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BLOCH’S CYCLE COMPLEX AND COHERENT DUALIZING
COMPLEXES IN POSITIVE CHARACTERISTIC

FEI REN

ABSTRACT. Let X be a separated scheme of dimension d of finite type over a
perfect field k of positive characteristic p. In this work, we show that Bloch’s
cycle complex Z$ of zero cycles mod p™ is quasi-isomorphic to the Cartier
operator fixed part of a certain dualizing complex from coherent duality theory.
From this we obtain new vanishing results for the higher Chow groups of zero
cycles with mod p” coefficients for singular varieties.
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INTRODUCTION

Let X be a separated scheme of dimension d of finite type over a perfect field k
of positive characteristic p. In this work, we show that Bloch’s cycle complex Z$
of zero cycles mod p" is quasi-isomorphic to the Cartier operator fixed part of a
certain dualizing complex from coherent duality theory. From this we obtain new
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vanishing results for the higher Chow groups of zero cycles with mod p™ coefficients
for singular varieties.

As the first candidate for a motivic complex, Bloch introduced his cycle complex
Z5 in [3] under the framework of Beilinson-Lichtenbaum. Let ¢ be an integer, and
A" = Speck[Tp, ..., T;]/(3° Tj—1). Here Z% := zo(—, —e) is a complex of sheaves in
the Zariski or the étale topology. The global section of its degree (—i)-term zo (X, %)
is the free abelian group generated by dimension i-cycles in X x A? intersecting all
faces properly and the differentials are the alternating sums of the cycle-theoretic
intersection of the cycle with each face (cf. Section2]). Let 7 : X — Speck be the
structure morphism of X. Let W, X := (| X|, W,,Ox), where |X]| is the underlying
topological space of X, and W,,Ox is the sheaf of length n truncated Witt vectors.
Let W,m : W, X — Spec W,k be the morphism induced from 7 via functoriality.
In this article, our aim is to arrive at a triangle

2 /p" — (Wor) Wik <=5 (W) Wik 2

in the derived category D’(X,Z/p"™), in either the étale topology or the Zariski
topology with an extra k = k assumption. Here (—)' is the extraordinary inverse
image functor in the coherent setting as defined in [21], VII.3.4], [9, (3.3.6)], and
(W,m)'W,k is a dualizing complex for coherent sheaves on W, X. This is a gener-
alization of the top degree case of [I4, 8.3], which in particular implies the above
triangle in the smooth case. Our work is clearly inspired by Kato’s paper [29], but
the proofs in this article do not use any results from loc. cit.

Let us briefly recall Kato’s work in [29] and introduce our main object of interest,
the complex K, x 10q. According to Grothendieck’s coherent duality theory, there
exists an explicit Zariski complex K, x of quasi-coherent sheaves representing the
dualizing complex (W, )W,k (such a complex K, x is called a residual complex,
cf. [2I, VI.3.1]). There is a natural Cartier operator C' : K,, x — K, x, which
is compatible with the classical Cartier operator C' : W,Q% — W,Q% in the
smooth case via Ekedahl’s quasi-isomorphism (see Theorem [[9). Here WnQ‘)i(
denotes the degree d := dim X part of the p-typical de Rham-Witt complex. We
define the complex K, x 04 to be the mapping cone of C' — 1. Kato considered in
[29] the FRP counterpart, where FRP is the “flat and relatively perfect” topology
(this is a topology with étale coverings and with the underlying category lying
in between the small and the big étale site). He showed that K, x ;4 serves in
the FRP topology as a dualizing complex in a rather big triangulated subcategory
of the derived category of Z/p"-sheaves, containing all coherent sheaves and the
logarithmic de Rham-Witt sheaves [29] 0.1]. Kato also showed that in the smooth
setting, K, x4 is concentrated in one degree and its only non-zero cohomology
sheaf is the top degree logarithmic de Rham-Witt sheaf [29, 3.4]. An analogue of
the latter statement holds naturally on the small étale site. Riilling later observed
that with a trick from p~!-linear algebra, [29, 3.4] can be done on the Zariski
site as well, as long as one assumes k = k (cf. Proposition [[15). Comparing
this with the Kato-Moser complex 7, x (cf. Section H)), which is precisely the
Gersten resolution of the logarithmic de Rham-Witt sheaf in the smooth setting,
one gets an identification in the smooth setting v, x ~ K, x10 in the Zariski
topology. Similar as in [29, 4.2] (cf. Proposition [[21]), Riilling also built up the
localization sequence for K, x oy on the Zariski site in his unpublished notes (cf.
Proposition [22]). Compared with the localization sequence for Z$ [2, 1.1] and
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for ¥, x (which trivially holds in the Zariski topology), it is reasonable to expect a
chain map relating these objects in general.

The aim of this article is to construct a quasi-isomorphism Zlog D Upx =
Ky, x 1og, for a possibly singular k-scheme X. When pre-composed with Zhong’s
quasi-isomorphism ¢ : Z%/p" — Up.x 43, 2.16], we therefore obtain another
perspective of Bloch’s cycle complex with Z/p™-coeflicients in terms of coherent
dualizing complexes. More precisely, we prove the following result.

Theorem 0.1 (Theorem 510, Theorem[6I]). Let X be a separated scheme of finite
type over a perfect field k of positive characteristic p. Then there exists a chain map

Clog_’ét “VUn X ,ét — Kn,X,log,étv

which is a quasi-isomorphism. If moreover k is algebraically closed, then this chain
map induces a quasi-isomorphism on the Zariski site

Zlog,Zar : gn,X,Zar E_> Kn,X,log,Zar-
Composition with Zhong’s quasi-isomorphism 1) yields the chain map
Zlog,c’t o Eét : Zg{,ét/pn = Kn x 10g.6t
which is a quasi-isomorphism. If moreover k = k, then the composition

-~ " . ¢ n =
Clog,Zar © wZar . ZX,Zar/p ? Kn,X,log,Zar
s a quasi-isomorphism as well.

We explain more on the motivation behind the definition of K, x ;4. For a
smooth k-scheme X, the logarithmic de Rham-Witt sheaves can be defined in two
ways: either as the subsheaves of Wan( generated by log forms or as the invariant
part under the Cartier operator C'. In the singular case, these two perspectives
give two different (complexes of) sheaves. The first definition can also be done in
the singular case, and this was studied by Morrow [34]. For the second definition
one has to replace W,,Q% by a dualizing complex on W,, X: for this Grothendieck’s
duality theory yields a canonical and explicit choice, and this is what we have
denoted by K, x. And then this method leads naturally to Kato’s and also our
construction of K, x jo5. Now with our main theorem one knows that Z% /p™ sits
in a distinguished triangle

T /0" = Ko x <=5 Knx =5
in the derived category D’(X,Z/p"), in either the étale topology or the Zariski
topology with the extra assumption k = k. In particular, if X is Cohen-Macaulay
of pure dimension d, then the triangle above becomes

S IP" = Wawx[d) <=5 Wawx[d] =,
where W,wyx is the only non-vanishing cohomology sheaf of K, x (if n = 1,
Wiwx = wx is the usual dualizing sheaf on X)), and Z5 /p™ is concentrated at
degree —d (cf. Proposition BII).
As corollaries, we arrive at some properties of the higher Chow groups of 0-cycles
with p-primary torsion coeflicients. (We have specialized several statements here in
this introduction section. Please see the main text for more general statements.)



836 FEI REN

Corollary 0.2 (Proposition 82 Corollary [8.6] Corollary B3] Corollary [8:4] Corol-
lary B3], Corollary B12] Corollary BI4)). Let X be a separated scheme of finite type
over a perfect field k of characteristic p > 0 and m: X — k be the structure map of
X.

(1) (Cartier invariance) Assume k = k. Then
CHo(X, q; Z/p") = H Y (Wn X, Kp x.zar) 2"
(2) (Semisimplicity) Assume k = k. Let X be proper over k. Then for any g,
H Y (WoX, Kpn x)ss = CHo(X, ¢; Z/p") ®@zjpn Wik,

(We refer to Definition [AA] and Remark [A5(2) for the definition of the
semisimple part.)

(3) (Relation with p-torsion Poincaré duality) There is an isomorphism in
Db(XénZ/pn)

Kn,X,log,ét =~ RW‘(Z/pn)7

where Rr* is the extraordinary inverse image functor defined in [A0, Exposé
XVIII, Thm 3.1.4].

(4) (Affine vanishing) Assume k = k. Suppose X is affine and Cohen-Macaulay
of pure dimension d. Then

CHy(X,q,Z/p") =0

for q # d. B
(5) (Etale descent) Assume k = k. Suppose X is Cohen-Macaulay of pure
relative dimension d. Then

Rle,(Z s /P") = RlexUn x,6 =0, i # —d.
(6) (Invariance under rational resolution) Assume k = k. For a rational res-

olution of singularities f : X — X (¢f. Definition BI0) of an integral
k-scheme X of pure dimension, the trace map induces an isomorphism

CHo(X,q;Z/p") =+ CHo(X, ¢: Z/p")

for each q. B
(7) (Galois descent) Assume k = k. Let f :' Y — X be a finite étale Galois
map with Galois group G. Then

CHo(X,d; Z/p"™) = CHo (Y, d; Z/p")°.

Now we give a more detailed description of the structure of this article.

The general setting is that X is a separated scheme of finite type over a perfect
field k of positive characteristic p (except in Section [[LT] where a scheme refers
to a noetherian scheme of finite Krull dimension). In Part [[l we review the basic
properties of the chain complexes to appear. Section[Ilis devoted to the properties
of the complex K, x,i0g, the most important object of our studies. We study the
Zariski version in Sections [[.2]- Following an idea in [29], we define the Cartier
operator C’ for the residual complex K, x, and then define the complex K, x iog
to be the mapping cone of C’ — 1 in Section We compare our C’ with the
classical definition of the Cartier operator C' for top degree de Rham-Witt sheaves
in Section[[L3] The necessary computations are presented in Sections[[.3.2land [[L3.3]
The localization sequence is discussed in Section [[4l The main ingredients are a
surjectivity result for C’ — 1, which needs the base field k to be algebraically closed,
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see Proposition (see also Appendix [A] for a short discussion of the necessary
semilinear algebra), the trace map of a nilpotent thickening (cf. Proposition [[2]),
and the localization sequence (cf. Proposition [[L22]). They were already observed
by Riilling and are only re-presented here by the author. After a short discussion
on functoriality in Section [[5l we move to the étale case in Section Most of
the properties mentioned above continue to hold in a similar manner, moreover
the surjectivity of Cg — 1 : V[/'anlQét — T/Vanffjét over a smooth k-scheme X only
requires k£ to be perfect. This enables us to build the quasi-isomorphism (jo4,4; for
any perfect field & in the next part. In the remaining Sections 2] - @ of Part [1 we
recall Bloch’s cycle complex Z§, Kato’s complex of Milnor K-theory C¥ ;» and the
Kato-Moser complex of logarithmic de Rham-Witt sheaves vy, x ;. There are no
new results in these three short sections.

In Part 2l we construct the quasi-isomorphism Zlog S Un X =K n,X,log and study
its properties in Section We first construct a chain map ¢ : C¥ — K, x and
then show that it induces a chain map (4 : C')]g[ — Ky, x,10g- This map actually
factors through the chain map Zlog { Un,x — Kn x,10g via the Bloch-Gabber-Kato
isomorphism [, 2.8]. We prove that Zlog is a quasi-isomorphism for ¢t = ét, and
also for t = Zar with an extra k = k assumption. In Section [f] we review the main
results of 43} §2] and compose Zhong’s quasi-isomorphism v : Z% /p™ — Uy, x with
Zlog' This composite map enables us to use tools from the coherent duality theory
in the calculation of certain higher Chow groups of 0-cycles.

In Part 3] we discuss the applications. Section [{l mainly serves as a preparatory
section for Section® In SectionRlwe arrive at several results for higher Chow groups
of 0-cycles with p-primary torsion coefficients: affine vanishing, finiteness (reproof
of a theorem of Geisser), étale descent, and invariance under rational resolutions.

Part 1. The complexes
1. KATO’S COMPLEX K, X 10g,¢

1.1. Preliminaries: Residual complexes and Grothendieck’s duality the-
ory. The general references for this topic are [21I] and [9]. All schemes in this
section will be assumed to be noetherian of finite Krull dimension.

1.1.1. Residual complezes. A residual complex (see [9, p.125] and [21] p.304]) on a
scheme X is a complex K such that

K is bounded as a complex,

all the terms of K are quasi-coherent and injective Ox-modules,
the cohomology sheaves are coherent, and

there is an isomorphism of O x-modules

@Kq o~ @iI*J(,T),

qEZ reX

where i, : SpecOx, — X is the canonical map and J(z) is the quasi-
coherent sheaf on Spec Ox , associated to an injective hull of k(x) over
Ox z (i.e. the unique injective Ox y-module up to non-unique isomorphisms
which contains k(z) as a submodule and such that, for any 0 # a € J(z),
there exists an element b € Ox , with 0 # ba € k(z).)
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Given a residual complex K on X and a point x € X, there is a unique integer
dx (z), such that i,.J(z) is a direct summand of K7, i.e.,

K9~ @ T ().
di (x)=q
The assignment x — dg (x) is called the codimension function on X associated to
K (ct. [21, IV, 1.1(a)], [9, p.125]). We define the associated filtration

Z*(K)={z € X | dx(z) > p}.

On each irreducible component of X, this filtration equals the shifted codimension
filtration. By the codimension filtration of a scheme X we refer to the filtration Z*
with

ZP ={z € X | dimOx , > p}.
If Z* is a filtration on X, we denote by Z*[n] the shifted filtration with Z*[n]? =
zZprtn,

Let Z* be a filtration on X such that when restricted to each irreducible compo-
nent, it is the shifted codimension filtration. For any bounded below complex F*,
choose a bounded below injective resolution Z* of F7*. Denote by I';, the sheafified
local cohomology functor with support in ZP, cf. [2I, p223 5.]. Then one has a
natural decreasing exhaustive filtration by subcomplexes of Z*:

DEZP(I.) DEZ:DJrl(I.) D

This filtration is stalkwise bounded below. Now consider the Ei-spectral sequence
associated to this filtration

EY? = HPTI(F®).
The Cousin complex [9, p.105] Ez+ (F*®) associated to F* is defined to be the 0-th
line of the Fi-page, namely

Ege(F®) i= (EV® = HY, ppid (F), d5°).

Here HZP/ZP+1 (.7:) = RPEZP/ZP+1 (.7:) and EZP/ZP+1 (.7:) = EZP (F)/EZP+1 (f) (Cf
[21, p.225 Variation 7]). We will also use the shortened notation E for Eze when
the filtration Z* is clear from the context. Note that Ez«(F*®) is indeed a Cousin
complex in the sense of [9, p.105] by the canonical functorial isomorphism [21]
p.226], [0, (3.1.4)]

Howzon(F*) = 6D i (HL(F?)),
r€eZP—ZPt+1
where i, : Spec Ox , — X is the canonical map, and HZ(F*®) is the local cohomol-
ogy groups at z as defined in [2I, p.225 Variation 8]. By slight abuse of notation
we denote by the same notation H:(F*®) the quasi-coherent sheaf on Spec Ox .
associated to this local cohomology group, and it is a sheaf supported on the closed
point if it is non-zero.

Let X be a scheme and Z*® be a filtration on X which is a shift of the codimension
filtration on each irreducible component of X. Denote by @ the natural functor from
the category of complexes of Ox-modules to the derived category of Ox-modules.
Then Ez. and @ induce quasi-inverses [9] 3.2.1]

<7
associated filtration is Z*® associated filtration is Z®

dualizing complexes whose Q residual complexes whose
(1.1.1) — .
Ze
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For the definition of a dualizing complex (as an object in the derived category) we
refer the reader to [9, p.118]. Since we have assumed that X is noetherian and of
finite Krull dimension, there always exists a residual complex on X.

1.1.2. The functor f©. Let f : X — Y be a finite type morphism between noe-
therian schemes of finite Krull dimension and let K be a residual complex on Y
with associated filtration Z® := Z*(K) and codimension function dg. Define the
function dya g on X to be [9, (3.2.4)]

dya (@) = dic(f(2)) - trdeg(k(z) /k(f ()

(so far the subscript f& K is simply regarded as a formal symbol), and define f~Z°®
accordingly

fo7° ={x € X |dyag(x) > p}.

Notice that if f has constant fiber dimension r, f~Z°* is simply f~1Z*[r].
Following [21), V1, 3.1], [0l 3.2.2], we list some properties of the functor f* below.

Proposition 1.1. There exists a functor

fA _( residual complexes on'Y residual complexes on X
' with filtration Z° with filtration f>Z°

having the following properties (we assume all schemes are noetherian schemes of
finite Krull dimension, and all morphisms are of finite type).

(1) If f is finite, there is an isomorphism of complexes [21, V1.3.1]
wf : fAK E_> Ef—lZ' (T*RHOTTL()Y (f*OXv K)) =~ T*Hom(ﬁy (f*OX’ K)’

where = f1(=) ®f-11,0, Ox is the pullback functor associated to
the map of ringed spaces f : (X,0x) — (Y, f.Ox). Since f is flat, the
pullback functor 7* is exact. The last isomorphism is due to the fact that
T*’Homoy (f«Ox, K) is a residual complex with respect to filtration f~*Z*
(see |21, V1.4.1], [9] (3.4.5)]).

