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THE A2 ANDREWS–GORDON IDENTITIES AND CYLINDRIC

PARTITIONS

S. OLE WARNAAR

Abstract. Inspired by a number of recent papers by Corteel, Dousse, Foda,
Uncu and Welsh on cylindric partitions and Rogers–Ramanujan-type identi-

ties, we obtain the A2 (or A
(1)
2 ) analogues of the celebrated Andrews–Gordon

identities. We further prove q-series identities that correspond to the infinite-

level limit of the Andrews–Gordon identities for Ar−1 (or A
(1)
r−1) for arbitrary

rank r. Our results for A2 also lead to conjectural, manifestly positive, combi-
natorial formulas for the 2-variable generating function of cylindric partitions
of rank 3 and level d, such that d is not a multiple of 3.

1. Introduction

The Rogers–Ramanujan identities [59–61]
∞∑

n=0

qn
2

(1− q) · · · (1− qn)
=

∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
(1.1a)

and
∞∑

n=0

qn
2+n

(1− q) · · · (1− qn)
=

∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
(1.1b)

are widely regarded as two of the deepest and most beautiful q-series identities in all
of mathematics. They play an important role in the theory of partitions [4,52,63],
arise as characters in the representation theory of infinite dimensional Lie algebras
and vertex operator algebras [21,43,44,46–48,53], and have appeared in numerous
other branches of mathematics. The reader is referred to the recent book by Sills
[64] for a comprehensive account of the Rogers–Ramanujan identities.

A partition λ of n is a weakly decreasing sequence λ = (λ1, λ2, . . . ) of nonnegative
integers such that |λ| := λ1 + λ2 + · · · = n. If mi = mi(λ) := |{j � 1 : λj = i}|
denotes the multiplicity of the parts of λ equal to i, then |λ| =

∑
i�1 imi. Schur and

MacMahon [52, 63] independently observed that the Rogers–Ramanujan identities
are equivalent to the following combinatorial statement about partitions. For fixed
s ∈ {1, 2}, the number of partitions of n such that consecutive parts differ by at
least two and such that m1 � s− 1 is equal to the number of partitions of n such
that all parts are congruent to ±(3−s) modulo 5. Here s = 2 corresponds to (1.1a)
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and s = 1 to (1.1b). Gordon [26] generalised the combinatorial form of the Rogers–
Ramanujan identities to arbitrary odd moduli 2k + 1, proving that for 1 � s � k
the number of partitions of n such that mi + mi+1 � k − 1 (for all i � 1) and
m1 � s − 1 is equal to the number of partitions of n into parts not congruent to
0,±s modulo 2k+1. Subsequently, Andrews [3] discovered the analytic counterpart
of Gordon’s partition theorem, proving that
(1.2) ∑
n1�n2�···�nk−1�0

qn
2
1+···+n2

k−1+ns+···+nk−1

(q)n1−n2
· · · (q)nk−2−nk−1

(q)nk−1

=
(q2k+1; q2k+1)∞

(q)∞
θ(qs; q2k+1).

Here (a)n = (a; q)n := (1 − a)(1 − aq) · · · (1 − aqn−1) and (a)∞ = (a; q)∞ :=
(1 − a)(1 − aq) · · · are q-shifted factorials, and θ(a; q) := (a; q)∞(q/a; q)∞ is a
modified Jacobi theta function. The identities (1.2) are now commonly referred to
as the Andrews–Gordon identities.

Let AGk,s(q) denote the q-series in (1.2), so that AGk,s(q) may denote either
the left- or the right-hand side of the identity. Apart from Gordon’s two partition
theoretic interpretations, the series AGk,s(q) for 0 � s � k have also been identified
as characters (or specialised characters) of affine Lie algebras. Here we mention two
such identifications. (For further examples, see e.g., [54,55].) Let g be an affine Lie
algebra of rank � with simple roots α0, . . . , α�, simple coroots α∨

0 , . . . , α
∨
� and fun-

damental weights Λ0, . . . ,Λ� (so that 〈α∨
i ,Λj〉 = δij), where we adopt the labelling

of the Dynkin diagrams as in Tables 1 and 2 of [30, Chapter 4]. Let P d
+ denote

the set of level-d dominant integral weights of g and let chL(λ) be the character
of the standard (or integrable highest weight) module L(λ) of highest weight λ.
Then, up to a simple infinite product F := (−q; q)∞ = 1/(q; q2)∞ corresponding
to the principally specialised character of the fundamental representation L(Λa)
(a = 0, 1), AGk,s(q) is equal to the principally specialised characters of the affine

Lie algebra A
(1)
1 [44, Theorem 5.16]:

e−λ chL(λ)
∣∣
(e−α0 ,e−α1 ) �→(q,q)

= F ·AGk,s(q),

where λ = (2k−s)Λ0+(s−1)Λ1 ∈ P 2k−1
+ . For k = 2 this led Lepowsky and Wilson

to the discovery of the principal Heisenberg subalgebra s of A
(1)
1 , culminating in

the first purely Lie theoretic proof of the Rogers–Ramanujan identities [45, 47]. In
particular, Lepowsky and Wilson showed that AG2,s(q) is exactly the character of
the vacuum space of highest-weight vectors of L((4−s)Λ0+(s−1)Λ1) with respect

to s. This was subsequently extended to higher-level standard modules of A
(1)
1 by

Meurman and Primc [53] to yield a Lie theoretic proof of all of the Andrews–Gordon
identities (as well as their even moduli analogues).1

Along a different route, Griffin, Ono and the author showed that a suitable non-

principal specialisation of the characters of the A
(2)
2 standard modules of level 2k−2

also leads to the Rogers–Ramanujan and Andrews–Gordon q-series. Specifically,

e−λ chL(λ)
∣∣
(e−α0 ,e−α1 ) �→(−1,q)

= AGk,s(q),

1A distinction between the results of [45, 47] and [53] is that in the latter work, the combina-
torial instead of the analytic form of the identities is obtained.
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where λ is parametrised as λ = (2k − 2s)Λ0 + (s − 1)Λ1 ∈ P 2k−2
+ . This was then

shown to generalise to A
(2)
2r for arbitrary r � 1, resulting in higher-rank generalisa-

tions of the Rogers–Ramanujan and Andrews–Gordon identities. For example, if k
is a positive integer and κ := 2k + 2r − 1, then [27, Theorem 1.1]

e−(k−1)Λr chL
(
(k − 1)Λr

)∣∣
(e−α0 ,e−α1 ,...,e−αr ) �→(−1,q,...,q)

(1.3)

=
∑

λ even
λ1�2k−2

q|λ|/2Pλ

(
1, q, q2, . . . ; q2r−1

)

=
(qκ; qκ)r∞
(q)r∞

r∏
i=1

θ
(
qi+k−1; qκ

) ∏
1�i<j�r

θ
(
qj−i, qi+j−1; qκ

)
,

where Pλ(x1, x2, . . . ; t) is a Hall–Littlewood symmetric function in infinitely many
variables [50]. For r = 1 the identity (1.3) simplifies to the s = k instance of (1.2).

Surprisingly, finding the higher-rank generalisation of the Andrews–Gordon for

the seemingly simpler affine Lie algebra A
(1)
r−1 remains an open problem. Parametris-

ing the dominant integral weights of A
(1)
r−1 as

(1.4) λ = (d− μ1 + μr)Λ0 + (μ1 − μ2)Λ1 + · · ·+ (μr−1 − μr)Λr−1 ∈ P d
+,

where μ = (μ1, . . . , μr) is a partition such that μ1 −μr � d, the challenge is to find
generalisations AGλ;r(q) of the sum-side of (1.2) such that

e−λ chL(λ)
∣∣
(e−α0 ,...,e−αr−1 ) �→(q,...,q)

(1.5)

= F · (q
d+r; qd+r)r−1

∞
(q)r−1

∞

∏
1�i<j�r

θ
(
qμi−μj+j−i; qd+r

)
= F ·AGλ;r(q),

where now, for arbitrary 0 � a � r − 1,

F := e−Λa chL(Λa)
∣∣
(e−α0 ,...,e−αr−1 ) �→(q,...,q)

=
(qr; qr)∞
(q; q)∞

.

In [6] it was shown that the infinite product in (1.5) (without the factor F ) is the
character of a nonunitary Wr-module (with W2 the Virasoro algebra) as well as an

A
(1)
r−1 branching function, see Section 4 for details.
Arguably the most powerful method for discovering and proving identities of the

Rogers–Ramanujan type is that of Bailey chains and lattices, see [2, 5, 58, 68]. In
[6] Andrews, Schilling and the author developed an A2-analogue of the classical
Bailey chain and applied this to the problem of finding Rogers–Ramanujan and

Andrews–Gordon identities for A
(1)
2 . Although this resulted in several infinite fam-

ilies of Rogers–Ramanujan-type identities, the q-series of [6] correspond to AGλ;3(q)
multiplied by an unwanted factor 1/(q)∞, obscuring the fact that the coefficients
of the former are all nonnegative. Only for d = 2 and d = 4 could this unwanted
factor be eliminated, resulting in, for example,

AGΛ0+Λ1;3(q) =

∞∑
n=0

qn
2

(q)n
=

∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
(1.6)
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and

AG2Λ0+Λ1+Λ2;3(q) =

∞∑
n,m=0

qn
2−nm+m2

(q)n

[
2n

m

]
(1.7)

=
∞∏

n=0

1

(1− q7n+1)2(1− q7n+3)(1− q7n+4)(1− q7n+6)2
,

where
[
n
m

]
is a q-binomial coefficient, see (5.2). The first of these results is essentially

trivial since, by level-rank duality, AGΛ0+Λ1;3(q) = AG2Λ0+Λ1;2(q). The second
Rogers–Ramanujan identity (1.1b) follows in a similar manner from AG2Λ0;3(q) =

AG3Λ0;2(q). The identity (1.7) is one of five2 modulus-7 identities for A
(1)
2 known

collectively as the A2 Rogers–Ramanujan identities, see [6, 17, 20, 69].
In a series of recent papers [13, 15, 17, 23] a new approach to the problem of

finding manifestly positive multisum expressions for AGλ;r(q) has emerged, based
on cylindric partitions. Cylindric partitions, first introduced by Gessel and Krat-
tenthaler in [25], are an affine analogue of plane partitions. Using notation and
terminology as defined in Section 3, let GKc(q) be the size (or norm) generating
function of cylindric partitions of rank r and profile c = (c0, . . . , cr−1):

GKc(q) :=
∑
π

profile(π)=c

q|π|,

where |π| denotes the size of π. The first key observation, due to Foda and Welsh
[23] (see also [66]), is that Borodin’s product formula [8] for cylindric partitions
implies that

(1.8) AGλ;r(q) = (q)∞GKc(q).

Here the entries of the profile c are fixed in terms of λ as ci = 〈α∨
i , λ〉, i.e., if λ is

parametrised as in (1.4), then c0 = d−μ1+μr and ci = μi−μi+1 for 1 � i � r−1.
As an important consequence of (1.8), the combinatorics of cylindric partitions can
be utilised to compute AGλ;r(q). The second key observation, due to Corteel and
Welsh [17], is that by considering the more general two-variable generating function
GKc(z, q),

GKc(z, q) :=
∑
π

profile(π)=c

zmax(π)q|π|,

where max(π) is the largest part of the cylindric partition π, a system of functional
equations arises that fully determines GKc(z, q) for fixed level c0 + · · ·+ cr−1 = d.
Solving this system for arbitrary rank r and level d appears extremely challenging,
but in a recent paper Corteel, Dousse and Uncu [15] managed to solve the case
r = 3 and d = 5, giving rise to manifestly positive multisum expression for all five
characters. For example [15, Theorem 3.3],

GK(2,2,1)(z, q) =
1

(zq)∞

∞∑
n1,n2,n3,n4=0

zn1qn
2
1+n2

2+n2
3+n2

4−n1n2+n2n4

(q)n1

[
n1

n2

][
n1

n4

][
n2

n3

]
,

2There are only four characters for modulus 7, but one of these admits two distinct double-sum
expressions.
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which by (1.5) and (1.8) implies the beautiful [15, Theorem 1.6]

AG2Λ0+2Λ1+Λ2;3(q)=

∞∑
n1,n2,n3,n4=0

qn
2
1+n2

2+n2
3+n2

4−n1n2+n2n4

(q)n1

[
n1

n2

][
n1

n4

][
n2

n3

](1.9)

=
∞∏

n=0

1

(1−q8n+1)2(1−q8n+2)(1−q8n+4)2(1−q8n+6)(1−q8n+7)2
.

Motivated by the results of Corteel et al., we succeeded in finding the ana-

logues of the Andrews–Gordon identities for A
(1)
2 for all moduli not congruent to 0

modulo 3. The simplest examples for each fixed modulus are given below, where
θ(a1, . . . , ak; q) := θ(a1; q) · · · θ(ak; q).

Theorem 1.1 (A2 Andrews–Gordon identities, I). For k a positive integer, the
following identity for AGkΛ0+kΛ1+(k−1)Λ2;3(q) holds:

∑
n1,...,nk�0

m1,...,mk−1�0

qn
2
k

(q)n1

k−1∏
i=1

qn
2
i−nimi+m2

i

[
ni

ni+1

][
ni − ni+1 +mi+1

mi

]
(1.10)

=
(q3k+2; q3k+2)2∞

(q)2∞
θ(qk, qk+1, qk+1; q3k+2),

where mk := 2nk. Similarly, for AGkΛ0+(k−1)Λ1+(k−1)Λ2;3(q) there holds AGΛ0;3(q)
= 1 and

∑
n1,...,nk−1�0
m1,...,mk−1�0

q
∑k−1

i=1 (n2
i−nimi+m2

i )

(q)n1

[
2nk−1

mk−1

] k−2∏
i=1

[
ni

ni+1

][
ni − ni+1 +mi+1

mi

]
(1.11)

=
(q3k+1; q3k+1)2∞

(q)2∞
θ(qk, qk, qk+1; q3k+1)

for k � 2.

The k = 1 case of (1.10) is (1.6), the k = 2 case of (1.11) is (1.7), but the k = 2
case of (1.10) does not give (1.9)! Instead we obtain the triple-sum identity

∞∑
n1,m1,n2=0

qn
2
1−n1m1+m2

1+n2
2

(q)n1

[
n1

n2

][
n1 + n2

m1

](1.12)

=

∞∏
n=0

1

(1− q8n+1)2(1− q8n+2)(1− q8n+4)2(1− q8n+6)(1− q8n+7)2
.
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The first two moduli that have not appeared before are 10 and 11, for which we get

∞∑
n1,m1,n2,m2=0

qn
2
1−n1m1+m2

1+n2
2−n2m2+m2

2

(q)n1

[
n1

n2

][
n1 − n2 +m2

m1

][
2n2

m2

]

=
∞∏

n=0

(
1

(1− q10n+1)2(1− q10n+2)2(1− q10n+4)(1− q10n+5)2

× 1

(1− q10n+6)(1− q10n+8)2(1− q10n+9)2

)
and

∞∑
n1,m1,n2,m2,n3=0

qn
2
1−n1m1+m2

1+n2
2−n2m2+m2

2+n2
3

(q)n1

[
n1

n2

][
n1 − n2 +m2

m1

][
n2

n3

][
n2 + n3

m2

]

=

∞∏
n=0

(
1

(1− q11n+1)2(1− q11n+2)2(1− q11n+3)(1− q11n+5)2

× 1

(1− q11n+6)2(1− q11n+8)(1− q11n+9)2(1− q11n+10)2

)
.

The remainder of this paper is organised as follows. In the next section we

state our main results on A2 (or A
(1)
2 ) Rogers–Ramanujan and Andrews–Gordon

identities. This section also contains conjectural, manifestly-positive multisum ex-
pressions for the two-variable generating function of cylindric partition of rank 3.
These conjectures, if true, show that the statistic max on cylindric partitions is

compatible with our A
(1)
2 character formulas, suggesting that max should have a

natural representation-theoretic interpretation. In Section 3 we review some of the
basics of cylindric partitions needed in the remainder of the paper, and in Section 4
we give representation theoretic interpretations of AGλ;r(q). In Section 5 a number
of identities for basic hypergeometric series are proved, laying the groundwork for
Section 6, which focuses on the modulus-8 case and provides a connection with the
work of Corteel, Dousse and Uncu. In Section 7 we prove our main results, includ-
ing the A2 Andrews–Gordon identities of Theorem 1.1. Finally, in Theorem 8.3 of
Section 8 we present an identity for Ar−1 corresponding to the infinite-level limit

of the as-yet-to-be found Andrews–Gordon identities for A
(1)
r−1 for r � 4.

2. Main results and conjectures

In this section we give a summary of the A2 Andrews–Gordon identities for
AGλ;3(q) as well as some closely related, manifestly positive multisum expressions
for the two-variable generating function of cylindric partitions GK(c0,c1,c2)(z, q) for
c0 + c1 + c2 �≡ 0 (mod 3).

