is introduced in the numerator or the denominator
remains unchanged and a term in the numerator changes from (5) to (6). We will
not need a precise accounting of the constants but only the number of first and
second derivatives of A(r, ν, z) that appear. We denote by ∇z,z̄A the vector of first
derivatives with respect to both the z and z̄ derivatives and by ∇2

z,z̄A all of the
second order derivatives of A. By an abuse of notation, we write

DI
{ 1

(A(r, ν, z)− iν · t)2n+m−1

}
= cn,m,|I2|D

I1
{ νI2

(A(r, ν, z)− iν · t)2n+m−1+|I2|

}

=
∑

(I′1,I′′1 )

|I′1|+2|I′′1 |=|I1|

cn,m,I′
1,I

′′
1 ,|I2|

νI2(∇z,z̄A(r, ν, z))I
′
1(∇2

z,z̄A(r, ν, z))I
′′
1

(A(r, ν, z)− iν · t)2n+m−1+|I′
1|+|I′′

1 |+|I2|
.

where |I ′1| is the number of first order derivatives in z or z̄ and where |I ′′1 | is the
number of second order derivatives in z and z̄. Note that |I ′1|+2|I ′′1 | = |I1| and not
|I ′1|+ |I ′′1 |. For example, suppose that I1 = (2, 1, 0, . . . , 0, 0), which is two z1 factors
and one z̄1 factor. Then

(∇z,z̄A(r, ν, z))I1 =
( ∂

∂z1
A(r, ν, z)

)2( ∂

∂z̄1
A(r, ν, z)

)
,
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and |I ′1| = 1, |I ′′1 | = 1 and |I1| = 3. We analyze each piece of DIN separately and
consequently, the integral to estimate is

(8) NI′
1,I

′′
1 ,I2(z, t) =

∑
L∈Iq

∫
ν∈Sm−1

det(Ū(ν)K,L) dZ̄(ν, z)L

×
∫ 1

r=0

( ∏
j∈Lc∩P
j∈L∩Pc

r|μ
ν
j ||μν

j |
(1− r|μ

ν
j |)

∏
k∈L∩P

k∈Lc∩Pc

|μν
k|

(1− r|μ
ν
k|)

)

×
νI2(∇z,z̄A(r, ν, z))I

′
1(∇2

z,z̄A(r, ν, z))I
′′
1

(A(r, ν, z)− iν · t)2n+m−1+|I′
1|+|I′′

1 |+|I2|
dν dr

r
.

4. The case when |t| ≥ |z|2, q �= n

The tricky case is |t| > |z|2 and so we will factor out a |t|2n+m−1+|I′
1|+|I′′

1 |+|I2|

from the denominator and we will rotate ν coordinates via an orthogonal matrix
Mt chosen so that Mt(t/|t|) is the unit vector in the ν1 direction (so in the new
coordinates, ν · t = ν1|t|). We also set νt = M−1

t ν and

q̂ =
z

|t|1/2 ∈ C
2n, and Q(νt, q̂) =

Z(νt, z)

|t|1/2 =
U(νt)∗ · z
|t|1/2 .

Note that |Q(νt, q̂)|2 = |q̂|2 since Uνt is unitary.

Since (∇z,z̄A(r, νt, z))I
′
1 contains a monomial in z, z̄ of degree I ′1, we obtain

NI′
1,I

′′
1 ,I2(z, t) = |t|−(2n+m−1+ 1

2 |I
′
1|+|I′′

1 |+|I2|)NI′
1,I

′′
1 ,I2(q)

= |t|−(2n+m−1+ 1
2 〈I〉)NI′

1,I
′′
1 ,I2(q̂)

where

NI′
1,I

′′
1 ,I2(q̂)(9)

=
∑
L∈Iq

∫
νt∈Sm−1

∫ 1

r=0

det(Ū(νt)K,L) dZ̄(νt, z)LBL(r, ν
t)

×
(νt)I2(∇z,z̄A(r, νt, q̂))I

′
1(∇2

z,z̄A(r, νt, q̂))I
′′
1

(A(r, νt, q̂)− iν1)2n+m−1+|I′
1|+|I′′

1 |+|I2|
dν dr

r

and

BL(r, ν) =
∏

j∈Lc∩P
j∈L∩Pc

r|μ
ν
j ||μν

j |
1− r|μ

ν
j |

∏
k∈L∩P

k∈Lc∩Pc

|μν
k|

1− r|μ
ν
k|

(10)

A(r, ν, q̂) =

2n∑
j=1

|μν
j |

(
1 + r|μ

ν
j |

1− r|μ
ν
j |

)
|Qj(ν, q̂)|2.(11)

To prove Theorem 2.1 in the case that |t| ≥ |z|2 and q �= n, it suffices to prove
Theorem 4.1.

Theorem 4.1. There is a uniform constant C > 0 so that |NI′
1,I

′′
1 ,I2(q̂)| ≤ C for

all q̂ ∈ C2n.
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There are two primary terms which need to be analyzed: BL(r, ν), and A(r, ν, q̂).
We first concentrate on the singularity at r = 1. The singularity at r = 0 is easier
and is handled in Section 10.

5. Analysis of BL(r, ν) in the case r > 1/2, q �= n

It turns out that the key to analyzing BL(r, ν) is B∅(r, ν). To this end, for
0 < r < 1 and u ∈ R, let

(12) f(r, u) =
uru

(1− ru)
g(r, u) = f(r, u) + u =

u

(1− ru)
.

Note that g(r, u) = f(r,−u). Since μν
j > 0 for j ∈ P and μν

k < 0 for k ∈ P c, we
can write

B(r, ν) = B∅(r, ν) =
∏
j∈P

r|μ
ν
j ||μν

j |
(1− r|μ

ν
j |)

∏
k∈P c

|μν
k|

(1− r|μ
ν
k|)

then

B(r, ν)
dr

r
=

∏
j∈P

f(r, μν
j )

∏
k∈P c

g(r,−μν
k)

dr

r
(13)

=
2n∏
j=1

f(r, μν
j )

dr

r
.(14)

Both descriptions of this term are useful. Note that the eigenvalues μν
j are not

necessarily smooth in ν ∈ Sm−1 (though they are continuous). However as the
next lemma shows, B(r, ν) is real analytic in both 0 < r < 1 and in ν ∈ Sm−1 and
this uses the fact that the eigenvalues are bounded away from zero.

Lemma 5.1. The function B(r, ν) =
∏

j∈P f(r, μν
j )

∏
k∈P c g(r,−μν

k) is real ana-

lytic in both 0 < r < 1 and in ν ∈ Sm−1.

Proof. Using (13), write

B(r, ν) = B+(r, ν) ·B−(r, ν) where

B+(r, ν) =
∏
j∈P

f(r, μν
j ); B−(r, ν) =

∏
k∈P c

g(r,−μν
k).

It suffices to show that lnB+(r, ν) and lnB−(r, ν) are real analytic in 0 < r < 1
and in ν ∈ Sm−1. We have

lnB+(r, ν) =
∑
j∈P

ln f̃(r, μν
j )

where f̃(r, z) = zrz

(1−rz) for z = u + iv. Since f̃(r, z) > 0 for z = u > 0, ln(f̃(r, z))

is real analytic in 0 < r < 1 and complex analytic as a function of z = u + iv
in a neighborhood, U ⊂ C containing the set {u + i0; u > 0}. Note that by
hypothesis, there is a compact set K ⊂ {u + i0; u > 0} which contains all the
positive eigenvalues μν

j for j ∈ P and ν ∈ Sm−1. Let γ ∈ U be a smooth simple
closed curve which contains K. Let D(ν, z) = det(Aν − zI) where recall that Aν is
the Hermitian matrix for φν(z, z). The eigenvalues μν

j , j ∈ P are the roots of the
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analytic function z → D(ν, z) that lie inside γ. By standard Residue theory, we
have

lnB+(r, ν) =
∑
j∈P

ln f̃(r, μν
j ) =

1

2πi

∮
z∈γ

ln f̃(r, z)D′(ν, z) dz

D(ν, z)

where D′(ν, z) refers to the z-derivative of D(ν, z). Now observe that the right side
is real analytic in ν ∈ Sm−1 since ν → Aν is real analytic in ν (and D(ν, z) �= 0 for
z ∈ γ). The proof of the analyticity of lnB−(r, ν) is similar. This completes the
proof of the lemma. �

We observe that

BL(r, ν) = B(r, ν)
∏

j∈L∩P c

f(r,−μν
j )

f(r, μν
j )

∏
k∈L∩P

g(r, μν
k)

g(r,−μν
k)

= B(r, ν)
∏
j∈L

r−μν
j .

We need the following piece of notation for the next lemma. For J ∈ Iq and

(	1, . . . , 	q) ∈ Nq, set ε
(�1,...,�q)
J = (−1)|σ| if {	1, . . . , 	q} = J as sets and |σ| is the

length of the permutation that takes (j1, . . . , jq) to J . Set ε
(�1,...,�q)
J = 0 otherwise.

It may be the case the BL(r, ν) is not analytic, however, we have Lemma 5.2.
We also use the notation that if M is a matrix and J, L ∈ Iq, the MJ,L is the q× q
minor of M with entries Mj�, j ∈ J , 	 ∈ L.

Lemma 5.2. The function

ν �→
∑
L∈Iq

det(Ū(ν)K,L) dZ̄(ν, z)L
∏
j∈L

r−μν
j

is real analytic in both 0 < r < 1 and in ν ∈ Sm−1. Moreover,

(15)
∑
L∈Iq

det(Ū(ν)K,L) dZ̄
L(ν, z)

∏
j∈L

r−μν
j =

∑
J∈Iq

det([r−Āν ]K,J ) dz̄
J .

Remark 5.3. In view of the above expression for BL(r, ν), we record the following
equation for future reference

(16)
∑
L∈Iq

det(Ū(ν)K,L) dZ̄
L(ν, z)BL(r, ν) =

∑
J∈Iq

det([r−Āν ]K,J )B(r, ν) dz̄J ,

which is real analytic in 0 < r < 1, ν ∈ Sm−1 in view of Lemma 5.1.

Proof. Once we show (15), the analyticity statement follows immediately from the

fact that Āν depends analytically on ν and therefore the matrix r−Āν will also
depend analytically on ν.

First, we record two basic equations. Suppose M is a N×N matrix with complex
entries and consider w = Mz, where w, z ∈ C

N . If 1 ≤ q ≤ N and K ∈ Iq, then

(17) dw̄K =
∑
J∈Iq

det(M̄K,J ) dz̄
J .