(2) If f is smooth and separated of relative dimension r, there is an isomor-
phism of complexes [21] VI1.3.1]

07 JOK = Epoagep(Qx)y [r] ©6, LEFK) = Epi g0 (Qx vy [1] ®0x [7K).

The last equality is due to the flatness of f and local freeness of Q;(/Y.
If f is étale (or more generally residually stable, see ([B) below), this
becomes

¢r fAK = Epage(f K) ~ f°K.

The last isomorphism is due to |21, V1.5.3]. In particular, if f =j: X <= Y
is an open immersion, j°K = j*K is a residual complex with respect to
filtration X N Z* [9, p.128].

(3) If f is finite étale, the chain maps vy, @y are compatible. Namely, for a
given residual complex K on'Y , there exists an isomorphism of complexes
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T Homoy (f.O0x,K) =5 f*K as defined in [9, (2.7.9)], such that the fol-
lowing diagram of complexes commutes

T*Homoy (f«Ox,K)

R

FA(E) =

1R

K.

(Composition) If f : X =Y and g : Y — Z are two such morphisms, there
is a natural isomorphism of functors [9] (3.2.3)]

¢ (9)® = 295,

(Residually stable base change) Following [9 p.132], we say a (not neces-
sarily locally finite type) morphism f : X — Y between locally noetherian
schemes is residually stable if

o f is flat,

o the fibers of f are discrete and for all x € X, the extension k(z)/k(f(x))

is algebraic, and

e the fibers of f are Gorenstein schemes.
As an example, an étale morphism is residually stable. For more properties
of residually stable morphisms, see [21, VI, §5]. Let f be a morphism of
finite type, and u be a residually stable morphism. Let

x Y x
f’l lf
Y/—U,>Y

be a cartesian diagram. Then there is a natural transformation between
functors |21l V1.5.5]

du,f . f/Au* i) U/*fA-
2 is compatible with translation and tensoring with an invertible sheaf.
More precisely, for an invertible sheaf L on'Y and a locally constant Z-

valued function n on'Y', one has canonical isomorphisms of complexes |9,
(3.3.9)]

AL @ K) ~ (f*K)n @ fAK ~ (f*L® f2K)[n].

More properties and compatibility diagrams can be found in [9, §3.3] and [21], VI,

§3, 85].

1.1.3. Trace map for residual complezes.

Proposition 1.2. Let f : X — Y be a proper morphism between noetherian
schemes of finite Krull dimensions and let K be a residual compler on Y. Then
there exists a map of complexes

Try: fuf°K = K,

such that the following properties hold [9, §3.4].
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(1) If f is finite, Try at a given residual complex K agrees with the following
composite as a map of complezes [9, (3.4.8)]:

(1.1.3) Try : £ fOK L Homoy (f.0x, K) 22 K.

(2) If f : P& — Y is the natural projection, then the trace map Try at K, as
a map in the derived category DE(Y'), agrees with the following composite
[9, p.151]

fef S K 25 RE(Qpy jx[n]) @0y K = K.

The first map is induced from ¢y followed by the projection formula [9,

(2.1.10)], and the second map is induced by base change from the following

isomorphism of groups [9] (2.3.3)]

%dtl/\nﬁ\dtd

t1...tq ’

where 8L = {Uy, ..., Uy} is the standard covering of P% and the t;’s are the
coordinate functions on Uy.

(3) (Functoriality [9, 3.4.1(1)]) Try is functorial with respect to residual com-

plexes with the same associated filtration.
(4) (Composition [9, 3.4.1(2)]) If g : Y — Z is another proper morphism, then

7 = HY(PY, Q%%/Z) = H(4, de%/z), 1= (=1)

Trgs = Trgog.(Trg) o (gf)«cy,q-

(5) (Residually stable base change [21l, V1.5.6]) Notations are the same as in
diagram (LI12), and we assume f proper and u residually stable. Then the

diagram
*T
WREFS — LTy
lfv Trf/ T
Rfi(du,

Rfu o L R

commautes.
6) Trs is compatible with translation and tensoring with an invertible sheaq,
f

[9, p.148].

(7) (Grothendieck-Serre duality [9, 3.4.4]) If f : X — Y is proper, then for any
F € Dg.(X), the composition

Rf.RHomx (F, f°K) — RHomy (Rf.F,Rf.f2K) T, RHomy (Rf.F,K)
is an isomorphism in D (Y).

More properties and compatibility diagrams can be found in [9, §3.4] and [2T], VI,
§4-5; VI, §2].

1.2. Definition of K, x,4. Let k be a perfect field of characteristic p. Let W,k
be the ring of Witt vectors of length n of k. Notice that W,k is an injective W, k-
module by Baer’s criterion. So Spec W,k is a Gorenstein scheme by [21}, V. 9.1(ii)],
and its structure sheaf placed at degree 0 is a residual complex (with codimension
function being the zero function and the associated filtration being Z*(W,k) =
{Z°(W,k)}, where Z°(W,,k) is the set of the unique point in Spec W,,k) by [21], p299
1.] and the categorical equivalence (LII)) (note that in this case the Cousin functor
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Ezew,r) applied to W,k is still W,k). This justifies the symbol (WnFp)> to
appear. To avoid possible confusion we will distinguish the source and target of the
absolute Frobenius by using the symbols k; = ko = k. Absolute Frobenius is then
written as F, : (Specki, k1) — (Specks, k2), and the n-th Witt lift is written as
W, Fy : (Spec Wy ki, Wy k1) — (Spec Wy, ko, Wy, ks). There is a natural isomorphism
of W, k1-modules (the last isomorphism is given by Proposition [[LT[1))

(1.2.1) Woky = WoF, Homyy g, (Wi Fp)y(Wiky), Wiks
aa®[(WoFp)l =1 (= [(WnFy)ea— 1]

) = (W Fi) ™ (Wiks),
)

where W, Fy, : (Spec Wy, k1, Wyk1) — (Spec Wyka, (W, Fi)« (W, k1)) is the natural
map of ringed spaces, and the Hom set is given the (W, F}).(W, k1 )-module struc-
ture via the first place. In fact, it is clearly a bijection: identify the target with
Wy ks via the evaluate-at-1 map, then one can see that the map (L21) is identified
with a — (W, Fy)"(a).

Let X be a separated scheme of finite type over k of dimension d with structure
map 7 : X — k. Since W,k is a Gorenstein scheme as we recalled in the last
paragraph,

Knx = (W,m)* Wk

is a residual complex on W, X, associated to the codimension function dg, , with
dk, « (¥) = —dim {z},
and the filtration Z°* (K, x) = {Z?(K, x)} with
ZP (K, x) = {z € X | dim {z} < —p}.

In particular, K, x is a bounded complex of injective quasi-coherent W, O x-mod-
ules with coherent cohomologies sitting in degrees

[~d, 0.

If n = 1, we write Kx := K; x. Now we turn to the definition of C’. Denote
the level n Witt lift of the absolute Frobenius Fx by W, Fx : (W, X1, W,,Ox,) —
(WnX2, W, Ox,). The structure maps of W,, X1, W, Xy are W, m, W, w2 respec-
tively. These schemes fit into a commutative diagram

W, X, — X W x,

Wnﬂll anﬂ'Z

Spec W, kq Wk Spec Wy ks.

Denote
KmXi = (Wnﬂ'i)A(Wnki), = 1,2.
Via functoriality, one has a W,,Ox,-linear map

(1.2.2)

Wam o
Ko, = (W) (Wiky) B2 D, ()& (0, B2 (Wiks)

~ (WoFx)® (Wama)® (Wiaks) =~ (WnFx)2 Ky x,-
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Here the isomorphism at the beginning of the second line is given by Proposi-
tion [[LTI(4). Then via the adjunction with respect to the morphism W, Fx, one has
a W, Ox,-linear map

(1.2.3)
Tr
C’ Z:C;L : (WnFX)*Kn,X1 M} (WnFX)*(WnFX)AKn,X2 M}Kmxw

where the last map is the trace map of W, Fx for residual complexes. We call

it the (level n) Cartier operator for residual complexes. We sometimes omit the

(W, Fx).-module structure of the source and write simply as C' : K, x — K, x.
Now we come to the construction of K, x 104 (cf. [29, §3]). Define

(1.2.4) K, x 10g := Cone(K,, x o, K, x)[-1].
This is a complex of abelian sheaves sitting in degrees
[—d, 1].

Ifn =1, weset Kx 109 := K1,x,10g- Writing more explicitly, K, x joq is the following
complex

(K, %®0) = (K, YT oK, %) == (Kl x 0K, §) = (08 K] y).
The differential of K, x,1,, at degree i is given by

leQ = dn,log : KriL,X.,log - K:‘Ljr)alog’
(Kriz,x D K;;)%) — (Krlz+)1( D Kril,x)a
(a,b) = (d(a), —(C" = 1)(a) — d(b)),
where d is the differential in K, x. The sign conventions we adopt here for shifted
complexes and the cone construction are the same as in [9, p6, p8]. And naturally,
one has a distinguished triangle

c'-1 1
(1.2.5) Ko Xi0g = Knx —— Kn.x — Kn x.10g[1].

Explicitly, the first map is in degree ¢ given by
KViL,X,log = ;,X & Kyzl,_)i' - K;,Xa
(a,b) — a.
The “+1” map is given by
Kfil,X - (Kﬂ,X,lOg[l])i = Kvi:,r)z',log = (K:Ljr)% @ K:L,X)?
b~ (0,b).

Both maps are indeed maps of chain complexes.

1.3. Comparison of W"Q()i(,log with K, x 04- Recall the following result from the
classical Grothendieck duality theory |21}, IV.3.4], [9] 3.1.3] and Ekedahl [10, §1] (see
also [T, proof of 1.10.3 and Rmk. 1.10.4]).

Proposition 1.3 (Ekedahl). If X is smooth and of pure dimension d over k, then
there is a canonical quasi-isomorphism

W, 0Q%[d] = K, x.
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Remark 1.4. Suppose X is a separated scheme of finite type over k of dimension
d. Denote by U the smooth locus of X, and suppose that the complement Z of
U is of dimension e. Suppose moreover that U is non-empty and equidimensional
(it is satisfied, for example, if X is integral). Then Ekedahl’s quasi-isomorphism
Proposition [[.3] gives a quasi-isomorphism of dualizing complexes

(1.3.1) W,Q4[d = K.

Note that the associated filtrations of quasi-isomorphic dualizing complexes are the
same (cf. [2I, V.3.4]). Let Z*® be the codimension filtration of U. As explained
above, the associated filtration of K, ;7 is the shifted codimension filtration, i.e.,
Z*|d]. Apply the Cousin functor associated to the shifted codimension filtration
Z°*[d] to the quasi-isomorphism ([3]) between dualizing complexes, we have an
isomorphism of residual complexes

Ezeiq(WoQ$[d]) = K, v

with the same filtration Z*[d] by (LII)). Since W, j is an open immersion, we
can canonically identify the residual complexes (W,,j)*K,, x ~ K,y by Proposi-
tion[I.1K2). Since K, x is a residual complex and in particular is a Cousin complex
(cf. [9, p. 105]), the adjunction map K, x — (Wyi)«(Wpni)* Kn x ~ Wyi)Kn v
is an isomorphism at degrees [—d, —e — 1]. Thus the induced chain map

Knx — (an)*Ez-[d](WnQdU[d])
is an isomorphism at degrees [—d, —e — 1].

1.3.1. Compatibility of C' with the classical Cartier operator C. We review the
absolute Cartier operator in the classical literature (see e.g. [5l Chapter 1 §3],
[24, §0.2], [30, 7.2], [25 IIT §1]). Let X be a k-scheme. The (absolute) inverse
Cartier operator ~vx of degree i on a scheme X is affine locally, say, on Spec A C X,
given additively by the following expression (H’(—) denotes the cohomology sheaf
of the complex)

(1.3.2) YA : Dy = H(Faslp),

~1 ~1
aday ...da; — aPal” "day ...al'” “da;,

where a,a1,...a; € A. Here Hi(FAﬁ*Q:‘/k) denotes the A-module structure on
Hi(QI‘L‘/k) via the absolute Frobenius Fa : A — A,a — a” (note that Fia .03
is a complex of A-modules in positive characteristics). For each degree i, v4 thus

defined is an A-linear map. These local maps patch together and give rise to a map
of sheaves

(1.3.3) vx 0 Q% — H (Fx.0%)

which is Ox-linear. If X is smooth of dimension d, «vx is an isomorphism of
Ox-modules, which is called the (absolute) Cartier isomorphism. See [5, 1.3.4]
for a proof (note that although the authors there assumed the base field to be
algebraically closed, the proof of this theorem works for any perfect field k of
positive characteristics).

This can be generalized to the de Rham-Witt case.
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Lemma 1.5 (Cf. [28, 4.1.3]). Denote by W, Q"% the abelian sheaf F(W,11Q%)
regarded as a W, O x -submodule of (WnFX)*WnQ’X If X is smooth of dimension
d, the map o . ' ‘
F W, Q% — W, Q% /av—toi!
induced by Frobenius F : W, 1Q% — R.(W,Fx).W,Q% is an isomorphism of
WO x -modules.
In particular, if i = d,
F: W, 0% — (W,Fx).W,Q% /avn—10d!
is an isomorphism of W, O x -modules.

Proof. Since _ _ _ _
Ker(R: W, 1Q — W,Q" = V"Q! +dV"Q
FV"Qi =0 and FdV"Qi=t = qV1Q1 F 2 W, 19 — W,,Q reduces to
F:W,Q" — W,Q' Jdv"~t,

The surjectivity is clear. We show the injectivity. Suppose z € W, 1, y €
Q=1 such that F(z) = dV"'y. Then F(xz — dV"y) = 0, which implies by [24] T
(3.21.1.2)] that = — dV"y € V"QL.

The second claim follows from the fact that F : W, Q¢ — R (W, Fx).W,Q%is

surjective on top degree d [24, 1 (3.21.1.1)], and therefore W, Q¢ = (W,, Fx ). W,, Q¢
as W,,Ox-modules. O

Definition 1.6 ((Absolute) Cartier operator). Let X be a smooth scheme of di-
mension d over k.
(1) The composition

(1.3.4) O = Cx 2 (Fx Q%) — Hi(Fy.0%) 2 ai

(with Z*(Fx Q%) == Ker(Fx .0y % Fx Q%)

is called the (absolute) Cartier operator of degree i, denoted by C or Cx.
(2) (cf. [28, 4.1.2, 4.1.4]) More generally, for n > 1, define the (absolute)
Cartier operator Cy, := Cyp, x of level n to be the composite

(1.3.5) s Wk — W, Q0 /v it T w00

where F : W, Q% = W, Q% /dV"—1Qi ! is the map in Lemmal[[H If i = d
is the top degree we obtain the W,,Ox-linear map

=-1
(1.3.6)  Cp: (WoFx)WnQ% — (W, Fx ) Wo Q& /av - 10dt L w04 .

Remark 1.7.

(1) According to the explicit formula for F', we have C' = C [24, T 3.3]. For
this reason we will simply write C' for C,, sometimes.

(2) C,, (for all n) are compatible with étale pullbacks. Actually any de Rham-
Witt system (e.g. (W,Q%,F,V,R,p,d)) is compatible with étale base
change [7, 1.3.2]. a

(3) The n-th power of Frobenius F' induces a map

F' oW Qk = H (W Fx)IWaQ%),
which is the same as [25] IIT (1.4.1)].
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(4) Notice that on Spec W, k, C,, : W,k — W,k is simply the map (W, Fy)™!,
because F': W, 1k — W,k equals R o W, 1 F} in characteristic p.

(5) We sometimes omit “(W,,Fx).” in the source. But one should always keep
that in mind and be careful with the module structure.

Remark 1.8. Before we move on, we state a remark on étale schemes over W,, X.

(1) Notice that every étale W, X-scheme is of the form W,g : W, U — W, X,
where g : U — X is an étale X-scheme. In fact, there are two functors

F : {étale W,, X-schemes} = {étale X-schemes} : G,
ViV XWX X,
WU < U.

The functor F' is a categorical equivalence according to [I9, Ch. IV, 18.1.2].
The functor G is well-defined (i.e. produces étale W,, X-schemes) and is a
right inverse of F' by [23] Thm. 1.25]. We want to show that there is a
natural isomorphism GF ~ id, and this is the consequence of the following
purely categorical statement: If F': A — B and G : B — A are two functors
satisfying both F' being a categorical equivalence and F'G =~ id, then G
is a quasi-inverse of F', i.e., there exists a canonical natural isomorphism
GF ~ id. We leave this as an easy exercise for the reader.
(2) The square

w, U 2w o

anl l/an
W, Fx

W, X —= W, X.

is a cartesian square. This is because for any étale map g : U — X, the
relative Frobenius Fy/x is an isomorphism by [I1], 10.3.1]. Thus W, Fy,x
is an also isomorphism and the claim follows.

We shall now state the main result in this subsection, which seems to be known
by experts (cf. proof of [29, 3.4]) but we cannot find a proof in the literature. To
eliminate possible sign inconsistency of the Cartier operator with the Grothendieck
trace map calculated via residue symbols [0l Appendix A], we give a proof by
explicit calculations (see Section [3:2Section [[33]). At the same time, this result
justifies our notation for C’: The classical Cartier operator C is simply the (—d)-th
cohomology of our C’ in the smooth case.

Theorem 1.9 (Compatibility of C’ with C'). Suppose that X is a smooth scheme
of dimension d over a perfect field k of characteristic p > 0. Then the top degree
classical Cartier operator

C: (WaFx)Wn Q% = WaQ% i

as defined in Definition agrees with the (—d)-th cohomology of the Cartier op-
erator for residual complezes

C" s (WnFx) WnQ% /. = WaS% 4
as defined in (L23) via Ekedahl’s quasi-isomorphism Proposition L3l
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Proof. The Cartier operator is stable under étale base change, i.e., for any étale
morphism W,g : W, X — W,Y (which must be of this form according to Re-
mark [[L8(1)), we have

Cx ~ (W,9)*Cy : (W, Fx)W,Q% — W, 0%.