2.1. The modulus-(3k+ 2) case. The simplest A2 Andrews–Gordon identity for
the modulus 3k+2 is (1.10) of Section 1. This result is complemented with several
further identities, the first of which corresponds to AG(3k−s)Λ0+(s−1)Λ1;3(q).
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Conjecture 2.1 (A2 Andrews–Gordon identities, II). For integers k, s such that
1 � s � k + 1,∑

n1,...,nk�0
m1,...,mk−1�0

qn
2
k+

∑k
i=s ni

(q)n1

k−1∏
i=1

qn
2
i−nimi+m2

i+mi

[
ni

ni+1

][
ni − ni+1 +mi+1

mi

]
(2.1)

=
(q3k+2; q3k+2)2∞

(q)2∞
θ(q, qs, qs+1; q3k+2),

where mk := 2nk.

Theorem 2.2. Conjecture 2.1 holds for s ∈ {1, k, k + 1}.
Remark 2.3. The proofs of the various A2 Andrews–Gordon identities all use the
Rogers–Ramanujan-type identities of [6] as a seed. In these seeds, the summation
variables ni and mi play a more symmetric role than in the A2 Andrews–Gordon
identities. If a seed has a summand that is near-symmetric in the sense that it is
invariant when ni and mi are interchanged for all i, except for a linear factor in the
exponent of q, then this near-symmetry can be exploited to yield two different forms
for the sum side of the corresponding A2 Andrews–Gordon identity. What is more,
by conjecturing some near-symmetric seeds missing from [6] (see Conjecture 7.4)
this extends to Conjecture 2.1 in full. Hence this conjecture admits the companion

∑
n1,...,nk�0

m1,...,mk−1�0

qn
2
k+nk+

∑k−1
i=s mi

(q)n1

k−1∏
i=1

qn
2
i−nimi+m2

i+ni

[
ni

ni+1

][
ni−ni+1+mi+1+δi,s−1

mi

](2.2)

=
(q3k+2; q3k+2)2∞

(q)2∞
θ(q, qs, qs+1; q3k+2)

for 1 � s � k, and∑
n1,...,nk�0

m1,...,mk−1�0

qn
2
k

(q)n1

k−1∏
i=1

qn
2
i−nimi+m2

i+ni

[
ni + δi,k−1

ni+1

][
ni − ni+1 +mi+1

mi

]
(2.3)

=
(q3k+2; q3k+2)2∞

(q)2∞
θ(q, qk+1, qk+2; q3k+2)

when s = k + 1. In both cases mk := 2nk as before and δi,j is a Kronecker delta.

The identity in Theorem 2.4 has a more complicated right-hand side, correspond-
ing to the linear combination

∑s
i=1 q

s−iAG(3k−2i+1)Λ0+(i−1)Λ1+(i−1)Λ2;3(q).

Theorem 2.4 (A2 Andrews–Gordon identities, III). For integers k, s such that
1 � s � k,∑
n1,...,nk�0

m1,...,mk−1�0

qn
2
k+

∑k
i=s ni+

∑k−1
i=s mi

(q)n1

k−1∏
i=1

qn
2
i−nimi+m2

i

[
ni

ni+1

][
ni−ni+1+mi+1+δi,s−1

mi

]

=
(q3k+2; q3k+2)2∞

(q)2∞

s∑
i=1

qs−i θ(qi, qi, q2i; q3k+2),

where mk := 2nk.
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The above results give 3k+1 distinct identities for modulus 3k+2, except when
k = 1, in which case the two Rogers–Ramanujan identities (1.1a) and (1.1b) arise.
In the modulus-8 case we have found another three results giving a total of 11
identities, including (1.12) of Section 1. All of these will be discussed in detail in
Section 6.

Conjecturally, some of the above results can be extended to the two-variable
generating function for cylindric partitions of rank 3.

Conjecture 2.5. For a positive integer k,

GK(k,k,k−1)(z, q)

=
1

(zq)∞

∑
n1,...,nk�0

m1,...,mk−1�0

zn1qn
2
k

(q)n1

k−1∏
i=1

qn
2
i−nimi+m2

i

[
ni

ni+1

][
ni − ni+1 +mi+1

mi

]

and, for integers k, s such that 1 � s � k + 1,

GK(3k−s,s−1,0)(z, q)

=
1

(zq)∞

∑
n1,...,nk�0

m1,...,mk−1�0

zn1qn
2
k+

∑k
i=s ni

(q)n1

k−1∏
i=1

qn
2
i−nimi+m2

i+mi

[
ni

ni+1

][
ni−ni+1+mi+1

mi

]
,

where mk := 2nk in both identities.

Theorem 2.6. Conjecture 2.5 holds for k = 1 and k = 2.

Conjecture 2.5 is consistent with Conjecture 2.7 of Corteel et al., see [15, Con-
jecture 4.2]. For a nonnegative integer n and c = (c0, . . . , cr−1), define

(2.4) Qn,c(q) := (q�; q�)n [z
n]
(
(zq)∞ GKc(z, q)

)
∈ Z[[q]],

where, for d := c0 + · · ·+ cr−1, � := gcd(d, r).

Conjecture 2.7. Let c = (c0, c1, c2) and d := c0+c1+c2 such that d �≡ 0 (mod 3).
Then Qn,(c0,c1,c2)(q) is a polynomial in q with nonnegative coefficients. Moreover,

(2.5) Qn,(c0,c1,c2)(1) =
(

1
6 (d+ 1)(d+ 2)− 1

)n

.

The polynomiality and (2.5) have both been proven by Welsh [70], but the pos-
itivity part of Conjecture 2.7 remains wide open. From Conjecture 2.5, we imme-
diately infer the following manifestly positive representations for d = 3k − 1:

Qn1,(k,k,k−1)(q) =
∑

n2,...,nk�0
m1,...,mk−1�0

qn
2
k

k−1∏
i=1

qn
2
i−nimi+m2

i

[
ni

ni+1

][
ni − ni+1 +mi+1

mi

]

and

Qn1,(3k−s,s−1,0)(q)

=
∑

n2,...,nk�0
m1,...,mk−1�0

qn
2
k+

∑k
i=s ni

k−1∏
i=1

qn
2
i−nimi+m2

i+mi

[
ni

ni+1

][
ni − ni+1 +mi+1

mi

]
,
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where mk := 2nk. For q = 1 it is a standard exercise in binomial sums to show
that this implies

Qn,(k,k,k−1)(1) = Qn,(3k−s,s−1,0)(1) =
(

1
2k(3k + 1)− 1

)n

,

in accordance with (2.5).

2.2. The modulus-(3k + 1) case. All the modulus-(3k + 2) identities have coun-
terparts for modulus 3k + 1. Our first result beyond (1.11) is a companion to
Conjecture 2.1 and gives Andrews–Gordon identities for AG(3k−s−1)Λ0+(s−1)Λ1;3(q).

Conjecture 2.8 (A2 Andrews–Gordon identities, II′). For integers k, s such that
k � 2 and 1 � s � k,

∑
n1,...,nk−1�0
m1,...,mk−1�0

q
∑k−1

i=1 (n2
i−nimi+m2

i+mi)+
∑k−1

i=s ni

(q)n1

[
2nk−1

mk−1

] k−2∏
i=1

[
ni

ni+1

][
ni−ni+1+mi+1

mi

](2.6)

=
(q3k+1; q3k+1)2∞

(q)2∞
θ(q, qs, qs+1; q3k+1).

Again we have a proof for three (or two when k = 2) values of s.

Theorem 2.9. Conjecture 2.8 holds for s ∈ {1, k − 1, k}.
If Conjecture 2.8 is true, then for 1 � s � k,∑

n1,...,nk−1�0
m1,...,mk−1�0

(
q
∑k−1

i=1 (n2
i−nimi+m2

i+ni)+
∑k−1

i=s mi

(q)n1

[
2nk−1 + δs,k

mk−1

]
(2.7)

×
k−2∏
i=1

[
ni

ni+1

][
ni − ni+1 +mi+1 + δi,s−1

mi

])

=
(q3k+1; q3k+1)2∞

(q)2∞
θ(q, qs, qs+1; q3k+1)

in analogy with (2.2) and (2.3). Equations (1.11), (2.6) and (2.7) for k = 2 give the
four A2 Rogers–Ramanujan identities of [6, Theorem 5.6]. The fifth A2 Rogers–
Ramanujan, which was conjectured in [20] and proved in [17, Theorem 1.2], is
missing from our modulus-(3k + 1) generalisations.

The next identity for character sum
∑s

i=1 q
s−iAG(3k−2i)Λ0+(i−1)Λ1+(i−1)Λ2;3(q)

is the analogue of Theorem 2.4.

Theorem 2.10 (A2 Andrews–Gordon identities, III′). For integers k, s such that
1 � s � k − 1,

∑
n1,...,nk−1�0

m1,...,mk−1�0

q
∑k−1

i=1 (n2
i−nimi+m2

i )+
∑k−1

i=s (ni+mi)

(q)n1

[
2nk−1

mk−1

]
k−2∏
i=1

[
ni

ni+1

][
ni−ni+1+mi+1+δi,s−1

mi

]

=
(q3k+1; q3k+1)2∞

(q)2∞

s∑
i=1

qs−i θ(qi, qi, q2i; q3k+1).

The lifting of (1.11) and (2.6) to the two-variable generating function for cylindric
partitions results in our final conjecture.
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Conjecture 2.11. For k a positive integer,

GK(k,k−1,k−1)(z, q)

=
1

(zq)∞

∑
n1,...,nk−1�0

m1,...,mk−1�0

zn1q
∑k−1

i=1 (n2
i−nimi+m2

i )

(q)n1

[
2nk−1

mk−1

]
k−2∏
i=1

[
ni

ni+1

][
ni−ni+1+mi+1

mi

]

and, for integers k, s such that 1 � s � k,

GK(3k−s−1,s−1,0)(z, q)

=
1

(zq)∞

∑
n1,...,nk−1�0
m1,...,mk−1�0

(
zn1q

∑k−1
i=1 (n2

i−nimi+m2
i+mi)+

∑k−1
i=s ni

(q)n1

×
[
2nk−1

mk−1

] k−2∏
i=1

[
ni

ni+1

][
ni − ni+1 +mi+1

mi

])
.

The k = 1 case, corresponding to GK(1,0,0)(z, q) = 1/(zq)∞, is trivial.3 The
k = 2 case of Conjecture 2.11 is [17, Theorem 3.2] by Corteel and Welsh. Their
theorem also includes manifestly positive double-sum expressions for GK(3,0,1)(z, q)
and GK(2,2,0)(z, q), which are not included in the k = 2 case of Conjecture 2.11.

3. Cylindric partitions

Let N and N0 denote the set of positive integers and nonnegative integers re-
spectively. Then an integer partition of size n and length r is a weakly decreasing
sequence λ = (λ1, . . . , λr) ∈ Nr

0 such that |λ| := λ1 + · · ·+ λr = n. Here the λi are
referred to as the parts of λ. The above differs slightly from the standard defini-
tions of part and length [50] in that 0 can be a part. For example, in this paper the
partitions (7, 6, 6, 4, 0) and (7, 6, 6, 4) of 23 will be viewed as distinct, having length
5 and 4 respectively. We will alternatively use the multiplicities as exponent to
represent a partition, leaving out the exponent 1. Hence (7, 6, 6, 4, 0) = (7, 62, 4, 0).

A Young diagram Y is a configuration of (unit) squares or boxes that are ar-
ranged in left-justified rows such that row-lengths are weakly decreasing from top
to bottom, as in

If λ = (λ1, . . . , λr) is a partition and Y a Young diagram of at most r rows such
that the ith row of Y contains λi squares, we say that Y is the Young diagram
of λ. For example, the above diagram is the Young diagram of (7, 62, 4, 0k) for
arbitrary nonnegative integer k. If ν is a partition such that its Young diagram is
the transpose of the Young diagram of λ, we say that ν is a conjugate of λ and write
ν = λ′. Of course, the conjugate of λ is not unique and (7, 62, 4, 0k)′ = (43, 22, 1, 0�)
for k, � nonnegative integers. We note that the multiplicity mi = mi(λ) of parts of

3Also the more general GK(Lr)/(0r)/1(z, q) = 1/(zq)rL is trivially true, where we refer to

Section 3 for the definition of GKλ/μ/d(z, q). This implies that GK(1,0r−1)(z, q) = 1/(zq)∞ for

arbitrary r.
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size i of the partition λ = (λ1, . . . , λr) is given by m0 = r−λ′
1 and mi(λ) = λ′

i−λ′
i+1

for i � 1.
Given two partitions λ, μ of length r, write μ ⊆ λ if μi � λi for all 1 � i � r.

Then the skew (Young) diagram of λ/μ is obtained from the Young diagram of λ by
deleting all squares contained in the Young diagram of μ. Hence the skew diagram
of (7, 6, 4, 4)/(3, 1, 1, 0) is given by

The skew diagram of λ/μ is connected if for all positive λi (such that i �= 1),
μi−1 < λi. Conversely, it is disconnected if there exists an i such that μi � λi+1 > 0.

Cylindric partitions were first introduced by Gessel and Krattenthaler in [25] as
an affine analogue of (skew) plane partitions. Fix a positive integer r, which we
will refer to as the rank, and let λ, μ be two partitions of length r such that μ ⊆ λ.4

Let A ⊆ N0. Then a plane partition π on A of shape λ/μ and size n is a filling
of the diagram of λ/μ with elements from A such that the rows and columns are
both weakly decreasing and such that |π|, the sum of the entries of π, is equal to
n. For example,

9 8 5 5

10 8 8

11 11 8 7 4

9 7 6 2

is a plane partition on N of shape (7, 6, 4, 4)/(3, 1, 1, 0) and size 118 (which we
blatantly copied from [25]). The representation on the right corresponds to the
usual stacking of unit cubes so that |π| corresponds to the volume of π. When
μ = 0 and A = N one obtains an ordinary plane partition of shape λ in the sense
of MacMahon [51]. Each row and column of a plane partition π is an ordinary
integer partition (with parts in A ). It will be convenient to encode the rows as a
multipartition

ν =
(
ν(1), ν(2), . . . , ν(r)

)
,

where the partition ν(i) =
(
ν
(i)
1 , . . . , ν

(i)
λi−μi

)
corresponds to the filling of the ith row

of π. The condition that each of the λ1 − μr columns of π also form a partition
then translates to

(3.1) ν
(i)
j � ν

(i+1)
j+μi−μi+1

for 1 � i � r − 1 and 1 � j � λi+1 − μi.

In the above example

ν =
(
(9, 7, 6, 2), (11, 11, 8, 7, 4), (10, 8, 8), (9, 8, 5, 5)

)
.

Mostly one is interested in enumerating plane partitions with fixed shape, in which
case it is natural to consider connected shapes only.

4Gessel and Krattenthaler consider more general integer sequences λ and μ of length r, but we
have no need for these here.
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Let d be an integer, which we will call the level, such that

d � max{μ1 − μr, λ1 − λr}.
Then a plane partition π of shape λ/μ is said to be a cylindric partition of shape
λ/μ/d if it is also a plane partition of shape

(3.2) (d+ λr, λ1, . . . , λr)/(d+ μr, μ1, . . . , μr)

with multipartition given by (
ν(r), ν(1), ν(2), . . . , ν(r)

)
.

In other words, on top of (3.1) one also has the cyclic conditions

(3.3) ν
(r)
j � ν

(1)
j−μ1+μr+d for 1 � j � λ1 − μr − d.

If one is interested in cylindric partitions of fixed shape λ/μ/d it is natural to
further restrict the level to

d < λ1 − μr

to avoid (3.3) from trivialising.
The cylindric condition should really be viewed as the wrapping of the plane

partition around a semi-infinite cylinder. Our earlier example of a plane partition
is a nontrivial cylindric partition of shape (7, 6, 4, 4)/(3, 1, 1, 0)/d on N for d = 5, 6, 7,
and a trivial one for d � 8. For example, for d = 5 either of the two diagrams below
represents this cylindric partition:

d

r
d

r

2

2

0

1

9 8 5 5

9 8 5 5

10 8 8

11 11 8 7 4

9 7 6 2

2

9 8 5 5

10 8 8

11 11 8 7 4

9 7 6

where the blue labels on the left correspond to the profile of the cylindric partition
as explained below. For this same cylindric partition represented in terms of stacked
unit cubes, see Figure 1.

Figure 1. Geometric representation of a cylindric partition, show-
ing five of the infinitely many copies of a fundamental domain. The
drift is due to the fact that d �= r.