This is easily established using standard multilinear algebra.
Second, conjugation by U(ν) diagonalizes the matrix Aν , and diagonalizes r−Aν .

In particular,

(18) R−μν

= U(ν)T r−Āν Ū(ν)

where R−μν

is the (2n)× (2n) matrix with real entries, r−μν
j , on the diagonal and

zeros off of the diagonal.
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Now we start with the left side of (15):∑
L∈Iq

det(Ū(ν)K,L) dZ̄
L(ν, z)

∏
j∈L

r−μν
j =

∑
L∈Iq

det(Ū(ν)K,L) det(R
−μν

L,L ) dZ̄L(ν, z)

=
∑
L∈Iq

det([Ū(ν)R−μν

]K,L) dZ̄
L(ν, z)

where the second equation uses the fact that R−μν

is a diagonal matrix. Now use
(18) and the fact that Ū(ν)U(ν)T = I to conclude that

Left side of (15) =
∑
L∈Iq

det[r−Āν Ū(ν)]K,L dZ̄L(ν, z) = d(r−Āν z̄)K

where the last equality uses the equation z = U(ν)Z(ν, z) as well as (17) with
w = r−Aνz. Now (15) follows by using (17) to expand out the right side of the
above equation in terms of dz̄J . �

We make the following change of variables for s > 1:

(19) r = r(s) =
s− 1

s+ 1
or equivalently s =

r + 1

1− r
with

dr

r
=

2 ds

(s2 − 1)
.

Note that 1/2 ≤ r < 1 transforms to s ≥ 3.
Our goal for the remainder of the section is to prove Proposition 5.4.

Proposition 5.4.

(1) The expansion of B(r(s),ν)r′(s)
r(s) around s = ∞ is

B(r(s), ν)r′(s)

r(s)
=

2

22n(1− 1/s2)

[
2n−1∑
�=0

P�(ν)s
2n−�−2 +

O(s, ν)

s2

]
.(20)

Typical monomial in P�(ν) = ν�−e; where e is even with 0 ≤ e ≤ 	.

(21)

Here, P�(ν) is a polynomial in ν = (ν1, . . . νm) ∈ Sm−1 of total degree 	.
By an abuse of notation, the term, ν�−e, in (21) stands for a monomial in
the coordinates of ν of total degree 	− e.

Additionally, the (Taylor) remainder O(s, ν) is real analytic in s > 1
and ν ∈ Sm−1. Furthermore O(s, ν) is bounded in s > 1.

(2) Modulo coefficients (that are computable but not relevant to the estimate),

the expansion of det([r(s)−Āν ]K,J ) around s = ∞ is comprised of a sums
of terms

ν�
′−e′

s�′
where 	′ ≥ 1, e′ is an even integer with 0 ≤ e′ ≤ 	′, and

(22)

ν�
′−e′ is a monomial of degree 	′ − e′ in the coordinates of ν ∈ Sm−1.

To start the proof of Proposition 5.4, let

F (s, u) = f(r(s), u), G(s, u) = g(r(s), u).

Using (14), we obtain

(23)
B(r(s), ν)r′(s)

r(s)
= 2

2n∏
j=1

F (s, μν
j )

1

(s2 − 1)
.
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We will need to Taylor expand B(r(s), ν) in s about s = ∞, which is equivalent
to letting s = 1/w and expanding about w = 0. To this end, let

(24) F̃ (w, u) = w[F (1/w, u) + u/2] = w

[
g

(
1− w

1 + w
, u

)
− u

2

]
.

Lemma 5.5. F̃ (w, u) is a real analytic function of w and u for −1 < w < 1 and
u ∈ R. In addition,

(1) For each fixed u, the function w → F̃ (w, u) is an even function of w;

(2) For each fixed w, the function u → F̃ (w, u) is an even function of u;

(3) The coefficients in the Taylor series expansions of F̃ (w, u) in w about w = 0
are of the form:

jth coefficient =

{
0 if j is odd

Pj(u) if j is even

where Pj(u) is a polynomial of degree j in u that involves only even powers
of u.

Proof. We have

F̃ (w, u) =
wu

1−
(

1−w
1+w

)u − wu

2

=
wu

1− eu ln( 1−w
1+w )

− wu

2
.(25)

Since 1−ez vanishes to first order in z at the origin, the (u,w) power series expansion
of the denominator has a factor of uw, which cancels with the uw in the numerator.
The resulting term is analytic and nonvanishing in a neighborhood of the origin.
Hence F̃ is real analytic. Part (2) follows easily from (24). Parts (1) follows by a
calculation (Maple helps). For Part (3), we expand the exponential term appearing
in (25) and cancel the common factor of uw to obtain

F̃ (w, u) =

[
1

L(w) + uw
2! L(w)

2 + (uw)2

3! L(w)3 + . . .

]
− wu

2

where L(w) = w−1 ln
(

1−w
1+w

)
is analytic on −1 < w < 1. From repeated w-

differentiations of F̃ , one can see that the jth w-derivative of F̃ at w = 0 is a
polynomial expression in u of degree j. In view of Part (2), this expression is zero
if j is odd and only involves even powers of u when j is even as stated in Part (3).
This concludes the proof of the lemma. �

We let w = 1/s and unravel this lemma to imply the following expansions for
F (s, u).

F (s, u) =
s

2
− u

2
+

u2 − 1

6s
− u4 − 5u2 + 4

90s3
+

∞∑
j=3

p2j(u)

s2j−1
(26)

where p2j(u) is a polynomial in u of degree 2j with only even powers of u. The
above series converges uniformly on any closed subset of {s > 1}. Note that F has
the linear term u/2 and that all other terms involve only even powers of u.
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Our next task is to use (26) to expand the expression B(r(s), ν) given in (23) in
powers of 1/s (about s = ∞). To get started, here are the first few terms (in order
of decreasing powers of s):

B(r(s), ν)r′(s)

r(s)
=

2

(s2 − 1)

2n∏
j=1

F (s, μν
j )(27)

=
2s2n

22n(s2 − 1)

2n∏
j=1

[
1−

μν
j

s
+

(μν
j )

2 − 1

3s2
+

∞∑
k=2

p2k(μ
ν
j )

s2k

]
(28)

where p2k(u) is a polynomial of degree 2k with only even powers of u.
Now, we expand the product on the right (denoted by Product) in terms of

symmetric polynomials in the variables μν
1 , . . . , μ

ν
2n. First, a definition.

Definition 5.6. A symmetric polynomial of degree m on RN is a polynomial P of
degree m in the variables (u1, . . . uN ) ∈ R

N such that

P (u1, . . . uN ) = P (uσ(1), . . . uσ(N))

for all permutations σ on {1, 2, . . . , N}.
An allowable multiindex α = (α1, . . . , αN

)
is a nonincreasing N -tuple of nonneg-

ative integers, that is, integers αj , 1 ≤ j ≤ N , satisfying α1 ≥ α2 ≥ · · · ≥ αN ≥ 0.
Let |α| = α1 + · · ·+ αN and define

Sα(u1, . . . , uN ) =
′∑

i1,...,iN

uα1
i1

. . . uαN
iN

where the sum is taken over all distinct indices i1, . . . , iN each ranging from 1 to
N .

Note the prime over the sum emphasizes that the indices ij are distinct. Also
for clarity, if the 2n-tuple α ends with multiple zeros, we stop writing after the first
zero. For example, we write S1,0(μν

1 , . . . , μ
ν
2n) for S1,0,...,0(μν

1 , . . . , μ
ν
2n). Clearly

each Sα(u) is a symmetric polynomial of degree |α|. For a fixed m > 0, the
collection of Sα(u) over all allowable multiindices α with |α| = m forms a basis of
the space of symmetric polynomials of degree m on R

N .
From an examination of the product in (28) and using the fact that p2k(u) is a

polynomial of degree 2k with only even powers of u, we obtain Lemma 5.7.

Lemma 5.7. For 	 ≥ 0, the coefficient of 1
s�

in the product on the right side of
(28) is a linear combination of

Sα(μν
1 , . . . , μ

ν
2n), with |α| = 	, 	− 2, 	− 4, . . . , 	− e

where e is the largest even integer which is less than or equal to 	.

As an illustration of this lemma, we write out the first few terms of the product
on the right side of (28)

Product = 1− s−1
2n∑
k=1

μν
k + s−2

⎛
⎝(1/3)

2n∑
k=1

[(μν
k)

2 − 1] +
∑
j 
=k

μν
jμ

ν
k

⎞
⎠+ . . .

= 1− 1

s
S1,0(μν) +

1

s2

(
(1/3)(S2,0(μν)− 2n) + S1,1,0(μν)

)
+ . . . .
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Now we need transform the Sα(μν) into a more useful basis involving elementary
symmetric functions.

Definition 5.8. For 0 ≤ 	 ≤ N , the elementary symmetric function of degree 	 in
RN is

(29) E�(u) =
∑

(j1,...,j�)∈I�

uj1 · · ·uj� .

With N = 2n, the key fact about the E�(μ
ν) is that they appear as coefficients

in the characteristic polynomial for Aν :

(30) det(Aν − λI) = λ2n +

2n∑
�=1

(−1)�E�(μ
ν)λ2n−�.

Note that each row of Aν depends linearly and homogeneously on ν which yields
the following consequence for the coefficient, E�(μ

ν), of λ2n−�.

Lemma 5.9. E�(μ
ν) is a homogenous polynomial of degree 	 in the coordinates of

ν = (ν1, . . . , νm) ∈ Sm−1.

In particular, E�(μ
ν) is analytic in ν even though the eigenvalues μν

j are not
necessarily differentiable in ν.

Definition 5.10. Suppose L = (	1, . . . , 	j , . . . ) is a multiindex (of indeterminate
length) with 	j ≥ 	j+1 and only a finite number of the 	j are nonzero. For u =
(u1, . . . , uN ), define

EL(u) = E�1(u) · E�2(u) · · ·E�N (u),

EL(u) is a symmetric polynomial of degree |L| = 	1 + · · ·+ 	j + . . .

The next theorem is [Sta99, Theorem 7.4.4].

Theorem 5.11. For a given integer, m ≥ 1, the collection of

{EL(u); |L| = m; u ∈ R
N}

is a basis for the space of symmetric polynomials of degree m on R
N .

Corollary 5.12 follows from this theorem and Lemma 5.7.

