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CANONICAL EQUIVARIANT COHOMOLOGY CLASSES

GENERATING ZETA VALUES OF TOTALLY REAL FIELDS

KENICHI BANNAI, KEI HAGIHARA, KAZUKI YAMADA, AND SHUJI YAMAMOTO

Abstract. It is known that the special values at nonpositive integers of a
Dirichlet L-function may be expressed using the generalized Bernoulli num-
bers, which are defined by a generating function. The purpose of this article
is to consider the generalization of this classical result to the case of Hecke L-
functions of totally real fields. Hecke L-functions may be expressed canonically
as a finite sum of zeta functions of Lerch type. By combining the non-canonical
multivariable generating functions constructed by Shintani [J. Fac. Sci. Univ.
Tokyo Sect. IA Math. 23 (1976), pp. 393–417], we newly construct a canonical
class, which we call the Shintani generating class, in the equivariant cohomol-
ogy of an algebraic torus associated to the totally real field. Our main result
states that the specializations at torsion points of the derivatives of the Shin-
tani generating class give values at nonpositive integers of the zeta functions
of Lerch type. This result gives the insight that the correct framework in the
higher dimensional case is to consider higher equivariant cohomology classes
instead of functions.
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1. Introduction

It is classically known that the special values at nonpositive integers of a Dirich-
let L-function may be expressed using the generalized Bernoulli numbers, which are
defined by a rational generating function. This simple but significant result is the
basis of the deep connection between the special values of Dirichlet L-functions and
important arithmetic invariants pertaining to the abelian extensions of Q. In his
ground-breaking article [27], Shintani generalized this result to the case of Hecke
L-functions of totally real fields. His approach consists of two steps: The decom-
position of a Hecke L-function into a finite sum of zeta functions – the Shintani
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zeta functions – associated to certain cones, and the construction of a multivari-
able generating function for special values of each Shintani zeta function. Although
this method attained certain success, including the construction by Barsky [4] and
Cassou-Noguès [8] of the p-adic L-functions for totally real fields, the decomposi-
tion step above requires a choice of cones, and the resulting generating function
is non-canonical. A canonical object behind these generating functions, which is
independent of this choice of cones, remained to be found.

The purpose of this article is to construct geometrically such a canonical ob-
ject, which we call the Shintani generating class, through the combination of the
following three ideas. We let g be the degree of the totally real field. First, the
Hecke L-functions are expressed canonically in terms of the zeta functions of Lerch
type (cf. Definition 1.2), or simply Lerch zeta functions, which are defined for finite
additive characters parameterized by torsion points of a certain algebraic torus of
dimension g, originally considered by Katz [21], associated to the totally real field.
Second, via a Čech resolution, the multivariable generating functions constructed
by Shintani for various cones may beautifully be combined to form the Shintani gen-
erating class, a canonical cohomology class in the (g−1)-st cohomology group of the
algebraic torus minus the identity. Third, the class descends into the equivariant
cohomology with respect to the action of totally positive units, which successfully
allows for nontrivial specializations of the class and its derivatives at torsion points.
Our main result, Theorem 5.1, states that the specializations at nontrivial torsion
points of the derivatives of the Shintani generating class give values at nonpositive
integers of the Lerch zeta functions associated to the totally real field.

The classical result for Q that we generalize, viewed through our emphasis on
Lerch zeta functions, is as follows. The Dirichlet L-function may canonically be
expressed as a finite linear combination of the classical Lerch zeta functions, defined
by the series

(1) L(ξ, s) :=
∞∑

n=1

ξ(n)n−s

for finite characters ξ ∈ HomZ(Z,C
×). The series (1) converges for any s ∈ C

such that Re(s) > 1 and has an analytic continuation to the whole complex plane,
holomorphic if ξ �= 1. When ξ = 1, the function L(1, s) coincides with the Riemann
zeta function ζ(s), hence has a simple pole at s = 1. A crucial property of the
Lerch zeta functions is that it has a canonical generating function G(t), which
single-handedly captures for all nontrivial finite characters ξ the values of Lerch
zeta functions at nonpositive integers.

Let Gm := SpecZ[t, t−1] be the multiplicative group, and let G(t) be the rational
function

G(t) := t

1− t
∈ Γ

(
U,OGm

)
,

where U := Gm \ {1}. We denote by ∂ the algebraic differential operator ∂ := t d
dt ,

referred to as the “magic stick” in [20, 1.1.7]. Note that any ξ ∈ Gm(C) corresponds
to an additive character ξ : Z → C× given by ξ(n) := ξn for any n ∈ Z. Then we
have the following.

Theorem 1.1. For any nontrivial torsion point ξ of Gm and k ∈ N, we have

L(ξ,−k) = ∂kG(t)
∣∣
t=ξ

∈ Q(ξ).
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In particular, the values L(ξ,−k) for any k ∈ N are all algebraic.

The purpose of this article is to generalize the above result to the case of totally
real fields. Let F be a totally real field of degree g, and let OF be its ring of integers.
We denote by OF+ the set of totally positive integers and by Δ := O×

F+ the set
of totally positive units of F . Let T := HomZ(OF ,Gm) be an algebraic torus
defined over Z which represents the functor associating to any Z-algebra R the
group T(R) = HomZ(OF , R

×). Such a torus was used by Katz [21] to reinterpret
the construction by Barsky [4] and Cassou-Noguès [8] of the p-adic L-function of
totally real fields. For the case F = Q, we have T = HomZ(Z,Gm) = Gm, hence
T is a natural generalization of the multiplicative group. For an additive character
ξ : OF → R× and ε ∈ Δ, we let ξε be the character defined by ξε(α) := ξ(εα) for
any α ∈ OF . This gives an action of Δ on the set of additive characters T(R).

We consider the following zeta function, which we regard as the generalization
of the classical Lerch zeta function to the case of totally real fields.

Definition 1.2. For any torsion point ξ ∈ T(C) = HomZ(OF ,C
×), we define the

zeta function of Lerch type, or simply the Lerch zeta function, by

(2) L(ξΔ, s) :=
∑

α∈Δξ\OF+

ξ(α)N(α)−s,

where N(α) is the norm of α, and Δξ ⊂ Δ is the isotropic subgroup of ξ, i.e. the
subgroup consisting of ε ∈ Δ such that ξε = ξ.

The notation L(ξΔ, s) is used since (2) depends only on the Δ-orbit of ξ. This
series is known to converge for Re(s) > 1, and may be continued analytically to
the whole complex plane. When the narrow class number of F is one, the Hecke
L-function of a finite Hecke character of F may canonically be expressed as a finite
linear sum of L(ξΔ, s) for suitable finite characters ξ (see Proposition 2.3).

The action of Δ on additive characters gives a right action of Δ on T. The
structure sheaf OT on T has a natural Δ-equivariant structure in the sense of
Definition 3.2. Let U := T \ {1}. Our main results are as follows.

Theorem 1.3.

(1) (Proposition 4.2) There exists a canonical class

G ∈ Hg−1(U/Δ,OT),

where Hg−1(U/Δ,OT) is the equivariant cohomology of U with coefficients
in OT (see §3 for the precise definition.)

(2) (Theorem 5.1) For any nontrivial torsion point ξ of T, we have a canonical
isomorphism

Hg−1(ξ/Δξ,Oξ) ∼= Q(ξ).