THE A2 ANDREWS–GORDON IDENTITIES 727

Let π be cylindric partition of shape λ/μ/d and rank r. Then the profile c =
(c0, . . . , cr−1) of π is a sequence of r nonnegative integers that sums to d, given by

c0 = d− μ1 + μr and ci = μi − μi+1 for 1 � i � r − 1.

The profile of the cylindric partition in our example is (2, 2, 0, 1).
Given a cylindric partition π of rank r, its size |π| (Gessel and Krattenthaler use

the term norm) is once again defined as the sum of its entries, i.e.,

|π| = |ν| :=
r∑

i=1

|ν(i)|,

where ν is the multipartition corresponding to π. Note that this corresponds to
the volume of a fundamental domain as shown in Figure 1.

Also,

max(π) := max
{
ν
(i)
j : 1 � i � r, 1 � j � λi − μi

}
denotes the value of the maximal entry (or entries) of π (or the height of π in
its geometric representation). The above example of a cylindric partition of shape
(7, 6, 4, 4)/(3, 1, 1, 0)/5 has size 118, rank 4, level 5 and maximal entry 11.

Let Cλ/μ/d(A ) denote the set of cylindric partitions of shape λ/μ/d on A . We
are interested in the generating functions

GKλ/μ/d(z, q;A ) :=
∑

π∈Cλ/μ/d(A )

zmax(π)q|π|(3.4a)

and

GKλ/μ/d;n(q;A ) :=
∑

π∈Cλ/μ/d(A )

max(π)�n

q|π| =
n∑

m=0

[zm] GKλ/μ/d(z, q;A ),(3.4b)

where [zm]f(z) stands for the coefficient of zm in the polynomial or formal power
series f(z).

For later convenience we also set

(3.5) GKλ/μ/d(z, q;A ) = 0

if μ �⊆ λ or if λ and μ are not both partitions.
The two-variable generating function for cylindric partitions has translation sym-

metry

(3.6) GK(λ1,...,λr)/(μ1,...,μr)/d(z, q;A ) = GK(λ1−k,...,λr−k)/(μ1−k,...,μr−k)/d(z, q;A )

for 0 � k � μr, cyclic symmetry
(3.7)
GK(λ1,...,λr)/(μ1,...,μr)/d(z, q;A ) = GK(λr+d,λ1,...,λr−1)/(μr+d,μ1,...,μr−1)/d(z, q;A ),

and conjugation symmetry [25, page 462]

(3.8) GK(λ1+dL,...,λr+dL)/μ/d(z, q;A ) = GK(λ′
1+rL,...,λ′

d+rL)/μ′/r(z, q;A )

for λ, μ ⊆ (dr), μ′, λ′ ⊆ (rd) and L a nonnegative integer. Following [23], we will
refer to (3.8) as level-rank duality for cylindric partitions, in analogy with level-rank
duality in representation theory.
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By a special case of [25, Theorem 2] due to Gessel and Krattenthaler,

(3.9) GKλ/μ/d;n(q;N0) =
∑

k1,...,kr∈Z

k1+···+kr=0

det
1�i,j�r

(
qr(d+r)(ki

2 )+(d+r)iki+(μj−j)(rki+i−j)

×
[

n+ λi − μj − dki
λi − μj − (d+ r)ki + j − i

])
.

Taking the large-n limit and then specialising λ1 = · · · = λr = L � μ1, this
simplifies to [25, Theorem 5]

GK(Lr)/μ/d(1, q;N0)

(3.10)

=
∑

k1,...,kr∈Z

k1+···+kr=0

r∏
i=1

qr(d+r)(ki
2 )+(di+rμi)ki

(q)L−μi−(d+r)ki+i−1

∏
1�i<j�r

(
1− q(d+r)(ki−kj)+μi−μj+j−i

)
.

Let ν and λ be partitions of length r such that ν ⊆ λ. Any π̄ ∈ Cν/μ/d(N) maps
to a unique π ∈ Cλ/μ/d(N0) such that |π| = |π̄| and max(π) = max(π̄), by simply
filling those squares of π not contained in π̄ by 0 and leaving the other squares
unchanged. Conversely, by deleting all squares with filling 0, any π ∈ Cλ/μ/d(N0)
maps to a unique π̄ ∈ Cν/μ/d(N) for some fixed ν ⊆ λ. Hence, if for a fixed profile
c ∈ Nr

0 such that c0 + · · ·+ cr−1 = d, we set

μ(c) := (c1 + · · ·+ cr−1, c2 + · · ·+ cr−1, . . . , cr−1, 0),

then the generating function GKc(z, q) of all cylindric partitions on N of rank r,
level d and profile c is given by

(3.11) GKc(z, q) :=
∑

λ⊇μ(c)

l(λ)=r

GKλ/μ(c)/d(z, q;N) = lim
L→∞

GK(Lr)/μ(c)/d(z, q;N0).

From the cyclic symmetry (3.7),

(3.12) GK(c0,c1,...,cr−1)(z, q) = GK(cr−1,c0,c1,...,cr−2)(z, q).

Hence the number of inequivalent profiles c = (c0, . . . , cr−1) such that c0 + · · · +
cr−1 = d is given by

(3.13)
1

r

[
xd

] ∑
k|r

φ(k)

(
1

1− xk

)r/k

,

where φ is Euler’s totient function.
When z = 1 it follows from (3.10) and (3.11) that

GKc(1, q)

=
1

(q)r∞

∑
k1,...,kr∈Z

k1+···+kr=0

r∏
i=1

qr(d+r)(ki
2 )+(di+rμi)ki

∏
1�i<j�r

(
1−q(d+r)(ki−kj)+μi−μj+j−i

)
,
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where μ = μ(c) and d = c0 + · · ·+ cr−1. By the A
(1)
r−1 Macdonald identity [49]

(3.14)∑
k1,...,kr∈Z

k1+···+kr=0

r∏
i=1

xrki
i qr(

ki
2 )+iki

∏
1�i<j�r

(
1− qki−kjxi/xj

)
= (q)r−1

∞
∏

1�i<j�r

θ(xi/xj ; q)

with (q, xi) �→ (qd+r, qμi−i), this yields Borodin’s product formula [8]

(3.15) GKc(1, q) =
(qd+r; qd+r)r−1

∞
(q)r∞

∏
1�i<j�r

θ(qμi−μj+j−i; qd+r).

(The reader is referred to [16, 36, 38–40, 66] for alternative derivations and/or gen-
eralisations.) Comparing this with the definition of AGλ;r(q) given in Section 1, we
thus have

(3.16) GK(c0,...,cr−1)(1, q) =
1

(q)∞
AGc0Λ0+···+cr−1Λr−1;r(q),

which is (1.8).
Due to the additional reversal symmetry

(3.17) GK(c0,c1,...,cr−1)(1, q) = GK(cr−1,...,c1,c0)(1, q),

(3.15) yields a smaller number of distinct infinite products than predicted by (3.13).
For rank 3 and d = 3k + i − 3 with i = 0, 1, 2 and k � 1 (such that d � 1), the
cyclic symmetry plus (3.17) leads to a total of

(3.18)

(
k + 1

2

)
+
⌊1
4
(k + i− 1)2

⌋
distinct infinite products for the modulus 3k + i.

For later reference we also note that the level-rank duality (3.8) implies that

(3.19) GKc(z, q) = GKc′(z, q),

where c = (c0, . . . , cr−1) such that c0 + · · ·+ cr−1 = d and c′ = (c′0, . . . , c
′
d−1) such

that c′1 + · · · + c′d−1 = r are related by μ(c) = (μ(c′))′, where l(μ(c)) = r and
l(μ(c′)) = d. For example,

(3.20a) GK(1,1,0)(z, q) = GK(2,1)(z, q)

since μ(1, 1, 0) = (1, 0, 0) and μ(2, 1) = (1, 0), and

(3.20b) GK(2,0,0)(z, q) = GK(3,0)(z, q)

since μ(2, 0, 0) = (0, 0, 0) and μ(3, 0) = (0, 0). In particular, the expression (3.13)
is symmetric in d and r.

4. Connections to representation theory

Let h and h∗ be the Cartan subalgebra and its dual of the affine Lie algebra

A
(1)
r−1, with pairing 〈·, ·〉, see [30, 67]. As usual we use the non-degenerate bilinear

form (·|·) on h to identify h and h∗. For I := {0, 1, . . . , r−1}, let {αi : i ∈ I} be the
set of simple roots, {Λi : i ∈ I} the set of fundamental weights and δ =

∑
i∈I αi the

null root. Then h∗ = SpanC{Λ0, α0, . . . , αr−1}. By the above identification, and

since we are considering A
(1)
r−1 only, we do not need to distinguish between roots

and coroots, i.e., 〈αi,Λj〉 = (αi|Λj) = δij for all i, j ∈ I. We further denote the
finite part of h∗ by h̄∗, i.e., h̄∗ = SpanC{αi : i ∈ Ī}, where Ī := {1, 2, . . . , r − 1}.
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The level of λ ∈ h∗ is defined as lev(λ) := 〈λ, δ〉. In particular, lev(Λi) = 1 for all
i ∈ I. Let P+ and Pm

+ denote the set of dominant integral weights, and level-m
dominant integral weights, respectively:

P+ :=
{
λ ∈ h∗ : 〈λ, α∨

i 〉 ∈ N0 for i ∈ I
}
=

∑
i∈I

N0Λi + Cδ,

Pm
+ :=

{
λ ∈ P+ : lev(λ) = m

}
,

where m is a nonnegative integer. Since the δ-part of Pm
+ does not play a role in

what follows, we will typically ignore it and parametrise weights in Pm
+ as

(4.1) λ = (m− μ1 + μr)Λ0 + (μ1 − μ2)Λi + · · ·+ (μr−1 − μr)Λr−1,

where μ = (μ1, . . . , μr) is a partition such that μ1 − μr � m. This parametrisation
only depends on the differences μi − μr for i ∈ Ī, and without loss of generality we
may assume that μr = 0. The Weyl vector ρ is defined by 〈ρ, αi〉 = 1 for all i ∈ I.
Although this fixes ρ modulo Cδ, we once again ignore the δ-part and simply take
ρ =

∑
i∈I Λi. Note that lev(ρ) = r. Similarly, we fix the fundamental weights Λi

for i ∈ Ī as Λi = Λ0 +
∑

j∈Ī(min{i, j} − ij/r)αj .

For λ ∈ P+, let L(λ) be the standard module of A
(1)
r−1 of highest weight λ with

Vμ the weight-space indexed by μ in the weight-space decomposition of L(λ). Then
the character of L(λ) is defined as

chL(λ) :=
∑
μ∈h∗

dim(Vμ) e
μ .

Since dim(Vμ) = 0 if λ− μ �∈
∑

i∈I N0αi,

e−λ chL(λ) ∈ Z[[e−α0 , . . . , e−αr−1 ]].

Let W = W �Q be the Weyl group of A
(1)
r−1, with W ∼= Sr the classical part of W

and Q :=
∑

i∈Ī Zαi. Then, by the Weyl–Kac character formula [28, 30],

(4.2) chL(λ) =

∑
w∈W sgn(w) ew(λ+ρ)−ρ∏
α>0(1− e−α)mult(α)

,

where the product in the denominator is over the positive roots in the root system

of A
(1)
r−1 and mult(α) is the multiplicity of the root α. If λ ∈ P 1

+, we have the
alternative simpler expression (see e.g., [29, 31] or [30, Eq. (12.13.6)]),

(4.3) e−Λ� chL(Λ�) =
1∏∞

n=1(1− e−nδ)r−1

∑
α∈Q

eα−
1
2‖α‖

2δ−(α|Λ�)δ,

where Q :=
∑

i∈Ī Zαi.
Define the graded or q-dimension of L(λ) as

dimq L(λ) := F�
(
e−λ chL(λ)

)
,

where F� is the principal specialisation [41]:

F� : C[[e−α0 , . . . , e−αr−1 ]] → C[[q]],

e−αi �→ q for all i ∈ I.
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Then [29, 42],

dimq L(λ) =
∏
α>0

(
1− q〈λ+ρ,α〉

1− q〈ρ,α〉

)mult(α)

=
(qd+r; qd+r)r−1

∞ (qr; qr)∞
(q)r∞

∏
1�i<j�r

θ
(
qμi−μj+j−i; qd+r

)
,

where in the second expression on the right it is assumed that λ ∈ P d
+ with λ

parametrised as in (4.1) with m replaced by d. For λ = Λ� the above simplifies to
(qr; qr)∞/(q)∞ for all � ∈ I. By (3.15) and (3.16) we thus have

GK(c0,...,cr−1)(1, q) =
1

(q)∞
AGc0Λ0+···+cr−1Λr−1;r(q)

=
1

(q)∞
· dimq L(c0Λ0 + · · ·+ cr−1Λr−1)

dimq L(Λ�)
,

see also [23, 66].

Alternatively, we can identify GK(c0,...,cr−1)(1, q) as an A
(1)
r−1 branching func-

tion. To this end we require the characters of certain admissible representations of

A
(1)
r−1 [32, 33]. Let d,m be a pair of relatively prime integers such that d � 1 and

m+(d−1)r � 0. For μ = (μ1, . . . , μr) a partition such that μ1−μr � m+(d−1)r,
let

(4.4) λ(μ;m/d) := (m/d− μ1 + μr)Λ0 + (μ1 − μ2)Λ1 + · · ·+ (μr−1 − μr)Λr−1

(so that lev(λ(μ;m/d)) = m/d), and let Pm/d denote the set of all such weights.
For d = 1 this is just Pm

+ but for d � 2 the weights in Pm/d are not integral. The

set Pm/d is a subset of the set of (principal) admissible weights of A
(1)
r−1 defined

by Kac and Wakimoto in [32–34]. As follows from their work (see e.g., [32, Propo-
sition 3] or [34, Theorem 3.1]), the generating function for cylindric partitions of
rank r and level d (such that d and r are relatively prime) arises as a branching

function bλ⊗λ′

λ′′ (q) corresponding to the decomposition of chL(λ) chL(λ′) in terms

of chL(λ′′), where λ ∈ P r/d−r, λ′ ∈ P 1
+ and λ′′ ∈ P r/d−r+1. For the benefit of

those readers not familiar with the theory of admissible representations of affine
Kac–Moody algebras, we will translate the details of [32, Proposition 3] pertaining

to the case of cylindric partitions and A
(1)
r−1 Andrews–Gordon q-series into the lan-

guage of formal power series. First of all we note that by setting e−αi = xi/xi+1

for i ∈ Ī and e−δ = q, and by using the semi-direct product structure of W , we can
write (4.2) as

e−λ chL(λ) =
1

(q)r−1
∞

∏
1�i<j�r(−xj)θ(xi/xj ; q)

(4.5)

×
∑

k1,...,kr∈Z

k1+···+kr=0

r∏
i=1

x
(m+r)ki−μi

i q(m+r)(ki
2 ) det

1�i,j�r

((
xiq

ki)μj+r−j
)
,
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where λ is parametrised as in (4.1). Similarly, (4.3) becomes

(4.6) e−Λ� chL(Λ�) =
1

(q)r−1
∞

∑
k1+···+kr∈Z

k1+···+kr=0

r∏
i=1

xki
i q(

ki
2 )+χ(i��)ki .

For the characters of the admissible representations indexed by λ = Λ(μ;m/d) ∈
Pm/d, the Weyl–Kac formula (4.5) generalises to

e−λ chL(λ) =
1

(q)r−1
∞

∏
1�i<j�r(−xj)θ(xi/xj ; q)

×
∑

k1,...,kr∈Z

k1+···+kr=0

r∏
i=1

x
(m+dr)ki−μi

i qd(m+dr)(ki
2 ) det

1�i,j�r

((
xiq

dki)μj+r−j
)
.

According to [32, Proposition 3] we then have the following branching rule.

Proposition 4.1 (A
(1)
r−1 branching formula). Let d be a positive integer relatively

prime to r, and let � ∈ I. Then

(4.7) chL
(
(r/d−r)Λ0

)
·chL(Λ�) =

∑
λ∈P r/d−r+1

λ−(r/d−r)Λ0−Λ�∈Q

q
1
2‖λ‖

2− 1
2‖Λ�‖2

bλ(q) chL(λ),

where, assuming that λ is parametrised as in (4.4) with m = d+ r − dr,

bλ(q) =
(qd+r; qd+r)r−1

∞
(q)r−1

∞

∏
1�i<j�r

θ(qμi−μj+j−i; qd+r).

Remark 4.2. A number of comments are in order. (i) The weight (r/d − r)Λ0 is
the unique element in P (1/d−1)r, and by the Macdonald identity (3.14),

e−(r/d−r)Λ0 chL
(
(r/d− r)Λ0

)
=

(qd; qd)r−1
∞

(q)r−1
∞

∏
1�i<j�r

θ(xi/xj ; q
d)

θ(xi/xj ; q)
.