Corollary 5.12. In the expansion of B(r(s), ν) r
′(s)
r(s) given in (28), the coefficient

of s2n−2−� is expressible as a linear combination of

EL(μν) = Ek(μ
ν)nk · · ·E2(μ

ν)n2E1(μ
ν)n1 . . . , k ≥ 1

where L = (nk, . . . , n1) with |L| = n1 + 2n2 + . . . knk = 	 − e, where e is an
even integer with 0 ≤ e ≤ 	. Moreover, this coefficient is a linear combination of
monomials in the components of ν = (ν1, . . . , νm) ∈ Sm−1 each having degree 	− e.

We will not need to know the exact values of the coefficients in this expan-
sion. Rather, the key phrase is the last sentence in the above corollary: the co-
efficient of s2n−2−� is a linear combination of monomials in the components of
ν = (ν1, . . . , νm) ∈ Sm−1 each having degree 	− e.
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Proof of Proposition 5.4. In view of Corollary 5.12 and (28), equations (20) and
(21) both hold. Additionally, the real analyticity of the Taylor remainder term
O(s, ν) for s > 1 and ν ∈ Sm−1 is assured from Lemma 5.1, the (Taylor) remainder
O(s, ν). Furthermore O(s, ν) is bounded in s > 1.

The proof of Part 2 is simpler. An expansion for r(s)−u about s = ∞ yields

r(s)−u =
(s− 1

s+ 1

)−u

= 1− 2u

s
+

2u2

s2
− 2u(1 + 2u2)

s3
+

∞∑
k=4

p̃k(u)

sk

where p̃k(u) is a a polynomial that has only odd powers of u if k is odd and
even powers of u if k is even (this fact can be proven by setting w = 1

s , and Taylor
expansion around w = 0, and an induction argument on the form of the derivatives).
This means

r(s)−Aν = 1− 2Aν

s
+

2A2
ν

s2
− 2Aν(1 + 2A2

ν)

s3
+

∞∑
k=4

p̃k(Aν)

sk
.

Equation (22) now follows from expanding the appropriate q×q minor determinant.
�

6. Expansion of A in denominator in the case 1/2 ≤ r < 1, q �= n

The formula for A(r, ν, q̂) is given in (11). Using (12), the coefficient function in
front of |Qj(ν, q̂)|2 is

f(r, μν
j ) + g(r, μν

j ) = 2f(r, μν
j ) + μν

j

which in the s variables (where r = r(s) = s−1
s+1 ), using (26), this becomes

(31) Coefficient of |Qj |2 = 2F (s, μν
j ) + μν

j = s+

∞∑
k=1

p2k(μ
ν
j )

s2k−1

where p2k(u) is a polynomial of degree 2k with only even powers of u. From (26),
the first two terms are

p2(u) =
u2 − 1

3
; p4(u) = −u4 − 5u2 + 4

45
.

Now using (11), (31), and (7), we obtain

A(r(s), ν, q̂)− iν1 = s|q̂|2 +
2n∑
j=1

∞∑
k=1

p2k(μ
ν
j )

s2k−1
|Qj(ν, q̂)|2 − iν1

= (s|q̂|2 − iν1) +

∞∑
k=1

q̂∗ · p2k(Aν) · q̂
s2k−1

.(32)

We denote by ej ∈ C
2n the jth unit vector ej = (0, . . . , 1, . . . , 0) (1 in the jth

position). We observe that

(33)
∂A

∂zj

∣∣∣
(r(s),ν,q̂)

= sq̂∗ · ej +
∞∑
k=1

q̂∗ · p2k(Aν) · ej
s2k−1

and

(34)
∂2A

∂zj1∂z̄j2

∣∣∣
(r(s),ν,q̂)

= se∗j2 · ej1 +
∞∑
k=1

e∗j2 · p2k(Aν) · ej1
s2k−1
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since the substitution of q̂ for z comes after the differentiation.
Note the coefficients q̂∗ ·p2k(Aν) · q̂ consist of quadratic terms in q̂ and ¯̂q together

with a linear combination of monomial terms in the coordinates of ν of degree 2k−e
where e is even with 0 ≤ e ≤ 2k.

7. Expanding the kernel for N in the case 1/2 ≤ r < 1, q �= n

From (9) and (16), to estimate NI′
1,I

′′
1 ,I2(q̂), we must investigate the integrands

(35) NK,J (q̂, s, ν) = det([r(s)−Āν ]K,J)
B(r(s), νt)r′(s)

r(s)

×
(νt)I2(∇z,z̄A(r(s), νt, q̂))I

′
1(∇2

z,z̄A(r(s), νt, q̂))I
′′
1

(A(r(s), νt, q̂)− iν1)2n+m−1+|I′
1|+|I′′

1 |+|I2|
.

For nonzero V ∈ C, consider the Taylor expansion

1

(V + ζ)2n+m−1+|I′
1|+|I′′

1 |+|I2|

=
1

V 2n+m−1+|I′
1|+|I′′

1 |+|I2|
+

∞∑
j=1

αj
ζj

V 2n+m−1+|I′
1|+|I′′

1 |+|I2|+j

which converges uniformly for |ζ| ≤ |V |/2 (the values of αj are unimportant).
We make use of the following expansions: From (32) with V = s|q|2 − iν1 and

ζ =
∑∞

k=1
q̂∗·p2k(Aνt )·q̂

s2k−1 we have

(νt)I2(∇z,z̄A(r(s), νt, q̂))I
′
1(∇2

z,z̄A(r(s), νt, q̂))I
′′
1

(A(r(s), νt, q̂)− iν1)2n+m−1+|I′
1|+|I′′

1 |+|I2|
(36)

= (νt)I2
[

1

(s|q̂|2 − iν1)2n+m−1+|I′
1|+|I′′

1 |+|I2|

+
∞∑
j=1

αj

[∑∞
k=1

q̂∗·p2k(Aνt )·q̂
s2k−1

]j
(s|q̂|2 − iν1)2n+m−1+j+|I′

1|+|I′′
1 |+|I2|

]

× (∇z,z̄A(r(s), νt, q̂))I
′
1(∇2

z,z̄A(r(s), νt, q̂))I
′′
1 .

Carefully writing out (∇z,z̄A(r(s), νt, q̂))I
′
1 and (∇2

z,z̄A(r(s), νt, q̂))I
′′
1 would be more

confusing than useful, as we only need the lead term and the generic expression for
the higher order terms. Using (33), we write

(∇z,z̄A(r(s), νt, q̂))I
′
1

(37)

= s|I
′
1|C0,I′

1

(
(q̂, ¯̂q)|I

′
1|
)

+
∞∑

K=1

∑
k1+···+k|I′1|=K

kj≥0, all j

s|I
′
1|−2KCk1,...,kI′1

,I′
1

(
(q̂, ¯̂q)|I

′
1|
)
p2k1,I′

1
(νt) · · · p2k|I′1|,I

′
1
(νt)
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and using (34), we have
(38)

(∇2
z,z̄A(r(s), νt, q̂))I

′′
1

= s|I
′′
1 |C0,I′′

1
+

∞∑
K=1

∑
k1+···+k|I′′1 |=K

kj≥0, all j

s|I
′′
1 |−2KCk1,...,kI′′1

,I′′
1
p2k1,I′′

1
(νt) · · · p2k|I′′1 |,I

′′
1
(νt).

Here, C0,I′
1

(
(q̂, ¯̂q)|I

′
1|
)
and Ck1,...,kI′1

,I′
1

(
(q̂, ¯̂q)|I

′
1|
)
denote polynomial expressions in-

volving q̂ and ¯̂q of degree |I ′1| and Ck1,...,kI′′1
,I′′

1
are constants (independent of q̂).

From the derivative products (37) and (38), a typical term in (∇z,z̄A)I
′
1(∇2

z,z̄A)I
′′
1

is of the form

(39) s|I
′
1|+|I′′

1 |−2KCK

(
(q̂, ¯̂q)|I1|

)
p2k1

(νt) · · · p2k|I1|(ν
t)

where CK

(
(q̂, ¯̂q)|I1|

)
is a polynomial in q̂ and ¯̂q of degree at most |I1| and k1+ · · ·+

k|I′
1|+|I′′

1 | = K ≥ 1 and each kj is a nonnegative integer.

The main term is the lowest degree term in 1
s and is given by

(νt)I2
s|I

′
1|+|I′′

1 |C((q̂, ¯̂q)|I
′
1|)

(s|q̂|2 − iν1)2n+m−1+|I′
1|+|I′′

1 |+|I2|

where C((q̂, ¯̂q)|I
′
1|) is a monomial in terms in the coordinates for (q̂, ¯̂q) of degree |I ′1|.

Its exact expression is possible to compute but not relevant for this calculation.
Letting

Kj,I′
1,I

′′
1
= k1 + · · ·+ kj + kI1 + · · ·+ k|I′

1|+|I′′
1 | ≥ 1 + |I ′1|+ |I ′′1 |,

a typical term from the expansion of (36) is

(40) Typical Term in (36)

= (νt)I2s
|I′

1|+|I′′
1 |−2Kj,I′1,I′′1 CK̃

(
(q̂, ¯̂q)|I

′
1|
)
p2k̃1

(νt) · · · p2k̃|I′1|+|I′′1 |
(νt)

×
C(q̂j , ¯̂qj)p̃2k1−e1(ν

t) . . . p̃2kj−ej (ν
t)

(s|q̂|2 − iν1)2n+m−1+j+|I′
1|+|I′′

1 |+|I2|s(2k1−1)+···+(2kj−1)

where k� ≥ 1 if j ≥ 1 (and does not appear if j = 0) C(q̂j , ¯̂qj) stands for monomial
terms in the coordinates for q̂ of degree j and ¯̂q, of degree j, and where each
p̃2ka−ea(ν), 1 ≤ a ≤ j is a monomial in the coordinates of ν of degree 2ka − ea.
Here, ea is an even integer with 0 ≤ ea ≤ 2ka. Set Ej = e1+· · ·+ej and incorporate

the matrix M−1
t into the C(q̂j , ¯̂qj) term to obtain

(41)

Typical Term in (40) =
Ct((q̂, ¯̂q)

2j+|I′
1|)ν

2Kj,I′1,I′′1
−EjνI2

(s|q̂|2 − iν1)2n+m−1+j+|I′
1|+|I′′

1 |+|I2|s
2Kj,I′1,I′′1

−(j+|I′
1|+|I′′

1 |)

and Ej is a an even integer with 0 ≤ Ej ≤ 2(k1+ · · ·+ kj). Note that we have used
the same abuse of notation with ν2Kj−Ej as we did in (21) and the dependence on
t is a (possibly nonsmooth but certainly bounded) dependence on t/|t|. We will not
need all the terms in the expansion–just up through j + |I ′1|+ |I ′′1 | = 2n− 1 with a
remainder term involving j+ |I ′1|+ |I ′′1 | = 2n (and therefore Kj,I′

1,I
′′
1
:= K2n ≥ 2n).
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In particular, using (37) and (38),

(42) Typical Remainder Term in (36) =
Ot(1)O(ν, s)

(s|q̂|2 − iν1)4n+m−1s2K2n−2n

where Ot(1) is a real analytic function of the coordinates of q̂ and ¯̂q that may
depend on t. Also, O(ν, s) stands for a real analytic function in ν ∈ Sm−1 and
s > 1 and bounded in s. Note that the power of s in the denominator is at least
2n since K2n ≥ 2n, as mentioned above.