Through this isomorphism, for any integer k ≥ 0, we have

L(ξΔ,−k) = ∂kG(ξ) ∈ Q(ξ),

where ∂ : Hg−1(U/Δ,OT) → Hg−1(U/Δ,OT) is a certain differential op-
erator given in (19), and ∂kG(ξ) is the image of ∂kG with respect to the
specialization map Hg−1(U/Δ,OT) → Hg−1(ξ/Δξ,Oξ) induced by the equi-
variant morphism ξ → U .
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We refer to the class G as the Shintani generating class. If F = Q, then we
have Δ = {1}, and the class G is simply the rational function G(t) = t/(1 − t) ∈
H0(U,OGm

) = Γ(U,OGm
). Thus Theorem 1.3 (2) coincides with Theorem 1.1 in

this case. For the case F = Q and also for the case of imaginary quadratic fields
(see for example [11,12]), canonical algebraic generating functions of special values
of Hecke L-functions play a crucial role in relating the special values of Hecke L-
functions to arithmetic invariants. However, up until now, the discovery of such
a canonical generating function has been elusive in the higher dimensional cases.
Our result suggests that the correct framework in the higher dimensional case is to
consider equivariant cohomology classes instead of functions. It is noteworthy that
such a framework is also adopted by Kings–Sprang [22] for the study of the critical
Hecke L-values of totally imaginary fields, which is a higher dimensional extension
of the work of Bannai–Kobayashi [1].

We remark that there are other approaches to L-values of totally real fields via co-
homology classes, by Sczech [26], Solomon [28,29], Hu–Solomon [17], Hill [16], Spiess
[30], Charollois–Dasgupta [9], Charollois–Dasgupta–Greenberg [10], and Bergeron–
Charollois–Garcia [6]. They mainly study certain group cocycles on GLn(Q) called
the Eisenstein cocycles or the Shintani cocycles, while we stress a more algebro-
geometric viewpoint by treating the geometric object T and equivariant sheaf co-
homology classes. We also note that Bekki [7] studies L-values of general number
fields by incorporating the ideas of both the above-mentioned works and this article.

As another related result, the relation of special values of Hecke L-functions
of totally real fields to the topological polylogarithm on a torus was studied by
Beilinson–Kings–Levin [5]. The polylogarithms for general commutative group
schemes were constructed by Huber–Kings [18]. Our discovery of the Shintani
generating class arose from our attempt to explicitly describe various realizations
of the Δ-equivariant version of the polylogarithm for the algebraic torus T. In
subsequent research, we will explore the arithmetic implications of our insight (see
for example [2]).

The content of this article is as follows. In §2, we will introduce the Lerch zeta
function L(ξΔ, s) and show that this function may be expressed non-canonically
as a linear sum of Shintani zeta functions. We will then review the multivariable
generating function constructed by Shintani of the special values of Shintani zeta
functions. In §3, we will define the equivariant cohomology of a scheme with an
action of a group, and will construct the equivariant Čech complex C•(U/Δ,F )
which calculates the equivariant cohomology of U := T \ {1} with coefficients in
an equivariant coherent sheaf F on U . In §4, we will define in Proposition 4.2 the
Shintani generating class G, and in Lemma 4.6 give the definition of the derivatives.
Finally in §5, we will give the proof of our main theorem, Theorem 5.1, which
coincides with Theorem 1.3 (2).

2. Lerch Zeta Function

In this section, we first introduce the Lerch zeta function for totally real fields.
Then we will define the Shintani zeta function associated to a cone σ and a function
φ : OF → C which factors through OF /f for some nonzero ideal f ⊂ OF . We will
then describe the generating function of its values at nonpositive integers when φ
is a finite additive character.
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Let ξ ∈ HomZ(OF ,C
×) be a C-valued character on OF of finite order. As in

Definition 1.2 of §1, we define the Lerch zeta function for totally real fields by the
series

L(ξΔ, s) :=
∑

α∈Δξ\OF+

ξ(α)N(α)−s,

where Δξ := {ε ∈ Δ | ξε = ξ}, which may be continued analytically to the whole
complex plane.

Remark 2.1. Note that we have

L(ξΔ, s) =
∑

α∈Δ\OF+

∑
ε∈Δξ\Δ

ξ(εα)N(α)−s.

Even though ξ(α) is not well-defined for α ∈ Δ\OF+, the sum
∑

ε∈Δξ\Δ ξ(εα) is

well-defined for α ∈ Δ\OF+.

The importance of L(ξΔ, s) is in its relation to the Hecke L-functions of F . Let f
be a nonzero integral ideal of F . We denote by Cl+F (f) := If/P

+
f

the strict ray class
group modulo f of F , where If is the group of fractional ideals of F prime to f and

P+
f

:= {(α) | α ∈ F+, α ≡ 1mod× f}. A finite Hecke character of F of conductor f
is a character

χ : Cl+F (f) → C×.

By [24, Chapter VII (6.9) Proposition], there exists a unique character χfin: (OF /f)
×

→ C× associated to χ such that χ((α)) = χfin(α) for any α ∈ OF+ prime to f. In
particular, we have χfin(ε) = 1 for any ε ∈ Δ. Extending by zero, we regard χfin as
functions on OF /f and OF with values in C.

In what follows, we let T[f] := Hom(OF /f,Q
×
) ⊂ T(Q) be the set of f-torsion

points of T. We say that a character χ, χfin or ξ ∈ T[f] is primitive, if it does not
factor respectively through Cl+F (f

′), (OF /f
′)× or OF /f

′ for any integral ideal f′ �= f

such that f′|f. Then we have the following.

Lemma 2.2. For any ξ ∈ T[f], let

cχ(ξ) :=
1

N(f)

∑
β∈OF /f

χfin(β)ξ(−β).

Then we have

χfin(α) =
∑
ξ∈T[f]

cχ(ξ)ξ(α).

Moreover, if χfin is primitive, then we have cχ(ξ) = 0 for any non-primitive ξ.

Proof. The first statement follows from∑
ξ∈T[f]

cχ(ξ)ξ(α) =
1

N(f)

∑
β∈OF /f

χfin(β)

( ∑
ξ∈T[f]

ξ(α− β)

)
= χfin(α),

where the last equality follows from the fact that
∑

ξ∈T[f] ξ(α) = N(f) if α ≡ 0

(mod f) and
∑

ξ∈T[f] ξ(α) = 0 if α �≡ 0 (mod f). Next, suppose χfin is primitive,

and let f′ �= f be an integral ideal of F such that f′|f and ξ ∈ T[f′]. Since χfin is
primitive, it does not factor through OF /f

′, hence there exists an element γ ∈ OF
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prime to f such that γ ≡ 1 (mod f′) and χfin(γ) �= 1. Then since ξ ∈ T[f′], we have
ξ(γα) = ξ(α) for any α ∈ OF . This gives

cχ(ξ) =
1

N(f)

∑
β∈OF /f

χfin(β)ξ(−β)=
1

N(f)

∑
β∈OF /f

χfin(β)ξ(−γβ)

=
χfin(γ)

N(f)

∑
β∈OF /f

χfin(γβ)ξ(−γβ)=χfin(γ)cχ(ξ).

Since χfin(γ) �= 1, we have cχ(ξ) = 0 as desired. �

Note that since multiplication by ε ∈ Δ is bijective onOF /f and since χfin(ε) = 1,
we have cχ(ξ

ε) = cχ(ξ). Then we have the following.

Proposition 2.3. Assume that the narrow class number of F is one, and let
χ : Cl+F (f) → C× be a finite primitive Hecke character of F of conductor f �= (1).
Then for U [f] := T[f] \ {1}, we have

L(χ, s) =
∑

ξ∈U [f]/Δ

cχ(ξ)L(ξΔ, s).