(ii) Up to an overall power of q, the branching function bλ(q) is b
(r/d−r)Λ0⊗Λ0

λ (q) of
[32]. In [32, Proposition 3] bλ(q) is not given in product form since it is stated there
as special case of a more general branching rule for which the branching functions
typically do not admit product forms. The product form given here once again
follows from the Macdonald identity. (iii) In terms of the partition μ parametrising
the elements of P r/d−r+1, the condition λ − (r/d− r)Λ0 − Λ� ∈ Q corresponds to
|μ| ≡ � (mod r). Moreover,

‖λ‖2 − ‖Λ�‖2 =

r∑
i=1

μ2
i −

|μ|2
r

− �(r − �)

r
.
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It thus follows that the identity (4.7) boils down to∏
1�i<j�r

(−xj)θ(xi/xj ; q
d)

∑
k1+···+kr∈Z

k1+···+kr=0

r∏
i=1

xki
i q(

ki
2 )+χ(i��)ki

=
(qd+r; qd+r)r−1

∞
(qd; qd)r−1

∞

∑
μ

(
q

1
2

∑r
i=1(μ

2
i−�)− |μ|2−�2

2r

∏
1�i<j�r

θ(qμi−μj+j−i; qd+r)

×
∑

k1,...,kr∈Z

k1+···+kr=0

r∏
i=1

x
(d+r)ki−χ(i��)− |μ|−�

r
i qd(d+r)(ki

2 ) det
1�i,j�r

((
xiq

dki)μj+r−j
))

,

where the outer sum on the right is over partitions μ = (μ1, . . . , μr) such that
μr = 0, μ1 � d and |μ| ≡ � (mod r). This identity, which can be proved using
standard q-series methods, is true for all positive integers d and r and does not
require d and r to be coprime. For d = 1, which fixes μ = (1�, 0r−�), the above
identity simplifies to the equality between (4.2) for λ = Λ� and (4.6).

By comparing Proposition 4.1 with (3.15) and (3.16) we conclude that

GK(c0,...,cr−1)(1, q) =
1

(q)∞
AGc0Λ0+···+cr−1Λr−1;r(q)

=
1

(q)∞
b(r/d−d−r+1+c0)Λ0+c1Λ1+···+cr−1Λr−1

(q),

where d = c0 + · · ·+ cr−1.
A third representation theoretic interpretation in terms of the Wr algebra of

Zamolodchikov [71] and Fateev and Lukyanov [19] is very closely related to the
above. It is well known that the modulus-(2k + 1) Andrews–Gordon q-series,
AGk,s(q), correspond to the (normalised) characters of the certain nonunitary repre-
sentations of the Virasoro algebra. Specifically, let Vir denote the Virasoro algebra
[18] with generators Ln (n ∈ Z), central element c (not to be confused with the
profile of a cylindric partition) and commutation relations

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0.

Furthermore, let χVir(c,h)(q) = Tr qL0−c/24 be the character of the highest weight
representation of Vir with central charge and conformal weight given by

c = −2(k − 1)(6k − 1)

2k + 1
and h = − (s− 1)(2k − s)

2(2k + 1)
,

where 1 � s � k. Then (see e.g., [12, 65])

χVir(c,h)(q) = qh−c/24 AGk,s(q).

Based on a much more general character formula for Wr, see e.g., [56, 57], it was
observed in [6] that the above has a direct generalisation to Wr as follows. Fix a
positive integer d, relatively prime to r, and let μ = (μ1, . . . , μr) be a partition such
that μ1−μr � d. Let χWr(c,h)(q) = Tr qL0−c/24 be the character of the (nonunitary)
highest weight representation of Wr of central charge

c = − (d− 1)(r − 1)(d+ r + dr)

d+ r
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and conformal weight

h =
r

2(d+ r)

( r∑
i=1

μ2
i −

|μ|2
r

)
− d

d+ r

r∑
i=1

(r + 1

2
− i

)
μi.

Then

χWr(c,h)(q) = qh−c/24 AGλ;r(q)

= qh−c/24 (q)∞ GK(c0,...,cr−1)(q),

where λ is parametrised as in (1.4) and ci = 〈α∨
i , λ〉.

5. Hypergeometric preliminaries

In this section we prove two transformation formulas for sums over q-binomial
coefficients. These transformations are needed in the proof of Theorem 2.6 for k = 2
and to transform the modulus-8 Andrews–Gordon identities stated in next section
into the modulus-8 identities discovered previously by Corteel, Dousse and Uncu.
Readers not particularly interested in identities for q-binomial coefficients and in
basic hypergeometric series may wish to skip this section.

Throughout we use standard notation from the theory of basic hypergeometric
functions and q-series, see e.g., [4, 24]. In general we view identities such as the A2

Andrews–Gordon identities of Theorem 1.1 from the point of view of formal power
series, with q a formal variable. In some of our proofs, however, we take an analytic
approach, requiring complex q such that |q| < 1. The q-shifted factorials (a)∞ and
(a)n are defined as

(a)∞ = (a; q)∞ :=
∞∏
i=0

(1− aqi) and (a)n = (a; q)n :=
(a)∞

(aqn)∞
,

where n is an arbitrary integer. In particular,

(a)n =
n−1∏
i=0

(1− aqi)

for n a nonnegative integer, and

(5.1)
1

(q)n
= 0

for n a negative integer. We also adopt the usual condensed notation

(a1, . . . , ak)n = (a1)n · · · (ak)n
for n ∈ Z ∪ {∞}. For n,m ∈ Z, the q-binomial coefficient

[
n
m

]
is given by

(5.2)

[
n

m

]
=

[
n

m

]
q

:=

⎧⎨
⎩

(q)n
(q)m(q)n−m

if 0 � m � n,

0 otherwise.

The rφs basic hypergeometric series is defined as [24]

(5.3) φr s

[
a1, . . . , ar
b1, . . . , bs

; q, z

]
:=

∞∑
k=0

(a1, . . . , ar)k
(q, b1, . . . , bs)k

(
(−1)kq(

k
2)
)s−r+1

zk,

where it is assumed that none of the bi is of the form q−n for some nonnegative
integer n. The series (5.3) is said to be terminating if one of the ai is of the form
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q−n for n a nonnegative integer, in which case we may assume all the variables to
be indeterminates. If the series is nonterminating, we typically assume that the ai,
bj as well as z and q are complex such that |z|, |q| < 1.

We begin with a simple transformation formula for terminating basic hypergeo-
metric series that we failed to find in the literature.

Lemma 5.1. For n a nonnegative integer,

(5.4)

n∑
k=0

(q−n)k(c)2k
(q, aq, c/a)k

qk =
(c)n

(aq1−n/c)n

n∑
k=0

(q−n)k(aq
1−n/c)2k

(q, aq, q1−n/c)k
qk.

Note that the transformation (5.4) corresponds to the symmetry

(5.5) fn(a, c; q) = fn(a, aq
1−n/c; q)

for the basic hypergeometric function

fn(a, c; q) := (aq, aq1−n/c)n

n∑
k=0

(q−n)k(c)2k
(q, aq, c/a)k

qk(5.6a)

=
(
−a

c

)n

q−(
n
2)

n∑
k=0

(−1)kq(
k
2)+(1−n)k(aqk+1, cqk/a)n−k(c)2k

[
n

k

]
.(5.6b)

Since

(c)2k =
(
c1/2,−c1/2, (cq)1/2,−(cq)1/2

)
,

(5.4) corresponds to a transformation formula for a terminating φ5 4 series in which
two of the denominator parameters are equal to zero.

Remark 5.2. More generally we have

(5.7)

n∑
k=0

(q−n)k(bc)2k
(q, abq, bc/a)k

qk =
(c)n

(aq1−n/c)n

n∑
k=0

(q−n)k(abq
1−n/c)2k

(q, abq, bq1−n/c)k
qk,

provided one of a, b is equal to 1. Since our proof of the two cases is very different
and we only require the b = 1 case, we leave the proof of (5.7) for a = 1 to the
reader.

The two identities required in Section 6 follow from Lemma 5.1 through special-
isation.

Corollary 5.3. For integers �,m, n such that 0 � n � �,
(5.8)

n∑
k=0

q(k−n)(2k+�+2m−n)

[
n

k

][
�− k

k + �+m− n

]
=

n∑
k=0

qk(2k−�−2m−n)

[
n

k

][
�− k

k −m

]
and

n∑
k=0

q(k−n)(2k+�+2m−n+1)

[
n

k

][
�− k

k + �+m− n

]
(5.9)

= q−m−n
n∑

k=0

qk(2k−�−2m−n+1)

[
n

k

][
�− k

k −m

]

+
(
1− q�−n

) n∑
k=0

qk(2k−�−2m−n−1)

[
n

k

][
�− k − 1

k −m− 1

]
.



736 S. OLE WARNAAR

Since 0 � n � �, both identities trivialise to 0 = 0 unless −� � m � n, in which
case each side is a (nonzero) polynomial in q.

Proof of Lemma 5.1. Since (5.4) is a transformation formula for terminating basic
hypergeometric series, it suffices to give a proof for c, q ∈ C such that |c| < 1 and
|q| < 1.

Our starting point for such a proof is the transformation

(5.10) φ2 1

[
q−n, 0

c
; q, z

]
=

1

(q1−n/c)n
φ2 0

[
q−n, q/z

–
; q,

z

c

]
which follows by taking the b → 0 limit in [24, Equation (III.8)]

φ2 1

[
q−n, b

c
; q, z

]
=

(c/b)n
(c)n

bn φ3 1

[
q−n, b, q/z

bq1−n/c
; q,

z

c

]
.

Let i be an arbitrary nonnegative integer. Making the substitution

(c, z) �→ (aq1−i, qi+1)

in (5.10), then multiplying both sides by (1/a)i/(q)i and manipulating some of the
q-shifted factorial gives

n∑
k=0

(q−n)k(q
−k/a)i

(q, aq)k(q)i
q(2i+1)k

=
1

(q−n/a)n

min{n,i}∑
k=0

(q−n, q−n/a)k(q
−(n−k)/a)i−k

(q)k(q)i−k
a−kqik.

Next we multiply both sides by ci and sum i over the nonnegative integers. After
an interchange in the order of the sums and a shift i �→ i + k on the right, this
yields

n∑
k=0

(q−n)k
(q, aq)k

qk φ1 0

[
q−k/a

–
; q, cq2k

]

=
1

(q−n/a)n

n∑
k=0

(q−n, q−n/a)k
(q)k

( c

a

)k

qk
2

φ1 0

[
q−(n−k)/a

–
; q, cqk

]
for |c|, |q| < 1. By the q-binomial theorem [24, Equation (II.3)]

(5.11) φ1 0

[
a

–
; q, z

]
=

(az)∞
(z)∞

for |q|, |z| < 1, both φ1 0 series may be evaluated, resulting in

n∑
k=0

(q−n)k
(q, aq)k

qk
(cqk/a)∞
(cq2k)∞

=
1

(q−n/a)n

n∑
k=0

(q−n, q−n/a)k
(q)k

( c

a

)k

qk
2 (cq2k−n/a)∞

(cqk)∞
.

Multiplying both sides by (c)∞/(c/a)∞ and carrying out some simplification leads
to

n∑
k=0

(q−n)k(c)2k
(q, aq, c/a)k

qk =
(aq/c)n
(aq)n

cn
n∑

k=0

(q−n, q−n/a, c)k
(q)k(cq−n/a)2k

( c

a

)k

qk
2

.

Replacing k �→ n − k on the right, and making a few more simplifications yields
(5.4). �
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Proof of Corollary 5.3. Let �,m be integers and n a nonnegative integer, and spe-
cialise

(5.12) (a, c) =
(
q−�−1, qm−n

)
in the symmetry relation (5.5), where we assume the regularised form for fn(a, c; q)
given in (5.6b). This leads to

n∑
k=0

(−1)kq(
k
2)+(1−n)k(qk−�, qk+�+m−n+1)n−k(q

m−n)2k

[
n

k

]
(5.13)

= qn(�+2m−n)
n∑

k=0

(−1)kq(
k
2)+(1−n)k(qk−�, qk−m+1)n−k(q

−�−m)2k

[
n

k

]
.

The reason for not directly using (5.4) is that the specialisation (5.12) gives

1

(aq)k
=

1

(q−�)k
,

1

(c/a)k
=

1

(q�+m−n+1)k
and

1

(q1−n/c)k
=

1

(q−m)k
,

which all have the potential to lead to vanishing denominators for 1 � k � n. If
we impose the restrictions n � � and −� � m � n then (5.13) may be simplified
to (5.8) by standard manipulations of q-shifted factorials. As remarked previously,
both sides of (5.8) trivially vanish if −� � m � n does not hold, so that we may
again drop this restriction.

To prove (5.9), we denote the left- and right-hand sides of (5.8) by L�,m,n(q) and
R�,m,n(q) respectively. By[

n

k

]
= q−k

[
n

k

]
− q−k(1− qn)

[
n− 1

k − 1

]
(which holds for all k, n ∈ Z) it follows that

n∑
k=0

q(k−n)(2k+�+2m−n+1)

[
n

k

][
�− k

k + �+m− n

]

= q−n
n∑

k=0

q(k−n)(2k+�+2m−n)

[
n

k

][
�− k

k + �+m− n

]

− q−n(1− qn)

n∑
k=0

q(k−n)(2k+�+2m−n)

[
n− 1

k − 1

][
�− k

k + �+m− n

]
= q−nL�,m,n(q)− q−n(1− qn)L�−1,m+1,n−1(q)

= q−nR�,m,n(q)− q−n(1− qn)R�−1,m+1,n−1(q)

= q−n
n∑

k=0

qk(2k−�−2m−n)

[
n

k

][
�− k

k −m

]

− q−n(1− qn)

n∑
k=0

qk(2k−�−2m−n)

[
n− 1

k

][
�− k − 1

k −m− 1

]
.

Next we use [
�− k

k −m

]
= qk−m

[
�− k

k −m

]
+ (1− q�−k)

[
�− k − 1

k −m− 1

]
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in the first sum on the right and

(1− qn)

[
n− 1

k

]
= qn−k(1− q�−n)

[
n

k

]
− (1− q�−k)

[
n

k

]
in the second sum. This leads to four sums on the right, two of which cancel. The
resulting identity is exactly (5.9). �

6. The modulus-8 case

In this section we focus on the A2 Andrews–Gordon identities for modulus 8, and
the corresponding two-variable generating function for cylindric partitions of rank
3 and level 5. This is also the modulus considered by Corteel, Dousse and Uncu in
[15], and we make a comparison between their identities and ours. Relating our sum
sides to those in [15] is surprisingly intricate and relies on the new transformation
formulas (5.8) and (5.9).

We begin by listing a total of 11 modulus-8 identities. The first six entries in
our list are (1.10) and (2.1) for k = 2 as well as the companions of (2.1) for k = 2
and s = 2 or 3 given in Remark 2.3:

∞∑
n1,m1,n2=0

qn
2
1−n1m1+m2

1+n2
2

(q)n1

[
n1

n2

][
n1+n2

m1

]
=

1

(q, q, q2, q4, q4, q6, q7, q7; q8)∞
,

∞∑
n1,m1,n2=0

qn
2
1−n1m1+m2

1+n2
2+n1+m1+n2

(q)n1

[
n1

n2

][
n1+n2

m1

]
=

1

(q2, q3, q3, q4, q4, q5, q5, q6; q8)∞
,

∞∑
n1,m1,n2=0

qn
2
1−n1m1+m2

1+n2
2+m1+n2

(q)n1

[
n1

n2

][
n1+n2

m1

]
=

(6.1a)

∞∑
n1,m1,n2=0

qn
2
1−n1m1+m2

1+n2
2+n1+n2

(q)n1

[
n1

n2

][
n1+n2+1

m1

]
=

1

(q, q2, q3, q4, q4, q5, q6, q7; q8)∞

(6.1b)

and

∞∑
n1,m1,n2=0

qn
2
1−n1m1+m2

1+n2
2+m1

(q)n1

[
n1

n2

][
n1+n2

m1

]
=

(6.1c)

∞∑
n1,m1,n2=0

qn
2
1−n1m1+m2

1+n2
2+n1

(q)n1

[
n1+1

n2

][
n1+n2

m1

]
=

1

(q, q2, q2, q3, q5, q6, q6, q7; q8)∞
.

(6.1d)

Next, the k = s = 2 case of Theorem 2.4 is

∞∑
n1,m1,n2=0

qn
2
1−n1m1+m2

1+n2
2+n2

(q)n1

[
n1

n2

][
n1 + n2 + 1

m1

]

=
1

(q, q, q3, q3, q5, q5, q7, q7; q8)∞
+

q

(q2, q3, q3, q4, q4, q5, q5, q6; q8)∞
.