In the expansions of B(r(s), ν) r
′(s)
r(s) and det([r−Āν ]K,J ) given in (20) and (22),

respectively, writing (1 − 1/s2)−1 =
∑∞

j′=0 s
−2j′ . Therefore, by (21), we see that

up to the coefficients of some polynomials, a typical term in the expansion of

det([r−Āν ]K,J)
B(r(s),ν)r′(s)

r(s) is

(43) Typical Term of det([r−Āν ]K,J )
B(r(s), ν)r′(s)

r(s)
= s2n−2j′−2−�′ν�

′−e′

together with a remainder of the form O(ν,s)

s2+2j′ . Note e′ is even and 0 ≤ e′ ≤ 	′.

Now the typical term of NK,J is the product of a term in (41) with a term in
(43). Therefore

Typical Term in NK,J = C(q̂, ¯̂q)2j+|I′
1| sN−2−�ν�−e(νt)I2

(s|q̂|2 − iν1)N+m−1+|I2|
where(44)

N = 2n+ j + |I ′1|+ |I ′′1 |, 	 = 	′ + 2j′ + 2Kj+|I′
1|+|I′′

1 |, e = e′ + Ej + 2j′.(45)

Note that e is even with 0 ≤ e ≤ 	, due to the constraints listed in on the indices
in (41) and (43).

The remainder term for NK,J is the product of the remainders given in (42) and
the remainder given just after (43): a typical term comprising the remainder is

(46) Typical Remainder Term for NK,J =
O(q̂4n)O(ν, s)

(s|q̂|2 − iν1)4n+m−1s2K2n−2n+2+2j′

where O(ν, s) is real analytic function in ν ∈ Sm−1 and s ≥ 3 and bounded in s.
Note that the exponent in s in the denominator is at least 2 since Kj ≥ j, j ≥ 1.
We will now show that the integral (over ν ∈ Sm−1, and s ≥ 1) of the typical term
in (44) is bounded in q̂. We will also show the same for a remainder term in (46).

As to the first task, let r̂ = |q̂|2 > 0 and define

HN,�,m,e,I2(r̂, s, ν) =
sN−2−�ν�+I2−e

(sr̂ − iν1)N+m−1+|I2|
.

To establish Theorem 4.1 over the region 1/2 ≤ r < 1, we need to show that for
each 	 ≥ 0, there is a uniform constant C such that

(47)
∣∣∣ ∫

ν∈Sm−1

∫ ∞

s=3

HN,�,m,e,I2(r̂, s, ν) ds dν
∣∣∣ ≤ C

for all r̂ > 0 near zero.

8. Unit sphere integrals

To compute the integral of HN,�,m,e,I2(r̂, s, ν) over the unit sphere, S
m−1 in Rm,

we need to use some easy facts about spherical integrals:
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(1) Let ν = (ν1, ν
′) ∈ Sm−1, then ν′ belongs to a m− 2 dimensional sphere in

Rm−1 of radius |ν′| =
√
1− ν21 .

(2) Let θ be the “angle” between ν and the ν′ plane; note that ν1 = sin(θ),
−π/2 ≤ θ ≤ π/2; and |ν′| = cos θ.

(3) Surface measure on the unit sphere in R
m is dν = (cos θ)m−2 dθ dν′ where

dν′ is surface measure on, Sm−2, the unit sphere in Rm−1.
(4) The integral of any odd function of ν′ over Sm−2, the unit sphere in Rm−1,

will be zero.

Using the last fact, we claim that we can assume the monomial ν�+I2−e depends
on ν1 only. To see this, write ν�+I2−e = (ν′)aνb1 with |a| + b = |	| + |I2| − |e|. By
(4), if |a| were odd, then the ν′-integral would be zero. Thus we can assume a = e′

where |e′| is even, which implies |b| = |	| + |I2| − (|e| + |e′|) = |	| + |I2| − |E| with
|E| even. We can then factor out the (ν′)a from the ν1 integral and we are left with

ν�+I2−E
1 within the ν1 integral.
We now change variables and let x = ν1 = sin θ, −1 ≤ x ≤ 1. Note that

cos θ =
√
1− x2 and dθ = dx√

1−x2
. Therefore

(48) dν = (1− x2)(m−3)/2 dx dν′

where dν′ is surface measure on Sm−2. The desired estimate in (47) will follow
from Lemma 8.1:

Lemma 8.1. For any nonnegative integers N , m and 	 with m ≥ 2 and any even
integer E with 0 ≤ E ≤ |	|+ |I2|, let

A�,E,I2
N,m (r̂) =

∫ 1

x=−1

∫ ∞

s=3

(1− x2)(m−3)/2sN−2−�x�−E+|I2| ds dx

(sr̂ − ix)N+m−1+|I2|

then A�,E,I2
N,m,I2

(r̂) is a smooth function of r̂ > 0 up to r̂ = 0.

As shown in the proof, the lemma is not true if E is odd.

Proof of Lemma 8.1. First write

A�,E,I2
N,m (r̂) = CN,�,I2D

N−(2+�)
r̂

{
B�,E

m,I2
(r̂)

}
where CN,� is a constant and

B�,E
m,I2

(r̂) =

∫ 1

x=−1

∫ ∞

s=3

(1− x2)(m−3)/2x�−E+|I2| ds dx

(sr̂ − ix)m+�+1+|I2|
.

Here, Dj
r̂ indicates the jth derivative with respect to r̂. The index j is allowed to be

negative in which case this means the |j|th anti-derivative with respect to r̂ (with
a particular initial condition specified at a fixed value of r̂ = r̂0 > 0).

The proof of the fact will be complete once we show B�,E
m,I2

(r̂) is smooth for r̂ > 0
up to r̂ = 0. The s-integral can be computed to give:

(49) B�,E
m,I2

(r̂) =
1

r̂(m+ 	+ |I2|)
b�,Em,I2

(r̂)

where

b�,Em,I2
(r̂) =

∫ 1

x=−1

(1− x2)(m−3)/2x�−E+|I2| dx

(3r̂ − ix)m+�+|I2|
.
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We need to show b�,Em,I2
(r̂) is smooth in r̂ > 0 up to r̂ = 0 and that

(50) b�,Em,I2
(r̂ = 0) = 0

for then (49) will imply that B�,E
m,I2

(r̂) is smooth in r̂ > 0 up to r̂ = 0. To this end,

we note that for r̂ > 0, the integrand of b�,Em,I2
(r̂) has an analytic extension in x to

the upper half of the complex plane. So we can deform the integral using Cauchy
to the top half of the unit circle, denoted by C+ from z = −1 to z = +1 to obtain

b�,Em,I2
(r̂) =

∫
z∈C+

(1− z2)(m−3)/2z�−E+|I2| dz

(3r̂ − iz)m+�+|I2|
.

This expression shows that b�,Em,I2
(r̂) extends smoothly (in fact, analytically) in r̂ to

a neighborhood of r̂ = 0. All that remains to show is that b�,Em,I2
(r̂ = 0) = 0. We

have

(51) (−i)m+�+|I2|b�,Em,I2
(r̂ = 0) =

∫
z∈C+

(1− z2)(m−3)/2 dz

zm+E
.

If m = 3, then this integral is
∫
z∈C+

dz
z3+E = 0 since e is even. If m is odd and

greater than 3, then this integral can be reduced using integration by parts with
dv = 1/zm+E dz and u = (1 − z2)(m−3)/2 (note there are no boundary terms at
z = ±1) to obtain

b�,Em (r̂ = 0) = cm,�

∫
z∈C+

(1− z2)(m−5)/2 dz

zm+E−2
.

One can continue integrating by parts this until the power of (1− z2) is zero to
obtain

(52) b�,Em,I2
(r̂ = 0) = c̃m,�,I2

∫
z∈C+

dz

z3+E
= 0.

This establishes (50) for m odd. (Note clearly, the above integral is not zero if E
is odd, which is why this assumption is so necessary).

If m ≥ 4 is even, then we can integrate by parts until we obtain

b�,Em,I2
(r̂ = 0) = c̃m,�,I2

∫
z∈C+

√
1− z2 dz

z4+E
.

Since E is even, let E = 2k for a nonnegative integer k. Amazingly, there is a
closed-form antiderivative:

(53)

∫ √
1− z2

z4+E
dz = −

k∑
j=0

(1− z2)j+3/2

z2j+3

(
k

j

)
1

(2j + 3)
.

Clearly this antiderivative vanishes at both z = ±1. If m = 2, then one can
integrate by parts in (51) with dv = z dz√

1−z2
and reduce to this integral to (53).

Thus, Lemma 8.1 and hence (47) are proved. �

9. The remainder term, q �= n

To restate the remainder in (46)

Remainder =
O(ν, s)

(s|q̂|2 − iν1)4n+m−1sJ
, with J ≥ 2.
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We use the facts (1)–(3) about spherical integrals in the previous section with
x = ν1. Since s−J is integrable over {s ≥ 3} and since O(ν′, ν1, x) is real analytic

(and hence uniformly bounded) in ν′ ∈ (
√
1− x2)Sm−2 (m− 2 dimensional sphere

of radius
√
1− x2), it suffices to prove the following lemma, which will finish the

proof of Theorem 4.1 for the integral over the region 1/2 ≤ r < 1.

Lemma 9.1. For m ≥ 2, let

R(s, r̂, ν′) =

∫ 1

x=−1

(1− x2)
m−3

2 O(ν′, x, s) dx

(sr̂ − ix)4n+m−1
.

Then R(s, r̂, ν′) is uniformly bounded for s ≥ 3, r̂ ≥ 0, and ν′ ∈ (
√
1− x2)Sm−2.

Proof. Divide up the interval −1 ≤ x ≤ 1 into {|x| ≥ 1/2} and {|x| ≤ 1/2}. The
denominator is bounded below on {|x| ≥ 1/2}. The numerator is also bounded

except in the case m = 2 in which case (1 − x2)
m−3

2 has an integrable singularity
at x = ±1.