Proof. By definition and Lemma 2.2, we have∑
ξ∈T[f]/Δ

cχ(ξ)L(ξΔ, s) =
∑

ξ∈T[f]/Δ

∑
α∈Δ\OF+

∑
ε∈Δξ\Δ

cχ(ξ)ξ(εα)N(α)−s

=
∑

α∈Δ\OF+

∑
ξ∈T[f]/Δ

∑
ε∈Δξ\Δ

cχ(ξ
ε)ξε(α)N(α)−s

=
∑

α∈Δ\OF+

∑
ξ∈T[f]

cχ(ξ)ξ(α)N(α)−s

=
∑

α∈Δ\OF+

χfin(α)N(α)−s =
∑

a⊂OF

χ(a)Na
−s.

Our assertion follows from the definition of the Hecke L-function and the fact that
cχ(ξ) = 0 for ξ = 1. �

Remark 2.4. We assumed the condition on the narrow class number for simplicity.
By considering the Lerch zeta functions corresponding to additive characters in
HomZ(a,C

×) for general fractional ideals a of F , we may express the Hecke L-
functions when the narrow class number of F is greater than one.

We will next define the Shintani zeta function associated to a cone. Note that
we have a canonical isomorphism

F ⊗ R ∼= RI :=
∏
τ∈I

R, α⊗ 1 
→ (ατ ),

where I is the set of embeddings τ : F ↪→ R and we let ατ := τ (α) for any embedding
τ ∈ I. We denote by RI

+ :=
∏

τ∈I R+ the set of totally positive elements of RI ,
where R+ is the set of positive real numbers.

Definition 2.5. A rational closed polyhedral cone in RI
+ ∪ {0}, which we simply

call a cone, is any set of the form

σα := {x1α1 + · · ·+ xmαm | x1, . . . , xm ∈ R≥0}
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for some α = (α1, . . . , αm) ∈ Om
F+. In this case, we say that α is a generator of

σα. By considering the case m = 0, we see that σ = {0} is a cone.

We define the dimension dim σ of a cone σ to be the dimension of the R-vector
space generated by σ. In what follows, we fix an element τ0 ∈ I. For any subset
D ⊂ RI

+, we let

(3) D̆ := {u ∈ RI
+ | ∃δ > 0, 0 < ∀δ′ < δ, u− δ′e0 ∈ D},

where e0 denotes the unit vector in RI whose τ0 component is 1 and others are 0.

Definition 2.6. Let σ be a cone, and let φ : OF → C be a C-valued function on
OF which factors through OF /f for some nonzero ideal f ⊂ OF . We define the
Shintani zeta function ζσ(φ, s) associated to a cone σ and function φ by the series

(4) ζσ(φ, s) :=
∑

α∈σ̆∩OF

φ(α)α−s,

where s = (sτ ) ∈ CI and α−s :=
∏

τ∈I(α
τ )−sτ . The series (4) converges if Re(sτ ) >

1 for any τ ∈ I.

By [27, Proposition 1], the function ζσ(φ, s) has a meromorphic continuation to
any s ∈ CI . If we let s = (s, . . . , s) for s ∈ C, then we have

(5) ζσ(φ, (s, . . . , s)) =
∑

α∈σ̆∩OF

φ(α)N(α)−s.

Shintani constructed the generating function of values of ζσ(ξ, s) at nonpositive
integers for additive characters ξ : OF → C× of finite order, given as follows. In
what follows, we view z ∈ F ⊗C as an element z = (zτ ) ∈ CI through the canonical
isomorphism F ⊗ C ∼= CI .

Definition 2.7. Let σ = σα be a g-dimensional cone generated by α = (α1, . . . , αg)
∈ Og

F+, and we let Pα := {x1α1 + · · ·+xgαg | ∀i 0 ≤ xi < 1} be the parallelepiped
spanned by α1, . . . , αg. We define Gσ(z) to be the meromorphic function on
F ⊗ C ∼= CI given by

Gσ(z) :=

∑
α∈P̆α∩OF

e2πiTr(αz)(
1− e2πiTr(α1z)

)
· · ·

(
1− e2πiTr(αgz)

) ,
where Tr(αz) :=

∑
τ∈I α

τzτ for any α ∈ OF . The definition of Gσ(z) depends only
on the cone and is independent of the choice of the generator α.

Remark 2.8. If F = Q and σ = R≥0, then we have Gσ(z) =
e2πiz

1−e2πiz .

For k = (kτ ) ∈ NI , we denote ∂k :=
∏

τ∈I ∂
kτ
τ , where ∂τ := 1

2πi
∂

∂zτ
. For u ∈ F ,

we let ξu be the finite additive character on OF defined by ξu(α) := e2πiTr(αu). We
note that any additive character on OF with values in C× of finite order is of this
form for some u ∈ F . Theorem 2.9, based on the work of Shintani, is standard (see
for example [8, Théorème 5], [13, Lemme 3.2]).

Theorem 2.9. Let α and σ be as in Definition 2.7. For any u ∈ F satisfying
ξu(αj) �= 1 for j = 1, . . . , g, we have

∂kGσ(z)
∣∣
z=u⊗1

= ζσ(ξu,−k).
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Note that the condition ξu(αj) �= 1 for j = 1, . . . , g ensures that z = u⊗ 1 does
not lie on the poles of the function Gσ(z).

The Lerch zeta function L(ξΔ, s) may be expressed as a finite sum of functions
ζσ(ξ, (s, . . . , s)) using the Shintani decomposition. We first review the definition of
the Shintani decomposition. We say that a cone σ is simplicial, if there exists a
generator of σ that is linearly independent over R. Any cone generated by a subset
of such a generator is called a face of σ. A simplicial fan Φ is a set of simplicial
cones such that for any σ ∈ Φ, any face of σ is also in Φ, and for any cones σ, σ′ ∈ Φ,
the intersection σ ∩ σ′ is a common face of σ and σ′.

A version of Shintani decomposition that we will use in this article is as follows.

Definition 2.10. A Shintani decomposition is a simplicial fan Φ satisfying the
following properties.

(1) RI
+∪{0} =

∐
σ∈Φ σ◦, where σ◦ is the relative interior of σ, i.e., the interior

of σ in the R-linear span of σ.
(2) For any σ ∈ Φ and ε ∈ Δ, we have εσ ∈ Φ.
(3) The quotient Δ\Φ is a finite set.

We may obtain such decomposition by slightly modifying the construction of
Shintani [27, Theorem 1] (see also [15, §2.7 Theorem 1], [31, Theorem 4.1]). Another
construction was given by Ishida [19, p.84]. For any integer q ≥ 0, we denote
by Φq+1 the subset of Φ consisting of cones of dimension q + 1. Note that by
[31, Proposition 5.6], Φg satisfies

(6) RI
+ =

∐
σ∈Φg

σ̆.

This gives the following result.

Proposition 2.11. Let ξ : OF → C× be a character of finite order, and Δξ ⊂ Δ
its isotropic subgroup. If Φ is a Shintani decomposition, then we have

(7) L(ξΔ, s) =
∑

σ∈Δξ\Φg

ζσ(ξ, (s, . . . , s)).

Proof. By (6), if C is a representative of Δξ\Φg, then
∐

σ∈C σ̆ is a representative

of the set Δξ\RI
+. Our result follows from the definition of the Lerch zeta function

and (5). �

The expression (7) is non-canonical, since it depends on the choice of the Shintani
decomposition.

3. Equivariant Coherent Cohomology

In this section, we will first give the definition of equivariant sheaves and equi-
variant cohomology of a scheme with an action of a group. As in §1, we let

(8) T := HomZ(OF ,Gm)

be the algebraic torus over Z defined by Katz [21, §1], satisfying T(R) =
HomZ(OF , R

×) for any Z-algebra R. We will then construct the equivariant Čech
complex, which is an explicit complex which may be used to describe equivariant
cohomology of U := T \ {1} with action of Δ.
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Remark 3.1. In order to consider the values of Hecke L-functions when the narrow
class number of F is greater than one (cf. Remark 2.4), then it would be necessary
to consider the algebraic tori

Ta := HomZ(a,Gm)

for general fractional ideals a of F .