We claim that the map C’ defined in (LZ3)) is also compatible with étale base
change. That is, whenever we have an étale morphism W,g: W,, X — W, Y, there
is a canonical isomorphism

C./X = (an)*cgf : (WnFX)*Kn,X — KmX-

First of all, the Grothendieck trace map Tryy, r, for residual complexes is compat-
ible with étale base change by Proposition [[2(5), i.e.,

Trw, ry =~ 9" Trw,py (W Fx)o(WoFx)2 Kn x — Ky x.

Secondly, because of the cartesian square in Remark [[L8(2) and the flat base change
theorem

(an)*(WnFX)* =~ (WnFX)*(Wn )*,

we are reduced to show that (LZ2)) is compatible with étale base change. And this
is true, because we have

(Whg)* =~ (an)A

by Proposition [LT(2), and the compatibility of (—)* with composition by Propo-
sition [[T(4). This finishes the claim.

Note that the question is local on W, X. Thus to prove the statement for smooth
k-schemes X, using the compatibility of C and C’ with respect to étale base change,
it suffices to prove it for X = Ag. That is, we need to check that the expression
given in Lemma [[.T4] for C’ agrees with the expression for C' given in Lemma [[.T0
This is apparent. |

1.3.2. Proof of Theorem [L9l: C for the top Witt differentials on the affine space.
Let k be a perfect field of positive characteristic p. The aim of this subsection is
to provide the formula for the Cartier operator on the top degree de Rham-Witt
sheaf over the affine space (Lemma [[T0]).

Consider the polynomial ring k[X1,...,X4]. Let h : {1,...,d} — N[%] \ {0}
be a function such that Im(p"~1h) C N. Write h; := h(i). Let {i1,...,iq} be a
reordering of {1,...,d}, such that

vp(hiy) < wvp(hiy) <o <wp(hy,).

This order depends on h. Since {1,...,d} is a finite set, we can also choose a uniform
order for elements in Supp h and Supp p®h for any integer a and any function h. If
Im(h) ¢ N, let r € [1,d] be the unique integer such that

vp(hiy) <o <vp(hy,) <0 <wp(hi ) <o <vp(hiy).

G g1
For all j € [1,d], write
vj = vp(hs;), R = hip~ .

i

According to [33], 2.17], any element in VVHQZ[X1 X4 is uniquely written as a sum

of (L3.7) and (L3.3):
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e h is a function such that Im(h) ¢ N, o € W1, K,
(1.3.7)  dV =" (a[X1])") - dV =V ([X,])07) - FUritd[X e - - FOad[X ),

and
e h is a function such that Im(h) C N, 8 € W,k,

(1.3.8) BFUA[X4]M - FUad[Xq)ha.
Lemma 1.10 (C,, on A%). The Cartier operator (cf. Definition [LG)
C:=0Cn: Wan[Xl,...,Xd] - Wan[Xl,...,Xd]

1s the map uniquely determined by the following assignment by taking products: for
jelld,

, 1—v; ) o o
Vel ]E,) {BW B
(Oz (S W?’L+Ujk7vj < 0) ’ —v;=n—1
g = (WnF)~'(8),
(B € Wyk)
A
’ ij*ld[X,] J ) v > 1
. h,‘ n Vi;— b —_— b
F”Jd[Xj]nj-i-uj = { h,-j] il !
(Uj >0) dV[Xj]n—h v; =0

Proof. For any 7,6 € WnQp 1y, x 1, C(F(y) - F(0)) = C(F(v)) - C(F(6)). Hence
it suffices to check the formulae on each factor. For a € W, 1k, —v; € [1,n — 2],
the formulae CF = R, d = FdV imply

c(av— (a[xj]ﬁivj)) = c(pav— (a[Xj]Zim)

= V' (R(@)[X,]0 1)

For o € k, —v; = n — 1, the formulae CF = R, d = F'dV and Ker R = V" 4+ dV"
imply

c(av (X1, )) = C(Favr(ax;”))
= R(dV"(aX;"))
=0.

For g € W,k,
C(B) = (WyFp)~H(B).
For v; > 1, the formula CF = R implies
. Wy . n,
C<F Jd[Xj}n-&-vj) - R(F ld[Xj]n-i-'uj)

o W,
= FT] ld[Xj]n+1zj—1'
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For v; = 0, the formulae CF = R and d = F'dV imply

C(F”fd[Xj]h9 )= C(FdV[Xj]Z”)

n4uv;
= R(aV[X,1a")

Ry
= dV[X;l, 2y
(]

1.3.3. Proof of Theorem [LA: C’ for the top Witt differentials on the affine space.
The aim of this section is to calculate C” for the top de Rham-Witt sheaves on the
affine space (Lemma [[.T4]). To do this, one needs to first calculate the trace map
of the canonical lift of the absolute Frobenius.

1.3.3.1. Trace map of the canonical lift ﬁ)} of absolute Frobenius Fx. Before we
start with the computation we recall some properties of the residue symbol from
[9, §A]. Let X < P be a closed immersion of affine schemes with the sheaf of ideals
generated by t1, ..., tq € I'(P,Op). Let P — Y be a separated smooth morphism
of affine schemes with pure relative dimension d. Suppose X — Y is finite flat. For
any w € I'(P, U.)p/y), there is a well-defined element

ReSp/Y |:t :| € F(Y, OY)

15 td
which is called the residue symbol (cf. [0 (A.1.4)]). It satisfies the following
properties (we use the same numbering as in [9, §A.1]):

e Suppose h : Y’ — Y is any morphism of schemes, and P’ = P xy Y’. Then

h*w . w
(R5) ReSPI/Y/ |:]’L*t1, s ]’L*td:| =h RGSP/Y |:t17 AN ,td:| '
e For any ¢ € I'(P,Op),
-dty ... dt

Here the notation Try/y denotes the classical trace map associated to the
finite locally free ring extension I'(Y, Oy) — I'(X, Ox).

e For n e I'(P, (2737}1,), and ki, ..., kq positive integers,

dn = dt; A
R0)  Resoyy g ] = 3k Rese [ YT
’ i=1 i d

Let k£ be a perfect field of positive characteristic p. Let X = Ag, and denote by

X := Spec W, (k)[X1, ..., X4] the canonical smooth lift of X over W, (k). To make
the module structures in the following discussion explicit, we distinguish the source
and the target of the absolute Frobenius of Spec k and write it as

Fy : Speck; — Specks.
Similarly, write the absolute Frobenius on X as
Fx : X = Specki[X1,...,X4] = Y = Specks[Y1,...,Yq].
There is a canonical lift of Fx over X
Fg : X = Spec Wy, (k1)[X1, ..., X4 = Y = Spec W, (k2)[Y1,.. ., Ydl,
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given by

Fi: T(Y,05) = Walk)[Y1, ..., Y] =& Wa(k1)[X1,..., X4 = (X, 0%),
WnkQ S o Wn(Fk)(Ck),
Y, — X7

Let
wx : X — Specky, my :Y — Specks, WX:)?%Wnkl, 7717:}7—>Wnk2

be the structure maps. The composition ¢ Oﬁg (X o Spec Wy, ko gives X a Wy, ko-
scheme structure, and the map F'y is then a map of W, ka-schemes. Therefore the
trace map

I —A
TI‘I;~ : F)?V*F)? K}N, — Kf,

X
makes sense. Consider the following map of complexes

ﬁ;,*ﬂ%m
—x

ﬁ)?,*K)E = ﬁ)aﬂ)%wnkl ﬁfv*ﬂ)%WanAWnkg ~

Tr P

- oA A - oA
Fg FEn8Waky ~ Fg F2Ky —5 Ky

Taking the (—d)-th cohomology, it induces a map

-0l

- d
(1.3.9) Fxo Q% iy = 0% ks

Lemma 1.11. The notations are the same as above. The map (L39) has the
following expression:

d () d
(1.3.10) Q)?/Wnkl —_— Q?/an,

(W, Fo) " Ha)YRAY, if \i =p—1 for all i;

aX AMPrIX — , _
0, if \i #p—1 for some i.

Proof. Consider the closed immersion ¢ : X< P= A‘}i, associated to the following
homomorphism of rings:

[(P,0z) = Wy (ko) [Y1,. .., Ya, T1, .o, Ta] = Wi (k1)[X1, ..., Xa) = T(X,05),
a (WoF)(a), ac Wy(ks),
Vi XP i=1,....d,
T, X;, i=1,...,d

Its kernel is
I:(Tf—Yl,...,Tg—Yd).

Denote
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Obviously the t;’s form a regular sequence in I‘(]B, Op), and hence i is a regular

immersion. Then one has a factorization of F %
(1.3.11)

X = Spec W, (k1) [ X1, ..., Xg]—> P = Spec W, (k2)[Y1, ..., Ya, Th, ..., T4

F)}/ _

Y = Spec W, (k2)[Y1,. .., Ya].

Regarding X as a Wi ko-scheme via the composite map ﬁf( o 7y, the diagram
(L3I0 is then a diagram in the category of W, ko-schemes.

A general element in I‘(X 04 %/ wok ) is a sum of expressions of the form
1

(1.3.12) aX PHIX, o€ Wk, A €[0,p—1]% pu e N

Here A = {\y,..., \a}, 0= {pt1, ..., pq} are multi-indices, and X := Xl)‘1 .. .X;‘d
(similar for Y#, X2PH etc.), dX := dX;...dXy (similar for dT, etc.). The

element ([312) in I'(X, Q)?/W oy ) corresponds to
(1.3.13) (WoFi) L) XMPHAX | o€ Whko, A € [0 p—1]% pe N,
in T'(X, Q‘)l(/W ' ) under (—d)-th cohomology of the map Fg X(IDED

(W F) )T YT, o€ Wyko, A €[0,p —1]%, pu € N

. . d .
is a lift of (L3.13) to I'(P, QP/W o ). Write

B:=dtgA---Ndty AW, Fr) Ha)TAY HdT
= (=D4AYg A - ANdYy A (W, F) (o) TAY AT
in I‘(ﬁ, wﬁ/W'Lk2), xivvhere W /Wi ks denotes the dualizing sheaf with respect to the
smooth morphism P — W, ko. Recall that there is a natural isomorphism [9, p.30
(a)]
WE Wk, = Why ®05 7T*"Jff/w ko)
where wp /v and wg Wk denote the dualizing sheaves with respect to the smooth

morphisms 7 : P>YandY — W, ko. This isomorphism maps 3 to

(=1)

It is easily seen that F 's is a finite flat morphism between smooth W, ks-schemes.
Applying [0, Lemma A.3.3], one has

d(3d+1)
2

(W Fi) Y ()TT @ 7*YPdY .

TXdT

Trg (WaFi) ™! (@) XMPHAX) = (W, i) () Resp 5 [tl ot

] Y#dY,
TXdT
t, .. ta
and Tr Py is the trace map on top differentials of the W, ks-morphism F s 9,

(2.7.36)].
We consider the following cases:

where Resp [ } eI(Y, Oy ) is the residue symbol defined in [9, (A.1.4)],
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o If (\,...,\q) # (p—1,...,p—1), TXdT = dn for some 7 € Q‘;;/%. Suppose
without loss of generality that A\; # p — 1. Then we can take

1 A1+
= T 1jﬂ‘)@...jﬁ»\ddjj L dTy.
)\1 1 1 2 d 2 d

n

Noticing that
dt; = d(TP —Y;) = pTP~'dT;
in QL _, and that Ay + mp + 1 (m € Z~g) is not divisible by p if Ay + 1 is

P)Y’
so. Now we calculate
T>dT
Res= =
Py [tl,...,td}
R S AT T2 TdTy . .. dTy)
A H1TRY tiita, ... ta
Resw - TOPT2 T AT AT . .. dT,
A +10RY 2, t2, ... ta
_ p Res~ < AT PN TMATy . dTy)
M +DN +p+1) BV 2 to, ..., tg
_ 2p° Res - [T0FT92 T\ dTs ... dT,
M+ D)\ +p+1) Y t3,ta, ..., tq
_ 2p° Res - {d(Tf\IHPHTQ)‘?...TdAddTg...de)]
[, +ip+1) /Y 13 b, .oty
_ 6p° e - {Tfﬁ?”’T;‘? ...Té\ddTldTg...de}
[ +ip+1) /Y bty
_ dTod-pr p {TI’\ﬁ"”Tz’b...Té\ddTIdTg...de}
Mg +ip+1) oY 4 byt

=0.

We have used (R9) on the second, the fourth, the sixth, and the eighth
equality signs. The last equality is because p™ = 0 in I'(Y, Oy ).
o If (A1,...,2q)=(p—1,...,p—1), consider

(1.3.14) X' := Spec (ZT[;{_Y{Y‘;?&L%])( SpecZ[Y{,...,Y;,Ty,...,T)| = P’

T |

SpecZ[Y{,...,Y ] =Y.

The map f is given by f*(V/) =Y/ = T/” in I'(X’,Ox-). This is a finite

(2

locally free morphism of rank p?. Consider the map h : Y Y given by

(Y, Oy) = ZY{,....Y]] = Wo(k2)[V1,..., Y] = T(Y,05),
Y/ — Y, for all i



BLOCH’S CYCLE COMPLEX AND COHERENT DUALIZING COMPLEXES 853

that relates the two diagrams (L3.I4) and (L3II). In I'(Y’, Oy-), we have
d et TP ATy d(T® —Y])...d(T}P —Y))
pERespyye |V Jyy® o Dy S Reseove | eyl
(R6)
= Trx//y/(l)
= pd.
The notation Trx/,y denotes the classical trace map associated to the
finite locally free ring extension I'(Y', Oy~) — T'(X’, Ox/). As for the last
equality, Trx//y/(1) = p¢ because f is a finite locally free map of rank p.
Since p? is a nonzerodivisor in T'(Y’, Oy+), one deduces
TPt TP T AT
Respr/y: [ vy vy T
Set
TPt =Pt T

which is the canonical lift of X* via the map i : X < P in our current
case. Pulling back to I'(Y, Oy) via h, one has

(13.15) Respp Eplda @) 1 Respr y [Tlg;}pl_-&-/:;’}'z.p”ig{p-;-;gé ~ 1.
Altogether, we know that the map (L3.9) takes the following expression
Q??/Wnkl - Q%/W»,J{IQ’
T {(Wan)_l(a)Y“dY, it \; =p— 1 for all i;
, if \; # p—1 for some 1.
O

1.3.3.2. C" for top Witt differentials. Now we turn to the W,,-version. The aim of
this subsection is to calculate C” for top Witt differentials on A¢ (Lemma [T4).

Let f : X — Y be a finite morphism between smooth, separated and equidi-
mensional k-schemes of dimension d. Same as before, we denote by 7x : X —
k and my : Y — k the respective structure maps. The complexes K, x =
(Womx )2 Wk, Ky = (W,my )2 W,k are residual complexes on X and Y. Then
we define the trace map

(1.3.16) Trw, 5 @ (Wi f)e(WnQ%) — W,08
to be the (—d)-th cohomology map of the composition

ev. at 1

(1317) TI‘an : (an)*Kn,X ~ ’Homwnoy((an)*WnOX,Kn,y)

via Ekedahl’s isomorphism W,,Q% ~ H~4(K,, x) in Proposition

It suffices to compute the trace map locally on Y. Thus by possibly shrinking
Y we can assume that Y and (therefore also X) is affine. In this case, there exist
smooth affine Wnﬁ—schemes X and Y which lift X and Y. Denote the structure
morphisms of X,Y by m¢ and 7y, respectively. Then there exists a finite W, k-

KnY

)

morphism f: X 5Y lifting f : X — Y by the formal smoothness property of
Y.
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Consider the map of abelian sheaves [10] I (2.3)]

* 19 L ]
(1.3.18) oy WaOy = HO(Q?/Wnk) — Oy,
n—1
. RO __n—1 n—1~
S Villad) @b +pal b
=0

where a; € Oy, and a; € Oy are arbitrary liftings of a;. The map ¥y appearing
above is the ¢ = 0 case of the canonical isomorphism defined in [25] II1. 1.5]
(1.3.19) Dy : W, = Hi(%/wnk).

Note that the map o} : W;,Oy — Oy is a morphism of sheaves of rings, and

it induces a finite morphism oy : W,Y — Y (cf. [10, I, paragraph after (2.4)]).
Altogether we have the following commutative diagram of schemes (cf. [I0} I. (2.4)])

X ex W, X
ix %
X 7 X W, f
f f
Y ki W, Y
7&/ /
Y Ty Y Wymy
Ty Ty
W,k = W, k.
/ W (Fi') /
k = k
P

Lemma 1.12. Set K = W)%Wnk, and K¢ = wéWnk. The (—d)-th cohomology

of the map Tr]—;: f*K)? — K¢ gives a map ﬂQ%/Wnk — Q%/Wnk, which we again
denote by Trf~. Then by passing to quotients, this map Trf induces a well-defined

map

75 HA(f0 - HUQL ).

L[]
X/W,,Lk) Y /Whk

Moreover, the map TF s compatible with Tryy, ¢ defined in (L317), i.e., the follow-
ing diagram commutes:

Trw, s

(an>me/~ oy |~
R (ov)«T7
(v )M ) T (0r). O )
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Proof. We argue the other way around, namely we define the map T ’Hd(}"; Qe )

XMWk
— ’Hd(Q%//W"k) via TrNan s (W) Wo% — W, 0% and then show that this is
the reduction of Trf~: f*Q%/Wnk — Q%/Wnk.