According to (3.18) with k = 1 and i = 2 there are a total of five infinite products
for modulus 8, so that one product is missing from the above. By setting z = 1 in
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the identity for gk(3,1,1)(z, q) given in Proposition 6.2 and using

gk(3,1,1)(1; q) =
1

(q, q, q3, q3, q5, q5, q7, q7; q8)∞
,

it follows after some standard manipulations of q-binomial coefficients that

∞∑
n1,m1,n2=0

qn
2
1−n1m1+m2

1+n2
2+m1

(q)n1

[
n1 + 1

n2

][
n1 + n2

m1

]

=

∞∑
n1,m1,n2=0

qn
2
1−n1m1+m2

1+n2
2+n1

(q)n1

[
n1 + 1

n2

][
n1 + n2 + 1

m1

]

=
1

(q, q, q3, q3, q5, q5, q7, q7; q8)∞
.

Similarly, with a bit of work one may transform (6.1c) to yield our final two
modulus-8 identities:

∞∑
n1,m1,n2=0

qn
2
1−n1m1+m2

1+n2
2+m1+n2

(q)n1

[
n1

n2

][
n1 + n2 + 1

m1

]

=

∞∑
n1,m1,n2=0

qn
2
1−n1m1+m2

1+n2
2+n1+n2

(q)n1

[
n1 + 1

n2

][
n1 + n2 + 1

m1

]

=
1

(q, q2, q2, q3, q5, q6, q6, q7; q8)∞
.

The five distinct infinite products should be compared with the seven inequiv-
alent profiles as counted by (3.13) for r = 3 and d = 5. For all seven of the
corresponding two-variable generating functions GKc(z, q) for cylindric partitions
of rank 3 and 5 there is a manifestly positive triple-sum expression, generalising
some of the triple sums stated above. In Theorem 6.1 we state the first four of
these results, corresponding to the k = 2 case of Theorem 2.6.

Theorem 6.1. We have

GK(2,2,1)(z, q) =
1

(zq)∞

∞∑
n1,m1,n2=0

zn1qn
2
1−n1m1+m2

1+n2
2

(q)n1

[
n1

n2

][
n1 + n2

m1

]
,

GK(3,2,0)(z, q) =
1

(zq)∞

∞∑
n1,m1,n2=0

zn1qn
2
1−n1m1+m2

1+n2
2+m1

(q)n1

[
n1

n2

][
n1 + n2

m1

]
,

GK(4,1,0)(z, q) =
1

(zq)∞

∞∑
n1,m1,n2=0

zn1qn
2
1−n1m1+m2

1+n2
2+m1+n2

(q)n1

[
n1

n2

][
n1 + n2

m1

]
,

GK(5,0,0)(z, q) =
1

(zq)∞

∞∑
n1,m1,n2=0

zn1qn
2
1−n1m1+m2

1+n2
2+n1+m1+n2

(q)n1

[
n1

n2

][
n1 + n2

m1

]
.

For the remaining three cases we have more complicated series. To shorten the
expressions below, we introduce the normalisation

gkc(z, q) := (zq)∞ GKc(z, q).

We also recall that 1/(q)n = 0 when n is a negative integer.
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Proposition 6.2. We have

gk(3,1,1)(z, q)

= 1 +

∞∑
n1,m1,n2=0

zn1qn
2
1−n1m1+m2

1+n2
2+m1(1 + qm1−n1+n2+1)

(q)n1

[
n1

n2

][
n1 + n2 − 1

m1

]
,

gk(4,0,1)(z, q)

= 1 +

∞∑
n1,m1,n2=0

zn1qn
2
1−n1m1+m2

1+n2
2+n1+m1(1 + qm1−n1+n2+1)

(q)n1

[
n1

n2

][
n1 + n2 − 1

m1

]

+
∞∑

n1,m1,n2=0

zn1qn
2
1−n1m1+m2

1+n2
2+n1+n2−1

(q)n1−1

[
n1 − 1

n2

][
n1 + n2 − 1

m1 − 1

]
,

and

gk(3,0,2)(z, q)

= zq +

∞∑
n1,m1,n2=0

zn1qn
2
1−n1m1+m2

1+n2
2+n1

(q)n1

[
n1

n2

][
n1 + n2

m1

]

+
∞∑

n1,m1,n2=0

zn1qn
2
1−n1m1+m2

1+n2
2+n1−1(1 + qm1−n1+n2+1)

(q)n1−1

[
n1 − 1

n2

][
n1 + n2 − 2

m1 − 1

]

+

∞∑
n1,m1,n2=0

zn1qn
2
1−n1m1+m2

1+n2
2+2n1+n2−1

(q)n1−1

[
n1 − 1

n2

][
n1 + n2 − 1

m1 − 1

]
.

Remark 6.3. Simpler expressions for gk(3,1,1)(z, q), gk(4,0,1)(z, q) and gk(3,0,2)(z, q)
may be given that are not manifestly positive. For example,

gk(4,0,1)(z, q)

=

∞∑
n1,m1,n2=0

zn1qn
2
1−n1m1+m2

1+n2
2+n1+n2

(q)n1

[
n1

n2

][
n1 + n2 + 1

m1

]

+ (z − 1)
∞∑

n1,m1,n2=0

zn1qn
2
1−n1m1+m2

1+n2
2+2n1+m1+n2+1

(q)n1

[
n1

n2

][
n1 + n2

m1

]
.

By the equality between (6.1a) and (6.1b) this immediately implies that

GK(4,1,0)(1, q) = GK(4,0,1)(1, q).

As mentioned in Section 1, the expressions of Corteel, Dousse and Uncu for
GKc(z, q) and the corresponding Rogers–Ramanujan-type identities for GKc(1, q)
take the form of quadruple sums instead of triple sums. We will not state the
complete list of seven generating functions from their paper, and instead focus
our attention on the four cases related to Theorem 6.1. For the remaining three
identities, see [15, Theorem 3.2].
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Theorem 6.4 (Corteel, Dousse, Uncu). There holds

gk(2,2,1)(z, q) =

∞∑
n1,n2,n3,n4=0

zn1qn
2
1+n2

2+n2
3+n2

4−n1n2+n2n4

(q; q)n1

[
n1

n2

][
n1

n4

][
n2

n3

]
,

gk(4,1,0)(z, q)

=

∞∑
n1,n2,n3,n4=0

zn1qn
2
1+n2

2+n2
3+n2

4−n1n2+n2n4+n2+n3+n4

(q; q)n1

[
n1

n2

][
n1

n4

][
n2

n3

]
,

gk(5,0,0)(z, q)

=
∞∑

n1,n2,n3,n4=0

zn1qn
2
1+n2

2+n2
3+n2

4−n1n2+n2n4+n1+n2+n3+n4

(q; q)n1

[
n1

n2

][
n1

n4

][
n2

n3

]

and

gk(3,2,0)(z, q)

=

∞∑
n1,n2,n3,n4=0

zn1qn
2
1+n2

2+n2
3+n2

4−n1n2+n2n4+n1

(q; q)n1

[
n1

n2

][
n1

n4

][
n2

n3

]

+
∞∑

n1,n2,n3,n4=0

(
zn1qn

2
1+n2

2+n2
3+n2

4−n1n2+n2n4+n2(1+qn1+n3+q2n1+n2+n3+n4)

(q; q)n1−1

×
[
n2

n3

][
n1 − 1

n2

][
n1 − 1

n4

])
.

To prove Theorem 6.1 it suffices to transform each of the triple-sums for GKc(z, q)
into the corresponding quadruple sum given in Theorem 6.4. We will prove two
stronger results as follows.

Proposition 6.5. We have

∞∑
n1,n2,m1=0

zn1wm1+n2qn
2
1−n1m1+m2

1+n2
2

(q)n1

[
n1

n2

][
n1 + n2

m1

]
(6.2a)

=

∞∑
n1,n2,n3,n4=0

zn1wn2+n3+n4qn
2
1+n2

2+n2
3+n2

4−n1n2+n2n4

(q)n1

[
n1

n2

][
n1

n4

][
n2

n3

]
,

and

∞∑
n1,n2,m1=0

zn1wm1+n2qn
2
1−n1m1+m2

1+n2
2+m1

(q)n1

[
n1

n2

][
n1 + n2

m1

](6.2b)

=

∞∑
n1,n2,n3,n4=0

zn1wn2+n3+n4qn
2
1+n2

2+n2
3+n2

4−n1n2+n2n4+n1

(q; q)n1

[
n1

n2

][
n1

n4

][
n2

n3

]

+

∞∑
n1,n2,n3,n4=0

(
zn1wn2+n3+n4qn

2
1+n2

2+n2
3+n2

4−n1n2+n2n4+n2

(q; q)n1−1

× (1 + wqn1+n3 + w2q2n1+n2+n3+n4)

[
n1 − 1

n2

][
n1 − 1

n4

][
n2

n3

])
.
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Setting w=1 in (6.2a) proves the equality of the two expressions for GK(2,2,1)(z, q),
setting w = q in (6.2a) proves the equality of the two expressions for GK(4,1,1)(z, q)
and setting w = q and replacing z �→ zq in (6.2a) proves the equality of the two
expressions for GK(5,0,0)(z, q). Finally, setting w = 1 in (6.2b) proves the equality
of the two expressions for GK(3,2,0)(z, q).

Proof of Proposition 6.5. Equating coefficients of

zn1wn2qn
2
1−n1n2+n2

2

(q)n1

,

in (6.2a), we need to show that

n2∑
m1=0

q(m1−n2)(2m1−n1)

[
n1

n2 −m1

][
n1 + n2 −m1

m1

]

=

n1∑
n3,n4=0

qn3(n1−2n2+2n3)+n4(n1−n2+n3+n4)

[
n1

n2 − n3 − n4

][
n1

n4

][
n2 − n3 − n4

n3

]

for arbitrary nonnegative integers n1, n2. Since

(6.3)

[
n1

n2 − n3 − n4

][
n2 − n3 − n4

n3

]
=

[
n1

n3

][
n1 − n3

n1 − n2 + n3 + n4

]
,

we can carry out the sum over n4 using the q-Chu–Vandermonde summation [24,
Equation (II.7)]

(6.4)

N1∑
k=0

qk(k+m)

[
N1

k

][
N2

k +m

]
=

[
N1 +N2

N1 +m

]
with (k,N1, N2,m) �→ (n4, n1, n1−n3, n1−n2+n3). Also replacingm1 �→ k−n1+n2

on the left and n3 �→ k on the right we obtain (5.8) (with (�,m, n) = (2n1, n2 −
2n1, n1)), completing the proof of (6.2a).

To prove (6.2b) we proceed in the exact same manner as before, which leaves us
to show the following somewhat unwieldy polynomial identity:

n2∑
m1=0

q(m1−n2)(2m1−n1)+m1

[
n1

n2 −m1

][
n1 + n2 −m1

m1

]

= qn1

n1∑
n3,n4=0

qϕ1,0(n1,n2)

[
n1

n3

][
n1 − n3

n1 − n2 + n3 + n4

][
n1

n4

]

+ (1− qn1)qn2

n1−1∑
n3,n4=0

qϕ−1,−1(n1,n2)

[
n1 − 1

n3

][
n1 − n3 − 1

n1 − n2 + n3 + n4 − 1

][
n1 − 1

n4

]

+ (1− qn1)q2n1−n2

n1−1∑
n3,n4=0

qϕ2,0(n1,n2)

[
n1 − 1

n3

][
n1 − n3 − 1

n1 − n2 + n3 + n4

][
n1 − 1

n4

]

+ (1− qn1)q4n1−2n2

n1−1∑
n3,n4=0

qϕ3,1(n1,n2)

[
n1−1

n3

][
n1−n3−1

n1−n2+n3+n4+1

][
n1−1

n4

]
,

where

ϕa,b(n1, n2) := n3(n1 − 2n2 + 2n3 + a) + n4(n1 − n2 + n3 + n4 + b).
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To obtain the above identity we have not just extracted coefficients of

zn1wn2qn
2
1−n1n2+n2/(q)n1

as before, but also applied (6.3) (and its variants obtained by shifting n1 �→ n1 − 1
or (n1, n2) �→ (n1−1, n2−1) or (n1, n2) �→ (n1−1, n2−2)) to rewrite the products
of q-binomial coefficients on the right. In all four double sums on the right the
sum over n4 can be carried out by the q-Chu–Vandermonde summation (6.4). Also
replacing m1 �→ k − n1 + n2 on the left and n3 �→ k on the right, this results in

n1∑
k=0

q(k−n1)(2k−3n1+2n2+1)

[
n1

k

][
2n1 − k

k − n1 + n2

]

= qn1−n2

n1∑
k=0

qk(2k+n1−2n2+1)

[
n1

k

][
2n1 − k

k + 2n1 − n2

]

+ (1− qn1)

n1−1∑
k=0

qk(2k+n1−2n2−1)

[
n1 − 1

k

][
2n1 − k − 2

k + 2n1 − n2 − 2

]

+ (1− qn1)q2n1−2n2

n1−1∑
k=0

qk(2k+n1−2n2+2)

[
n1 − 1

k

][
2n1 − k − 2

k + 2n1 − n2 − 1

]

+ (1− qn1)q4n1−3n2

n1−1∑
k=0

qk(2k+n1−2n2+3)

[
n1 − 1

k

][
2n1 − k − 2

k + 2n1 − n2

]
.

Denote the four terms on the right by s1, . . . , s4 respectively. By

(6.5) qn
[
n+m

n

]
+

[
n+m

n− 1

]
=

[
n+m+ 1

n

]
, (n,m) ∈ Z2 \ {(0,−1)},

with (n,m) = (k + 2n1 − n2, n2 − 2k − 2) it follows that

s3 + s4 = (1− qn1)q2n1−2n2

n1−1∑
k=0

qk(2k+n1−2n2+2)

[
n1 − 1

k

][
2n1 − k − 1

k + 2n1 − n2

]
=: s′3.

Note that the potentially problematic case (n,m) = (k + 2n1 − n2, n2 − 2k − 2) =
(0,−1) does not arise since it implies k = 2n1 − 1 which would give

[
n1−1

k

]
=[

n1−1
2n1−1

]
= 0. Next we use

(6.6)

[
n+m− 1

n− 2

]
+ qn−m−1

[
n+m

n

]

=

[
n+m

n− 1

]
+ qn−m−1

[
n+m− 1

n

]
, (n,m) ∈ Z2 \ {(0, 0), (1,−1)},

with (n,m) = (k + 2n1 − n2, n2 − 2k − 1) to find that

s2 + s′3 = (1− qn1)

n1−1∑
k=0

qk(2k+n1−2n2−1)

[
n1 − 1

k

][
2n1 − k − 1

k + 2n1 − n2 − 1

]
(6.7)

+ (1− qn1)q2n1−2n2

n1−1∑
k=0

qk(2k+n1−2n2+2)

[
n1 − 1

k

][
2n1 − k − 2

k + 2n1 − n2

]
.
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Again the two exceptional cases in (6.6) do not pose a problem as they both corre-
spond to k = 2n1 − 2. If we now replace k �→ k − 1 in the second sum on the right
of (6.7) we get

s2 + s′3 = (1− qn1)

n1−1∑
k=0

qk(2k+n1−2n2−1)

[
n1 − 1

k

][
2n1 − k − 1

k + 2n1 − n2 − 1

]

+ (1− qn1)qn1

n1∑
k=1

qk(2k+n1−2n2−2)

[
n1 − 1

k − 1

][
2n1 − k − 1

k + 2n1 − n2 − 1

]

= (1− qn1)

n1∑
k=0

qk(2k+n1−2n2−1)

[
n1

k

][
2n1 − k − 1

k + 2n1 − n2 − 1

]
,

where the second equality follows from (6.5) with (n,m) = (n1 − k, k − 1). The
upshot of the above manipulations is that it only remains to be shown that

n1∑
k=0

q(k−n1)(2k−3n1+2n2+1)

[
n1

k

][
2n1 − k

k − n1 + n2

]

= qn1−n2

n1∑
k=0

qk(2k+n1−2n2+1)

[
n1

k

][
2n1 − k

k + 2n1 − n2

]

+ (1− qn1)

n1∑
k=0

qk(2k+n1−2n2−1)

[
n1

k

][
2n1 − k − 1

k + 2n1 − n2 − 1

]
,

for integers n1, n2. Since this is (5.9) with (�,m, n) = (2n1, n2 − 2n1, n1) we are
done. �

Proof of Proposition 6.2. We can either proceed as in the proof of Theorem 6.1 or,
more simply, use the three functional equations [15, Equations (3.17)–(3.19)]

gk(4,0,1)(z, q) = gk(3,1,1)(zq; q) + zq gk(4,1,0)(zq
2; q),(6.8a)

gk(3,0,2)(z, q) = gk(2,2,1)(zq; q) + zq gk(3,1,1)(zq
2; q) + zq2 gk(4,1,0)(zq

3; q),(6.8b)

gk(3,2,0)(z, q) = gk(3,1,1)(zq; q) + zq gk(2,2,1)(zq
2; q)(6.8c)

+ zq2 gk(3,1,1)(zq
3; q) + zq3 gk(4,1,0)(zq

4; q).