We first review the basic facts concerning sheaves on schemes that are equivariant
with respect to an action of a group. Let G be a group with identity e. A G-scheme
is a scheme X equipped with a right action of G. We denote by [u] : X → X the
action of u ∈ G, so that [uv] = [v] ◦ [u] for any u, v ∈ G holds. In what follows, we
let X be a G-scheme.

Definition 3.2. A G-equivariant structure on an OX-module F is a family of
isomorphisms

ιu : [u]
∗F

∼=−→ F

for u ∈ G, such that ιe = idF and the diagram

[uv]∗F
ιuv �� F

[u]∗[v]∗F
[u]∗ιv �� [u]∗F

ιu

��

is commutative. We call F equipped with aG-equivariant structure aG-equivariant
sheaf.

Note that the structure sheaf OX itself is naturally a G-equivariant sheaf. For
any G-equivariant sheaf F on X, we define the equivariant global section by
Γ(X/G,F ) := HomZ[G](Z,Γ(X,F )) = Γ(X,F )G. Then the equivariant cohomol-
ogy Hm(X/G,−) is defined to be them-th right derived functor of Γ(X/G,−) (note
that the category of G-equivariant sheaves has enough injectives by [14, Proposition
5.1.1 and Théorème 1.10.1]).

Suppose we have a group homomorphism π : G → H. For a G-scheme X and an
H-scheme Y , we say that a morphism f : X → Y of schemes is equivariant with
respect to π, if we have f ◦ [u] = [π(u)] ◦ f for any u ∈ G. If F is a H-equivariant
sheaf on Y and f is equivariant, then f∗F is naturally an G-equivariant sheaf on X
with the equivariant structure given by f∗ιπ(u) : [u]

∗(f∗F ) = f∗([π(u)]∗F ) → f∗F
for any u ∈ G, and f induces the pull-back homomorphism

(9) f∗ : Hm(Y/H,F ) → Hm(X/G, f∗F )

on equivariant cohomology.
We now consider our case of the algebraic torus T. For any α ∈ OF , the mor-

phism T(R) → R× defined by mapping ξ ∈ T(R) to ξ(α) ∈ R× induces a morphism
of group schemes tα : T → Gm, which gives a rational function of T. Then we have

T = SpecZ[tα | α ∈ OF ],

where tα, tα
′
satisfies the relation tαtα

′
= tα+α′

for any α, α′ ∈ OF . If we take a
basis α1, . . . , αg of OF as a Z-module, then we have

SpecZ[tα | α ∈ OF ] = SpecZ[t±α1 , . . . , t±αg ] ∼= Gg
m.

The action of Δ on OF by multiplication induces an action of Δ on T. Explicitly,
the isomorphism [ε] : T → T for ε ∈ Δ is given by tα 
→ tεα for any α ∈ OF .
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Definition 3.3. Let F̃ be the composite of F τ for all τ ∈ I. For any k = (kτ ) ∈ ZI ,
we define a Δ-equivariant sheaf O

T⊗ ˜F (k) on T as follows. As an O
T⊗ ˜F -module we

let O
T⊗ ˜F (k) := O

T⊗ ˜F . The Δ-equivariant structure

ιε : [ε]
∗O

T⊗ ˜F

∼=−→ O
T⊗ ˜F

is given by multiplication by ε−k :=
∏

τ∈I(ε
τ )−kτ for any ε ∈ Δ. Note that

for k,k′ ∈ ZI , we have O
T⊗ ˜F (k) ⊗ O

T⊗ ˜F (k
′) = O

T⊗ ˜F (k + k′). For the case

k = (k, . . . , k), we have ε−k = N(ε)−k = 1 for any ε ∈ Δ, hence O
T⊗ ˜F (k) = O

T⊗ ˜F .

The open subscheme U := T \ {1} also carries a natural Δ-scheme structure.
We will now construct the equivariant Čech complex, which may be used to express
the cohomology of U with coefficients in a Δ-equivariant OU -module F . For any
α ∈ OF , we let Uα := T \ {tα = 1}. Then any ε ∈ Δ induces an isomorphism
[ε] : Uεα → Uα. We say that α ∈ OF+ is primitive if α/N �∈ OF+ for any integer
N > 1. In what follows, we let A ⊂ OF+ be the set of primitive elements of OF+.
Then

(1) εA = A for any ε ∈ Δ.
(2) The set U := {Uα}α∈A gives an affine open covering of U .

We note that for any simplicial cone σ of dimension m, there exists a generator
α ∈ Am, unique up to permutation of the components.

Let q be an integer ≥ 0. For any α = (α0, . . . , αq) ∈ Aq+1, we let Uα :=
Uα0

∩ · · · ∩ Uαq
, and we denote by jα : Uα ↪→ U the inclusion. We let

C q(U,F ) :=
alt∏

α∈Aq+1

jα∗j
∗
αF

be the subsheaf of
∏

α∈Aq+1 jα∗j
∗
αF consisting of sections s = (sα) such that

sρ(α) = sgn(ρ)sα for any ρ ∈ Sq+1 and sα = 0 if αi = αj for some i �= j. We define

the differential dq : C q(U,F ) → C q+1(U,F ) to be the usual alternating sum

(10) (dqf)α0···αq+1
:=

q+1∑
j=0

(−1)jfα0···α̌j ···αq+1

∣∣
U(α0,...,αq+1)∩V

for any section (fα) of C q(U,F ) of each open set V ⊂ U . If we let F ↪→ C 0(U,F )
be the natural inclusion, then we have the exact sequence

0 �� F �� C 0(U,F )
d0

�� C 1(U,F )
d1

�� · · · dq−1
�� C q(U,F )

dq
�� · · · .

We next consider the action of Δ. For any α ∈ Aq+1 and ε ∈ Δ, we have a
commutative diagram

Uεα
� � jεα ��

[ε] ∼=
��

U

∼=[ε]

��
Uα

� � jα �� U,

where εα := (εα0, . . . , εαq). Then we have an isomorphism

[ε]∗jα∗j
∗
αF ∼= jεα∗j

∗
εα[ε]

∗F
∼=−→ jεα∗j

∗
εαF ,
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where the last isomorphism is induced by the Δ-equivariant structure ιε : [ε]
∗F ∼=

F . This induces an isomorphism ιε : [ε]
∗C q(U,F )

∼=−→ C q(U,F ), which is com-
patible with the differential (10). Hence C •(U,F ) is a complex of Δ-equivariant
sheaves on U .

Proposition 3.4. If F is quasi-coherent as an OU -module, the sheaf C q(U,F ) is
acyclic with respect to the functor Γ(U/Δ,−).

Proof. By definition, the functor Γ(U/Δ,−) is the composite of the functors Γ(U,−)
and HomZ[Δ](Z,−). Since Γ(U,−) sends injective Δ-equivariant OU -modules to
Δ-modules acyclic for HomZ[Δ](Z,−) (cf. [14, Lemme 5.6.1]), we have a spectral
sequence

Ea,b
2 = Ha

(
Δ, Hb(U,C q(U,F ))

)
⇒ Ha+b(U/Δ,C q(U,F )).

We first prove that Hb(U,C q(U,F )) = 0 if b �= 0. If we fix some total order on the
set A, then we have

C q(U,F ) ∼=
∏

α0<···<αq

jα∗j
∗
αF ,

and each component jα∗j
∗
αF is acyclic for the functor Γ(U,−) since Uα is affine

(notice that the above product is taken in the category of OU -modules, not of quasi-
coherent ones). Therefore C q(U,F ) is acyclic by Lemma 3.5. It is now sufficient
to prove that Ha

(
Δ, H0(U,C q(U,F ))

)
= 0 for any integer a �= 0, where

H0(U,C q(U,F )) =
alt∏

α∈Aq+1

Γ(U, jα∗j
∗
αF ) ∼=

∏
α0<···<αq

Γ(Uα,F ).