First of all, via isomorphisms ¥ x, ¢y, the map TrWni : (an)*WnQ()i( — WHQ%

defined in (L3.I7) induces a well-defined map 7 : ’Hd(f*Q;?/Wnk) — Hd(Q;7/Wnk).

To show the compatibility with Tr 7> one needs the observation of Ekedahl that the
composite map

~ (ov)-my @ZD)"
~ A
by : (QY)*Q%/Wnk[d] — (QY)*K}N/ = (QY)*WE; Wik -

~

Tr,
(0v)em s (W Fi) 2 Wik = (0v )+ (0v) ™ (Womy ) S Wik — Ko, y

factors through #y : (Qy)*’Hd(Q;?/W Jld = Ky (cf. [10, §1 (2.6)]). Then he

defined the map W,,Q¢[d] — K,y to be the composite

9 . 7
(1.3.20) sy : W,Q%[d] - Hd(Qf,/W"k)[d] 2 Ky

Now consider the following diagram of complexes of sheaves

Trw,
(W f)«EKn,x T/ Kny
T
(W £) W2 [d] A W04 [d]
_ (Wh f)stx _ ty
(Waf)atx ty
(W f)u¥x |~ Vy |~

~ (0y )« Tl‘f

(0v )% . i ldl (0v)-94 ), ld].

— —

~ (ov)«T7
(ov F)HA(Q%, : (o) HHQg 1 )ld]

%wo)[d

The unlabeled arrows are given by the natural quotient maps. The front com-
mutes by the definition of Uz The top commutes by the definition of Try, s :

(W f)W,Q4 — W,Q%. The triangles in the right (resp. the left) side commute
due to the definition of ty and sy (resp. tx and sx). The back square com-
mutes, because the trace map Tr 7 is functorial with respect to maps of residual
complexes with the same associated filtration by Proposition [[L2[(3). We want to
show that the bottom square commutes. To this end, it suffices to show (gy ). Tr P

(ny)*Qi?/Wnk — (gy)*Q%/Wnk is compatible with Try, 5 : (W, f).W,Q% —

Wan, via ¥x and vy. Because the map Try, s : (an)*Wan( — Wan, is de-
termined by the degree —d part of the map Try, ;: (W, f). K, x = K, y, we are

reduced to showing compatibility of (oy )« Try: (QYf)*Qd)?/Wnk — (Qy)*Q%/Wnk
with Trw, r : (Wof)eKnx — Kny via (W, f).(sx 0 9%') and sy o 93", By the
commutativity of the left and right squares, this is reduced to the commutativity

of the square on the back, which is known. Therefore the bottom square commutes
as a result. ]
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The notation TF is only temporarily used in Lemma Later we will denote
Tf by Tr];.
Lemma 1.13 ([I} 8.4(ii)]). Let W, Q;,/W . denote the relative de Rham-Witt com-
plex defined by [33]. The rest of the notations are the same as above. There is a
commutative diagram

" °

W"+1QY/W k Zq(QY/W K
L,

W, 0% HIOL ).

Recall that any element in W, Q¢ k[X1,...,X,) 18 uniquely written as a sum of 37)

and ([33).

Lemma 1.14. Let
— . d d
C'=Cy: Walliix, .. xa = WaSlix, . xu]

be the map given by the —d-th cohomology of the level n Cartier operator for residual
complezes (cf. (L2Z3)). Let o = Z"Jﬂ“ "Viloy] € Woyo, k with each o € k. Let
B =120 VI[B;] € Wik with each B; € k.

(1) val =1-n,

c’ (dv—vl(a[xl]hi) AV (X)) - FUr X e FRadX ] ) —0.
(2) If1—-n<v1 <0, V41 =+ =045 =0 (s can be zero),
C' @V (@XM dV o (X))« FUrd[X ] FUd[X )
= dVITUH(R(@)[ XM - AV X AV X ] dV X
. er+s+1—1d[XT+S+1]h;v+s+1 .. .de—ld[Xd]hfz

Here
n+vy—1
a= Z %6 [&j}nﬂ)ﬁrlfj € Wn+v1+1(Wnk)v
7=0
where &; = [a;], € Wyk is the Teichmailler lift of a; € k.
(3) Ifvy >0, vy =---=v, =0 (s can be zero),
c’ (ﬂF”ld . FUad[X ) )
= (WoF) H(B) - dV[Xl]h/l e dV[X M Fren g [X g en o Fret X )
Here
n—1
B=> VIBilnt1-j € Wara(Wyk),
§=0

where Ej = [Bjln € Wik is the Teichmiiller lifts of B; € k.
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Proof. Consider the map W, Fx : W, X — W, X with X := Ag. It is not a map
of W, k-schemes a priori, but after labeling the source by W,, X := V[/nAg1 and the
target by W, Y = WnAgz, one can realize W, Fx as a map of W, ko-schemes (the
Wi ke-scheme structure of W, X is given by W,,Fx o Wy, where my : Y — ks
denotes the structure morphism of the scheme Y'). Write

)Z':A%,nkl:Spec Whk1[X1,...,Xa] (resp. Y= A%VnkQ:Spec Wika[ X1, ..., Xd]),

and take the canonical lift F 's of Fx as in Lemma [LTIl Consider
(1.3.21)

Trw, ry

(W Fx ). ([CZ2)

(WaFx) WaS . ) (W Fx) . Wa O, W,
l(wﬁ,l“x)*ﬁx l(Wan)*ﬂx lﬂy
_ Fptezm Y (ev)-(Trz ) )
(ov Fg ) HU Q% 1y 1) = (ov Fz) M0 1) (ov)HUQ ) )

The composite map of the top row is C’ (cf. (L23)) and Ekedahl’s quasi-isomorph-
ism Proposition[L3]). The composite of the bottom row is induced from gy (L3.9).
The right side commutes due to Lemma The left side commutes by the
naturality. Hence we can decompose C’ in the following way:

C' =93 o (L3I 0 Vx : Wl i, = WSy,
Consider the first two cases. Suppose v; < 0 and suppose there are s many v;’s

being zero,

UlS"'<UT<0:"':0<UT‘+S+1é"'gvd~

; 1 .
Note that in Wi 1Q0y, 1yx, . xa/wok’

n+vy—1
(1.3.22) Fn+v1d(a[xl]h’1):FWId([Xﬂhi. 3 vj[aj])
j=0
n+uvy—1 ) .
=y e )
=0
n+wvy—1 ) '
= Y Prteida x0T
7=0
ntvi—1 ' J + ; ¥ J
~ vl I ~
= Z (X" )P ld(anllp)
=0
n+vy—1 N ) N
. pntvi—J /oontvy
- R D CEL ) ¢
=0
Similarly we have
n+wvi—1 ) S B oo =1,
(1323) Y phi-e Rl (WaFr) (@2 )X P X,
7=0

= F"dVI=U1(R(@)[X1])™).
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Here R is the restriction map R : Wy, +1(Wink) = Wipy, (Wik). Now according
to the formula (310) and Lemma [[T3] we carry out the following calculations.
(1.3.24)
O (V=" (@A) - AV (X)) P e X))
= 95" o (CEI) o F" (aV—" (G[X3]") - v~ (X))
CFU X, ) ...ded[Xd}hii>
= 0yt o (LD (F 4 d(@[X]"%) - P d([X,)")

. F"'H’T“d[XT_,_l]h/rJrl . .FTL-'FUdd[Xd}h:i)

n+v;—1

= 07 o (T3T) (( S wpieatt Xf'lp"”l‘ldxl) . (h’2 . Xgép“”‘ldxz).
7=0
“(%,ﬁwm“w&» (by (C322))

n+vy—1
+v1 v —j Rprtvi—loq

=07 (X PR BT @)X dx,
j=0

X )
= oyt (Fravi = (R@)XG))

e FRAVIU X FRAV X ) FRAV X s

o (P CYORY L "'FnJrvd*ld[Xd]hé) (by @3.23)).

If vy =1 —mn, (L324) = 0 because
FrdV' =" (R(@)[X1]") = d(R(@)[X1]") = 0
in ’Hl(sznk)[xlwad]/W”k). If v1 #1 —n (hence v; > 1 —n for all j),

C324) = dv' " (R(a) [Xl]h/l) o dyir [Xr]h'/"
VX Pt dV (X o]
. FUr+s+1*1d[XT+S+1]h:‘+S+1 . F’Udfld[Xd]h’d

and this is the same as what our lemma claims.
Now we check the third case. If all the v; > 0, suppose the first s v;’s are zero,

O::O<’Us+1§§vd
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Note that in W, k,

(1.3.25)
W B ) = WaF) (E VB i)
7=0
= (WaF) N F ) = (WaFi)™ Zﬁp B e
=0 =0
= P (VW F) " Blrs) = P (Wi (W) (8))
=0

We carry out the computation
c’ (ﬂFvld[Xl]hi ...ded[Xd]h’d)
=dy! o (L3 o F" (BT FUd[x ) - .ded[Xd]h;>
=dy'o (I]B:EZI)(F"(B) P ) .Fn+vdd[Xd]h;)

— 03" o (L3I (F"(B) - -+ WX X Pl )

=0 (W B (7 (B)) - X g T )
= 07! (B (Wi W) 71 (8)) - FRaV X ] - Frav X,
Freven T IX, o PR X)) (by (CEZD)
= (WoFp)~Y(B) - dV[Xy)" - - dV X, ]
Fosti=1q[X e o FUa—tg[X ).
In the last equality we have used that
07 (F (Wi (WaF0) (8)) ) = (WaFi) ™ (8).
We hence proved the lemma. O

1.3.4. Criterion for surjectivity of C' — 1. Proposition [[LTI5]is proven in the smooth
case by Illusie-Raynaud-Suwa [39, 2.1]. The proof presented here is due to Riilling.

Proposition 1.15 (Raynaud-Illusie-Suwa). Let k = k be an algebraically closed
field of characteristic p > 0 and let X be a separated scheme of finite type over k.
Then for every i, C' — 1 induces a surjective map on global cohomology groups

Hi (WX, Knx) = RT(Wo X, Knx) =% HI (W, X, Kn.x).
In particular,
RT(WoX, Ky x.10g) ~ Hi (WX, K x)¢ 2.
Proof. Take a Nagata compactification of X, i.e., an open immersion
ji X=X
such that X is proper over k. The boundary X \ X is a closed subscheme in X.
By blowing up in X one can assume X \ X is the closed subscheme associated to
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an effective Cartier divisor D on X. We can thus assume j is an affine morphism.
Therefore

Woi: WX — W, X
is also an affine morphism.

For any quasi-coherent sheaf M on W, X, the difference between M and
(Wni)«(Wyoj)*M is precisely those sections that have poles (of any order) at
SuppD = W, X \ W,X. Suppose that the effective Cartier divisor D is repre-
sented by (U;, f;)i, where {U;}; is an affine cover of X, and f; € I'(U;, Ox). Recall
that Ox(mD) denotes the line bundle on X which is the inverse (as line bundles) of
the m-th power of the ideal sheaf of X \ X < X. Locally, one has an isomorphism

1
for each i. Denote by W,,Os(mD) the line bundle on W,, X such that
1
WnOy(mD) Ui’l“ WnOUl C T
Lfil™
where [—] = [—],, denotes the Teichmiiller lift. Denote

M(mD) := M ®w, 04 WyOx(mD).
The natural map
(1.3.26)
M(xD) := colim,, M(mD) = (Wyj)«(Wni)* (M(mD)) = (Wj)w(Wnj)* M
is an isomorphism of sheaves. Here the inductive system on the left hand side is
given by the natural map

M(mD) =M ®W"07 Wn(’)y(mD) — M ®W"(97 Wn(’)y((m + 1)D)
induced from the inclusion W,,Ox(mD) — W,,Ox((m + 1)D), i.e., locally on Uj,
this inclusion is the map

a alfi
— .
[fam LAl
where a € W,,Op,. As a result,
(1.3.27)
H (W X, (Wnj)* M)

U;»

H'(RU(W, X, RWnj).(Wnj)* M)

HY(RT(W, X, (W, 5)«(W,j)* M)) (W,,j is affine)
HY(RT(W,, X, colim,, M(mD)) (C320)

= colim,,, H*(W,, X, M(mD)).

Apply this to the bounded complex K, % of injective quasi-coherent W, O«-
modules. Taking into account K, x ~ (W,j)*K, % by Proposition [[.1(2), (L3.20)
gives an isomorphism of complexes

(1.3.28) K, % (D) := colim,, K,, x(mD) = (Wpnj)«Kn x,

and (L3.27) gives an isomorphism of W, k-modules
colim,, H'(W,, X, K, x(mD)) = H'(W,, X, Ky, x).
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Via the projection formula [21] 11.5.6] and tensoring
C': (W, Fx).K

nX * Knx
with W,,Ox(mD), one gets a map

(WnFX)* (Kn)y ®W,L O« Wnof(me))
~ (WaFx)«(K, x ®w, 0 WaFx)"W,0x(mD))

o~ ((Wan)*Kn)y) Ow,, 0% Wn(’)y(mD)

C/®ideOY(7nD)

K, x ®w,o¢ W, Ox(mD).
Precomposing with the natural map
(WnFX)*(KmX Ow, 05 WnOx(mD)) — (WnFX)*(KnX Ow, 05 WnOx(pmD)),
and taking the global section cohomologies, one gets
C': H'(W, X, K, x(mD)) = H' (W, X, K, x(mD)).
To show the surjectivity of
C'—1:H(W,X,K, x) = H(W,X,K, x),
it suffices to show the surjectivity for
C'—1: H'(W,X,K, x(mD)) = H' (W, X, K, x(mD)).

Because Hq(Kny) are coherent sheaves on the proper scheme X for all ¢,

’Hq(Kn,y Ow, 04 WnOx(mD)) = ’Hq(K”y) Ow, 05 WnOx(mD)
are also coherent, therefore the local-to-global spectral sequence implies that

M = H'(W,X, K, x(mD))

is a finite W, k-module. Now M is equipped with an endomorphism C’ which acts

p~L-linearly (cf. Definition [A4]). The proposition is then a direct consequence of
Proposition [A.6l O

Proposition [[LI0 is a corollary of [39, Lemma 2.1]. We restate it here as a
convenient reference.

Proposition 1.16 (Raynaud-Illusie-Suwa). Assume k = k. If X is separated
smooth over k of pure dimension d,

C—1:W,0% - Ww,0%
18 surjective.

Proof. Apply affine locally the H ~%-case of Proposition[[LI5 Then Ekedahl’s quasi-
isomorphism W, Q% [d] ~ K, x from Proposition [[3] together with compatibility
of ¢’ and C from Theorem [[.9 gives the claim. O

Remark 1.17. If X is Cohen-Macaulay of pure dimension d, W, X is also Cohen-
Macaulay by Serre’s Sk-criterion [18, (5.7.3)(i)] of the same pure dimension, and
thus the complex K, x is concentrated at degree —d for all n [9] 3.5.1]. Denote by
Wywx the only non-zero cohomology sheaf of K, x in this case. Then the same
reasoning as in Proposition [I6shows that if &k = k and X is Cohen-Macaulay over
k of pure dimension, the map

C'—1: Wyhwx = Whwx
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is surjective.

1.3.5. Comparison between WnQdX,log and Ky x10g- Let X be a k-scheme. Denote
by dlog the following map of abelian étale sheaves

leg : (O}k(,ét)@q — Wan(’éta
a1 @ -+ ® aq — dloglai], . . . dloglag]n,

where ai,...,a5 € O% ¢, [=]n : Oxet = WyOx ¢ denotes the Teichmiiller lift,
and dlogla;], = % We will denote its sheaf theoretic image by W,Q% ,, «
and call it the étale sheaf of log forms. We denote by W,,Q% ;. == WnQ%

e*Wanwog_’ét, and call it the Zariski sheaf of log forms.

Zar =

Lemma 1.18 (8, lemme 2], [16] 1.6(ii)]). Let X be a separated smooth k-scheme.
Then we have the following left exact sequences

(1.3.29) 0= WoQ% . — W% =5 w04 /avn—t,
(1.3.30) 0 = W% 1, — Wal¥d <=5 W,0%,

where WnQ/)? = F(W,11Q%). The right hand maps are also surjective if t = ét.
Proposition [[L.T9] collects what we have done so far.

Proposition 1.19 (Cf. [29, Prop. 4.2]). Let X be a separated smooth scheme of
pure dimension d over a perfect field k. Then

(1) we have H™HKp x 109) = ang(,logf and H'(Ky, x,10g) = 0 for all i #
—d,—d+1.
(2) If k =k, the natural map

d
WTLQX,log [d] — K?L,X,log
is a quasi-isomorphism of complezes of abelian sheaves.

Proof. (1) Since C is compatible with C’ by Theorem [[L9] the natural map
Cone(W,,Q4 [d] o W, Q% [d))[—1] = Ky, x 109 18 a quasi-isomorphism by
the five lemma and the Ekedahl quasi-isomorphism Proposition [[L3] The

claim thus follows from the exact sequence (330]).
(2) Proposition [LT6H-(1) above. O

1.4. Localization triangle associated to K, x o4-

1.4.1. Definition of Trw,, f.104-

Proposition 1.20 (Proper pushforward, cf. [29, (3.2.3)]). Let f : X = Y be a
proper map between separated schemes of finite type over k. Then so is W, f :
WnX — W, Y, and we have a map

’I‘ran,log : (an)*Kﬂ,X,lOg — Kn,Y,log
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of complezes that fits into the following commutative diagram of complexes, where
the two rows are distinguished triangles in D®(W,X,Z/p™)

Cc'—1
(an)*Kn,X,log - (an)*Kn,X — (an)*KmX -

l"ﬁwnf,zog l"ﬁwnf lTrwnf
c’'—1

Kn,Y,log Kn,Y Kn,Y —

Moreover Tryy, f10g 15 compatible with compositions and open restrictions.