Given gk(4,1,0)(z, q), gk(3,2,0)(z, q) and gk(2,2,1)(z, q), these three equations uniquely

determine gk(4,0,1)(z, q), gk(3,0,2)(z, q) and gk(3,1,1)(z, q). Substituting the expres-

sions for the six generating functions in question, as given by Theorem 6.1 and (the
as yet to be proven) Proposition 6.2, it immediately follows that (6.8) holds, thus
proving the proposition. �

Remark 6.6. With a bit of extra work one can show that the seven generat-
ing functions given by Theorem 6.1 and Proposition 6.2 satisfy the full set of
functional equations obtained in [15]. Together with some simple initial condi-
tions this provides a proof of the theorem and proposition independent of Theo-
rem 6.4, and hence provides a non-computer assisted proof. The proof of Theo-
rem 6.4 given in [15] heavily uses the Mathematica packages qFunctions [1] and
HolonomicFunctions [37].
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7. Proofs of the main results

7.1. Proofs of Theorems 1.1, 2.2, 2.4, 2.9 and 2.10. In this section we prove
the A2 Andrews–Gordon identities claimed in Section 1 and in Section 2. In each
case, our starting point is one of the Rogers–Ramanujan-type identities of Andrews,
Schilling and the author, which were proved in [6] using an A2 analogue of the Bailey
lemma. (See also [69] for a proof based on Hall–Littlewood polynomials). We also
present conditional proofs of Conjectures 2.1 and 2.8 for all s.

7.1.1. Proof of Theorem 1.1. We begin by defining F
(a)
n0,m0;k

(z, q) ∈ Q(q)[z] as

(7.1) F
(a)
n0,m0;k

(z, q) :=
∑

n1,...,nk�0
m1,...,mk�0

zn1

(q)nk+mk

k∏
i=1

qn
2
i−σinimi+m2

i

[
ni−1

ni

][
mi−1

mi

]
,

where n0,m0 are nonnegative integers, k is a positive integer, a ∈ {−1, 1} and

(7.2) (σ1, . . . , σk−1, σk) := (1, . . . , 1, a).

If we further define

F
(a)
k (z; q) := lim

n0,m0→∞
F

(a)
n0,m0;k

(z; q),

then, according to [6, Equations (5.22)&(5.28), i = k],

F
(a)
k (1; q) =

(q3k+a+3; q3k+a+3)2∞
(q)3∞

θ(qk+1, qk+1, qk+a+1; q3k+a+3).

Comparing this with (1.10) and (1.11) (with k �→ k+1 in the latter), we must thus
show that

F
(−1)
k (1; q)

=
1

(q; q)∞

∑
n1,...,nk�0

m1,...,mk−1�0

qn
2
k

(q)n1

k−1∏
i=1

qn
2
i−nimi+m2

i

[
ni

ni+1

][
ni − ni+1 +mi+1

mi

]
,

where mk := 2nk, and

F
(1)
k (1; q)

=
1

(q; q)∞

∑
n1,...,nk�0
m1,...,mk�0

q
∑k

i=1(n
2
i−nimi+m2

i )

(q)n1

[
2nk

mk

] k−1∏
i=1

[
ni

ni+1

][
ni−ni+1+mi+1

mi

]
.

Instead we will prove the following stronger result.

Proposition 7.1. For a positive integer k and nonnegative integers n0,m0,

F
(−1)
n0,m0;k

(z, q)

=
∑

n1,...,nk�0
m1,...,mk−1�0

zn1qn
2
k

(q)m0−n1+m1

[
n0

n1

] k−1∏
i=1

qn
2
i−nimi+m2

i

[
ni

ni+1

][
ni−ni+1+mi+1

mi

]
,
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where mk := 2nk, and

F
(1)
n0,m0;k

(z, q)

=
∑

n1,...,nk�0
m1,...,mk�0

zn1q
∑k

i=1(n
2
i−nimi+m2

i )

(q)m0−n1+m1

[
n0

n1

][
2nk

mk

] k−1∏
i=1

[
ni

ni+1

][
ni−ni+1+mi+1

mi

]
.

A crucial ingredient in the proof of Proposition 7.1 is Lemma 7.2.

Lemma 7.2. For k a positive integer, m0 a nonnegative integer and

u = (u1, . . . , uk+1) ∈ Zk+1

such that

(7.3) u1 � u2 � · · · � uk+1,

define

(7.4) Fm0;u(q) :=
∑

m1,...,mk�0

q
∑k

i=1 mi(mi+ui)

(q)mk+uk+1

k∏
i=1

[
mi−1

mi

]
.

Then, for � ∈ {0, 1, . . . , k},
(7.5)

Fm0;u(q) =
∑

m1,...,mk�0

q
∑k

i=1 mi(mi+ui)

(q)m�+m�+1+u�+1

�∏
i=1

[
mi−1

mi

] k∏
i=�+1

[
mi+1 + ui+1 − ui

mi

]
,

where mk+1 := 0.

Note that if u�+1 is a negative integer then the summand of (7.5) vanishes unless
m� +m�+1 � −u�+1.

Proof. We proceed by induction on �, with base case � = k corresponding to (7.4).
For the induction step we begin by replacing z �→ z/b in Heine’s φ2 1 transforma-

tion [24, Equation (III.2)]

φ2 1

[
a, b

c
; q, z

]
=

(c/b, bz)∞
(c, z)∞

φ2 1

[
abz/c, b

bz
; q,

c

b

]
for |q|, |z|, |c/b| < 1,

and then letting b tend to infinity. This yields the φ1 1 transformation

φ1 1

[
a

c
; q, z

]
=

(z)∞
(c)∞

φ1 1

[
az/c

z
; q, c

]
for |q| < 1,

which we write in regularised form

∞∑
k=0

(−z)kq(
k
2) (a)k(cq

k)∞
(q)k

=

∞∑
k=0

(−c)kq(
k
2) (az/c)k(zq

k)∞
(q)k

.

This allows us to specialise (a, c, z) = (q−(n2−p), qn1+1, qn2+1), where n1, n2, p are
arbitrary integers. Imposing the conditions

(7.6) min{n1, n2} � p,
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the resulting transformation can be expressed using q-binomial coefficients as5

(7.7)
∑
m�0

qm(m+p)

(q)m+n1

[
n2 − p

m

]
=

∑
m�0

qm(m+p)

(q)m+n2

[
n1 − p

m

]
.

Now assume that (7.5) holds for some fixed 1 � � � k. Applying (7.7) with

(m,n1, n2, p) = (m�,m�+1 + r�+1,m�−1 + u�, u�)

results in

(7.8) Fm0;u(q) =
∑

m1,...,mk�0

q
∑k

i=1 mi(mi+ui)

(q)m�−1+m�+u�

�−1∏
i=1

[
mi−1

mi

] k∏
i=�

[
mi+1 + ui+1 − ui

mi

]
.

The conditions (7.6) translate to

m�+1 + u�+1 � u� and m�−1 � 0,

which are both satisfied since u�+1 � u�. Since (7.8) is (7.5) with � replaced by
�− 1 our proof is done. �

Equipped with Lemma 7.2, the proof of Proposition 7.1 is not difficult.

Proof of Proposition 7.1. Comparing (7.1) with (7.4), we have

(7.9) F
(a)
n0,m0;k

(z, q) =
∑

n1�···�nk�0

zn1Fm0;u(q)
k∏

i=1

qn
2
i

[
ni−1

ni

]
,

where

u = (−σ1n1, . . . ,−σknk, nk) = (−n1, . . . ,−nk−1,−ank, nk).

Since (7.3) holds for n1 � · · · � nk � 0, we can apply Lemma 7.2 with � = 0.
Therefore,

Fm0;u(q) =
∑

m1,...,mk�0

q
∑k

i=1 mi(mi−σini)

(q)m0−σ1n1+m1

[
(a+ 1)nk

mk

] k−1∏
i=1

[
ni − σi+1ni+1 +mi+1

mi

]
,

and thus

F
(a)
n0,m0;k

(z, q) =
∑

n1,...,nk�0
m1,...,mk�0

(
zn1q

∑k
i=1(n

2
i−σinimi+m2

i )

(q)m0−σ1n1+m1

[
(1 + a)nk

mk

]

×
k∏

i=1

[
ni−1

ni

] k−1∏
i=1

[
ni − σi+1ni+1 +mi+1

mi

])
.

When a = −1 (so that σk = −1 and σi = 1 for 1 � i < k) the term
[
(1+a)nk

mk

]
in

the summand forces mk = 0, resulting in the first claim of the proposition. When
a = 1 (so that σi = 1 for all 1 � i � k) the second claim follows. �

5The transformation (7.7) also holds if (7.6) is replaced by p > n1 + n2. Since both sides
trivialise to zero we ignore this second case.



748 S. OLE WARNAAR

7.1.2. Proof of Theorems 2.2, 2.4, 2.9 and 2.10. We apply the same method used
to prove Theorem 1.1 to prove Theorems 2.2, 2.4, 2.9 and 2.10. In fact we will do
more, and also give a conditional proof of Conjectures 2.1 and 2.8, assuming an
identity that is missing from [6] but probably should have been in that paper.6

Define F
(a)
n0,m0;k,s,t

(z, q) ∈ Q(q)[z] as

F
(a)
n0,m0;k,s,t

(z, q)(7.10)

:=
∑

n1,...,nk�0
m1,...,mk�0

zn1q
∑k

i=s ni+
∑k

i=t mi

(q)nk+mk+1

k∏
i=1

qn
2
i−σinimi+m2

i

[
ni−1

ni

][
mi−1

mi

]
,

where k, s, t are positive integers such that 1 � s, t � k+1, n0,m0 are nonnegative
integers, a ∈ {−1, 1} and the σi for 1 � i � k are again fixed as in (7.2). Proposition
7.3, which complements Proposition 7.1, lies at the heart of each of the proofs given
below.

Proposition 7.3. Let k, s, t be positive integers and n0,m0 nonnegative integers.
If 1 � s � k + 1 and 1 � t � k, then

F
(−1)
n0,m0;k,s,t

(z, q) =
∑

n1,...,nk�0
m1,...,mk−1�0

(
zn1qn

2
k+

∑k
i=s ni+

∑k−1
i=t mi

(q)m0−n1+m1+δt,1

[
n0

n1

](7.11)

×
k−1∏
i=1

qn
2
i−nimi+m2

i

[
ni

ni+1

][
ni − ni+1 +mi+1 + δi,t−1

mi

])
,

and if 1 � s � k, t = k + 1 and k � 2, then

F
(−1)
n0,m0;k,s,k+1(z, q) =

∑
n1,...,nk�0

m1,...,mk−1�0

(
zn1qn

2
k−nk+

∑k
i=s ni

(q)m0−n1+m1

[
n0

n1

](7.12)

×
k−1∏
i=1

qn
2
i−nimi+m2

i

[
ni + δi,k−1

ni+1

][
ni − ni+1 +mi+1

mi

])
,

where mk := 2nk in both (7.11) and (7.12). Similarly, if 1 � s � k + 1 and
1 � t � k + 1, then

F
(1)
n0,m0;k,s,t

(z, q)

(7.13)

=
∑

n1,...,nk�0
m1,...,mk�0

(
zn1q

∑k
i=1(n

2
i−nimi+m2

i )+
∑k

i=s ni+
∑k

i=t mi

(q)m0−n1+m1+δt,1

[
2nk + δt,k+1

mk

][
n0

n1

]

×
k−1∏
i=1

[
ni

ni+1

][
ni − ni+1 +mi+1 + δi,t−1

mi

])
.

6The third author of [6] takes full responsibility for the omission and hopes to prove Conjec-
ture 7.4 in a future publication.
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Proof. Recalling (7.4), we have

(7.14) F
(a)
n0,m0;k,s,t

(z, q) =
∑

n1�···�nk�0

zn1q
∑k

i=s niFm0;u(q)

k∏
i=1

qn
2
i

[
ni−1

ni

]
,

where u ∈ Zk+1 is given by

u =
(
−σ1n1, . . . ,−σt−1nt−1︸ ︷︷ ︸

t−1 terms

, 1− σtnt, . . . , 1− σknk︸ ︷︷ ︸
k−t+1 terms

, 1 + nk

)
.

Since for n1 � · · · � nk � 0 the inequalities (7.3) hold, we may apply Lemma 7.2
with � = 0. Hence

Fm0;u(z, q) =
∑

m1,...,mk�0

(
q
∑k

i=1 mi(mi−σini)+
∑k

i=t mi

(q)m0−σ1n1+m1+δt,1

(7.15)

×
[
(a+ 1)nk + δt,k+1

mk

] k−1∏
i=1

[
ni − σini+1 +mi+1 + δi,t−1

mi

])
.

If a = −1 and 1 � t � k then the summand vanishes unless mk = 0. Substituting
the resulting expression for Fm0;u(q) into (7.14) yields (7.11). If a = 1, so that
σi = 1 for all i, the substitution of (7.15) into (7.14) immediately gives (7.13). The
case requiring more work corresponds to a = −1 and t = k+1. Then the summand
of (7.15) vanishes unless mk = 0 or mk = 1, so that

Fm0;u(z, q)=
∑

m1,...,mk−1�0

q
∑k−1

i=1 mi(mi−ni)

(q)m0−n1+m1

k−1∏
i=1

[
ni − ni+1 +mi+1

mi

]

+
∑

m1,...,mk−1�0

qnk+1+
∑k−1

i=1 mi(mi−ni)

(q)m0−n1+m1+δk,1

k−1∏
i=1

[
ni−ni+1+mi+1+δi,k−1

mi

]
,

where now mk := 2nk. Substituting this into (7.14) gives

F
(−1)
n0,m0;k,s,k+1(z, q) =

∑
n1,...,nk�0

m1,...,mk−1�0

(
zn1qn

2
k+

∑k
i=s ni

(q)m0−n1+m1

[
n0

n1

]

×
k−1∏
i=1

qn
2
i−nimi+m2

i

[
ni

ni+1

][
ni − ni+1 +mi+1

mi

])

+
∑

n1,...,nk�0
m1,...,mk−1�0

(
zn1qn

2
k+nk+1+

∑k
i=s ni

(q)m0−n1+m1+δk,1

[
n0

n1

]

×
k−1∏
i=1

qn
2
i−nimi+m2

i

[
ni

ni+1

][
ni − ni+1 +mi+1 + δi,k−1

mi

])
.
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Assuming 1 � s � k and k � 2, and replacing nk �→ nk − 1 (so that also mk �→
mk − 2) in the second multisum on the right, this yields

F
(−1)
n0,m0;k,s,k+1(z, q) =

∑
n1,...,nk�0

m1,...,mk−1�0

(
zn1qn

2
k+

∑k
i=s ni

(q)m0−n1+m1

([
nk−1

nk

]
+ q−nk

[
nk−1

nk − 1

])

×
k−1∏
i=1

qn
2
i−nimi+m2

i

[
ni−1

ni

][
ni − ni+1 +mi+1

mi

])

=
∑

n1,...,nk�0
m1,...,mk−1�0

(
zn1qn

2
k−nk+

∑k
i=s ni

(q)m0−n1+m1

[
nk−1 + 1

nk

]

×
k−1∏
i=1

qn
2
i−nimi+m2

i

[
ni−1

ni

][
ni − ni+1 +mi+1

mi

])
,

where the final equality follows from (6.5) with (n,m) = (nk, nk−1 − nk). �

First we use Proposition 7.3 to prove Theorems 2.2 and 2.9, and to give a con-
ditional proof of Conjectures 2.1 and 2.8. Our starting point is the aforementioned
identity missing from [6].

Conjecture 7.4. For integers k, s such that 1 � s � k + 1 and a ∈ {−1, 1}, let
σ1, . . . , σk be fixed as in (7.2). Then

∑
n1,...,nk�0
m1,...,mk�0

q
∑k

i=1(n
2
i−σinimi+m2

i+mi)+
∑k

i=s ni

(q)n1
(q)m1

(q)nk+mk+1

k−1∏
i=1

[
ni

ni+1

][
mi

mi+1

]
(7.16)

=
(q3k+a+3; q3k+a+3)2∞

(q)3∞
θ(q, qs, qs+1; q3k+a+3).

Proposition 7.5. Conjecture 7.4 holds for s ∈ {1, k, k + 1}.