Assume that the total order on A is preserved by the action of Δ (for example,
we may take the order on R through an embedding τ : A ↪→ R for some τ ∈ I).
Let B be the subset of Aq+1 consisting of elements α = (α0, . . . , αq) such that
α0 < · · · < αq. Then action of Δ on B is free. We denote by B0 a subset of B
representing the set Δ\B, so that any α ∈ B may be written uniquely as α = εα0

for some ε ∈ Δ and α0 ∈ B0. We let

M :=
∏

α∈B0

Γ(Uα,F ),

and we let HomZ(Z[Δ],M) be the coinduced module of M , with the action of Δ
given for any ϕ ∈ HomZ(Z[Δ],M) by εϕ(u) = ϕ(uε) for any u ∈ Z[Δ] and ε ∈ Δ.
Then we have a Z[Δ]-linear isomorphism

(11) H0(U,C q(U,F ))
∼=−→ HomZ(Z[Δ],M)

given by mapping any (sα) ∈ H0(U,C q(A,F )) to the Z-linear homomorphism

ϕ(sα)(δ) :=
(
ιδ
(
[δ]∗sδ−1α0

))
∈ M

for any δ ∈ Δ. The compatibility of (11) with the action of Δ is seen as follows. By
definition, the action of ε ∈ Δ on (sα) ∈ H0(U,C q(U,F )) is given by ε

(
(sα)

)
=(

ιε([ε]
∗sε−1α)

)
. Hence noting that

ιδ ◦ [δ]∗ιε = ιδε : Γ(Uα, [δε]
∗F ) → Γ(Uα,F )
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and [δ]∗ ◦ ιε = [δ]∗ιε ◦ [δ]∗ : Γ(Uα, [ε]
∗F ) → Γ(Uα, [δ]

∗F ) for any δ ∈ Δ, we have

ϕε(sα)(δ) =
(
ιδ
(
[δ]∗(ιε([ε]

∗sε−1δ−1α0
))
))

=
(
(ιδ ◦ [δ]∗ιε)

(
[δε]∗sε−1δ−1α0

))
=

(
ιδε([δε]

∗sε−1δ−1α0
)
)
= ϕ(sα)(δε)

as desired. The fact that (11) is an isomorphism follows from the fact that B0 is a
representative of Δ\B. By (11) and Shapiro’s lemma, we have

Ha(Δ, H0(U,C q(U,F ))) ∼= Ha({1},M) = 0

for a �= 0 as desired. �

Lemma 3.5 was used in the proof of Proposition 3.4.

Lemma 3.5. Let X be a scheme and let (Fλ)λ∈Λ be a family of quasi-coherent
sheaves on X. Then for any integer m ≥ 0, we have

Hm

(
X,

∏
λ∈Λ

Fλ

)
∼=

∏
λ∈Λ

Hm(X,Fλ).

Here the product
∏

λ∈Λ Fλ is taken in the category of OX-modules.

Proof. Take an injective resolution 0 → Fλ → I•λ for each λ ∈ Λ. We will prove
that 0 →

∏
λ∈Λ Fλ →

∏
λ∈Λ I•λ is an injective resolution. Since the product of

injective objects is injective, it is sufficient to prove that 0 →
∏

λ∈Λ Fλ →
∏

λ∈Λ I•λ
is exact.

For any affine open set V of X, by affine vanishing, the global section 0 →
Fλ(V ) → I•λ(V ) is exact, hence the product

(12) 0 →
∏
λ∈Λ

Fλ(V ) →
∏
λ∈Λ

I•λ(V )

is also exact. For any x ∈ X, if we take the direct limit of (12) with respect to
open affine neighborhoods of x, then we obtain the exact sequence

0 →
(∏

λ∈Λ

Fλ

)
x

→
(∏

λ∈Λ

I•λ

)
x

.

This shows that 0 →
∏

λ∈Λ Fλ →
∏

λ∈Λ I•λ is exact as desired. �

Proposition 3.4 gives Corollary 3.6.

Corollary 3.6. We let C•(U/Δ,F ) := Γ(U/Δ,C •(U,F )). Then for any integer
m ≥ 0, the equivariant cohomology Hm(U/Δ,F ) is given as

Hm(U/Δ,F ) = Hm(C•(U/Δ,F )).

By definition, for any integer q ∈ Z, we have

Cq(U/Δ,F ) =

( alt∏
α∈Aq+1

Γ(Uα,F )

)Δ

.
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4. Shintani Generating Class

We let T be the algebraic torus of (8), and let U = T \ {1}. In this section, we
will use the description of equivariant cohomology of Corollary 3.6 to define the
Shintani generating class as a class in Hg−1(U/Δ,OT). We will then consider the
action of the differential operators ∂τ on this class.

We first interpret the generating functions Gσ(z) of Definition 2.7 as rational
functions on T. Let D−1 := {u ∈ F | TrF/Q(uOF ) ⊂ Z} be the inverse different of
F . Then there exists an isomorphism

(13) (F ⊗ C)/D−1 ∼=−→ T(C) = HomZ(OF ,C
×), z 
→ ξz

given by mapping any z∈F⊗C to the character ξz(α) :=e2πiTr(αz) in HomZ(OF ,C
×).

The function tα on T(C) corresponds through the isomorphism (13) to the function
e2πiTr(αz) for any α ∈ OF . Thus the following holds.

Lemma 4.1. For α = (α1, . . . , αg) ∈ Ag and σ := σα, consider the rational
function

Gσ(t) :=

∑
α∈P̆α∩OF

tα(
1− tα1

)
· · ·

(
1− tαg

)
on T, where Pα is again the parallelepiped spanned by α1, . . . , αg (recall that P̆α is
defined by (3), depending on a fixed τ0 ∈ I). Then Gσ(t) corresponds to the function
Gσ(z) of Definition 2.7 through the uniformization (13). Note that by definition, if
we let R := Z[tα | α ∈ OF+], then we have

(14) Gσ(t) ∈ Rα := R
[ 1

1− tα1
, . . . ,

1

1− tαg

]
.

From now on, we fix an ordering I = {τ1, . . . , τg} (thus the previously fixed
element τ0 ∈ I coincides with some τi, i = 1, . . . , g). For any α = (α1, . . . , αg) ∈
Og

F+, let
(
ατi
j

)
be the matrix in Mg(R) whose (i, j)-component is ατi

j . We let

sgn(α) ∈ {0,±1} be the signature of det
(
ατi
j

)
. We define the Shintani generating

class G as follows.

Proposition 4.2. For any α = (α1, . . . , αg) ∈ Ag, we let

Gα := sgn(α)Gσα
(t) ∈ Γ(Uα,OT).

Then we have (Gα) ∈ Cg−1(U/Δ,OT). Moreover, (Gα) satisfies the cocycle condi-
tion dg−1(Gα) = 0, hence defines a class

G := [Gα] ∈ Hg−1(U/Δ,OT).

We call this class the Shintani generating class.

Proof. By construction, (Gα) defines an element in

Γ(U,C g−1(U,OT)) =
alt∏

α∈Ag

Γ(Uα,OT).