This is the covariant functoriality of K, x ;o4 With respect to proper morphisms.
Thus we also denote Try, f.104 by f«-

Proof. Tt suffices to show the following diagrams commute.

(WTLF )*(an)*m
(W Fy ) s (Wi f) K x —————" (W Fy )« (Wi f) (Wo Fx )2 K x
l(W,,,Fy)* Trwnf l(W,LFY)* Trwnf
(WnFy ). ([L2Z2)
(WnFY)*Kn,Y u ~ (WnFY)*(WnFY)AKn,Yv

(W f)s Trw, r
(Wi £)s(WaFx ) (Wo Fx)2 Ky x — > (W f): K x

l (WnFy )« Trw, ¢ l Trw,

(WaFy)s (Wi f)e (W, Fx)2 Ky x

Trw, ry

(Wo By ) (W Fy )2 Ky y Ky,

where Try, ; on the right of the first diagram and the left of the second diagram
denote the trace map of the residual complex (W, Fy)>K,, y:

Tran : (an)*(WnFX)AKn,X = (an)*(an)A(WnFY)AKn,Y_}(WnFY)AKn,Y~

The commutativity of the first diagram is due to the functoriality of the trace map
with respect to residual complexes with the same associated filtration (Proposi-
tion [L2(3)). The commutativity of the second is because of the compatibility of
the trace map with compositions of morphisms (Proposition [[2](4)). O

1.4.2. Trw, 109 in the case of a nilpotent immersion.

Proposition 1.21 (Riilling. Cf. [29] 4.2]). Leti: Xo — X be a nilpotent immer-
sion (thus so is Wyi : Wy (Xo) — W, X ). Then the natural map

Trw,it0g + (Wnt)Kn xo,109 = Kn X l0g
is a quasi-isomorphism.

Proof. Put I, := Ker(W,,Ox — (W,i).W,,Ox,). Applying Homw, o (—, Kn.x)
to the sequence of W,,Ox-modules

(1.4.1) 0—1I, > W,0x - Wy,i).W,0x, — 0,

we get again a short exact sequence of complexes of W, Ox-modules

0= (Wni)e K xg —2% Ky x — Qp i= Homw, 0 (In, Kn.x) — 0.
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The first map is clearly Try, ; by duality. The restriction of the map (W, Fx)* :
W, O0x — (W, Fx).W,Ox to I, gives a map

(WnFX)* |In: I, — (WnFX)*Ina

S Vi) = 32 V(al)).

Define
(142) C] : (WnFx).Qn
= (WpFx) Homw, 0 (In, Kn x)
= Homw, ox (WnFx)sln, (Wi Fx)« Ky x)

W, Fx).@2Z2)o
% HomWﬂ,OX ((WnFX)*In; (WnFX)*(WnFX)AKn,X)

~
Trw,,

—FXO> HOmWnOX ((WnFX)*In> Kn,X)

W, Fx v
(« X)) Homw, 0y (In, Kn.x) = Qn.

According to the definition of ¢ in (LZ3J)), C' is compatible with C7 . Thus one
has the following commutative diagram

(WnFx)x Tryy, ;

0 ———> (WnFx)«(Wni)uKn xg — > (WnFx)Knx ——> (WnFx):Qn ——>0

lC/ lC/ l C}n
Trw,i

00— (Wai)uKn, x, Ko, x Qn 0.

Replacing ¢’ by €' — 1, and C} by C} — 1, we arrive at the two lower rows of the
following diagram. Denote

cp -1
Qn.iog = Cone(Q, —— Qn)[-1].
Taking into account the shifted cones of C" —1 and C; — 1, we get the first row of
the following diagram which is naturally a short exact sequence. Now we have the
whole commutative diagram of complexes, where all the three rows are exact, and
all the three columns are distinguished triangles in the derived category:

Trw,,i,109

0—— (Wni>*Kn,X0,log — fAn X log Qn,log 0
. Trw,,:
00— (Wai)Kn x, K, x Qn 0
-1 c'—1 Cy, -1
X Trw,,:
0——— (Wnl)*Kn,Xo KmX Qn 0.
+1 +1 +1

We want to show that Tryy, ;104 is & quasi-isomorphism. By the exactness of the
first row, it suffices to show that Q) ;o4 is an acyclic complex. Because the right
column is a distinguished triangle, it suffices to show that C}n -1:Q, = Q,
is a quasi-isomorphism. Actually it is even an isomorphism of complexes: since
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(WoFx)* |1,: In = (WypFx).Ip is nilpotent (because I; = Ker(Ox — i,.O0x,) is
a finitely generated nilpotent ideal of Ox), the map C; : Q, — Q is therefore
nilpotent (because one can alter the order of the three labeled maps in ([CZ2) in
the obvious sense), and C} — 1 is therefore an isomorphism of complexes. O

1.4.3. Localization triangles associated to K, xog. Let i : Z — X be a closed
immersion with j : U — X being its open complement. Recall

(1.4.3) Ly (F) == Ker(F = j.j~ ' F)

for any abelian sheaf F. Denote its i-th derived functor by H%(F). Notice that

e I'y/(F) =Tz (F) for any nilpotent thickening Z’ of Z (e.g. Z' =W, 2),
o F — j,j LF is surjective whenever F is flasque, and
e flasque sheaves are I ,-acyclic [22] 1.10] and f.-acyclic for any morphism

1.

Therefore, for any complex of flasque sheaves F* of Z/p"-modules on W, X
0T, (F) = F = (Woi)(Flw,u) = 0

is a short exact sequence of complexes. Thus the induced triangle

(1.4.4) L (F*) = F* = (Wod)o(Folwov) =
is a distinguished triangle in D®(W,, X,Z/p"), whenever F* is a flasque complex
with bounded cohomologies. In particular, since K, x o4 is & bounded complex of
flasque sheaves, this is true for 7* = K, x,10g-

Proposition [[.22]is proven in the smooth case by Gros-Milne-Suwa [39] 2.6]. The
proof presented here comes from an unpublished manuscript of Riilling.

Proposition 1.22 (Riilling). Leti: Z < X be a closed immersion with j : U — X
its open complement. Then

(1) (Purity) The map

. . Tr ni,lo
nt)xfhn,Zlog =1 7 nt)xn, Z log Aot 1z n,X,log
(Whi) K Ly ((Whi). K ) ——5 L4 (K )

s a quasi-isomorphism of complexes of sheaves.
(2) (Localization triangle) The following

. Trw,, 10 . 1
(1~4-5) (Wnl)*Kn,Z,log M} Kn,X,log — (Wn])*Kn,U,log +—>
is a distinguished triangle in D*(W, X, Z/p").

Note that we are working on the Zariski site and abelian sheaves on W, X
can be identified with abelian sheaves on X canonically. Thus we can replace
(Wni)*Kn,Z,log by Z'*I(n,Z,logv and (an>*Kn,U,log by j*Kn,U,log freely.

Proof. (1) Let I, be the ideal sheaf associated to the closed immersion Wi :
WnZ — WpX, and let Z, ,, be the closed subscheme of W, X deter-
mined by m-th power ideal I;'. In particular, Z,,, = W,Z. Denote by
Tnm * Zpm — WipX and by jnm : WoZ — Z, p, the associated closed
immersions. In this way, for each m, one has a decomposition of Wi as
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(1.4.6)

(1.4.7)

(1.4.8)

(1.4.9)
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maps of W, k-schemes:

In,m Tn,m

W, ZC : Zym" W, X
Wz M lwnﬂx
Whk.
Denote Kz, . = (7z,,)"(Wyk), where 7z, . : Znm — Wyk is the

structure morphism. We have a canonical isomorphism

z'n,m,*;LLi(KvZn,m) = 5$t%/vnox (in,m,*OZn,m , K, x)

by Proposition [[LI(4) and Proposition [[LT1) associated to the closed im-
mersion 4, . The trace maps associated to the closed immersions

Zn,m — Zn,m-i—l

for different m make the left hand side of (L4.6]) an inductive system. The
right hand side also lies in an inductive system when m varies: the canonical
surjections

Zn,m+17*OZn,m+1 - Zn,vm*OZn,m

induce the maps

Homw, 0 (in,m 0z, .., Kn,.x) = Homw,ox (inm+1+0z, .15 Kn x)

whose i-th cohomologies are the connecting homomorphisms of the induc-
tive system. By duality, the map (A1) is the trace map associated to
the closed immersion Z, ., < Zp m+1, and thus is compatible with the
inductive system on the left hand side of (LZ.6]).

Consider the trace map associated to the closed immersion i,, p, : Zp m —
W, X, i.e., the evaluation-at-1 map

HOmVV”OX (in,m7*OZ Kn,X) — Kn,X-

n,m?

Its image naturally lies in I'w, z(K, x). It induces an isomorphism on
cohomology sheaves after taking the colimit on m

. ; . evy i
colim, Extyy, o (inm Oz, . Kn x) — Hiy (Kn,x)

by 21, V.4.3].
Now we consider

colimy, in,m«H'(Kz, ,,) = colimy, Exty, o, (inm Oz, . Kn x)

S (Ko x).

The composite map of (LAF) is colim,,, Tr;, ,,. On the other hand, consider
the log trace associated to the closed immersion 4, ,,, (cf. Proposition [[.20)

i, tog  H (inm Kz, ,,.t0g) = H Ly (inm« Kz, ,,.l00))

= HY(L 5 (Kn x.10g)) = Hz(Kn X l0g)-
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The maps (48], (.L9) give the vertical maps in the following diagram
(due to formatting reason we omit i, « from every term of the first row)
which are automatically compatible by Proposition [[.20]

) c’'-1 ) ) . c’'-1 .
H K 2,y ) — H T K2y 0) —— M E 2y t0g) — H Kz, ,0) —— H B 2,,,,)

Trip,m l Trip,m J{ Trip,m log l Tripm l Trin,m l
c’ cl-1

B -1 L . ) - B
H N Enx) —— Hy M B x) ——— Hy K, X 10g) —— Hip Kn,x) ——> Hy (K, x)-

Taking the colimit with respect to m, the five lemma immediately gives
that colim,, Tr log is an isomorphism. Then Tryw, ; o4, Which is the
composition of

in,m,

colim,, Trjn,myl,og

Proposition [[21}~ COhmm me)*H (KZ7L""“log)

(an)*Hz (Kn,Z,log)

colim,, Trm:m,log

,HlZ (KTL,XJO!J)a

~

is an isomorphism. This proves the statement.
(2) Since L, (Kp X10g) = Kn.xi0g = Wni)eKn.t10g —> is a distinguished
triangle, the second part follows from the first part. O

1.5. Functoriality. The pushforward functoriality of K, x 1oy has been done in
Proposition for proper f. Now we define the pullback map for an étale
morphism f. Since W, f is then also étale, we have an isomorphism of functors
(Wof)* ~ (W,f)® by Proposition [[1(2). Define a chain map of complexes of
W,,Oy-modules

(1.5.1)

* adj *
f : Kn,Y —J> (an)*(an) Kn,Y = (an)*(an)AKn,Y =~ (an)*KmX
Here adj stands for the adjunction map of the identity map of (W, f)* K, y.

Proposition 1.23 (Etale pullback). Suppose f : X — Y is an étale morphism.
Then

f* : Kn,Y,log - (an)*Kn,X,loga
defined by termwise applying (LE)), is a chain map between complexes of abelian
sheaves.

Proof. 1t suffices to prove that C’ is compatible with f* defined above. Consider
the following diagram in the category of complexes of W,,Oy-modules

—=2)
(WoFy) Ky ~ (W Fy ) (W, Fy )2 K,y

Trw,, ry

Kn.Y

adj (a) adj (d) adj
M =2 N Aqr WPy "
(Wa )W f)* W Fy ) Ky = (Wa )W f)* W By ) (W Fy )2 Ky ——= (W ) (Wa f) Ky
al~ (b) B~
(an)*(WnFX)*(an) Kn,Y = (an)*(WVLFX)*(an) (WrLFY) Kn,Y (e) =
~ (c) ~

(an)*(WnFX)*Kn,X

Trw, ry

(an)*(WnFX)*(MLFX)AKn,X (Van)*Kn,X-

In this diagram we use shortened notations for the maps due to formatting reasons,
e.g. we write (LZ2) instead of (W, f).(W,Fx).([L22)), etc. The maps labeled



868 FEI REN

«a and [ are base change maps, and they are isomorphisms because W, f is flat
(actually W, f is étale because f is étale) [21] I1.5.12]. The composites of the maps
on the very left and very right are (W, Fy ).(f*) and f* (where f* is as defined in
(C5d)). The composites of the maps on the very top and very bottom are C% and
(Wnf)«C’%. Diagrams (a), (b), (c), (d) commute due to naturality. Diagram (e)
commutes, because we have a cartesian square

W, Fx
W,X

W7lfl lWT’j
W,y — wy

W,X

by Remark[I.8/(2), and then the base change formula of the Grothendieck trace map
as given in Proposition [[L2(5) gives the result. O

Lemma 1.24. Consider the following cartesian diagram

f/

—_—

W Z
b
x—t.oy

—

with g being proper, and f being étale. Then we have a commutative diagram of
residual complezxes

5

(Wn )*Kn,Z —f> (an)*(anl)*Kn,W —= (an)*(anl)*Kn,W

lTrW"g lTran/
f*

Kn,Y (an)*Kn,X

Proof. We decompose the diagram into the following two diagrams and show their
commutativity one by one. First we consider

adj

(Wn )*KH,Z - (an)*(an/)*(an/)*Kn,Z

~

(an)*(an/)*(an/)*(an)AKn,Y

Trw,, g ~ |«

(an)*(an)*(an)*(an)AKmY

Trw, g

ad]j
Kn,Y ! (an)*(an)*Kn,Y
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Here a denotes the base change map, it is an isomorphism because W, f is flat
[2T, I1.5.12]. This diagram commutes by the naturality. Next we consider

(an)*(anl)*(an/)*Kn,Z (an)*(anl)*Kn,W

~ ~

(an)*(an/)*(an/)*(an)AKmY - (an)*(an/)*KmW

(an)*(an)*(an)*(an)AKn,Y Try, o/
Trw,, g
(W) (Wi f) Koy ——= (W f) Ko .

The top part commutes by the naturality. The bottom part commutes by the base
change formula of the Grothendieck trace maps with respect to étale morphisms

(Proposition [[2(5)). O
Since both f* for log complexes in Proposition [[23] and g, = Trw, 4,10y are

defined termwise, we arrive immediately at the following compatibility as a conse-
quence of Lemma, [[.24]

Proposition 1.25. Notations are the same as Lemma [[L24l One has a commuta-
tive diagram of complexes

1%

f ~
(Wn )*Kn,Z,log —_— (an)*(an/)*Kn,W,log e (an)*(anl)*Kn,W,log

lg* lgi
5

Kn,Y,log (an)*Kn,XJog-

1.6. Etale counterpart K, x o4.6t- Let X be a separated scheme of finite type
over k of dimension d. In this subsection we will use ¢t = Zar, ét to distinguish
objects, morphisms on different sites. If ¢ is omitted, it means ¢ = Zar unless
otherwise stated.
Denote the structure sheaf on the small étale site (W, X )¢ by W,,Ox ¢. Denote
by
(6*75*) : ((WnX)ét7WnOX,ét) — ((WnX)ZamWnOX)

the module-theoretic functors. Recall that every étale W,, X-scheme is of the form
Wyhg : WU — W, X, where g : U — X is an étale X-scheme by Remark [[8(1).
Now let F be a W,,0x ¢-module on (W, X )s. Consider the following map (cf.
29, p. 264))

(1.6.1) 7 (WnFx)oF = F,
which is defined to be
(Wi Fx ) o F) (WU 222 W, X) = F(Wo X xw. rewv,x WalU 225 W, X)

W, Fy
X FWLU 2w, X)
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for any étale map W, g : W,,U — W, X (here we use pry to denote the first projec-
tion map of the fiber product). This is an automorphism of F as an abelian étale
sheaf, but it changes the W,,Ox ¢-module structure of F.
Define
Ky x et = G*Kn,X

to be the complex of étale W, Ox ¢-modules associated to the Zariski complex
K, x of W,Ox-modules. This is still a complex of quasi-coherent sheaves with
coherent cohomologies. For a proper map f: X — Y of k-schemes, define

* 6* Tr mnJ
Trw, fet : (Waf)uKnxe = € (Wnf)eKnx) ——5 K ye

to be the étale map of W, Oy ¢-modules associated to the Zariski map Try, ¢ :
K, x = K, x of W,,Ox-modules. Define the Cartier operator C, for étale com-
plexes to be the composite

1t * 6*(m)
Cl Kn x.et - (WoFx)eKn x.60 = € (WnFx) o Kn x) —— K x.¢t-

Define )

K 10,6t *= Cone(K,, x st Lol K x.6)[—1].
We also have the sheaf-level Cartier operator. Let X be a smooth k-scheme. Re-
call that by definition, Cg is the composition of the inverse of (6.l with the
module-theoretic etalization of the W, Ox-linear map (3] (it has appeared in
Lemma before):

Cen - Wl o0 T (WoFx). Wk 0 = € (W Fx ) Wo0%) 50 w04

Proposition 1.26 (cf. Theorem [[9). C. is the natural extension of C' to the
small étale site, i.e.,
E*Cét =C": Kn,x — Kn,X-
If X is smooth, Cg is the natural extension of C to the small étale site
e.Ce = C = W, Q% — W,0%.
And one has compatibility
Cer = H_d(cét)-

Proof. The first two claims are clear. The last claim follows from the compatibility
of C and C’ in the Zariski case (Theorem [L9]). O

Proposition 1.27 (C_f Proposition [[I5]). Let X be a separated scheme of finite
type over k with k = k. Then
H (WX, K x.00) = RT(WaX, Kn x.00) <5 H(WoX, K x.00)
is surjective for every i. In particular,
RT(WnX, K x0g.6t) ~ H (Wn X, Ky, xe0) e,
Proof. The quasi-coherent descent from the étale site to the Zariski site gives
RT(WnX)et, K x.60) = RU(WnX)zar, K x 7ar)-

Taking the i-th cohomology groups, the desired surjectivity then follows from
the compatibility of C’ and CY, (Proposition [.26) and the Zariski case (Propo-

sition [LTH). O
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In the étale topology and for any perfect field k, the surjectivity of
Cao — 1: W, Q% o = W%

is known without the need of Proposition [[27 (cf. Lemma [[I8]). For the same
reasoning as in Proposition [[LT9] we have

Proposition 1.28 (cf. Proposition[[.T9). Assume X is smooth of pure dimension
d over a perfect field k. Then the natural map

d
Wi 10g,6t [d] = Kn X 10g,6t
is a quasi-isomorphism of complezes of abelian sheaves.