Proof. Let a = −1. Then the s = 1 case is [6, Equation (5.28), i = 1], the s = k
case is [6, Equation (5.29), σ = 1] and the s = k + 1 case is [6, Equation (5.29),
σ = 0]. Next let a = 1. Then the s = 1 case is [6, Equation (5.22), i = 1], the s = k
case is [6, Equation (5.23), σ = 1] and the s = k + 1 case is [6, Equation (5.23),
σ = 0]. �

If we define

F
(a)
k,s,t(z; q) := lim

n0,m0→∞
F

(a)
n0,m0;k,s,t

(z; q),

then (7.16) can be stated succinctly as

(7.17) F
(a)
k,s,1(1, q) =

(q3k+a+3; q3k+a+3)2∞
(q)3∞

θ(q, qs, qs+1; q3k+a+3).

Taking the large-n0,m0 limit of (7.11) and (7.13) for z = t = 1 results in Conjec-
ture 2.1 and Conjecture 2.8 (with k �→ k+1) respectively. Assuming s ∈ {1, k, k+1}
this proves Theorems 2.2 and 2.9.
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Next we apply Proposition 7.3 to also prove Theorems 2.4 and 2.10. First we
note that according to [6, Theorem 5.5] and [6, Theorem 5.7] (with k �→ k + 1)

F
(a)
k,s,s(1; q) =

(q3k+a+3; q3k+a+3)2∞
(q)3∞

s∑
i=1

qs−i θ(qi, qi, q2i; q3k+a+3)

for integers k, s such that 1 � s � k. Hence, taking the large-n0,m0 limit of
(7.11) and (7.13) for z = 1 and t = s yields Theorem 2.4 and Theorem 2.10 (with
k �→ k + 1).

7.1.3. Proof of (2.2), (2.3) and (2.7). In this (sub)section we prove (or condition-
ally prove) the identities (2.2), (2.3) and (2.7). As alluded to in Remark 2.3, the
idea is it to take advantage of the near-symmetry exhibited by (7.16). In particular,
we exploit the fact that from (7.10) it follows that

(7.18) F
(a)
n0,m0;k,s,t

(1, q) = F
(a)
m0,n0;k,t,s

(1, q)

but that this symmetry is not at all manifest in Proposition 7.3. In fact, we only
require (7.18) in the limit of large n0 and m0:

F
(a)
k,s,t(1, q) = F

(a)
k,t,s(1, q).

By (7.17) this implies

(7.19) F
(a)
k,1,s(1, q) =

(q3k+a+3; q3k+a+3)2∞
(q)3∞

θ(q, qs, qs+1; q3k+a+3).

Letting n0,m0 tend to infinity in the (s, t, z) �→ (1, s, 1) case of (7.11) and equating

the resulting multisum for F
(−1)
k,1,s (1, q) with (7.19) yields (2.2). Similarly, letting

n0,m0 tend to infinity in the (s, z) = (1, 1) case of (7.12) and equating the resulting

multisum for F
(−1)
k,1,k+1(1, q) with (7.19) yields (2.3) for k � 2. The missing k = 1

case of (2.3) simply corresponds to (2.1) for (k, s) = (1, 2). Finally, letting n0,m0

tend to infinity in the (s, t, z) �→ (1, s, 1) case of (7.13) and equating the resulting

multisum for F
(1)
k,1,s(1, q) with (7.19) yields (2.7).

7.2. Proof of Theorem 2.6 for k = 1. To shorten some of our expressions,
throughout this section we write Cλ/μ/d, GKλ/μ/d(z, q) and GKλ/μ/d;n(q) instead
of Cλ/μ/d(N0), GKλ/μ/d(z, q;N0) and GKλ/μ/d;n(q;N0).

The k = 1 case of Theorem 2.6 is given by

(7.20) GK(a+1,1−a,0)(z, q) =
1

(zq)∞

∞∑
n=0

znqn(n+a)

(q)n

for a ∈ {0, 1}. This is an immediate consequence of the level-rank duality (3.20)
and the rank-2 identity [15, page 6]

(7.21) GK(a+2,1−a)(z, q) =
1

(zq)∞

∞∑
n=0

znqn(n+a)

(q)n
.

Below we present an alternative proof based on a bounded analogue of (7.20).

Proposition 7.6. For L a nonnegative integer and a ∈ {0, 1},

(7.22) GK(L+1,L,L)/(1−a,0,0)/2(z, q) =
1

(zq)3L+a

∞∑
n=0

znqn(n+a)

[
3L− n

n

]
.
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Letting L tend to infinity using (3.11) yields (7.20). We remark that it is an
open problem to find the bounded analogues of Theorem 2.6 for k = 2 and (which
should be easier) Conjecture 2.11 for k = 2, i.e., [17, Theorem 3.2].

Our first step in proving Proposition 7.6 is to again use level-rank duality; (7.22)
is implied by the following rank-2 identity.

Proposition 7.7. For L a nonnegative integer and a, b ∈ {0, 1},

(7.23) GK(L+b+1,L)/(1−a,0)/3(z, q) =
1

(zq)2L+a+b

∞∑
n=0

znqn(n+a)

[
2L+ b− n

n

]
.

Replacing L �→ 3L + b in (7.23) and applying (3.8) with r = 2, d = 3, λ =
(2b+ 1, b), λ′ = (b + 1, b, b), μ = (1− a, 0) and μ′ = (1− a, 0, 0) yields (7.22) with
L �→ 2L+ b.

Remark 7.8. More generally it may be shown that for integers b, L, k, s such that
b ∈ {0, 1}, L � 0 and 1 � s � k,

GK(L+b+k−1,L)/(s−1,0)/2k−1(z, q)

(7.24)

=
1

(zq)N

∞∑
n1,...,nk−1=0

zn1q
∑k−1

i=s ni

k−1∏
i=1

qn
2
i

[
N−ni−ni+1−ϕi−s+1−2

∑i−1
j=1 nj

ni−ni+1

]
,

where nk := 0, N := 2L+ b+ k − s and ϕi := max{0, i}. Using (3.4b), (3.9) and

n0∑
m=0

[zm]

( ∞∑
n1=0

zn1

(zq)N
fn1

(q)

)
=

n∑
n1=0

[
N + n0 − n1

n0 − n1

]
fn1

(q),

it follows from (7.24) that

GK(L+b+k−1,L)/(s−1,0)/2k−1;n0
(q)

=

n0∑
j=−n0

(
(−1)jq(2k+1)(j2)+js

[
n0 + � 1

2 (N + (2k − 1)j − k + s)�
n0 − j

]

×
[
n0 + � 1

2 (N − (2k − 1)j + k − s)�
n0 + j

])

=

∞∑
n1,...,nk−1=0

q
∑k−1

i=1 n2
i+

∑k−1
i=s ni

k−1∏
i=0

[
2n0+N−ni−ni+1−ϕi−s+1−2

∑i−1
j=0 nj

ni−ni+1

]
.

For k = 1 and even N , this is equivalent to Burge’s doubly-bounded analogue
of Euler’s pentagonal number theorem [11, page 216]. Similarly, the case of odd
N is equivalent to Burge’s second analogue of the pentagonal number theorem
[11, page 221]. For k = 2 and even N , the above corresponds to identities for
the generating functions P (N,M, 2, 3, 1, 1) and P (N,M, 1, 4, 1, 1) of partition pairs
(Burge’s notation and terminology) [11, page 218], which may be viewed as doubly-
bounded analogues of the Rogers–Ramanujan identities (1.1). For k � 3 the above
result corresponds to doubly-bounded analogues of the Andrews–Gordon identities,
which for even N are implicit in [22].
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As an even level counterpart of (7.24), it may further be shown that for integers
L, k, s such that L � 0 and 1 � s � k + 1,

GK(L+k,L)/(s−1,0)/2k(z, q)(7.25)

=
1

(zq)N

∞∑
n1,...,nk=0

(
zn1q

∑k
i=1 n2

i+
∑k

i=s ni

[
L−

∑k−1
j=1 nj

nk

]
q2

×
k−1∏
i=1

[
N − ni − ni+1 − ϕi−s+1 − 2

∑i−1
j=1 nj

ni − ni+1

])
,

where, now, N := 2L+ k − s+ 1. As per the above, this implies

GK(L+k,L)/(s−1,0)/2k;n0
(q)

=

n0∑
j=−n0

(−1)jq2(k+1)(j2)+js

[
n0+kj+ 1

2 (N−k+s−1)

n0−j

][
n0−kj+ 1

2 (N+k−s+1)

n0+j

]

=

∞∑
n1,...,nk=0

(
q
∑k

i=1 n2
i+

∑k
i=s ni

k−1∏
i=0

[
N + 2n0 − ni − ni+1 − ϕi−s+1 − 2

∑i−1
j=0 nj

ni − ni+1

]

×
[
n0 +

1
2 (N − k + s− 1)−

∑k−1
j=0 nj

nk

]
q2

)
.

For k = 0 (and hence s = 1 and N even) this is equivalent to an identity for
P (N,M, 1, 1, 1, 1) due to Burge [11, page 217]. For k = 1 and s = 2 (and hence
N even) the above corresponds to Burge’s identity for P (N,M, 2, 2, 1, 1) [11, page
218], and for k � 2 the above gives doubly-bounded analogues of Bressoud’s Rogers–
Ramanujan-type identities for even moduli [9, 10].

Proof of Proposition 7.7. Our proof is a bounded version of the proof of (7.21)
given in [15]. The latter is based on a system of functional equations for GKc(z, q)
with fixed level d := c0+ · · ·+ cr−1, due to Corteel and Welsh [17, Proposition 3.1].
Below we consider a bounded version of these functional equations, and although
much of what we do can be generalised to arbitrary shapes λ/μ/d, we restrict
considerations to the rank-2 case, which is the only case we know how to solve.

Let

Cλ/μ/d(m) :=
{
π ∈ Cλ/μ/d : max(π) = m}

and

GKλ/μ/d;m(q) :=
∑

π∈Cλ/μ/d(m)

q|π|.

Then

GKλ/μ/d(z, q) =
∞∑

m=0

zm GKλ/μ/d;m(q).

For integers d, i, j such that 0�j� i�d+ j and d, i�1, let π∈C(i,j)/(1,0)/d(m).
By adding a box with filling n � m in the first row of π as in

ν2 νi

τ1 τj

τ1 τjd

�−→ n ν2 νi

τ1 τj

τ1 τjd
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(where m = max{ν2, τ1}) we obtain a cylindric partition in C(i,j)/(0,0)/d(n). Since
every cylindric partition in C(i,j)/(0,0)/d(n) is uniquely obtained in this way from a
cylindric partition in C(i,j)/(1,0)/d(m) for some m, it follows that

GK(i,j)/(0,0)/d;n(q) = qn
n∑

m=0

GK(i,j)/(1,0)/d;m(q).

Multiplying both sides by zn and summing over n, this gives

(7.26) GK(i,j)/(0,0)/d(z, q) =
GK(i,j)/(1,0)/d(zq; q)

1− zq
.

Next, for integers d, i, j, s such that 0 � j � i � d + j and d, i � s � 2, let
π ∈ C(i,j)/(s,0)/d(m). Adding a box with filling n in the first row of π as in
(7.27)

νs′ νi

τ1 τs τj

τ1 τjd

�−→ n νs′ νi

τ1 τs τj

τ1 τjd

where s′ :=s+1 andm=max{νs′ , τ1}, yields a cylindric partition in C(i,j)/(s−1,0)/d(n).
Similarly, adding a box with filling n in the second row of a cylindric partition in
C(i,j)/(s−1,1)/d(m) (with j � 1) as in
(7.28)

νs νi

τ2 τs τj

τ2 τjd

�−→ νs νi

n τ2 τs τj

n τ2 τjd

(where m = νs) once again yields a cylindric partition in π ∈ C(i,j)/(s−1,0)/d(n).
Clearly, those cylindric partitions in C(i,j)/(s−1,0)/d(n) of the form

(7.29) n νs′ νi

n τ2 τs τj

n τ2 τjd

will be generated twice (take τ1 = n in (7.27) and νs = n in (7.28)), and a correction
is required to avoid double counting. Hence

GK(i,j)/(s−1,0)/d;n(q) = qn
n∑

m=0

GK(i,j)/(s,0)/d;m(q) + qn
n∑

m=0

GK(i,j)/(s−1,1)/d;m(q)

(7.30)

− q2n
n∑

m=0

GK(i,j)/(s,1)/d;m(q).

Indeed, by adding a box with filling n � m to both rows of a cylindric partition

νs′ νi

τ2 τs τj

τ2 τjd

(m := max{νs′ , τs})
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in C(i,j)/(s,1)/d(m) results in a cylindric partition in C(i,j)/(s−1,0)/d(n) of the form
(7.29). Multiplying both sides of (7.30) by zn and summing over n gives

GK(i,j)/(s−1,0)/d(z, q) =
GK(i,j)/(s,0)/d(zq, q)

1− zq

+
GK(i,j)/(s−1,1)/d(zq, q)

1− zq
−

GK(i,j)/(s,1)/d(zq
2, q)

1− zq2
.

Here we recall that by (3.5) the last two terms on the right vanish unless j � 1.
Applying the translation symmetry (3.6) to the second and third terms on the right
yields

GK(i,j)/(s−1,0)/d(z, q) =
GK(i,j)/(s,0)/d(zq, q)

1− zq
(7.31)

+
GK(i−1,j−1)/(s−2,0)/d(zq, q)

1− zq

−
GK(i−1,j−1)/(s−1,0)/d(zq

2, q)

1− zq2
.

The integer s in (7.31) is restricted to 2 � s � d, but by the cyclic symmetry we
can in fact limit the range of s to 2 � s � �d/2� + 1. To this end we take (7.31)
with s = �d/2�+1 and apply the cyclic symmetry (3.7) followed by the translation
symmetry (3.6) to the first term on the right. This leads to

(7.32) GK(i,j)/(�d/2�,0)/d(z, q) =
GK(j+�d/2�−1,i−�d/2�−1)/(�d/2�−1,0)/d(zq, q)

1− zq

+
GK(i−1,j−1)/(�d/2�−1,0)/d(zq, q)

1− zq
−

GK(i−1,j−1)/(�d/2�,0)/d(zq
2, q)

1− zq2
.

Depending on the parity of d, (7.26), (7.31) for 2 � s � �d/2�+1 and (7.32) yield a
closed system of equations. In particular, for d = 2k−1 and (i, j) = (L+k+b−1, L),
with b ∈ {0, 1} and L a nonnegative integer, the following system of equations
(subject to the initial conditions GK(b+k−2,−1)/(s−1,0)/2k−1(z, q) = 0 for 1 � s � k
and GK(k−1,0)/(k−1,0)/2k−1(z, q) = 1) uniquely determines

GK(L+k+b−1,L)/(s−1,0)/2k−1(z, q)

for all b ∈ {0, 1}, 1 � s � k and L � 0:

GK(L+k+b−1,L)/(0,0)/2k−1(z, q) =
GK(L+k+b−1,L)/(1,0)/2k−1(zq; q)

1− zq

and

GK(L+k+b−1,L)/(s−1,0)/2k−1(z, q) =
GK(L+k+b−1,L)/(s,0)/2k−1(q)(zq, q)

1− zq

+
GK(L+k+b−2,L−1)/(s−2,0)/2k−1(zq, q)

1− zq
−

GK(L+k+b−2,L−1)/(s−1,0)/2k−1(zq
2, q)

1− zq2
,
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for 2 � s � k − 1, and

GK(L+k+b−1,L)/(k−1,0)/2k−1(z, q) =
GK(L+k−1,L+b−1)/(k−1,0)/2k−1(zq, q)

1− zq

+
GK(L+k+b−2,L−1)/(k−2,0)/2k−1(zq, q)

1− zq
−

GK(L+k+b−2,L−1)/(k−1,0)/2k−1(zq
2, q)

1− zq2
,

where in the last equation L � 1 − b. One can show, using telescopic expansions
for q-binomial coefficients in the spirit of [7,62], that the above system of equations
is solved by (7.24). Restricting to the k = 2 case, we get the following bounded
analogues of [15, Equations (2.4)&(2.5)]:

(7.33) GK(L+b+1,L)/(0,0)/3(z, q) =
GK(L+b+1,L)/(1,0)/3(zq; q)

1− zq
,

for L � 0, and

GK(L+b+1,L)/(1,0)/3(z, q)=
GK(L+1,L+b−1)/(1,0)/3(zq, q)

1−zq
+
GK(L+b,L−1)/(0,0)/3(zq, q)

1−zq

−
GK(L+b,L−1)/(1,0)/3(zq

2, q)

1− zq2
,

for L � 1 − b. Using the first equation to eliminate GK(L+b,L−1)/(0,0)/3(zq, q)
from the second equation, we further obtain the a bounded analogue of [15, Equa-
tion (2.6)]:

GK(L+b+1,L)/(1,0)/3(z, q)(7.34)

=
GK(L+1,L+b−1)/(1,0)/3(zq, q)

1− zq
+

zqGK(L+b,L−1)/(1,0)/3(zq
2, q)

(1− zq)(1− zq2)
.