Since [ε]∗Gα = Gεα for any ε ∈ Δ, we have

(Gα) ∈ Γ
(
U,C g−1(U,OT)

)Δ
= Cg−1(U/Δ,OT).
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To prove the cocycle condition dg−1(Gα) = 0, it is sufficient to check that

(15)

g∑
j=0

(−1)jG(α0,...,α̌j ,...αg) = 0

for any α0, . . . , αg ∈ A. By definition, the rational function Gσα
(t) maps to the

formal power series

Gσα
(t) =

∑
α∈σ̆α∩OF

tα

by taking the formal completion Rα ↪→ Z�tα1 , . . . , tαg�, where Rα is the ring defined
in (14). Since the map taking the formal completion is injective, it is sufficient to
check (15) for the associated formal power series. By [31, Proposition 6.2], we have

(16)

g∑
j=0

(−1)jsgn(α0, . . . , α̌j , . . . , αg)1σ̆(α0,...,α̌j ,...αg)
≡ 0

as a function on RI
+, where 1D is the characteristic function of D ⊂ RI

+, i.e.,
1D(x) = 1 if x ∈ D and 1D(x) = 0 if x �∈ D. Our assertion now follows by
examining the formal power series expansion of G(α0,...,α̌j ,...,αg). �

Note that the above construction of the coclycle (Gα) depends on the choice of

τ0 ∈ I and the ordering I = {τ1, . . . , τg}, used in the definition of P̆α and sgn(α),
respectively.

Proposition 4.3.

(1) The cohomology class G does not depend on the choice of τ0 ∈ I.
(2) If one uses another ordering I = {τ ′1, . . . , τ ′g} in the construction of G,

the resulting class is sgn(ρ)G, where ρ ∈ Sg is the permutation such that
τ ′i = τρ(i).

Proof. (2) is obvious from the identity

sgn′(α) = sgn(ρ)sgn(α)

for α = (α1, . . . , αg) ∈ Ag, where sgn′(α) denotes the sign of det
(
α
τ ′
i

j

)
.

Let us prove (1). Since there is nothing to prove for g = 1, we assume g ≥ 2 and
the two choices of τ0 to be compared are τ1 and τ2. Let (G1

α) and (G2
α) denote the

corresponding cocycles. First consider the case g = 2. If we put

fα(t) :=
1

1− tα
(α ∈ A),

it is clear that f := (fα) ∈ C0(U/Δ,OT). Moreover, for α = (α1, α2) ∈ A2, we can
verify the equality

G1
α − G2

α = fα1
− fα2

by considering the relation among the characteristic functions of certain subsets of
RI

+. Thus we have (G1
α) − (G2

α) = −df , which shows that the cocycles (G1
α) and

(G2
α) are cohomologous. Next, consider the case g ≥ 3. Let ei (i = 1, 2, 3) denote

the unit vector in RI whose τi component is 1. For α = (α1, . . . , αg−1) ∈ Ag−1, we
set

Dα := {x0e3 + x1α1 + · · ·+ xg−1αg−1 | x0, x1, . . . , xg−1 ∈ R>0},
D̆i

α := {u ∈ RI
+ | ∃δ > 0, 0 < ∀δ′ < δ, u− δ′ei ∈ Dα} (i = 1, 2),
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and

fα(t) := sgn(e3, α1, . . . , αg−1)

{ ∑
β∈D̆1

α∩OF+

tβ −
∑

β∈D̆2
α∩OF+

tβ

}
.

While fα(t) is a priori an element of
∏

β∈OF+
Z·tβ , it actually belongs to Γ(Uα,OT).

To see this, note first that the difference of two sets D̆1
α and D̆2

α concentrates on the
proper faces of Dα, i.e., the cones spanned by proper subsets of {e3, α1, . . . , αg−1}.
Furthermore, the faces spanned by the proper subsets including e3 contains no
element of OF+ (if there exists such β ∈ OF+, the subspace generated by β and
a proper subset of {α1, . . . αg−1} contain e3, which contradicts [31, Lemma 5.3]).
Thus fα(t) is a linear combination of the series of the form

∑
β∈σ t

β with the cones

σ generated by subsets of {α1, . . . , αg−1}, which can be regarded as elements of
Γ(Uα,OT).

Since εD̆i
α = D̆i

εα, we see that f := (fα) belongs to Cg−2(U/Δ,OT). Now let
α = (α1, . . . , αg) ∈ Ag be given. Then, by applying (16) to α0 = e3 and α1, . . . ,
αg, we obtain

G1
α − G2

α +

g∑
j=1

(−1)jfα1,...,α̌j ,...,αg
= 0,

which amounts to (G1
α) − (G2

α) = df . Therefore, the cocycles (G1
α) and (G2

α) are
cohomologous. �

Remark 4.4. We can get rid of the dependence of G on the ordering of I, described
in Proposition 4.3 (2), as follows: For a Z-basis α = (α1, . . . , αg) of OF , we define
a g-form ω on T by

(17) ω := sgn(α)
dtα1

tα1
∧ · · · ∧ dtαg

tαg
,

which is independent of the choice of the basis but changes by a sign under a
permutation of the numbering τ1, . . . , τg. Then, by using the isomorphism

OT −→ Ωg
T; f 
−→ f · ω,

we set

G̃ := G · ω ∈ Hg−1(U/Δ,Ωg
T).

This does not change under any permutation of τ1, . . . , τg.
In the forthcoming article [3], we will consider a de Rham cohomology class with

coefficients in the logarithm sheaf, which is similar to this G̃.

We will next define differential operators ∂τ for τ ∈ I on equivariant cohomology.
Since tα = e2πiTr(αz) through (13) for any α ∈ OF , we have

(18)
dtα

tα
=

∑
τ∈I

2πiατdzτ .

Let α1, . . . , αg be a basis of OF . For any τ ∈ I, we let ∂τ be the differential
operator

∂τ :=

g∑
j=1

ατ
j t

αj
∂

∂tαj
.
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By (18), we see that ∂τ corresponds to the differential operator 1
2πi

∂
∂zτ

through the

uniformization (13), and hence is independent of the choice of the basis α1, . . . , αg.
By Theorem 2.9 and Lemma 4.1, we have the following result.

Proposition 4.5. Let α = (α1, . . . , αg) ∈ Ag and σ = σα. For any k = (kτ ) ∈ NI

and ∂k :=
∏

τ∈I ∂
kτ
τ , we have

∂kGσ(ξ) = ζσ(ξ,−k)

for any torsion point ξ ∈ Uα.

The differential operator ∂τ gives a morphism of abelian sheaves

∂τ : O
T⊗ ˜F (k) → O

T⊗ ˜F (k − 1τ )

compatible with the action of Δ for any k ∈ ZI . This induces a homomorphism

∂τ : H
m(U ⊗ F̃ /Δ,O

T⊗ ˜F (k)) → Hm(U ⊗ F̃ /Δ,O
T⊗ ˜F (k − 1τ ))

on equivariant cohomology.

Lemma 4.6. The operators ∂τ for τ ∈ I commute. Moreover, the composite

∂ :=
∏
τ∈I

∂τ : O
T⊗ ˜F → O

T⊗ ˜F (1, . . . , 1) = O
T⊗ ˜F

is defined over Z, that is, it is a base change to F̃ of a morphism of abelian sheaves
∂ : OT → OT. In particular, ∂ induces a homomorphism

(19) ∂ : Hm(U/Δ,OT) → Hm(U/Δ,OT).

Proof. The commutativity is clear from the definition. Next note that, by the
definition, the equivariant sheaves O

T⊗ ˜F (k) and the operators are actually defined

over the ring of integers in F̃ . On the other hand, since the Galois group Gal(F̃ /Q)
permutes the operators ∂τ , the operator ∂ is invariant under this action. Hence our
assertion follows. �

Our main result, which we prove in §5, concerns the specialization of the classes

(20) ∂kG ∈ Hg−1
(
U/Δ,OT

)
for k ∈ N at nontrivial torsion points of T.