We go back to the general non-smooth case. The proper pushforward property
in the étale setting is very similar to the Zariski case.

Proposition 1.29 (Proper pushforward, cf. Proposition [L20). For f : X — Y
proper, we have a well-defined map of complexes of étale sheaves

(162) Tran,log,ét : (an)*Kn,X,log,ét — Kn,X,log,ét
given by applying Tryy, r¢ termwise.
Proof. The map 7! is clearly functorial with respect to any map of abelian sheaves.

The rest of the proof goes exactly as in Proposition [[L20] O

Proposition 1.30 (cf. Proposition [L2T]). Let i : Xg — X be a nilpotent immer-
sion. Then the natural map
Trw,it0g.ét * (Wni)«Kn xo,109.60 = Kn X 10g.6t
is a quasi-isomorphism.
Proof. This is a direct consequence of the functoriality of the map 7—' and Propo-

sition 211 ]

Let i : Z — X be a closed immersion with j : U < X being the open complement
as before. Define

L, (F) :==Ker(F — j,j ' F)
for any étale abelian sheaf F on X, just as in the Zariski case (cf. (LZ3])). Replacing
Z (resp. X) by a nilpotent thickening will define the same functor as ', (—), because
the definition of the functor I', only depends on the pair (X,U). Recall that if
F =17 is an injective Z/p™-sheaf,
0-T,2)—>ZT—4j'T—0
is exact. In fact, because j1Z/p" is a subsheaf of the constant sheaf Z/p™ on X, the
map Homy (Z/p",7) — Homx (jiZ/p™,T) is surjective. Since Homy (/iZ/p",T) =
Homy (Z/p™, j—1T) = Homx (Z/p", j«j 1I), the map
Homyx (Z/p",T) — Homx (Z/p", j.j ')
is surjective, and hence we have the claim. This implies that for any complex F*
of étale Z/p™-sheaves with bounded cohomologies,

(1.6.3) RL,(F*) = F* — juj '
is a distinguished triangle in D(X,Z/p") (cf. (LZ4)).
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Proposition 1.31 (cf. Proposition [[L22). Let i : Z — X be a closed immersion
with open complement j : U — X, as before. Then

(1) (Purity) We can identify canonically the functors
(Wni)e = RL, o (Wyi)s : DY(WnZ)e, Z/p") — DY (W X)as, Z/p™).

The composition of this canonical identification with the trace map

. . Trw,,i,109,6t
(Wnl)*Kn,Z,log,ét - REZ((WnZ)*Kn,Z,log,ét) L) REZ(KH,X,log,ét)

is a quasi-isomorphism of complezes of étale Z/p™-sheaves.
(2) (Localization triangle)

Trw,, i,10g,6t

. . +1
(Wnl)*Kn,Z,logﬁ't KmX,log,ét — (Wn.])*Kn,UJog,ét —

is a distinguished triangle in D*(W,X)s, Z/p").

Proof. (1) One only needs to show that (Wpi)., = RL, o (Wpi)., and then
the rest of the proof is the same as in Proposition [[22(1). Let Z be
an injective étale Z/p™-sheaf on W, Z. Since Homy, x(—, (Wpi).Z) =
Homyy, z((W,i)~1(=),Z) and (W,i)~! is exact, we know (W,i),Z is an in-
jective abelian sheaf on (W,, X )s;. This implies that R(L ;0(Wyi).) = RL ;0
(Wyi)« by the Leray spectral sequence, and thus (W,i), = R(Wyi). =
R(I, o (Wyi),) = RLy o (Whi)..

(2) Note that (Wy,j)+ K vjog.es = R(Wnj)s«Kn Uloget. In fact, the terms of
K Ulog,ét are quasi-coherent W, Ox ¢-modules which are (W, 7).-acyclic
in the étale topology (because Rif.(e*F) = e*(R'f.F) for any quasi-
coherent Zariski sheaf F and any quasi-compact quasi-separated morphism
f [B8, Tag 071N]). Now the first part and the distinguished triangle (L.6.3)
imply the claim. O

2. BLOCH’S CYCLE COMPLEX Z% ,

Let X be a separated scheme of finite type over k of dimension d. Let
A" = Speck[Tp, ..., Ti] /(D> Tj - 1).

Define 2¢(X, 7) to be the free abelian group generated by closed integral subschemes
Z C X x A that intersect all faces properly and dim Z = i. We say two closed sub-
schemes Z7, Z5 of a scheme Y intersect properly if for every irreducible component
W of the schematic intersection Zy N Zs := Z1 Xy Zs, one has

(2.0.1) dim W < dim Z; + dim Zs — dimY

(cf. [I5, A.1]). A subvariety of X x A’ is called a face if it is determined by some
T;, =T, =---=T;, =0(0 < j1 <--- < js <1i). Note that a face is Zariski
locally determined by a regular sequence of X x A?. Therefore the given inequality
condition (2.0.1]) in the definition of z¢(X, ) is equivalent to the equality condition
[15, (53))

The above definition defines a sheaf zo(—,%) in both the Zariski and the étale
topology on X (see [3, p.270] and [I2, Lemma 3.1]). Define the complex of sheaves

= 20(= 1) B zo(—i—1) = ... 20(—,0) = 0
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with differential map
d(2) = S (1Y [Z N V(T)).

J
Here we mean by V(T}) the closed integral subscheme determined by T; and by [ZN
V (Tj)] the linear combination of the reduced irreducible components of the scheme
theoretic intersection Z N V(T;) with coefficients being intersection multiplicities.
20(X, ) is then a homological complex concentrated in degree [0,00). Labeling
cohomologically, we set

(Z5%)" = z0(=, ).
This complex is non-zero in degrees
(—00,0].
Define the higher Chow group
CHo(X, i) := Hi(20(X, ®)) = H™' (25 (X))

for any i. The higher Chow groups with coefficients in an abelian group A will be
denoted

CHy(X,i; A) := HY(Z%(X) ®z A).

The complex Z% ,, with either ¢ = Zar or t = ét, has the following functoriality
properties (cf. [3, Prop. 1.3]). If f : X — Y is a proper morphism, then there
is a chain map f,. : f«Z% — Z$ by the pushforward of cycles. If f : X — Y is
a quasi-finite flat morphism, then there is a chain map f* : Z§ — f.Z% by the
pullback of cycles.

3. KATO’S COMPLEX OF MILNOR K-THEORY C¥,

Recall that given a field L, the g-th Milnor K-group Ké‘/l (L) of L is defined to

be the ¢-th graded piece of the graded commutative ring
L*\®49

@K‘é\/l(L) B (a®(1 ?ZSO(Q 1)— a€L*)
q>0 ’
where (a ® (1 —a) | a,1 —a € L*) denotes the two-sided ideal of the graded
commutative ring @ q>O(L*)®q generated by elements of the form a ® (1 — a) with
a,1—a € L*. The image of an element a; ® - --®a, € (L*)®9 in K} (L) is denoted
by {a1,...,aq}.

If L is a discrete valuation field with valuation v and residue field k(v), the group
homomorphism

Oy : Kéw(L) — qu‘{l(k(v)), Op({mo,ut, ..y ug—1}) = {1, ..., Tg1}

is called the map of the tame symbol. Here 7, is a local parameter with respect to
U, U1, ...Uq—1 are units in the valuation ring of v, and @y, ...,u,—1 are the images
of u,...uq—1 in the residue field k(v). This is consistent with the sign convention
in [37, p.328].

For every natural number ¢ and every finite field extension L'/L, there exists a
unique group homomorphism

Nmp,p, : K)' (L) — K} (L)

such that
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1) For any field extensions L C L' C L”, one has Nmy,,; = id and Nmp,, o
/ /
NmLu/L/ = NmL///L;
2) Let L(T) be the function field of A}. For every x € KM (L(T)) one has
k q

Z NmL(v)/L(av(x)) =0,

where v runs over all discrete valuations of L(T'), and L(v) denotes the
residue field at valuation v.

The map Nmy,,, is called the norm map associated to the finite field extension
L'/L.

Recall the definition of a Milnor K-sheaf on a point X = Spec L, where L is
any field. ICéVf)eC L.q.Zar 1S the constant sheaf associated to the abelian group K é” (L)
(without the assumption that L is an infinite field, cf. [3I, Prop. 10(4)]), and
Ké\fmc L.q.¢t 18 the étale sheaf associated to the presheaf

L' — K} (L'); L'/L finite separable.

Choose a separable closure L*°P of L. Then the geometric stalk at the geometric
point Spec L*P over Spec L is colimp /¢ psep Ké‘/[(L’), which is equal to Kéw (L5eP)
because the filtered colimit commutes with the tensor product and the quotient.

Now by Galois descent of the étale sheaf condition, the sheaf ’CSpec L.q.6t 1S precisely

L'~ K (L5eP)GAUESP/LY). [/ /L, finite separable.

Here the Galois action is given on each factor.

Let X be a separated scheme of finite type over k of dimension d. Now with the
topology t = Zar or t = ét, we have the corresponding Gersten complex of Milnor
K-theory, denote by C%t (the differentials d™ will be introduced below):

JW d}% dM
(3.0.1) @ LI*ICm it LA @ Lx*ICfE\fll’t — @ LI*/CQ/’IOJ,
z€X(a) zeX (1) 2€X ()
where ¢, : Spec k(z) < X the natural inclusion map. As part of the convention,
(O%t)i = @ L%*’C%—z‘,t-

IEX(,I')
In other words, [B.01)) sits in degrees

[—d, 0].

It remains to introduce the differential maps.

If t = Zar, the differential map d™ in (B.0.0)) is defined in the following way. Let
r € X(g be a dimension ¢ point, and p : X' — m be the normalization of m
with generic point z’. Define

Z am >>Nmy/,,
(@M)y: K (@) = KM (o) == R (y) = Kl (y).
Y'ly
Here we have used the shortened symbol KM (x) := K} (k(x)). The notation 3|y
means that y' € X" is in the fiber of y.

(3.0.2) oz K (2') = KM ()



BLOCH’S CYCLE COMPLEX AND COHERENT DUALIZING COMPLEXES 875

is the Milnor tame symbol of the discrete valuation field k(z’) with valuation defined
by 3/. And

(3.0.3) Nmy s, K20 (y) = KM (y)

is the Milnor norm map of the finite field extension k(y) C k(y’). The differential
dM of this complex is given by

=y oo @ @ KM@ - P KM

T€X(q) yEX (4 1yN{z} z€X(q) yeX(g-1)

Ift = ¢t set v € Xig, y € Xgo1) N {z}. Denote by p : X' — {z} the
normalization map and denote by 2’ the generic point of X’. One can canonically

identify the étale abelian sheaves ICiV;[q,ét and p*IC%W,t on {z} (here IC%Lét on {z}

i\{%ét on the point Spec k(z) via Speck(z) —

{z}), and thus identify La KN o and 1y p KM 5 on X Let o/ € X' such that
p(y') = y. Then the componentwise differential map
(dM)z : LI,*K:M

z,q,€

means the pushforward of the sheaf K

M
t 7 Ly,*K:y,q—l,ét

is defined to be the composition

(dM)% = 1,4 (Nm) 0 .(9).

’
Here 0 := 3" cx/),-1(y) Oy » Where
- M M
(304) ({9;/ : LI/,*ICm’,q,ét — Ly/7*]Cy/7q,17ét

on X' is defined to be the sheafification of the tame symbol on the presheaf level.
Indeed, the tame symbol is a map of étale presheaves by [37, R3a]. And Nm :=

> yrex W np—1(y) Ny, Where

(305) Nmy'/y : p*Kg]/\’{q—Lét - ’CM

y,q—1,ét

on y is defined to be the sheafification of the norm map on the presheaf level. The
norm map is a map of étale presheaves by [37, Rlc].

The complex C’)]‘(/{ ;, either t = Zar or t = ét, is covariant for proper morphisms
and contravariant for quasi-finite flat morphisms [37, (4.6)(1)(2)]. The pushforward
map associated to a proper morphism is induced by the Milnor norm map, and the
pullback map associated to a quasi-finite flat morphism is induced by the pullback
map of the structure sheaves.

4. KATO-MOSER’S COMPLEX OF LOGARITHMIC DE RHAM-WITT SHEAVES 7y, x ¢

Kato first defined the Gersten complex of the logarithmic de Rham-Witt sheaves
in [27 §1]. Moser in [35] (1.3)-(1.5)] sheafified Kato’s construction on the étale site
and studied its dualizing properties. We will adopt here the sign conventions in
[37].

Let Y be a k-scheme. Let ¢ € N be an integer. Recall that in Section [L3.5] we
have defined WnQ%’,log,t’ with either ¢ = Zar or ¢t = ét, to be the abelian subsheaf
of WnQSI/’t étale locally generated by log forms. We will freely use W,,Q4

L,log,t
q
Wanpec Lilogt below.

for
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Now let X be a separated scheme of finite type over k£ of dimension d. Define
the Gersten complex vy, x +, in the topology t = Zar or ¢ = ét, to be the complex of
t-sheaves isomorphic to C%/,/p™ via the Bloch-Gabber-Kato isomorphism [4 2.8]:

d
(4.01) 0— EB b s W Q) 1ogs =+ = EB Los WS (2) 10g
IGX(d) IGX(l)

0
= P oW (2 1091 — 0.
IEX(())

Here ¢, : Spec k(x) — X is the natural map. We will still denote by 0 the reduction
of the tame symbol 0 mod p™ (cf. B02), 04)), but denote by tr the reduction of
Milnor’s norm Nm mod p™ (cf. B03]), B0.0])). The reason for the later notation
will be clear from Lemma [5.3] As part of the convention,

~i _ —i
Tnxi= D e Waly) o9
IEX(,I')
i.e. vy x is concentrated in degrees
[—d,0].

Proposition 4.1. Leti: Z — X be a closed immersion with j : U — X its open
complement. We have the following short exact sequence for t = Zar:

0—— Z.»«Vn,Z,Zar —= Un X Zar — > j*I/n,U,Zar —0.
For t = ét, one has the localization triangle
.~ ~ . +1
1V, 2,6t = Un, X6t — RJslnust — .

Proof. Uy, x zar is a complex of flasque sheaves (therefore Rj.(Vn, x,zar) =J+Vn,X Zar )
and one has the sequence being short exact in this case. If t = ét, the purity theorem
holds [35] Corollary on p.130], i.e., tx7n, 26t = Lz (Vn,x ¢t) = RT (U x 6t). We are
done with the help of the distinguished triangle (L6.3) in the étale topology. O

Functoriality of 7, x ; is the same as that of C’é\(/{t via dlog. We omit the state-
ment.

Part 2. The maps

5. CONSTRUCTION OF THE CHAIN MAP (p, x.i0g.t : CNy — Kn, X,l0g,t

5.1. Construction of the chain map ¢, x : Cé\ét — Ky xt Let x € X, be

a dimension ¢ point. ¢, : Speck(xz) — X is the canonical map and i, : {2} — X
the closed immersion. At degree i = —¢, and over a point x, we define the degree 4

map to be (), = Dsexyy Cly ot With

(5.L1) Gyt (Wate) KM, 525 (Wata) W QL

n,z,t x,q,t

),log,t - (Wan)*W"QZ(z),t

. : (—1) Trwpin. i
_ % niz i
= (Waia). K} o i

We will use freely the notation §fl7 x.¢ With some of its subscript or superscript
dropped.

It is worth noticing that all the maps of étale sheaves involved here are given
by the sheafification of the respective Zariski maps on the étale presheaf level. So
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to check commutativity of a composition of such maps between étale sheaves, it
suffices to check on the ¢t = Zar level. Keeping the convention as before, we usually
omit the subscript Zar if we are working with the Zariski topology.

Proposition 5.1. Let X be a separated scheme of finite type over k with k being
a perfect field of characteristic p > 0. For t = Zar and t = ét, the map

.M
Cn,X,t . OXJ,L — Kn,X,ta

as defined termwise in (BLT), is a chain map of complezes of sheaves on the site
(W X)4.

Note that we have a canonical identification (W, X); = X; for both ¢ = Zar and
t = ét. We use (W, X); just for the convenience of describing the W,,Ox-structure
of residual complexes appearing later.