For the interval {|x| ≤ 1/2}, we replace x by z ∈ C and note that the integrand
can be extended to analytic function z in a complex neighborhood of the interval
−1/2 ≤ x ≤ 1/2. Let C be a path in this neighborhood and in the upper half plane
which connects z = −1/2 to z = 1/2 and otherwise does not intersect the real axis.
Using Cauchy’s Theorem, we have∫ 1/2

x=−1/2

(1− x2)
m−3

2 O(ν′, x, s) dx

(sr − ix)4n+m−1
=

∫
z∈C

(1− z2)
m−3

2 O(ν′, z, s) dz

(sr − iz)4n+m−1
.

Since the denominator is uniformly bounded away from zero, for z ∈ C, s ≥ 3 and
r = |q̂|2 > 0, the integral on the right is uniformly bounded in ν′, r, and s. This
completes the proof. �

10. The case 0 ≤ r ≤ 1/2, q �= n

Our starting point is (9) which equates to (35) but we wish to remain in the r
variable. We fix K, restrict the r integral to 0 ≤ r ≤ 1/2 and examine

NA
I′
1,I

′′
1 ,I2

(q̂)

=
∑
L∈Iq

∫
ν∈Sm−1

∫ 1
2

r=0

det(Ū(ν)K,L) dZ̄(z, νt)LBL(r, ν
t)(54)

×
(νt)I2(∇z,z̄A(r, νt, q̂))I

′
1(∇2

z,z̄A(r, νt, q̂))I
′′
1

(A(r, νt, q̂)− iν1)2n+m−1+|I′
1|+|I′′

1 |+|I2|
dν dr

r

=
∑
J∈Iq

dz̄J
[ ∫

ν∈Sm−1

∫ 1
2

r=0

det([r−Āν ]K,J )B(r, νt)(55)

×
(νt)I2(∇z,z̄A(r, νt, q̂))I

′
1(∇2

z,z̄A(r, νt, q̂))I
′′
1

(A(r, νt, q̂)− iν1)2n+m−1+|I′
1|+|I′′

1 |+|I2|

]
dν dr

r
.

We denote by NJ
I′
1,I

′′
1 ,I2

(q̂) the dz̄J coefficient of NA
I′
1,I

′′
1 ,I2

(q̂).

We devote the remainder of this section to the proof of Lemma 10.1, which will
establish Theorem 4.1 for the integral over the region 0 < r < 1/2.
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Lemma 10.1.

(56) |NJ
I′
1,I

′′
1 ,I2

(q̂)| ≤ C for all q̂ =
z

|t|1/2 ∈ C
n

where C is a uniform constant.

Recall from (10) that

BL(r, ν) =
∏

j∈Lc∩P
j∈L∩Pc

r|μ
ν
j ||μν

j |
1− r|μ

ν
j |

∏
k∈L∩P

k∈Lc∩Pc

|μν
k|

1− r|μ
ν
k|
.

Since L ∈ Iq and q �= n, at least one of Lc ∩ P or L ∩ P c is nonempty. This means
there exist constants C > 0 and

c0 = min
{ ∑

j∈Lc∩P
j∈L∩Pc

|μν
j | : ν ∈ Sm−1 and L ∈ Iq

}

so that

(57)
∣∣∣B(r, ν)

r

∣∣∣ ≤ Crc0−1 for 0 < r < 1/2.

From this estimate, it follows that the integrals in (54) and therefore in (55) over
{0 ≤ r ≤ 1/2} × {|ν1| ≥ 1/2} are uniformly bounded for q̂ ∈ Cn. Moreover, we
know from (16) and the accompanying remark that the integrand of NJ

I′
1,I

′′
1 ,I2

(q̂) is

real analytic in ν ∈ Sm−1 and 0 < r ≤ 1/2.
We now concentrate on the ν1-integral over |ν1| ≤ 1/2. We have

A(r, ν, q̂) =
2n∑
j=1

|μν
j |

(
1 + r|μ

ν
j |

1− r|μ
ν
j |

)
|Qj(ν, q̂)|2

with

Q(ν, q̂) = |t|−1/2Z(ν, z) = U(ν)∗ · q̂
where U(ν) is the unitary matrix which diagonalizes the scalar valued Levi form in
the normal direction ν. For u ∈ R, let

(58) Λ(u) = |u|
(
1 + r|u|

1− r|u|

)
.

As a generalization of (7), we have

(59) A(r, ν, q̂) =

2n∑
j=1

Λ(μj)|Qj(ν, q̂)|2 = q̂∗ · Λ(Aν) · q̂

where Aν is the Hessian matrix of Φ(z, z) · ν. Here Λ(Aν) is computed by replacing

|u| by
√
A2

ν in (58) and where
(
I − r

√
A2

ν

)−1

is the matrix inverse of I − r
√

A2
ν .

Furthermore, r
√

A2
ν is defined as exp

(
ln r

√
A2

ν

)
. Note that since all the eigenvalues

of Aν are real and bounded away from zero, the (operator) norm of the matrix r
√

A2
ν ,

for 0 ≤ r ≤ 1/2, is less than one since ln r < 0, guaranteeing the existence of the

inverse of I− r
√

A2
ν . For this analysis to work, we need to know the map ν →

√
A2

ν

is analytic in ν, established in Lemma 10.2.

Lemma 10.2. The map ν →
√

A2
ν is analytic for ν ∈ Sm−1.
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Proof. Observe that the matrix X = A2
ν is a Hermitian symmetric matrix with

positive eigenvalues which are contained in a compact interval, say [c0, R] ⊂ R with

R > c0 > 0, for all ν ∈ Sm−1. So consider the power series for
√
X about X = RI:

√
X =

∞∑
n=0

an[X −RI]n

which has radius of convergence R. Since the open disc centered at x = R of radius
R contains all the eigenvalues of A2

ν in its interior, the following series converges
uniformly in ν: √

A2
ν =

∞∑
n=0

an[A
2
ν −RI]n.

This series is clearly analytic in ν ∈ Sm−1. �

Proof of Lemma 10.1. The expression for A given in (59) and the discussion fol-
lowing shows that

X(r, ν, q̂) :=

[
∂

∂ν1
{A(r, νt, q̂)} − iI

]−1

is a smooth matrix on {0 < r ≤ 1/2} × {ν ∈ Sm−1} with X(r, ν, q̂) → 0 as

r → 0 (due to a factor of ln r in the denominator). Moreover, since dru

du = ru ln r,

differentiation of A(r, νt, q̂), X(r, ν, q̂), B(r, νt), or det([r−Āν ]K,J ) produces a term
of the same size with a possible additional ln r term. However, from (57), there
is always a rc0−1 term, and rc0−1| ln r|N is integrable at 0 for any power N since
c0 > 0.

Now view the set {ν ∈ Sm−1; |ν1| ≤ 1/2} as the graph over the set

{ν = (ν1, ν
′); |ν1| ≤ 1/2; ν′ ∈ Sm−2}.

We use integration by parts for the integral over |ν1| ≤ 1/2 of (55) as follows:∫ ν1=1/2

ν1=−1/2

(νt)I2(∇z,z̄A(r, νt, q̂))I
′
1(∇2

z,z̄A(r, νt, q̂))I
′′
1

(A(r, νt, q̂)− iν1)2n+m−1+|I′1|+|I′′1 |+|I2|
det([r−Āν ]K,J)B(r, νt)

r
dν1

=

∫ ν1=1/2

ν1=−1/2

∂

∂ν1

{
−(2n+m+ |I ′1|+ |I ′′1 |+ |I2| − 2)−1

(A(r, νt, q̂)− iν1)2n+m+|I′1|+|I′′1 |+|I2|−2

}

× (νt)I2(∇z,z̄A(r, νt, q̂))I
′
1(∇2

z,z̄A(r, νt, q̂))I
′′
1 X(r, νt, q̂) det([r−Āν ]K,J)B(r, νt)

r
dν1

= −
∫ ν1=1/2

ν1=−1/2

−(2n+m+ |I ′1|+ |I ′′1 |+ |I2| − 2)−1

(A(r, νt, q̂)− iν1)2n+m+|I′1|+|I′′1 |+|I2|−2

× ∂

∂ν1

{
(νt)I2(∇z,z̄A(r, νt, q̂))I

′
1(∇2

z,z̄A(r, νt, q̂))I
′′
1 X(r, νt, q̂) det([r−Āν ]K,J )B(r, νt)

r

}
dν1

+Boundary Terms at |ν1| = 1/2.

The power of (A(r, νt, q̂) − iν1) in the denominator has been reduced by one. As
discussed above and analogous to (57), we have

∣∣∣∣ ∂

∂ν1

{
X(r, νt, q̂) det([r−Āν ]K,J )B(r, νt)(νt)I2(∇z,z̄A(r, νt, q̂))I

′
1(∇2

z,z̄A(r, νt, q̂))I
′′
1

r

} ∣∣∣∣
≤ C| ln r|rc0−1
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which is integrable in 0 ≤ r ≤ 1/2. The boundary terms are also controlled by a
similar estimate.

We continue integrating by parts in ν1 until we reduce the fractional expression
involving (A(r, νt, q̂)− iν1) to a log-term, to obtain:

∫ ν1=1/2

ν1=−1/2

(νt)I2(∇z,z̄A(r, νt, q̂))I
′
1(∇2

z,z̄A(r, νt, q̂))I
′′
1

(A(r, νt, q̂)− iν1)2n+m−1+|I′
1|+|I′′

1 |+|I2|
det([r−Āν ]K,J )B(r, νt)

r
dν1

= cn,m,I′
1,I

′′
1 ,I2

∫ ν1=1/2

ν1=−1/2

ln
[
A(r, νt, q̂)− iν1

]

× E[X(r, νt, q̂), det([r−Āν ]K,J ), B(r, νt), A(r, νt, q̂), I ′1, I
′′
1 , I2]

r
dν1

+Boundary Terms at |ν1| = 1/2

where cn,m,I′
1,I

′′
1 ,I2 is a constant depending only on n,m, I ′1, I

′′
1 , I2; ln is the princi-

pal branch of the logarithm defined on the right half-plane (note A(r, νt, q̂) > 0);

and the function E[X(r, νt, q̂), det([r−Āν ]K,J ), B(r, νt), A(r, νt, q̂), I ′1, I
′′
1 , I2] is an

expression involve a sum of products of ν1-derivatives of X(r, νt, q̂), det([r−Āν ]K,J),
and B(r, νt) where the total number of derivatives is 2n+m+ |I ′1|+ |I ′′1 |+ |I2| − 1.
Note that | ln [A(r, νt, q̂)− iν1] | is integrable in ν1 uniformly in the other variables
ν′ ∈ Sm−2 and 0 ≤ r ≤ 1/2. In addition

∣∣∣E [X(r, νt, q̂), B(r, νt)]

r

∣∣∣ ≤ C| ln r|2n+m+|I′
1|+|I′′

1 |+|I2|−1rc0−1

which is also integrable ν′ ∈ Sm−2 and 0 ≤ r ≤ 1/2. Similar estimates hold for
the boundary terms. This establishes (56) and completes the proof of Lemma 10.1.
This also concludes the proof of Theorem 4.1 and hence establishes Theorem 2.1
when |t| ≥ |z|2. �

11. The |z|2 ≥ |t| case, q �= n

To complete the proof of Theorem 2.1, we have left to check the case when
|z|2 ≥ |t|. As before, we break the integral up into two cases: 0 < r ≤ 1

2 and
1
2 < r ≤ 1.