5. Specialization to Torsion Points

For any nontrivial torsion point ξ of T, let Δξ ⊂ Δ be the isotropic subgroup of
ξ. Then we may view ξ := SpecQ(ξ) as a Δξ-scheme with a trivial action of Δξ.
Then the natural inclusion ξ → U for U := T \ {1} is compatible with the inclusion
Δξ ⊂ Δ, hence the pull-back (9) induces the specialization map

ξ∗ : Hm(U/Δ,OT) → Hm(ξ/Δξ,Oξ).

The purpose of this section is to prove our main theorem, given as follows.

Theorem 5.1. Let ξ be a nontrivial torsion point of T, and let k be an integer
≥ 0. If we let G be the Shintani generating class defined in Proposition 4.2, and if
we let ∂kG(ξ) ∈ Hg−1(ξ/Δξ,Oξ) be image by the specialization map ξ∗ of the class
∂kG defined in (20), then we have

∂kG(ξ) = L(ξΔ,−k)

through the isomorphism Hg−1(ξ/Δξ,Oξ) ∼= Q(ξ) given in Proposition 5.5.
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We will prove Theorem 5.1 at the end of this section. The specialization map
can be expressed explicitly in terms of cocycles as follows. We let Vα := Uα ∩ ξ for
any α ∈ A. Then V := {Vα}α∈A is an affine open covering of ξ. For any integer
q ≥ 0 and α = (α0, . . . , αq) ∈ Aq+1, we let Vα := Vα0

∩ · · · ∩ Vαq
and

(21) Cq
(
V/Δξ,Oξ

)
:=

( alt∏
α∈Aq+1

Γ(Vα,Oξ)

)Δξ

.

Here, note that Γ(Vα,Oξ) = Q(ξ) if Vα �= ∅ and Γ(Vα,Oξ) = {0} otherwise. The
same argument as that of Corollary 3.6 shows that we have

(22) Hm(ξ/Δξ,Oξ) ∼= Hm
(
C•(

V/Δξ,Oξ

))
.

We let Aξ be the subset of elements α ∈ A satisfying ξ ∈ Uα. This is equivalent
to the condition that ξ(α) �= 1. We will next prove in Lemma 5.2 that the cochain
complex C•(V/Δξ,Oξ

)
of (21) is isomorphic to the dual of the chain complex

C•(Aξ) defined as follows. For any integer q ≥ 0, we let

Cq(Aξ) :=
alt⊕

α∈Aq+1
ξ

Zα

be the quotient of
⊕

α∈Aq+1
ξ

Zα by the submodule generated by

{ρ(α)− sgn(ρ)α | α∈Aq+1
ξ , ρ ∈ Sq+1}∪{α=(α0, . . . , αq) | αi=αj for some i �=j}.

We denote by 〈α〉 the class represented by α in Cq(Aξ). We see that Cq(Aξ) has a
natural action of Δξ and is a free Z[Δξ]-module. In fact, a basis of Cq(Aξ) may be
constructed in a similar way to the construction of B0 in the proof of Proposition
3.4. Then C•(Aξ) is a complex of Z[Δξ]-modules with respect to the standard
differential operator dq : Cq(Aξ) → Cq−1(Aξ) given by

dq(〈α0, . . . , αq〉) :=
q∑

j=0

(−1)j〈α0, . . . , α̌j , . . . , αq〉

for any α = (α0, . . . , αq) ∈ Aq+1
ξ . If we let d0 : C0(Aξ) → Z be the homomorphism

defined by d0(〈α〉) := 1 for any α ∈ Aξ, then C•(Aξ) is a free resolution of Z with
trivial Δξ-action. We have the following.

Lemma 5.2. There exists a natural isomorphism of complexes

C•(V/Δξ,Oξ)
∼=−→ HomΔξ

(C•(Aξ),Q(ξ)).

Proof. The natural isomorphism

∏
α∈Aq+1

Γ(Vα,Oξ) =
∏

α∈Aq+1
ξ

Q(ξ) ∼= HomZ

⎛⎜⎝ ⊕
α∈Aq+1

ξ

Zα,Q(ξ)

⎞⎟⎠
induces an isomorphism between the submodules

Cq(V/Δξ,Oξ) =

(
alt∏

α∈Aq+1

Γ(Vα,Oξ)

)Δξ

⊂
∏

α∈Aq+1

Γ(Vα,Oξ)
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and

HomΔξ
(Cq(Aξ),Q(ξ)) ⊂ HomZ

⎛⎜⎝ ⊕
α∈Aq+1

ξ

Zα,Q(ξ)

⎞⎟⎠ .

Moreover, this isomorphism is compatible with the differential. �

We will next use a Shintani decomposition (see Definition 2.10) to construct a
complex which is quasi-isomorphic to the complex C•

(
Aξ).

Lemma 5.3. Let ξ be as above. There exists a Shintani decomposition Φ such that
any σ ∈ Φ is of the form σα = σ for some α ∈ Aq+1

ξ .

Proof. Let Φ be a Shintani decomposition. We will deform Φ to construct a Shintani
decomposition satisfying our assertion. Let Λ be a finite subset of A such that
{σα | α ∈ Λ} represents the quotient set Δξ\Φ1. If ξ(α) �= 1 for any α ∈ Λ, then Φ
satisfies our assertion since α ∈ Aξ if and only if ξ(α) �= 1.

Suppose that there exists α ∈ Λ such that ξ(α) = 1. Since ξ is a nontrivial
character on OF , there exists β ∈ OF+ such that ξ(β) �= 1. Then for any integer
N , we have ξ(Nα + β) �= 1. Let Φ′ be the set of cones obtained by deforming
σ = σα to σ′ := σNα+β and εσ to εσ′ for any ε ∈ Δξ. By taking N sufficiently
large, the amount of deformation can be made arbitrarily small so that Φ′ remains
a fan. By repeating this process, we obtain a Shintani decomposition satisfying the
desired condition. �

In what follows, we fix a Shintani decomposition Φ satisfying the condition of
Lemma 5.3. Let N : RI

+ → R+ be the norm map defined by N((aτ )) :=
∏

τ∈I aτ ,
and we let

RI
1 := {(aτ ) ∈ RI

+ | N((aτ )) = 1}
be the subset of RI

+ of norm one. For any σ ∈ Φq+1, the intersection σ ∩ RI
1 is

a subset of RI
1 which is homeomorphic to a simplex of dimension q, and the set

{σ ∩ RI
1 | σ ∈ Φ+} for Φ+ :=

⋃
q≥0 Φq+1 gives a simplicial decomposition of the

topological space RI
1.

Recall that we have fixed a numbering of elements in I so that I = {τ1, . . . , τg}.
For any σ ∈ Φq+1, we denote by 〈σ〉 the class sgn(α)〈α〉 in Cq(Aξ), where α ∈ Aq+1

ξ

is a generator of σ. This is well-defined since such a generator α is unique up to
permutation, and both sgn(α) and 〈σ〉 change by the signature of the permutation.
We then have the following.

Lemma 5.4. For any integer q ≥ 0, we let Cq(Φ) be the Z[Δξ]-submodule of
Cq(Aξ) generated by 〈σ〉 for all σ ∈ Φq+1. Then C•(Φ) is a subcomplex of C•(Aξ)
which also gives a free resolution of Z as a Z[Δξ]-module. In particular, the natural
inclusion induces a quasi-isomorphism of complexes

C•(Φ)
qis−−→ C•(Aξ)

compatible with the action of Δξ.