Proof. To check ¢, x+ is a map of complexes, it suffices to check that the diagram

. dy )
(CX) (CxX)™

i i1
l n,X,t lcn,x,t

. d ) .
(K, x)" — (K )+

commutes for ¢ = Zar. To this end, it suffices to show: for each x € X(,), and
y € X(4—1) which is a specialization of x, the diagram

(dx)y

(5.1.2) (Wit )M, —— (Wiey ) K0y
lcn,y
. —q+1
e (any,z)*Knﬁm
l Trwnf,y“z_

~
8
-

e W gratl
n,{z} K"»{I}

commutes. Here i, , : {y} — {x} denotes the canonical closed immersion.
Since the definition of the differential maps in C¥ involves normalization, con-
sider the normalization p : X’ — {x} of {z}, and form the cartesian square

@ me’C—> X' ={z'}

| |

Denote the generic point of X’ by z’. Suppose y’ is one of the generic points of the
irreducible components of @ me /. and denote by Y the irreducible component
corresponding to %/’. In particular, 3’ is a codimension 1 point in the normal scheme
X', thus is regular. Because the base field k is perfect, ¢’ is also a smooth point
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in X'. According to Remark [[.4] the degree [—¢, —q + 1] terms of K,, x+ are of the
form
(Wata ) HO(Wa%) S @ Wty ) HY (W) — ...,
ylexl

(g—1)

where § denotes the differential map of the residual complex K, x. After localizing
at a single 3/ € X’ in the Zariski sense, one gets

614’
(Wata )« HY (Wn Q%) == (Waty ) Hy (W Q%) — ...

Consider the following diagrams. Write ¢,/ : Spec k(z") < X', 1, : Speck(y’) — X’
the inclusions, i, : Y' = {y'} — X’ the closed immersion, we have a diagram

’
2

o,
(5.1.3) (Wt )oK | ——— (Whty ) KM

z',q y',q—1

ldlog ldlog

O,

Y
lTrWn(iy/,z/)

(Whty ) Hy (W Q%))
For any 3/ € p~*(y) € X', we have a diagram

y'/y
(5.1.4) (Wap) Ky, ) ———— K}

ldlog ldlog

W p

_ T _

Write iy 2 Y = {3/} < X', iy : {y} — {z}, we have a diagram

_ Trw,, » _
(5.1.5) (W) e (Wit ) W QL S L (Wity)Wa Q)

T‘I‘Wn(iy“x/)l lTrWn(iy,x)

Trw,, p —(g—1)

n{z} 7

(Wop)s Wity ) Hy (W Q%)

and a diagram

dX’ =Z 6y’

(5.1.6) (Wtar ) Wa Q8 1) By cpr(y) Waty ) HL (W, Q%)

Trw,, p l =~ l Trw,, p

e @ K—la=D
n,{z} n{a}
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All the trace maps above are trace maps of residual complexes at a certain degree.
(EI3) is the degree ¢ — 1 part of the diagram

Trw,, p

(Wnp)* (Wniy/,z/)*Kn,Y/ E—— (Wnly,x)*Kmm

TrWn(iy/yI/)l/ lTrW”(iy’w)
Trw,,p

(Wp)uKp xr ————= K,

(the trace map on top is the trace map of the restriction of W,,p to W,,Y”), and thus
is commutative by the functoriality of the Grothendieck trace map with respect to
composition of morphisms (Proposition [[2(4)). (&I16]) is simply the degree —g
to —¢ + 1 terms of the trace map Tryw, , : (Wyp)«Kpn x/ — Kn’m, thus is also
commutative. It remains to check the commutativity of (E13) and (EI4). And

these are Lemma [5.2] and Lemma ) )
One notices that diagram decomposes into the four diagrams (G.I13)-

G.1.9):

’
2
@,y/‘yay/ Zy’/y Nm

v’y
(Wnp)*(Wan’)*Ki//I’q @y/\y(Wnp)*(WnLy/)*Ky’q,l (anly)*’cév{q,l
l l
dlog E13) dlog dlog
q a-1 _Wnp q—1
(Wrp)e (Wrio) WaSUL Ly DBy 1y (Wnp)e Wity) e Wl ———> (Wit ) W Q)
Dy ly by {2 La
Dyriy— TrWn(iy/ym/) W (iy,0)
1 T Wap —(g—1)
Trwnp @y’\y(W’LP)*(W'LLy’)*Hy/(Wﬂﬂg(/) 'n.@
G-I
d—
K4 o} K—(a-1)
n, {oy n,{z}

Here by symbol 3|y we mean that ¢’ € p~!(y). Notice that we have added a minus

sign to both vertical arrows of (5.LT) in the corresponding square above, but this

does not affect its commutativity. Since one can canonically identify
(Wop)e (Wit ) KN, with  (Wae) K2,

g

to show the commutativity of the diagram (E1.2)), it only remains to show Lemma
and Lemma 5.3 U

Lemma 5.2. For an integral normal scheme X', with ' € X' being the generic
point and 3y’ € X'M) being a codimension 1 point, the diagram (5.13) is commuta-
tive.

Proof. Given a 3y’ € X' lying over g, the abelian group KM(a') is generated by
{7’ ur, ... ug—1} and {v1,...,v4-1,v4},

where wi, ..., Ug—1,V1,...,V9—1,7¢ € O%/ - and 7’ is a chosen uniformizer of the
discrete valuation ring Ox- .. It suffices to check the commutativity for these
generators.



880 FEI REN

In the first case, the left-bottom composition gives
(8 o dlog)({7',u1,...,uq—1}) = 0y (dlog[r'],,dloglur]y, . .. dloglug_1]s)

d[r']ndloglus]y, . .. dloglug—1]n
(7]
The last equality above is given by [6, A.1.2]. Here we have used the fact that [r']

is a regular element in W, X’, since 7’ is regular in X’. The top-right composition
gives

(_ TrWn(iy/,w/) Oleg 085:)({7'(/’ Uy .- - ,U‘Q*l})
= (—Trw, @, ) odlog){ur, ..., Ug—1}
=—Trw,,, ) (dlog[t], ... dlog[tg—1]n)

_ l d[n']pdloglts]n . . .dlog[ﬂql]n] _
(7]
The last equality is given by [6, A.2.12]. So the diagram (5I1.3]) is commutative in
this case.
In the second case, since 3;”// ({v1,...,v4}) = 0, we need to check the left-bottom
composite also gives zero. In fact,

(0, o dlog)({v1,...,v4}) = 6y (dlog[vr]y, . . . dlog[v,]n)

_ l (7] - dlog[vlJ]n ... dlog[vq]n]

=0.

The second equality is due to [0, A.1.2]. The last equality is because, in a small
neighborhood V of ¢/, the element [7'],, - dlog[v1],, . .. dlog[vg], € W,Q{, lies in the
W, Oy-submodule [7'],, - W,Q1,. O

Lemma 5.3 (Compatibility of Milnor norm and Grothendieck trace). Let F//E be
a finite field extension with both fields E and F being of transcendence degree ¢ — 1
over k. Suppose there exists a finite morphism g between integral separated finite
type k-schemes, such that F is the function field of the source of g and E is the
function field of the target of g, and the field extension F/E is induced via the map
g. Then the following diagram commutes

Nmp/ g

KM, (F) KM, (E)
ldlog ldlog

Tr g _
W, — 0 w00t

Here the norm map Nmp,p denotes the norm map from Milnor K-theory, and
Tryw, 4 denotes the Grothendieck trace map associated to the finite morphism g.

Remark 5.4. The compatibility of the trace map with the norm and the pushforward
of cycles in various settings has been known by the experts, and many definitions
and properties of the trace map in the literature reflect this viewpoint. But since
we have not found a proof of the compatibility of the Milnor norm with the trace
map defined via the Grothendieck duality theory, we include a proof here.
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Proof. We start the proof by some reductions. Since both Nmp/ g and Trp/ g
are independent of the choice of towers of simple field extensions, without loss
of generality, one can suppose F is a finite simple field extension over E. Now
F =E(a) = % for some monic irreducible polynomial f(T) € E[T] with a € F
being one of its roots. This realizes Spec F' as an F-valued point P of P}, namely,

Spec F' = P¢>P}E

g

Spec E.

All the three morphisms on above are morphisms of finite type (although not be-
tween schemes of finite type over k), so it makes sense to talk about the associated
trace maps for residual complexes. But for the particular residual complexes we are
interested in, we need to enlarge the schemes involved to schemes of finite type over
k, while preserving the morphism classes (e.g., closed immersion, smooth morphism,
etc.) of the morphisms between them.

To this end, take Y to be any separated smooth connected scheme of finite
type over k with E being the function field. Since P, is the generic fiber of
Y x, P}, by possibly shrinking Y to an affine neighborhood Spec B of pri(P) (here
pri: Y Xp P,lC — Y is the first projection map) one can extend the above diagram
to the following:

iw
Spec F' € W¢ Py

— |

Y = Spec B 3 Spec E.

1
Here W := mpy is the closure of the point P in P1. This is a commutative
diagram of finite type k-schemes. In particular, it makes sense to talk about the
residual complexes K, y, K, w and K, p1 .
Now it remains to show the commutativity of the following diagram

Nmg@)/ e

(5.1.7) Ké\{l(E(a)) Ké\{l(E)

ldlog ldlog

Trw,
Wt~ w0,

where Tryy, , denotes the trace map for residual complexes Tryy, o 1 (Wng)«Knw —
K,y at degree —(q — 1).

We do induction on [E(a) : E]. If [E(a) : E] = 1, then both the Grothendieck
trace Tryy, 4 WanEzi)/k — WanE7i and the norm map Nmg ), g : K}, (E(a)) =
K é\{ 1(E) are the identity, therefore the claim holds. Now the induction step. Sup-
pose the diagram (EI7) commutes for [E(a) : E] < r — 1. We will need to prove
the commutativity for [E(a) : E] = r.

First note that Try, g : (W,9)«Knw — K, y naturally decomposes into

(Wnﬂ')* TrWV,LiPW Tran

(5.1.8) (Wig) o K (War) oK 1. —2%5 Ky,
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by Proposition [[2)(4). H}D(Wnﬂqp1 ) is a direct summand of the degree —(¢ — 1)
Y
part of K, p1 . One can canonically identify

via pulling back along the natural map P} < P{.. Thus on degree —(¢ — 1) and
at the point P, the map (G.18)) is canonically identified with

1 Trwyipw Trw,, = _
W% ) r H}D(WanP}E) T W09
Consider the diagram
b5} Nmg)/p
KM (B(T)) ——— K}*,(E(a)) K1 (E)
ldlog
g—1
dlog (-1) WnQE(a) dlog
lTFWHM*
W,01 " HL(WaQS, ) — et
n e E(T) p(Wn P}E) nyeg -

We have used the identification (51.0) in this diagram. We have seen that the
left square is commutative up to sign —1, as a special case of Lemma (i.e. take
normal scheme X’ = P} and y' :== P = Spec F). Since dp is surjective, to show the
commutativity of the trapezoid on the right, it suffices to show that the composite
square is commutative up to —1. For any element

s:={s1,....80-1} € K}, (E(a)),
one can always find a lift

5= {f7 gla s 7§q—1} € Kéw(E(T))a
such that each of the s; = s;(T') is a polynomial of degree < r —1 (e.g. decompose
E(a) as an r-dimensional E-vector space E(a) = EB;;& Ea’ and suppose s; =
S o bijal with by; € E, then §; = 5;(T) = Y.7— b ;T" satisfies the condition),
and 0p(S) = s. Denote by

Yils- s Yia; (1§Z§q_1)

the closed points of P}, corresponding to the irreducible factors of the polynomials
S1,...,5g—1. Note that the local section s;,; cutting out y;; is by definition an
irreducible factor of s;, and therefore deg's; ; < r for all 4 and all {.

We claim that

(5.1.10) Y (Trwe)y 08y =0: Wl = Wallp .
yE(PE)(0)
In fact,
(.L11) 0= W0k, = Wally = @ (Wt Hy (W0, ) = 0
yE(PE)(0)
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is an exact sequence [7, 1.5.9], where ¢, : y < PJ, is the natural inclusion of the
point y. Taking the long exact sequence with respect to the global section functor,
one arrives at the following diagram with the row being a complex

5
W"Q?E(T) GayG(P}E)(o) H?}(W”QqP}E) —H' (P}Ea Wanp}E)

Trw,, «
Zy (Trwp, =)y

-1
Wa Q)

The trace maps on left of the above are induced from the degree 0 part of Tryy, . :
(an)*KmP%/ — K, y. The trace map on the right of the above is induced also by
Trw, ~ : (an)*KmP%/ — K, y, while the global cohomology group is calculated
via (BLII)), i.e., one uses the last two terms of (B.ITII]) as an injective resolution
of the sheaf WanP}E, and then Try, - : (Wnﬂ)*KmP%, — K,y induces the map
of complexes (sitting in degrees [—1,0]) on global sections, and then the map of
cohomologies on degree 0 gives our trace map H!(P1, wW,Q%L) — WnQ‘]{;I on the
right. From the construction of these trace maps, the above diagram is by definition
commutative. Therefore (E.I.I0) holds.

One notices that d, o dlog(s) = 0 unless y € {p,y1,1,---,Yq-1,a,_,,0}. Now we
calculate

(Trw, 4 o dlog)(s)
= (Trw, 4 odlog 00p)(3)
= —((Trw,x)podpodlog)(s) (Lemma B2
= Z ((Trw, x)y © 0y o dlog)(s) (EII0)

ye{y1,1,Yg—1,a4_1,00}

yE{y1,17~-,yq71,aq,1 700}
(induction hypothesis)
= (dlogonE(a)/E Oap)(g) [37, 2.2 (RC)]
= (d log o NmE(a)/E) (8)
This finishes the induction. O

5.2. Functoriality of (, x: : C%t — Ky, x4 Let k denote a perfect field of
positive characteristic p.

Proposition 5.5 (Proper pushforward). ¢ is compatible with proper pushforward.
Le., for f: X =Y a proper map, the following diagram is commutative

<n,X,t

(an)*cé\(/{t (an)*Kn,X,t

B :

Cn, vt
M y Xy
CY,t Kn,Y,t‘




884 FEI REN

Here f, on the left denotes the pushforward map for Kato’s complex of Milnor K-
theory (cf. Section Bl), and f. on the right denotes the Grothendieck trace map
Trw,, ¢, for residual complexes.

Proof. We only need to prove the proposition for ¢ = Zar and for degree i € [—d, 0].
Then by the very definition of the ( map and the compatibility of the trace map with
morphism compositions Proposition [[2(4), it suffices to check the commutativity
at points z € X (), y € Y(y), where ¢ = —i:

dlog
K )—>WnQZ(x)
f*l lf*
dlog
KM (y) W

(1) If y # f(x), both pushforward maps are zero maps, therefore we have the
desired commutativity.

(2) If y = f(z), by definition of ¢ and the pushforward maps, we need to show
the commutativity of the following diagram for the finite field extension

k(y) C k(x)
dlog
KM(z) — Wil )
Nmk(w)/k(y)l lTran
dlog
Ké”(y) - W”QZ(y)
This is precisely Lemma (.31 a

Proposition 5.6 (Etale pullback). ¢ is compatible with étale pullbacks. Ie., for
f: X =Y an étale morphism, the following diagram is commutative

M Cn,v,t
CY,t KnyY,t

E E

Cn, ,t
(W f)C¥, s (Wnf)uKn x4

Here f* on the left denotes the pullback map for Kato’s complex of Milnor K -theory
(cf. Section[]), and f* on the right denotes the pullback map for residual complezes

C5T).

Proof. Tt suffices to prove the proposition for ¢ = Zar. Take y € Y(,). Consider the
cartesian diagram

flw —}

— =y

W
X f

—Y.

XXy@:
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Then the desired diagram at point y decomposes in the following way at degree —q:

M dlog q N -4 TrWnly
= i l(flw)* lf*
dlog TTW"LW _
@:L’EW(Q) Ké\/l(x) - IEW( ) W Qk(;ﬂ = K’Vl W ’ﬂ

The left square commutes because both f* and (f |w)* are induced by the natural
map f*: Oy — f.Ox. The right square commutes due to Lemma [[.24] |

5.3. Extend to K, x o, Recall the complex K, x i0g.: := Cone(K, x C—)
K, x.)[-1], Le.,

K} X109t = Kp xt ® K:z_)}’t
Notice that

(5.3.1) Kn,X,t — KmX,log,t; a —r (a, 0)
is not a chain map. Nevertheless,

Proposition 5.7. We keep the same assumptions as in Proposition 5.1l The chain
map Cn x,1 2 CFy = Kn x, composed with (53.J) gives a chain map

Cn,X,log,t = (]m) o Cn,X,t : Cé\({t — Kn,X,log,t
of complezes of abelian sheaves on (W, X);.

We will also use the shortened notation (jog+ for (n xiog:. If t = Zar, the
subscript Zar will also be omitted.