11.1. The case 1
2 < r ≤ 1. As before, we start with the harder case. Fortunately,

though, the bulk of the preliminary computations still hold. We take (41) as our
starting point. The differences between the |t| and |z|2 dominant cases, though, is
that in the manipulations leading to (41) we do not want to factor |t| out of the

integral and replace z by q̂. We also worry about the Ct((q̂, ¯̂q)
2j+|I′

1| term which

is now a C(z, z̄)2j+|I′
1| term. We will use size estimates and ignore completely the

(uniformly bounded) ν terms. Thus, (41) simplifies to

(60) |Typical Term| ≤ C(z, z̄)2j+|I′
1|

(s|z|2)2n+m−1+j+|I′
1|+|I′′

1 |+|I2|s
2Kj,I′1,I′′1

−(j+|I′
1|+|I′′

1 |)
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and we estimate

∫ ∞

s=3

∫
ν∈Sm−1

C(z, z̄)2j+|I′
1|

(s|z|2)2n+m−1+j+|I′
1|+|I′′

1 |+|I2|s
2Kj,I′1,I′′1

−(j+|I′
1|+|I′′

1 |) dν ds

≤ Cj,I′
1,I

′′
1 ,I2

|z|2j+|I′
1|

|z|2(2n+m−1+j+|I′
1|+|I′′

1 |+|I2|)
= Cj,I′

1,I
′′
1 ,I2

1

|z|2(2n+m−1+ 1
2 〈I〉)

.

Since 〈I〉 = |I ′1| + 2|I ′′1 | + 2|I2|, this establishes the estimate in Theorem 2.1 for
this term. The remainder term (46) has a similarly straightforward adaptation and
estimate.

11.2. The case 0 < r ≤ 1
2 . The estimates in this case will also follow from size

estimates. We established the key estimate on B(r, ν) in (57). Moreover, since the
eigenvalues for ν ∈ Sm−1 are bounded away from zero (say by c), we have

1

1− ru
≤ 1

1− (1/2)c
≤ C.

It therefore follows that for j = 0, 1, 2

|∇j
z,z̄A(r, ν, z)| ∼ C|z|2−j .

Consequently, we ignore the t-term and estimate (8) directly by

|NI′
1,I

′′
1 ,I2(z, t)| ≤ CI′

1,I
′′
1 ,I2

∫ 1
2

r=0

∫
ν∈Sm−1

rc0−1 |z||I′
1|dν dr

|z|2(2n+m−1+|I′
1|+|I′′

1 |+|I2|)

=
CI′

1,I
′′
1 ,I2

|z|2(2n+m−1+ 1
2 〈I〉)

.

This establishes the desired estimate in the case when |z|2 ≥ |t| and hence concludes
the proof of Theorem 2.1.

12. The case q = n

The techniques that prove the estimates in the q �= n case are robust enough
to work in the q = n case, as well. However, the non-triviality of ker�b changes
for the formula for NK(z, t), and in this section, we sketch the argument for the
I = ∅ case, which is when there are no derivatives. We also assume, without loss
of generality, that the set of positive indices P = {1, 2, . . . , n}.

We computed the relative solution to �b in the case q = n given by
∫ ∞
0

e−s�b(I−
Sn) ds in [BR22]. Following the notation of [BR22], for each q-tuple L ∈ Iq, we set

ΓL = {α ∈ Sm−1 : μα
� > 0 for all 	 ∈ L and μα

� < 0 for all 	 �∈ L}.
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If L ∈ In, then ΓL = ∅, unless L = P , in which case ΓP = Sm−1. Therefore, from
[BR22, Theorem 2.2, Part 3], if K ∈ In, then

NK(z, t) = Kn,m

[ ∑
L∈In,L
=P

∫
ν∈Sm−1

det(Ū(ν)K,L) dZ̄(z, ν)
L

(61)

×
∫ 1

r=0

BL(r, ν)

(A(r, ν, z)− iν · t)2n+m−1

dr dν

r

+

∫
ν∈Sm−1

det(Ū(ν)K,P ) dZ̄(z, ν)P

(62)

×
∫ 1

r=0

[
BP (r, ν)

(A(r, ν, z)− iν · t)2n+m−1
− | detAν |

(A(0, ν, z)− iν · t)2n+m−1

]
dr dν

r

]
.

12.1. The case 1/2 < r < 1. As above, we split up the r-integral into 0 < r ≤ 1/2
and 1/2 < r < 1. The challenge is in the region when 1/2 < r < 1 which is where
we concentrate our efforts. In this case, the first fraction of the integrand in (62)
can be combined with the terms in (61) so that the sum can range over all L ∈ In
in (61). After factoring out |t| and rotating coordinates so that ν · t/|t| = ν1, we
set q̂ = z

|t|1/2 and rewrite the integral over 1/2 ≤ r ≤ 1 as follows:

|t|2n+m−1N1
K

=
∑
L∈In

∫
ν∈Sm−1

det(Ū(νt)K,L) dZ̄(q̂, νt)
L

∫ 1

r=1/2

BL(r, νt)

(A(r, νt, q̂)− iν1)2n+m−1

dr dν

r

(63)

−
∫
ν∈Sm−1

det(Ū(νt)K,P ) dZ̄(q̂, νt)
P

∫ 1

r=1/2

| detAνt
|

(A(0, νt, q̂)− iν1)2n+m−1

dr dν

r

(64)

and where (as above) νt = M−1
t (ν) and Mt is an orthogonal transformation on Rm

with Mt(t/|t|) = e1. The analysis of (63) is precisely the same as we carried out in
Sections 3–11. Thus we focus on (64). We show the following

Proposition 12.1. Let
(65)

N2
K(q̂, t)=

∫
ν∈Sm−1

det(Ū(νt)K,P )dZ̄(q̂, νt)
P

∫ 1

r=1/2

| detAνt
|

(A(0, νt, q̂)− iν1)2n+m−1

drdν

r
.

Then there are positive constants c0 and C0 such that |N2
K(q̂, t)| ≤ C0 for all |q̂| ≤

c0.

Remark 12.2. Note that the case |q̂| > c0 falls into the |z| dominant case which is
much easier to handle.

We devote the remainder of this section to proving this proposition. To prove
the proposition, we need the following analyticity lemma.

Lemma 12.3. The following functions are analytic as a function of ν ∈ Sm−1:

• ν → | det(Aν)|
• ν → A(0, ν, q̂) =

∑2n
j=1 |μν

j ||q̂νj |2
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• ν → det(Ū(ν)K,P ) dZ̄(q̂, ν)P =
∑

J∈In
det(Ū(ν)K,P ) det[U(ν)P,J ]

T dz̄J

Proof. For the first bullet, note that Aν has n positive and n negative eigenvalues
and so | detAν | = (−1)n detAν . So the expression in the first bullet is analytic
since Aν is linear in ν.

For the second bullet, note that Aν and |Aν | =
√
A2

ν have the same eigenvectors.
Therefore

2n∑
j=1

|μν
j ||q̂νj |2 =

2n∑
j=1

|μν
j ||Qj(ν, q̂)|2 = q̂∗U(ν) · |Dν | · U(ν)∗q̂ = q̂∗

√
A2

ν q̂(66)

which is analytic in ν. Here, Dν is the diagonal matrix with the eigenvalues of
Aν as its diagonal entriesl, and

√
is the principal branch of the square root of a

positive definite Hermitian symmetric matrix.
Showing the expression in the third bullet is analytic in ν is equivalent to showing

that the expression

(67) det(Ū(ν)K,P ) det[U(ν)P,J ]
T

is real analytic in ν ∈ Sm−1 for each J,K in In.
We shall need the standard branch of the function arctan z, which is holomorphic

on C \ {z = iy : x = 0 and |y| ≥ 1}. Let I2n be the 2n × 2n identity matrix and
consider the sequence

1

π

(
arctan(nAν) +

π

2
I2n

)
for j = 1, 2, . . . . Since the eigenvalues of Aν are bounded away from zero, each of
these matrices in this sequence is analytic in ν ∈ Sm−1 and is diagonalized by U(ν)
and U(ν)∗. Furthermore, this sequence converges uniformly in ν as j → ∞ to a
matrix Aν

0 , which is analytic in ν with n eigenvalues equal to 1 and n eigenvalues
equal to −1. Also Aν

0 is diagonalized by U(ν) and [U(ν)]∗.
Now consider

Ãν
0 =

1

2
(Aν

0 + I).

Ãν
0 is analytic in ν and has n eigenvalues equal to 1 and n eigenvalues equal to zero.

It is also diagonalized by U(ν) and [U(ν)]∗. Therefore,

[U(ν)]∗Ãν
0U(ν) = D0, where

D0 =

(
In 0n
0n 0n

)
and where In is the n×n identity matrix and 0n is the n×n zero matrix. Therefore

Ãν
0 = Ū(ν)D0[U(ν)]T .

Taking determinants, we have

det [Ãν
0 ]KJ =

∑
L,L′

det(Ū(ν)K,L) det(D
0
L,L′) det([U(ν)L′,J ]

T ).

Given that D0 is diagonal, the only nonzero contributions to this sum occur when
L = L′ = P , which is the set of positive indices = 1, . . . , n. We obtain

det [Ãν
0 ]KJ = det(Ū(ν)K,P ) det([U(ν)P,J ]

T ).