Together with the initial conditions

(7.35) GK(1,−1)/(1,0)/3(z, q) = 0 and GK(1,0)/(1,0)/3(z, q) = 1,

this uniquely determines GK(L+b+1,L)/(1,0)/3(z, q) for all L � 0 and b ∈ {0, 1}. Since
for negative integers values of L the right-hand side of (7.23) trivially vanishes, the
claim of Proposition 7.7 holds for all integers L. Assuming this extended range of
L, (7.23) for a = 0 satisfies the initial conditions (7.35). Moreover, substituting the
a = 0 case of (7.23) into (7.34) and clearing common denominators yields (after
replacing 2L+ 1− b by m)

∞∑
n=0

znqn
2

[
m− n+ 1

n

]
=

∞∑
n=0

znqn
2+n

[
m− n

n

]
+

∞∑
n=0

zn+1q(n+1)2
[
m− n− 1

n

]

for m a nonnegative integer. This polynomial identity is readily proved by substi-
tuting n �→ n−1 in the second sum on the right and by then applying the q-binomial
recurrence

qn
[
m− n

n

]
+

[
m− n

n− 1

]
=

[
m− n+ 1

n

]
for m,n � 0.

To complete the proof of Proposition 7.7 we note that the a = 1 case of the
proposition is a direct consequence of the a = 0 case and (7.33).
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For completeness we mention that the system of equations (7.26), (7.31) and
(7.32) for d = 2k is closed for (i, j) = (L + k, L) for L a nonnegative integer,
eliminating the need for the parameter b. In this even-d case we thus get

GK(L+k,L)/(0,0)/2k(z, q) =
GK(L+k,L)/(1,0)/2k(zq; q)

1− zq

and

GK(L+k,L)/(s−1,0)/2k(z, q) =
GK(L+k,L)/(s,0)/2k(q)(zq, q)

1− zq

+
GK(L+k−1,L−1)/(s−2,0)/2k(zq, q)

1− zq
−

GK(L+k−1,L−1)/(s−1,0)/2k(zq
2, q)

1− zq2
,

for 2 � s � k, and

GK(L+k,L)/(k,0)/2k(z, q) =
GK(L+k−1,L−1)/(k−1,0)/2k(zq, q)

1− zq

+
GK(L+k−1,L−1)/(k−1,0)/2k(zq, q)

1− zq
−

GK(L+k−1,L−1)/(k,0)/d(zq
2, q)

1− zq2
,

where in the last equation L � 1. It is again not difficult to show that this system
of equations is solved by (7.25). �

8. Towards the Andrews–Gordon identities for Ar−1

An important open problem is to find the Ar−1 (or A
(1)
r−1) Rogers–Ramanujan

and Andrews–Gordon identities for arbitrary rank r. By level-rank duality, a num-
ber of low-level results for Ar−1 are implied by those for r = 2 and r = 3. Specifi-
cally, the classical or A1 Andrews–Gordon identities (1.2) for modulus 2k+1 imply
identities for A2k−2 at level 2, and the A2 Andrews–Gordon identities for modulus
3k + σ + 1 (σ = 0, 1) imply identities for A3k+σ−3 at level 3. However, to be able
to see the full Ar−1-structure of the sum-side of an arbitrary-level Ar−1 Andrews–
Gordon identity one needs at least r − 1 summation variables, and none of the
available low-level identities suffices.

At the opposite end of the spectrum are the q-series identities corresponding to
the infinite-level limit of the Ar−1 Andrews–Gordon identities. Before considering
the case of arbitrary rank, we briefly discuss this limit for r = 2 and r = 3.

In the case of r = 2 we take the large-k limit of the Andrews–Gordon identity
(1.2) for s = k and s = 1. The resulting pair of identities is the z = 1 and z = q
instances of

(8.1)
∑

n1,n2,...�0

1

(q)n1

∏
i�1

zniqn
2
i

[
ni

ni+1

]
=

1

(zq)∞
.

This is the n0 → ∞ limit of the rational function identity

(8.2)

n0∑
n1,n2,...=0

∏
i�1

zniqn
2
i

[
ni−1

ni

]
=

1

(zq)n0

,

where n0 is a nonnegative integer. The easiest way to understand this last identity
is to note that the terminating form of the φ1 1 summation [24, Equation (II.5)]
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may be written as

(8.3)

n∑
k=0

akqk
2

(aq)k

[
n

k

]
=

1

(aq)n
, n ∈ N0.

Hence, if

Φn(z; q) :=
1

(zq)n
for n a nonnegative integer, then

(8.4)

n0∑
n=0

znqn
2

[
n0

n

]
Φn(z; q) = Φn0

(z; q).

Iterating (8.4) yields

n0∑
n1,...,nk=0

( k∏
i=1

zniqn
2
i

[
ni−1

ni

])
Φnk

(z; q) = Φn0
(z; q),

from which (8.2) follows by letting k tend to infinity.
Next let r = 3. Then the large-k limit of Theorem 1.1, Theorem 2.2 for s = 1 or

s = k + 1 and Theorem 2.9 for s = 1 or s = k all follow from
(8.5)∑
n1,n2,...�0
m1,m2,...�0

1

(q)n1

∏
i�1

zni−miwmiqn
2
i−mini+m2

i

[
ni

ni+1

][
ni − ni+1 +mi+1

mi

]
=

1

(zq)∞(wq)∞
.

Again this is the n0 → ∞ limit of a rational function identity:∑
n1,n2,...�0
m1,m2,...�0

∏
i�1

zni−miwmiqn
2
i−mini+m2

i

[
ni−1

ni

][
ni−1 − ni +mi

mi−1

]
(8.6)

=
1

(zq)n0−m0
(wq)n0

[
n0

m0

]
for n0,m0 nonnegative integers. Defining

Φn,m(z, w; q) :=
1

(zq)n−m(wq)n

[
n

m

]
,

the identity (8.6) is a consequence of the following A2-analogue of (8.4):
(8.7)∑
0�m�n�n0

zn−mwmqn
2−mn+m2

[
n0

n

][
n0 − n+m

m0

]
Φn,m(z, w; q) = Φn0,m0

(z, w; q).

It is not difficult to generalise (8.4) and (8.7) to Ar−1 and to then use this
to prove the Ar−1 analogues of (8.1) and (8.5). First we prove an Ar−1 rational
function identity.

Proposition 8.1. Let n1, . . . , nr−1 be integers such that

(8.8) 0 � n1 � n2 � · · · � nr−1.

Then

(8.9)
∑

m1,...,mr−1�0

r−1∏
i=1

z
mi−mi+1

i qm
2
i−mimi+1

(ziq)m1−mi+1

[
ni −m1 +mi

mi −mi+1

]
=

r−1∏
i=1

1

(ziq)ni

,
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where mr := 0.

As follows from the proof, the condition (8.8) is necessary. We also note that if
C = (Cij)

r−1
i,j=1 is the Cartan matrix of Ar−1, i.e.,

Cij = 2δi,j − δi,j+1 − δi,j−1,

then
r−1∑
i=1

(m2
i −mimi+1) =

1

2

r−1∑
i,j=1

miCijmj ,

where, as in Proposition 8.1, mr := 0. Finally, if ϕ
Ar−1
n1,...,nr−1(z1, . . . , zr−1; q) denotes

either side of (8.9), then

ϕAr
n1,...,nr

(z1, . . . , zj−1, 0, zj+1, . . . , zr; q)

= ϕAr−1
n1,...,nj−1,nj+1,...,nr

(z1, . . . , zj−1, zj+1, . . . , zr; q).

Proof of Proposition 8.1. Assume that (8.8) holds, and denote the left-hand side of

(8.9) by ϕ
Ar−1
n1,...,nr−1(z1, . . . , zr−1; q). Clearly,

(8.10) ϕA1
n1

(z1; q) =

n1∑
m1=0

zm1qm
2
1

(z1q)m1

[
n1

m1

]
=

1

(z1q)n1

by (8.3). Now assume that r � 2 and replace mi �→ mi +mr for all 1 � i � r − 1
in the expression for ϕAr

n1,...,nr
. Then

ϕAr
n1,...,nr

(z1, . . . , zr; q) =
∑

m1,...,mr−1�0

( r−1∏
i=1

z
mi−mi+1

i qm
2
i−mimi+1

(ziq)m1−mi+1

[
ni −m1 +mi

mi −mi+1

](8.11)

× 1

(zrq)m1

φA1
nr−m1

(zrq
m1 ; q)

)
,

where, now, mr := 0. We would like to use (8.10) (or, equivalently (8.3)) to simplify
the second line on the right of (8.11) to

1

(zrq)m1
(zrqm1+1)nr−m1

=
1

(zrq)nr

,

resulting in

(8.12) ϕAr
n1,...,nr

(z1, . . . , zr; q) =
1

(zq)nr

ϕAr−1
n1,...,nr−1

(z1, . . . , zr−1; q).

Caution is required, however, since (8.3) is false if n is a negative integer, with the
left- but not the right-hand side vanishing for such n. We thus need to verify that
the summand in (8.11) still vanishes for m1 > nr after replacing the second line by
1/(zrq)nr

. To this end we note that the q-binomial coefficient corresponding to the
i = r − 1 term in the product is given by[

nr−1 −m1 +mr−1

mr−1

]
.

The summand thus vanishes if m1 > nr−1. Since nr−1 � nr this implies the desired
vanishing for m1 > nr, so that the recursion relation (8.12) is valid. By induction
this completes the proof. �
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We are now ready to state the Ar−1-analogue of (8.4) and (8.7). Let n =
(n1, . . . , nr−1) ∈ Nr−1

0 , and define the rational function

ΦAr−1
n (z1, . . . , zr−1; q) :=

r−1∏
i=1

1

(ziq)n1−ni+1

[
ni

ni+1

]
,

where nr := 0. Further define the polynomial

Kn,m(z1, . . . , zr−1; q) :=

[
n1

m1

] r−1∏
i=1

z
mi−mi+1

i qm
2
i−mimi+1

[
n1 − ni+1 −m1 +mi

ni − ni+1

]
,

where nr = mr := 0.

Theorem 8.2. For n ∈ Nr−1
0 ,

(8.13)
∑
m

Kn,m(z1, . . . , zr−1; q)Φ
Ar−1
m (z1, . . . , zr−1; q) = ΦAr−1

n (z1, . . . , zr−1; q),

where m is summed over Nr−1
0 .

Proof. In (8.9) we carry out the simultaneous substitutions

(n1, n2, . . . , nr−1) �→ (n1 − n2, n1 − n3, . . . , n1 − nr),

where nr := 0. Then

∑
m1,...,mr−1�0

r−1∏
i=1

z
mi−mi+1

i qm
2
i−mimi+1

(ziq)m1−mi+1

[
n1 − ni+1 −m1 +mi

mi −mi+1

]
=

r−1∏
i=1

1

(ziq)n1−ni+1

,

where nr = mr := 0 and n1 � n2 � · · · � nr−1 � 0. Multiplying both sides by

(8.14)

r−1∏
i=1

[
ni

ni+1

]
and using that

r−1∏
i=1

[
ni

ni+1

][
n1 − ni+1 −m1 +mi

mi −mi+1

]
=

[
n1

m1

] r−1∏
i=1

[
mi

mi+1

][
n1 − ni+1 −m1 +mi

ni − ni+1

]
yields (8.13). Since (8.14) vanishes unless n1 � n2 � · · · � nr−1 � 0 holds, the
claim is true for all n ∈ Nr−1

0 . �

Iterating (8.13) immediately leads to

∑
n(1),...,n(k)

( k∏
i=1

Kn(i−1),n(i)(z1, . . . , zr−1; q)

)
Φ

Ar−1

n(k) (z1, . . . , zr−1; q)

= Φ
Ar−1

n(0) (z1, . . . , zr−1; q)

for k a positive integer. Taking the large-k limit this yields∑
n(1),n(2),...

∏
i�1

Kn(i−1),n(i)(z1, . . . , zr−1; q) = Φ
Ar−1

n(0) (z1, . . . , zr−1; q),

generalising (8.2) and (8.6). As a final step we let n
(0)
1 tend to infinity, resulting in

our final theorem.
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Theorem 8.3. We have

∑ 1

(q)
n
(1)
1

∏
i�1

(
r−1∏
j=1

z
n
(i)
j −n

(i)
j+1

j qn
(i)
j (n

(i)
j −n

(i)
j+1)

×
[

n
(i)
1

n
(i+1)
1

]
r−1∏
j=2

[
n
(i)
1 − n

(i)
j+1 − n

(i+1)
1 + n

(i+1)
j

n
(i)
j − n

(i)
j+1

])
=

r−1∏
j=1

1

(zjq)∞
,

where the sum is over nonnegative integers n
(i)
j for all i � 1 and 1 � j � r − 1,

and where n
(1)
r = n

(2)
r = . . . := 0.

For z1 = · · · = zr−1 = 1 this should correspond to

lim
k→∞

AGkΛ0+···+kΛr−2+(k−1)Λr−1;r(q) = lim
k→∞

AGkΛ0+(k−1)Λ1+···+(k−1)Λr−1;r(q).

For example, if for r = 4 we define

Sk(q) := AGkΛ0+kΛ1+kΛ2+(k−1)Λ3;4(q)

=
(q4k+3; q4k+3)3∞

(q)3∞
θ(qk, qk+1, qk+1, qk+1, q2k+1, q2k+1; q4k+3)

and let S∞(q) := limk→∞ Sk(q), then we have the two extremal cases

S1(q) =

∞∑
n,m=0

qn
2−nm+m2

(q)n

[
2n

m

]

and

S∞(q) =
∑

n1,n2,...�0
m1,m2,...�0
p1,p2,...�0

1

(q)n1

∏
i�1

(
qn

2
i−nimi+m2

i−mipi+p2
i

[
ni

ni+1

]

×
[
ni − pi − ni+1 +mi+1

mi − pi

][
ni − ni+1 + pi+1

pi

])
.

It is not yet clear to us how to interpolate between these two results, but one further
piece of the puzzle follows from the generalisation of Conjecture 2.7 to arbitrary
rank r. Recall that by Kummer’s theorem (d+ r)/ gcd(d, r) divides

(
d+r
r

)
.

Conjecture 8.4. Fix d, r � 1 and let c = (c0, . . . , cr−1) be a profile of level d, i.e.,
c0 + · · · + cr−1 = d. Then the formal power series Qn,c(q) defined in (2.4) is a
polynomial in q with nonnegative coefficients, such that

Qn,c(1) =

(
gcd(d, r)

d+ r

(
d+ r

r

)
− gcd(d, r)

)n

.

Conjecture 8.4 was also proposed by Corteel [14], and the polynomiality and
value at 1 have once again been established by Welsh [70]. We in particular have

S2(q) =

∞∑
n=0

Qn,(2,2,2,1)(q)

(q)n
,
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where Qn,(2,2,2,1)(1) = 29n. For small n the polynomial Qn,(2,2,2,1)(q) can be com-
puted explicitly, and the first few polynomials are given by

Q0,(2,2,2,1)(q)=1,

Q1,(2,2,2,1)(q) =q(3+5q+5q2+5q3+4q4+3q5+2q6+q7+q8),

Q2,(2,2,2,1)(q) =q3(3+12q+20q2+32q3+39q4+49q5+52q6+57q7+56q8+58q9

+53q10+53q11+48q12+46q13+39q14+38q15+31q16+29q17+24q18

+21q19+16q20+16q21+11q22+10q23+7q24+6q25+4q26+4q27

+2q28+2q29+q30+q31+q33)

= 3q3 + 12q + · · ·+ q34 + q36.

This rules out that Qn1,(2,2,2,1)(q) is of the form

Qn1,(2,2,2,1)(q) =
∑

n2,m1,m2,p1�0

(
qn

2
1−n1m1+m2

1−m1p1+p2
1+n2

2−n2m2+m2
2

×
[
n1

n2

][
2n2

m2

][
n1 − n2 − p1 +m2

m1 − p1

][
. . .

p1

])
,

since, regardless of the precise form of
[
...
p1

]
,

n2
1 − n1m1 +m2

1 −m1p1 + p21 + n2
2 − n2m2 +m2

2

∣∣∣
n1=2

�= 36

for any n2,m1,m2, p1 ∈ N0 such that n2 � 2, m2 � 2n2, m1 � p1 and 2−n2+m2 �
m1.

Note added. Recently Kanade and Russell [35, Conjecture 5.1] further generalised
Conjecture 7.4, proposing a multisum expression for

(qK ; qK)2∞
(q)3∞

θ(qr, qs, qr+s; qK)

for all 1 � r, s � �(K + 1)/3�. Their conjecture also implies generalisations of
Conjectures 2.5 and 2.11, extending both to a much larger set of profiles of level
3k − 1 and 3k − 2 respectively while also allowing for profiles of level 3k.
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