Proof. Note that Cq(Φ) for any integer q ≥ 0 is a free Z[Δξ]-module generated by
representatives of the quotient Δξ\Φq+1. By construction, C•(Φ) can be identified
with the chain complex associated to the simplicial decomposition {σ∩RI

1 | σ ∈ Φ+}
of the topological space RI

1, hence we see that the complex C•(Φ) is exact and gives
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a free resolution of Z as a Z[Δξ]-module. Our assertion follows from the fact that
C•(Aξ) also gives a free resolution of Z as a Z[Δξ]-module. �

Let
L : RI

+ → Rg

be the homeomorphism defined by (xτ ) 
→ (log xτi). If we let W := {(yτi) ∈ Rg |∑g
i=1 yτi = 0}, then W is an R-linear subspace of Rg of dimension g − 1, and L

gives a homeomorphism RI
1
∼= W ∼= Rg−1. For Δξ ⊂ F , the Dirichlet unit theorem

(see for example [25, Theorem 1 p.61]) shows that the discrete subset L(Δξ) ⊂ W
is a free Z-module of rank g − 1, hence we have

Tξ := Δξ\RI
1
∼= Rg−1/Zg−1.

We consider the coinvariant

Cq(Δξ\Φ) := Cq(Φ)Δξ

of Cq(Φ) with respect to the action of Δξ, that is, the quotient of Cq(Φ) by the
subgroup generated by 〈σ〉 − 〈εσ〉 for σ ∈ Φq+1 and ε ∈ Δξ. For any σ ∈ Φq+1,
we denote by σ the image of σ in the quotient Δξ\Φq+1, and we denote by 〈σ〉 the
image of 〈σ〉 in Cq(Δξ\Φ), which depends only on the class σ ∈ Δξ\Φq+1. Then the
set {Δξ\(Δξσ∩RI

1) | σ ∈ Δξ\Φ+} of subsets of Tξ gives a simplicial decomposition
of Tξ and C•(Δξ\Φ) may be identified with the associated chain complex. Hence
we have

Hm(C•(Δξ\Φ)) = Hm(Tξ,Z), Hm
(
HomZ

(
C•(Δξ\Φ),Z

))
= Hm(Tξ,Z).

Since Tξ ∼= Rg−1/Zg−1, the homology groups Hm(Tξ,Z) for integers m are free
abelian groups, and the pairing

(23) Hm(Tξ,Z)×Hm(Tξ,Z) → Z,

obtained by associating to a cycle u ∈ Cm(Δξ\Φ) and a cocycle

ϕ ∈ HomZ

(
Cm(Δξ\Φ),Z

)
the element ϕ(u) ∈ Z, is perfect (see for example [23, Theorem 45.8]).

The generator of the cohomology group

Hg−1(Tξ,Z) = Hg−1

(
C•(Δξ\Φ)

) ∼= Z

is given by the fundamental class, represented by

(24)
∑

σ∈Δξ\Φg

〈σ〉 ∈ Cg−1(Δξ\Φ),

and the canonical isomorphism

(25) Hg−1(Tξ,Q(ξ)) = Hg−1
(
HomZ

(
C•(Δξ\Φ),Q(ξ)

)) ∼= Q(ξ)

induced by the fundamental class (24) via the pairing (23) is given explicitly in
terms of cocycles by mapping any ϕ ∈ HomZ(Cg−1(Δξ\Φ),Q(ξ)) to the element∑

σ∈Δξ\Φg
ϕ(〈σ〉) ∈ Q(ξ).

Proposition 5.5. Let η ∈ Hg−1(ξ/Δξ,Oξ) be represented by a cocycle

(ηα) ∈ Cg−1(V/Δξ,Oξ) =

( alt∏
α∈Ag

ξ

Q(ξ)

)Δξ

.
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For any cone σ ∈ Φg, let ησ := sgn(α)ηα for any α ∈ Ag
ξ such that σα = σ. Then

the homomorphism mapping the cocycle (ηα) to
∑

σ∈Δξ\Φg
ησ induces a canonical

isomorphism

(26) Hg−1(ξ/Δξ,Oξ) ∼= Q(ξ).

Proof. Since Cq(Φ) and Cq(Aξ) are free Z[Δξ]-modules, the quasi-isomorphism

C•(Φ)
qis−−→ C•(Aξ) of Lemma 5.4 induces the quasi-isomorphism

HomΔξ

(
C•(Aξ),Q(ξ)

) qis−−→ HomΔξ

(
C•(Φ),Q(ξ)

)
.

Combining this fact with Lemma 5.2 and (22), we see that

Hg−1(ξ/Δξ,Oξ) ∼= Hg−1
(
HomΔξ

(
C•(Φ),Q(ξ)

))
.

Since we have HomΔξ

(
C•(Φ),Q(ξ)

)
= HomZ

(
C•(Δξ\Φ),Q(ξ)

)
, our assertion fol-

lows from (25). �

We will now prove Theorem 5.1.

Proof of Theorem 5.1. By construction and Lemma 4.6, the class ∂kG(ξ) is a class
defined over Q(ξ) represented by the cocycle (∂kGα(ξ)) ∈ Cg−1(V/Δξ,Oξ). By
Proposition 5.5 and Proposition 4.5, the class ∂kG(ξ) maps through(26) to∑

σ∈Δξ\Φg

∂kGσ(ξ) =
∑

σ∈Δξ\Φg

ζσ(ξ, (−k, . . . ,−k)).

Our assertion now follows from (7). �

Corollary 5.6. Assume that the narrow class number of F is one, and let χ : Cl+F (f)
→ C× be a finite primitive Hecke character of F of conductor f �= (1). If we let
U [f] := T[f] \ {1}, then we have

L(χ,−k) =
∑

ξ∈U [f]/Δ

cχ(ξ)∂
kG(ξ)

for any integer k ≥ 0.

Proof. The result follows from Theorem 5.1 and Proposition 2.3. �

The significance of this result is that the special values at negative integers of
any finite Hecke character of F may be expressed as a linear combination of special
values of the derivatives of a single canonical cohomology class, the Shintani class
G in Hg−1(U/Δ,OT).

Remark 5.7. As stated in Proposition 4.3, the Shintani generating class G depends
on the ordering of I by a sign. On the other hand, the isomorphism (26) also
depends on the ordering of I by a sign, through the definition ησ = sgn(α)ηα.
These dependences cancel with each other in Theorem 5.1, and thus we obtain
the values in Q(ξ) independent of the ordering of I, namely, the Lerch zeta values
L(ξΔ,−k).

In fact, we can modify the formulation to get rid of these dependences as follows.

In Remark 4.4, we constructed G̃ ∈ Hg−1(U/Δ,Ωg
T) which is independent of the

ordering of I. For a nontrivial torsion point ξ, we have an isomorphism

Oξ −→ ξ∗Ωg
T; f 
−→ f · ξ∗ω,
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where ξ∗ω is the pull-back of the g-form ω given in (17). By composing the induced
isomorphism Hg−1(ξ/Δξ,Oξ) ∼= Hg−1(ξ/Δξ, ξ

∗Ωg
T) with (26), we obtain another

isomorphism

Hg−1(ξ/Δξ, ξ
∗Ωg

T)
∼= Q(ξ).

This does not depend on the ordering of I, since both ω and the isomorphism (26)

change by a sign under a permutation of the ordering. Therefore, by using G̃ and
this isomorphism, Theorem 5.1 can be reformulated in a fashion invariant under
permutations of the ordering of I.

We note that our choice of the fundamental class of Hg−1(Tξ,Z), which is repre-
seneted by (24), also depends on the ordering of I by a sign through the definition
〈σ〉 = sgn(α)〈α〉 (see the paragraph before Lemma 5.4). By using the g-form ω,
the resulting isomorphism (25) is modified to

Hg−1(Tξ,Q(ξ))⊗ ξ∗Ωg
T
∼= Q(ξ),

which is invariant under permutations of I.
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