Since the left side is analytic in ν, so is the right side and this establishes the
analyticity of (67) and thus concludes the proof of the lemma. �
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Proof of Proposition 12.1. Note that the r-integral in (65) can be computed exactly
(as ln(2)), so we need only examine the ν-integral. Clearly, the integral over |ν1| ≥
1/2 clearly bounded uniformly in q and t. So we restrict attention to the region
{ν ∈ Sm−1; |ν1| ≤ 1/2}. The key is to examine the integral over ν1-slices of
this region. Without loss of generality, let us assume we are on a region, V , of
the sphere where νm = h(ν1, ν

′) can be written as an analytic function of the
other variables (ν1, ν

′) with ν′ = (ν2, . . . , νm−1). We may further assume that the
“cap” V is large enough so that projection of V onto νm = 0 contains the disk
{(ν1, ν′) ∈ Rm−1 : |ν1| ≤ 1

2 and |ν′| ≤ 1
2}. We also write dν = g(ν1, ν

′)dν1dν
′

where g is an analytic function on V . Let

G(q̂, t, ν1, ν
′) = det(Ū ν̃t

K,P ) dZ̄(q̂, ν̃t)
P | detAν̃t

| g(ν1, ν′)
where ν̃t = M−1

t (ν1, ν
′, h(ν1, ν

′)).

From Lemma 12.3, G(q̂, t, ν1, ν
′) is analytic in ν1, ν

′ and uniformly bounded in
ν ∈ V ⊂ Sm−1, q̂, and t. We need to show that there are positive constants c0 and
C0 so that

(68)
∣∣∣ ∫

|ν1|≤1/2

G(q̂, t, ν1, ν
′) dν1

(A(0, ν̃t, q̂)− iν1)2n+m−1

∣∣∣ ≤ C0 for all |ν′| ≤ 1

2
and |q̂| ≤ c0.

We shall proceed by using Cauchy’s Theorem to bump the contour of inte-
gration around the potential singularity at ν1 = 0. First, let δ0 > 0 be chosen
small enough to that G(q̂, t, ν1, ν

′) and A(0, ν̃t, q̂) analytically continue from {ν1 ∈
R; |ν1| ≤ 1/2} to a neighborhood of the rectangle Ṽ1 = {ζ1 = ν1 + iη1 ∈ C; |ν1| ≤
1/2 and 0 ≤ η1 ≤ δ0} in the upper half plane and for all (ν1, ν

′, h(ν1, ν
′)) ∈ V . Also

note from (66) that A(0, ν, q̂) = q̂∗
√
A2

ν q̂ ≥ 0 for ν ∈ V . In addition, the analytic

extension of A(0, ν, q̂) to Ṽ1 is the function

A(0, ν̃t(ζ1), q̂) := A(0,M−1
t (ζ1, ν

′, h(ζ1, νt), q̂).

Furthermore, its ζ1 derivative is uniformly bounded by C̃|q̂|2 for ζ1 ∈ Ṽ1 and ν ∈ V

where C̃ > 0 is a uniform constant. The following estimate now follows:

ReA(0, ν̃t(ζ1), q̂) ≥ −C̃|q̂|2η1 for ζ1 = ν1 + iη1 ∈ Ṽ1.

This inequality implies

|A(0, ν̃t(ζ1), q̂)− iζ1| ≥ (1− C̃|q̂|2)η1 for ζ1 = ν1 + iη1 ∈ Ṽ1.

Let γ1 be the upper three sides of the boundary of the rectangle of Ṽ1, i.e. the union
of the three line segments, respectively, from −1/2 to −1/2 + iδ; from −1/2 + iδ
to 1/2 + iδ, and from 1/2 + iδ to 1/2. The above inequality shows that there is a
constant c0 > 0 such that if |q̂| < c0, then

|A(0, ν̃t(ζ1), q̂)− iζ1| > 0 for ζ1 inside Ṽ1 and

|A(0, ν̃t(ζ1), q̂)− iζ1| ≥ c0 for ζ1 ∈ γ1 .

Now we can use Cauchy’s Theorem to deform the path of integration in (68) to γ1
and the proof of the estimate in (68) easily follows. This concludes the proof of the
proposition. �
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12.2. The cases 0 < r < 1/2 and |z|2 > |t|. The estimates of NK for the interval
0 < r < 1/2 follow the same arguments as given in Section 10. The extra term
arising from Sn in (62) eliminates the convergence issues at r = 0. Lemma 12.3
and the earlier analyticity lemmas show that all the components of the integrands
are analytic in ν. Since L �= P in the sum in (61), the numerator of its integrand
contains a positive power of r. In addition, the term in brackets [ ] in (62) vanishes
at r = 0, so both integrands are integrable in r near r = 0. Therefore, the same
integration by parts argument from Section 10 applies to reduce the power of the
denominator terms (down to a log-term) to prove the desired estimates.

The case when |z|2 > |t| is handled using the techniques of Section 11. This
completes the proof of Theorem 2.1.

13. Examples

Here, we record four examples with complex tangent dimension 2n ≥ 2 and
higher codimension m ≥ 2 in cases where the eigenvalues are always nonzero. These
examples piggy back on the following standard example in the case of 2n = 2 and
m = 2 originally computed in [BR13,BR20]:

Example 13.1. 2n = 2, m = 2, and q = 0. Consider Φ(z, z) = (φ1(z, z), φ2(z, z))
where

φ1(z, z) = 2Re(z1z̄2)

φ2(z, z) = |z1|2 − |z2|2.

The eigenvalues of the Aν (the Hessian of Φ(z, z) · ν) are +1 and −1. We use
formula (3) for NL with L = ∅ and so ε1 = −1 and ε2 = +1. Since m = 2, Sm−1

is just the unit circle parameterized by ν = (cos θ, sin θ), 0 ≤ θ ≤ 2π and dν = dθ.
We rotate θ coordinates so that ν · t becomes |t| sin θ. From (3), we obtain

N(z, t) =
42

2(2π)4

∫ 1

0

∫ 2π

0

r

(1− r)2
2! dθ[(

1+r
1−r

)
|z|2 − i|t| sin θ

]3 drr .

We let s = r+1
1−r , ds =

2 dr
(1−r)2 to obtain

N(z, t) =
42

2(2π)4

∫ 2π

0

∫ ∞

1

ds dθ

[s|z|2 − i|t| sin θ]3

=
4

(2π)4
1

|z|2|t|2
∫ 2π

0

dθ

[|q̂|2 − i sin θ]2
with q̂ = z/|t|1/2

=
1

2π3

1

[|z|4 + |t|2]3/2 ≈ 1

(|z|+ |t|1/2)6 ≈ 1

ρ(z, t)6

as indicated by Theorem 2.1.

Example 13.2. 2n = 2 and m = 3. Consider Φ(z, z) = (φ1(z, z), φ2(z, z), φ3(z, z))
where

φ1(z, z) = 2Re(z1z̄2)

φ2(z, z) = |z1|2 − |z2|2

φ3(z, z) = 2 Im(z1z̄2).
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Let ν = (ν1, ν2, ν3) be a unit vector in R3. Then

Aν =

(
ν2 ν1 − iν3

ν1 + iν3 −ν2

)
.

The characteristic equation for the eigenvalues is det(Aν −λI) = λ2−|ν|2 = λ2− 1
with eigenvalues λ = +1, −1.

From (3) with 2n = 2 and m = 3, we obtain

N(z, t) =
423!

2(2π)4

∫ 1

0

∫
ν∈S2

r

(1− r)2
dν dr[(

1+r
1−r

)
|z|2 − i|t|ν1

]4 drr .

We now let s = r+1
r−1 as before and let x = ν1. Using (48), we write dν = dx dφ

where φ is the angular measure of the S1 copy of the equator of S2. Since φ does
not appear in the integrand, its integral provides a factor of 2π. We obtain

N(z, t) =
423!

4(2π)4

∫ ∞

1

∫ 1

x=−1

2π dx ds

[s|z|2 − i|t|x]4

=
2

π3

1

(|z|4 + |t|2)2 ≈ 1

(|z|+ |t|1/2)8 ≈ 1

ρ(z, t)8

as indicated by Theorem 2.1.

Example 13.3. 2n = 4, m = 4, q = 0. Consider

Φ(z, z) = (φ1(z, z), φ2(z, z), φ3(z, z), φ4(z, z))

where

φ1(z, z) = 2Re(z1z̄2) + 2Re(z3z̄4)

φ2(z, z) = 2Re(z2z̄3)− 2Re(z1z̄4)

φ3(z, z) = 2 Im(z1z̄2)− 2 Im(z3z̄4)

φ4(z, z) = −2 Im(z2z̄3) + 2 Im(z1z̄4).

Let ν = (ν1, ν2, ν3, ν4) be a unit vector in R4. Then

(69) Aν =

⎛
⎜⎜⎝

0 ν1 − iν3 0 −ν2 − iν4
ν1 + iν3 0 ν2 + iν4 0

0 ν2 − iν4 0 ν1 + iν3
−ν2 + iν4 0 ν1 − iν3 0

⎞
⎟⎟⎠ .

The characteristic polynomial (in λ) is the quadratic polynomial (λ2 − 1)2 with
eigenvalues +1,+1,−1,−1.

From (3) with 2n = 4 and m = 4, we obtain

N(z, t) =
446!

2(2π)8

∫ 1

0

∫
ν∈S3

r2

(1− r)4
dν[(

1+r
1−r

)
|z|2 − i|t|ν1

]7 drr .

We let q̂ = z/|t|1/2 and s = 1+r
1−r (as before) to obtain

N(z, t) =
446!

24(2π)8|t|7
∫ ∞

1

∫
ν∈S3

(s2 − 1) dν ds

(|q̂|2s− iν1)7
.
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Now we let x = ν1 and use (48) with m = 4 to write dν =
√
1− x2 dx dν′ where

dν′ is surface measure on S2 (the equator of S3). When ν′ is integrated out, this
provides a factor of 4π. We obtain

N(z, t) =
446!(4π)

24(2π)8|t|7
∫ ∞

1

∫ 1

x=−1

(s2 − 1)
√
1− x2 dx ds

(|q̂|2s− ix)7

=
15

2π6

1

(|z|4 + |t|2)7/2 ≈ 1

(|z|+ |t|1/2)14 ≈ 1

ρ(z, t)14

as indicated by Theorem 2.1.

Example 13.4. This is the same example as Example 13.3, except with q = 1
and K = {1}. The matrix Aν from (69) has associated eigensystem (with entries
written as pairs {v, λ)} where v is a unit eigenvector with eigenvalue λ is⎧⎪⎪⎨

⎪⎪⎩
{

1√
2

⎛
⎜⎜⎝

−1
−ν1 − iν3

0
ν2 − iν4

⎞
⎟⎟⎠ , 1

}
,

{
1√
2

⎛
⎜⎜⎝

0
ν2 + iν4

1
ν1 − iν3

⎞
⎟⎟⎠ , 1

}{
1√
2

⎛
⎜⎜⎝

1
−ν1 − iν3

0
ν2 − iν4

⎞
⎟⎟⎠ ,−1

}{
1√
2

⎛
⎜⎜⎝

0
ν2 + iν4

−1
ν1 − iν3

⎞
⎟⎟⎠ ,−1

}⎫⎪⎪⎬
⎪⎪⎭ .

We have

U(ν) =
(
vν1 vν2 vν3 vν4

)
=

1√
2

⎛
⎜⎜⎝

−1 0 1 0
−ν1 − iν3 ν2 + iν4 −ν1 − iν3 ν2 + iν4

0 1 0 −1
ν2 − iν4 ν1 − iν3 ν2 − iν4 ν1 − iν3

⎞
⎟⎟⎠

where

vν1 =
1√
2

⎛
⎜⎜⎝

−1
−ν1 − iν3

0
ν2 − iν4

⎞
⎟⎟⎠ ,

vν2 =
1√
2

⎛
⎜⎜⎝

0
ν2 + iν4

1
ν1 − iν3

⎞
⎟⎟⎠ ,

vν3 =
1√
2

⎛
⎜⎜⎝

1
−ν1 − iν3

0
ν2 − iν4

⎞
⎟⎟⎠ ,

vν4 =
1√
2

⎛
⎜⎜⎝

0
ν2 + iν4

−1
ν1 − iν3

⎞
⎟⎟⎠

so that

U(ν)∗AνU(ν) =

(
I2 0
0 −I2

)
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where I2 is the 2× 2 identity matrix.
Since |μν

j | = 1 for all j and ν ∈ Sm−1,

Aν(r, z) =

2n∑
j=1

|μν
j |

(
1 + r|μ

ν
j |

1− r|μ
ν
j |

)
|zνj |2 =

4∑
j=1

(
1 + r

1− r

)
|zνj |2 =

1 + r

1− r
|z|2.

Next,

2n∏
j=1

r(1/2)(1−ενj,L)|μν
j ||μν

j |
(1− r|μ

ν
j |)

=
1

(1− r)4

{
r L ∈ {1, 2}
r3 L ∈ {3, 4}

.

Next, we compute

dZ̄(ν, z) = U(ν)T · dz̄ =
1√
2

⎛
⎜⎜⎝
−1 −ν1 − iν3 0 ν2 − iν4
0 ν2 + iν4 1 ν1 − iν3
1 −ν1 − iν3 0 ν2 − iν4
0 ν2 + iν4 −1 ν1 − iν3

⎞
⎟⎟⎠

⎛
⎜⎜⎝
dz̄1
dz̄2
dz̄3
dz̄4

⎞
⎟⎟⎠ .

Next, dZ̄(ν, z) = U(ν)T · dz̄, then multiplying both sides by Ū(ν) where U(ν)T is
the transpose of U produces

Ū(ν) · dZ̄(z, ν) = Ū(ν) · U(ν)T · dz̄ = U(ν) · U(ν)∗ · dz̄ = dz̄.

Also, det(Ū(ν)K′,L) = Ū(ν)k′,�. From (3) and (4) and the computations in this
example,

N1(z, t)

= −K4,4

2

∫
ν∈S3

[
− dz̄1 − (ν1 + iν3) dz̄2 + (ν2 − iν4)dz̄4

)]

×
∫ 1

r=0

r

(1− r)4
dν

( 1+r
1−r |z|2 − iν · t)7

dr

r

+
K4,4

2

∫
ν∈S3

[
dz̄1 − (ν1 + iν3) dz̄2 + (ν2 − iν4) dz̄4

]

×
∫ 1

r=0

r3

(1− r)4
dν

( 1+r
1−r |z|2 − iν · t)7

dr

r

where K4,4 = 44(6!)
2(2π)8 . Reorganizing, we have

N1(z, t) =

[
K4,4

2

∫
ν∈S3

∫ 1

r=0

1 + r2

(1− r)4
1

( 1+r
1−r |z|2 − iν · t)7

dr dν

]
dz̄1(70)

+

[
K4,4

2

∫
ν∈S3

∫ 1

r=0

(ν1 + iν3)(1− r2)

(1− r)4
1

( 1+r
1−r |z|2 − iν · t)7

dr dν

]
dz̄2

−
[
K4,4

2

∫
ν∈S3

∫ 1

r=0

(ν2 − iν4)(1− r2)

(1− r)4
1

( 1+r
1−r |z|2 − iν · t)7

dr dν

]
dz̄4.

We observe that with q̂ = z/|t|1/2,∫ 1

0

1 + r2

(1− r)4( 1+r
1−r |q̂|2 + ia)7

dr =
−a2 + 6ia|q̂|2 + 25|q̂|4
240|q̂|6(ia+ |q̂|2)6
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and ∫ 1

0

1− r2

(1− r)4( 1+r
1−r |q̂|2 + ia)7

dr =
ia+ 6|q̂|2

60|q̂|4(ia+ |q̂|2)6 .

Let’s also observe the estimate in the special case that t = (|t|, 0, . . . , 0) and only
the dz̄1 component (since K = {1}) and compute

I =

∫
ν∈S3

∫ 1

r=0

1 + r2

(1− r)4
1

( 1+r
1−r |z|2 − iν · t)7

dr dν

=
1

|t|7
∫
ν∈S3

∫ 1

r=0

1 + r2

(1− r)4
1

( 1+r
1−r |q̂|2 − iν1)7

dr dν

=
1

240|q̂|6|t|7
∫
ν∈S3

−ν21 − 6iν1|q̂|2 + 25|q̂|4
(|q̂|2 − iν1)6

dν.

Integrating in spherical coordinates, we compute

I =
1

240|t|4|z|6
∫ π

0

∫ π

0

∫ 2π

0

− cos2 α1−6i cosα1|q̂|2+25|q̂|4
(|q̂|2 − i cosα1)6

sin2 α1 sinα2 dα3dα2dα1

=
π

120|t|4|z|6
∫ π

−π

− cos2 α1 − 6i cosα1|q̂|2 + 25|q̂|4
(|q̂|2 − i cosα1)6

sin2 α1 dα1.

The last integral follows from the fact that cosα1 and sin2 α1 are even functions.
If f(cosα1, sinα1) is the integrand, then∫ π

−π

f(cosα1, sinα1) dα1 =

∮
|z|=1

f
(z + 1

z

2
,
z − 1

z

2i

) 1

iz
dz.

If

g(z) = f
(z + 1

z

2
,
z − 1

z

2i

) 1

iz
then

g(z) = −4iz(−1 + z2)2(−100|q̂|4z2 + (1 + z2)2 + 12i|q̂|2(z + z3))

(2|q̂|2z − i(1 + z2))6

has poles at z = i(−|q̂|2 ±
√
|q̂|4 + 1). The pole at z = i(−|q̂|2 +

√
|q̂|4 + 1) occurs

inside the unit disk and is easily computed using Mathematica. In fact,

Res(g, i(−|q̂|2 +
√
|q̂|4 + 1)) = −5|q̂|6i(−2 + 5|q̂|4)

2(1 + |q̂|4) 9
2

.

In summary, the dz̄1 component of N1 in (70) is

I = −2πi
π

120|t|7
5i(−2 + 5|q̂|4)
2(1 + |q̂|4) 9

2

.

Similar calculations with t = (|t|, 0, 0, 0) show that the dz̄2 component of N1 in
(70) is

II =

∫
ν∈S3

∫ 1

r=0

(ν1 + iν3)(1− r2)

(1− r)4
1

( 1+r
1−r |z|2 − iν · t)7

dr dν =
2π2i

15|t|7
35|q̂|2

8(1 + |q̂|4) 9
2

,

and the dz̄4 component of N1 in (70) is

III =

∫
ν∈S3

∫ 1

r=0

(ν2 − iν4)(1− r2)

(1− r)4
1

( 1+r
1−r |z|2 − iν · t)7

dr dν = 0.
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In summary, we have computed that

N1

(
z, (|t|, 0, 0, 0)

)
=

15

π6

1

(|t|2 + |z|4) 7
2

[
−2|t|2 + 5|z|4
2(|t|2 + |z|4) dz̄1 + i

7|z|2|t|
(|t|2 + |z|4) dz̄2

]
.

This expression has norm ≈ ρ(z, t)−14 as indicated by Theorem 2.1.

Example 13.5. This is a modification of Example 13.3 where the eigenvalues of Aν

do not depend analytically on ν. Let Φ(z, z) = (φ1(z, z), φ2(z, z), φ3(z, z), φ4(z, z))
where

φ1(z, z) = 2Re(z1z̄2) + 2Re(z3z̄4)

φ2(z, z) = 2Re(z2z̄3)− 2Re(z1z̄4)

φ3(z, z) = 2 Im(z1z̄2)− 2 Im(z3z̄4)

φ4(z, z) = −2 Im(z2z̄3) + 2(1 + b) Im(z1z̄4)

where b is a small real number. Let ν = (ν1, ν2, ν3, ν4) be a unit vector in R4. Then,
it is easy to compute the complex Hessian of Φν = Φ(z, z) · ν:

Aν = HessianΦν =

⎛
⎜⎜⎝

0 ν1 − iν3 0 −ν2 − i(1 + b)ν4
ν1 + iν3 0 ν2 + iν4 0

0 ν2 − iν4 0 ν1 + iν3
−ν2 + i(1 + b)ν4 0 ν1 − iν3 0

⎞
⎟⎟⎠ .

Note that when b = 0, then this is Example 13.3.
The characteristic polynomial (in λ) turns out to be a quadratic polynomial in

λ2 so the eigenvalues (though messy) can be computed as μν
1 > 0, μν

2 > 0, μν
3 <

0, μν
4 < 0 where:

μν
1 =

√
Λ+, μν

2 =
√
Λ−, μν

3 = −
√
Λ+, μν

4 = −
√
Λ−

and where

Λ± = ν21 + ν22 + ν23 + (1/2)(b2 + 2b+ 2)ν24

± |ν4||b|
(
(b+ 2)2ν24

4
+ ν21 + ν23

)1/2

.

Note that when b = 0, μν
1 = μν

2 = 1 and μν
3 = μν

4 = −1 as in Example 13.3. For
b nonzero, but small, these eigenvalues are not smooth at ν4 = 0 and ν1, ν3 �= 0 due
to the presence of |ν4|.
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