Proof. Given z € X4, we prove commutativity of the following diagram

dlog Trw,,ig.t _ C -1
Lo xqt—>Lx*WQ( Wit UK —>KnX

k(z),log,t nXt t

H c— -1
dlog {z},t . _ Trwg gt _
LKAy ——— 1 W Qk(w) > (’L%*K’mm)t) I —> K %
The left square naturally commutes. The right square also commutes, because C” is
compatible with the Grothendieck trace map Tryy, ;, (the proofs of Proposition [L20]
and Proposition [[L29] give the case for ¢ = Zar and t = ét, respectively). Now

because CQT“ —1: Wan(x)’t — WnQZ( , which is 1dent1ﬁed with C{ .o —lasa

result of Theorem [[.9 and Propositionm annihilates W, Q7 (2).log,¢> e composite
of the second row is zero. Thus the composite of the first row is zero. This yields
a unique chain map

. M
<n7X>ZOQ7t : CX,t — K’mX,log,t;

i.e., on degree i = —¢, we have ,, x j0g,t = Zzex(q) Cn,z log,t With
i M i i—1
Cn,@logt ’CLE ,q,t K , X, log,t — KnXt@KnxU

s={s1...,84} — (¢ mX’t(s),O).
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As a direct corollary of Proposition and Proposition [5.6] one has Proposition

Proposition 5.8 (Functoriality).

(1)

Clog,t %5 compatible with proper pushforward. I.e., for f : X =Y a proper
map, the following diagram of complexes is commutative

Cn, X log,t
(an)*cé\(/[,t - (an)*Kn,X,log,t
lf* ;.
M Cn,Y,log‘t
CYJ Kn,Y,log,t-

Here f, on the left denotes the pushforward map for Kato’s complex of
Milnor K -theory (cf. SectionBl), and f. on the right denotes Try, f.10g.4 S
defined in Proposition and Proposition [[.29]

Clog,t s compatible with étale pullbacks. Ile., for f : X — Y an étale
morphism, the following diagram of complexes is commutative

M Cn‘Y‘log,t
C}ﬁt Kn,YJogJ

[ E

Cn,X,log,t
(an)*cé\(/{t al (an)*Kn,X,log,t-

Here f* on the left denotes the pullback map for Kato’s complex of Milnor
K-theory (cf. Section Bl), and f* on the right denotes the pullback map
defined in Proposition [[.23]

5.4. The map Cn’X’lOg’t:Cﬁ‘(/{t/p"zﬁn,x’t—>Kn7X,log’t is a quasi-isomorphism.

Since ¢, x ¢ is termwise defined via the dlog map, it annihilates p”Cﬁ‘(/{ ;- Therefore

Cn,X,log,t annihilates p”Cé\(/[t as well, and it induces a chain map

a .M n
Cn,X,log,t . CX,t/p — Kn,X,log,t-

Since the dlog map induces an isomorphism of complexes C)A(/{t /P~ Up x4, tO

show (,, x 109+ 18 & quasi-isomorphism, it is equivalent to showing

Cn,X,log,t “Vn, Xt - K”l7XJOQ>t

is a quasi-isomorphism.

Lemma 5.9. Suppose X is separated smooth over the perfect field k of character-
istic p > 0. Then for any level n,

Cn,X,log,ét P Un,X 6t Kn7X7l097ét

s a quasi-isomorphism. If we moreover have k =k, then

Cn,X,log,Zar * Un,X,Zar — Kn,XJog,Zar

s also a quasi-isomorphism.
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Proof. This is a local problem, thus it suffices to prove the statement for each
connected component of X. Therefore we assume X is of pure dimension d over k.
Then for any level n, we have a quasi-isomorphism [I7, Cor 1.6]

Wan(,log,t[d] E_> Fl;nvxvt'
We also have
Wnﬁg(,log’ét [d] = K, x10g,6t  (by Proposition [.28), and
WnQ%log’ZM [d] = Kpn.X.i0gzar if k=F (by Proposition [LTJ).

On degree —d, we have a diagram

-
_— d n,x,log,t —d d
Vp, Xt = @ (Wan)*Wan(z),Log,t —> K, X iogt = @ (Wnlm)*Hg(WnQX,t)

zex(0) zex(0)

T (-1

d d
WaX 10g,¢ WnQ% 1og,¢

which is naturally commutative, due to the definition of Zn X,log,t- 1t Induces quasi-
isomorphisms as stated in the lemma. O

Theorem 5.10. Let X be a separated scheme of finite type over a perfect field k
of characteristic p > 0. Then the chain map

Cn,X,log,ét *VUn, X ét — K?L,X,log,ét

is a quasi-isomorphism. Moreover if k =k,

Cn,X,log,Zar P Un,X,Zar —7 Kn,X,log,Zar
is also a quasi-isomorphism.

Proof. One can assume that X is reduced. In fact, the complex v, x . is defined
to be the same complex as ¥y, x,.,.+ (see (@0I)), and we have a quasi-isomorphism
Ky X, ou.l0g,t = K, x 10g,¢ glven by the trace map, according to Proposition [[L2T]and
Proposition [30. One notices that (,, x| 1,y i compatible with (,, x ;,, , because
of the functoriality of the map (o4, With respect to proper maps Proposition[5.8|(1).
As long as we have a quasi-isomorphism

Cn,Xred,log,t Un,Xpeart = Bn,Xiea,logs
we will get automatically that

— Cn\X g rlog,t
%

Cn,X log,t * Vn,Xreart = Vn, X t Kn X,cq,09 = Kn X l0gt

is a quasi-isomorphism.

Now we do induction on the dimension of the reduced scheme X. Suppose X is of
dimension d, and suppose ZmY’log?t is a quasi-isomorphism for schemes of dimension
< d—1. Now decompose X into the singular part Z and the smooth part U

v x iz
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Then Z has dimension < d — 1. Consider the following diagram in the derived
category of complexes of Z/p™-modules

(5.4.1)
.~ ~ .~ +1 .o~
1xVUn,Z t Un,X,t Rj.vnut —— Z*Vn,Z,t[l]
li*gn,z,log,t lCn,X,log,t le*Cn,U,log,t li*gn,z,log,tlll
Trwy,i,iog +1

i*Kn,Z,log,t —— Kn,X,log,t —— Rj*Kn,U,log,t —— i*K’!L,Z,lOg,t[]‘}?

where the two rows are distinguished triangles coming from Proposition[I.22] Propo-
sition [[3T] and Proposition 1l We show that the three squares in ([B41]) are
commutative in the derived category. The left square is commutative because of
Proposition [5:8(1). The middle square is induced from the diagram

(5.4.2) Un, Xt —> JsUn,Ust

lCn‘X,log‘t lj*cn,U,l,og,t

Kn,X,log,t I j*Kn,U,log,t

of chain complexes. Let z € X(,). If x € X,y NU, both v, x; — ju«¥n v, and
K, X 0g.t = J«Kn,Ulog,t give identity maps at x, therefore the square (5.4.2) com-
mutes in this case. If x € X(,yNZ, both of these give the zero map at z, therefore the
square ([.42) is also commutative. The right square of (5:4.1]) can be decomposed
in the following way (cf. (L44) and (L6.3)):

.~ +1 ~ - e
Rj*l/n,U,t REZ(Vn,X,t)[]-] <—; Z*Vn,Z,t[]-]
le*Zn,U,log,t lREZ(En,X,log,t)[l] li*zn,z,mg,t[l]
. +1 b .
Rj K v.10g.t R 5 (Kon, X t0g,0)[1] =——2— 1. K0, Z,109,1[1]-

The map i, on the first row is induced by the norm map of Milnor K-theory. It
is clearly an isomorphism of complexes if ¢ = Zar. It is a quasi-isomorphism if
t = ét due to the purity theorem [35] p.130 Cor.]. The map 4, on the second row is
induced from Try, ; 0, as defined in Proposition and Proposition [[.29, and
it is an isomorphism due to Proposition [[22(1) if ¢ = Zar, and Proposition [[31]
if ¢t = ét. The first square commutes by the naturality of the +1 map. The
second commutes because of the compatibility of (;o4,; with the proper pushforward
Proposition [(.8(1). We thus deduce that the right square of (4] commutes.
Now consider over any perfect field k for either of the two cases:

(1) t =ét and k is a perfect field, or

(2) t =Zar and k = k.
The left vertical arrow of (B-4.]) is a quasi-isomorphism because of the induction hy-

pothesis. The third one counting from the left is also a quasi-isomorphism because
of Lemma[5.9] Thus so is the second one. a

6. COMBINE tx; : 2%, — C’)]‘({t WITH Cp, X, l0g,t - C’)]‘({t = K X l0g,t

6.1. The map ¢x, : Z%,; — C’%t. In [43, 2.14], Zhong constructed a map of
abelian groups ¥x(X) : Z%(X) — Cé‘(/{ 7ar(X) based on the Nesterenko-Suslin-
Totaro isomorphism [36, Thm. 4.9], [I]. It is straightforward to check that Zhong’s
construction induces a well-defined map of complexes ¢ := x4 + Z5; — C%t of
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sheaves for both ¢t = Zar and ¢ = ét. Zhong in [43], 2.15] proved that ¢ is covariant
with respect to proper morphisms, and contravariant with respect to quasi-finite
flat morphisms.

6.2. The map meylog)t OEX,t AN = Ky x 10g,t is @ quasi-isomorphism.
In [43] 2.16] Zhong proved that 1x ¢ combined with the Bloch-Gabber-Kato iso-
morphism [4, 2.8] gives a quasi-isomorphism

EX,ét : Zg{,ét/pn = Un,X,ét-

In the proof, Zhong actually showed that these two complexes of sheaves on each
section of the big Zariski site over X are quasi-isomorphic. Therefore by restriction
to the small Zariski site, we have

EXZar 2L 7o /D" Un X Zar-
Combining Zhong’s quasi-isomorphism with Theorem B0t

Theorem 6.1. Let X be a separated scheme of finite type over k with k being a
perfect field of positive characteristic p. Then the following composition

- A . e n =
Cn X log.ét © Ux.6t * L et /P" — Kn X l0g.ét

is a quasi-isomorphism. If moreover k =k, then the following composition

- o . e n =
Cn,X,log,Zar © wX,Zar . ZX,Zar/p — KW’XJOQ,ZM”
is also a quasi-isomorphism.

Remark 6.2. From the construction of the maps Zn,X,log,t and EXV,&, we can describe
explicitly their composite map. We write here only the Zariski case, and the étale
case is just given by the Zariski version on the small étale site and then doing the
étale sheafification.

Let U be a Zariski open subset of X. Let Z € (Z% 7,,)'(U) = 20(U, —i) be a
prime cycle.

o If i € [—d,0] and dimpy(Z) = —i, set ¢ = —i. Then Z as a cycle of
dimension ¢ in U x AY is dominant over some v = u(Z) € Uy under
the projection py : U x A? — U. By slight abuse of notation, we denote
by To,..., T, € k(Z) the pullbacks of the corresponding coordinates via
Z — UxA4. Since Z intersects all faces properly, Tp, ..., T, € k(Z)*. Thus
{%Q, cee #‘2’1} € KM(k(Z)) is well-defined. Take the Zariski closure of
Speck(Z) in U x A%, and denote it by Z'. Then py maps Z' to mU =
mx NU. Denote by i, : mx — X the closed immersion, and denote the
composition

; v U X iy
7' = {u} = {u} —X
by h. The map h is clearly generically finite, then there exists an open
neighborhood V' of u in X such that the restriction h : h=1(V) — V

is finite. Then W,h : W, (b= (V)) — W,V is also finite. Therefore it
makes sense to consider the trace map Tryy, ; near the generic point of Z’.
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Similarly, it makes sense to consider the trace map Try, p, near the generic
point of Z’. Then we calculate
—To Ty

Clog(¥(2)) = (=1)" Trw, 1, (dlog(Nmy2) /k(u(2)) T, Tq}))

) —T —T,_
= (=1)' Trw,, i, (Trw, py dlog{TO, L, —1Y) (LemmalB3)
q

Tq
T,dTy — TodT, — T,dT,_y — T,_1dT,
ToT, T, 11,

= (—1)iTI'th( )
Here in the last step we have used the functoriality of the trace map with
respect to composition of morphisms (Proposition [[2(4)).

o If i ¢ [—d,0] or dimpy(Z) # —i, we have (joq(¥(Z)) = 0.

Combining the functoriality of Zhong’s map v with Proposition 5.8 one arrives
at Proposition

Proposition 6.3 (Functoriality). The composition Zn’XJOg’t oty : Z% +/p" =
Ky X 10g,t 15 covariant with respect to proper morphisms, and contravariant with
respect to étale morphisms for both t = Zar and t = ét.

Part 3. Applications
7. DE RHAM-WITT ANALYSIS OF ¥y, x ¢+ AND Ky x 10g,t

Let X be a separated scheme of finite type over k of dimension d. In this section
we will use terminologies as defined in [7, §1], such as Witt residual complexes, etc.

Recall that Ekedahl defined a map of complexes of W,,Ox-modules (cf. [7, Def.
1.8.3])

Pi=pge oy BeKnoixe = Koxe.

By abuse of notations, we denote by R : W,,_1 X — W, X the closed immersion
induced by the restriction map on the structure sheaves R : W,,0x — W,,_10x.

Lemma 7.1. The map p : R.Ky—1, x4 — Ky x induces a map of complexes of
abelian sheaves

(7.0.1) P Kno1,X,log,t = Kn X logt
by applying p on each summand.

Proof. 1t suffices to show that Cy : K,, x ; = K, x commutes with p for both ¢ = ét
and ¢t = Zar. For t = ét, CY, is the composition of 771 : K,, x ¢t = (WnFx)«Kn, x 6t
and €*(Ch,.) : WnFx).«Kn x e — Knxe. Since 771 is functorial with respect to
any map of abelian sheaves, we know that

7_71
R.K, 1, x5 —> WnFx) R Kp_1 x ¢t

Pk

Knxo ———— (WoFx)oKn x.6
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is commutative, thus it suffices to prove the proposition for ¢ = Zar. That is, it
suffices to show the diagrams (.0.2) and (03] commute:

R, [@22)
* A
(7.0.2) RoKpo1 x = Ru(Wo_ 1 Fx) Kp_1 x
lp lg{(wan)AKmx}n
=2 A
Knx = (WinFx)> K x,
(7.0.3)
A ~ A R TrWn—IFX
(WnFx)sRe(Wn 1 Fx) " Kn_1,x —> Ri(Wn_1Fx )« (Wn-1Fx)"Kn_1,x — R.Kn_1,x
l(W"FX)*EHWnFmAKn,x}n lp
A TrWnFX
(WnFx)s(WnFx)= Kn x Kp x-

Here p :=p (Ko x)n is the lift-and-multiplication-by-p map associated to the Witt

residual complex {K, x }n, denotes the one associated to

while Py, )2 Kox b
Witt residual system {(W, Fx)® K, x }n (cf. [7, 1.8.7]). By definition, the map

Py royares xp, | Be Wt Fx) 2 Ky x = (WaFx)® Ko x

is given by the adjunction map of

(Wao1 Fx)2 (“p)
—_—

(Wn1Fx)* K, 1.x (Wn_1Fx)*R*K, x ~ R®(W,Fx)*K, x,

where “p is the adjunction of p for residual complexes (cf. [7, Def. 1.8.3]). The
second diagram (7.0.3]) commutes because the trace map Try, r, induces a well-
defined map between Witt residual complexes [7, Lemma 1.8.9].

It remains to show the commutativity of (L0.2). According to the definition
of P, )oKy x B [7, 1.8.7], we are reduced to showing the adjunction square
commutes:

RA@ZD) ~
R2K, x RA(WnFx)2 Ky x ————————> (Wn_1Fx)2RoKp x

“g] (WanX)A(aP)T

o)
K, 1,x (Wn-1Fx)2Kn_1,x.

And this is (W,,_17)* applied to the following diagram

RA(@ZD) ~
RAW, k RA (W, Fp) AWk = (W1 F,) 2 RAW, k
GBT (Wank)A(aﬂ)T
anlk (anle)Aanlk-

We are reduced to showing its commutativity. Notice that this diagram is over
Spec W,,_1k, where the only possible filtration is the one-element set consisting of
the unique point of Spec W, _1k. This means that the Cousin functor associated
to this filtration sends any dualizing complex to itself, and the map ®p in the sense
of a map either between residual complexes [7, Def. 1.8.3] or between dualizing
complexes [7, Def. 1.6.3] actually agrees.
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Now we start the computation. Formulas for (L21]) and for *p (in the sense
of a map between dualizing complexes) are explicitly given in Section and [7]
1.6.4(1)], respectively. Label the source and the target of W, F}, by Spec W, k1 and
Spec ks respectively. Take a € W,,_1k;. Denote by W, F}, : (Spec Wy, k1, Wypk1) —
(Spec Wy ka, (W, Fr)(Wyk1)), and

E : (Spec Wn—lki7 Wn_lkﬁi) — (Spec Wnki, R*Wn_lkﬁl)(l =1, 2)

the natural maps of ringed spaces. Now the down-right composition

(Wa-1Fr)®(“p)) o (C2T)
equals the Cousin functor E(y, | g, )4 ra ze(w, k) applied to the following composi-

tion

Wi tky S22 W B Homw, iy (Wae 1 Fi)« (W tk), W 1h2)

P —x
:_) anle HomW,,,_le((anle)*(anlkl),

R Homyy, o, (R Wy 1k2, Wik2)),
ar [(Woo1F)ul = (Wyo1 Fy) ™ (a)]
= (Who1F)il = (R p(Woo1 Fy) " (a)]].
And R*([L2Z7)) o (“p) equals the Cousin functor Ew, _, )~ Roze(w, k) applied the
following composition
W sks —% B Homu, xy (ReWo— 1k, Wak)
2D, R Homuw, gy (ReWo— 11, Wi By Homuy, g (W F)o (Wiky ), Wak2)),
a+— [Ril— Q(a)]

= [Rel = [(WaFi)ol = (WnFr) ™ 'p(a)]].
It remains to identify p((W,—1F%) 'a) and (W, Fj,) 'p(a). And this is straightfor-
ward: write @ = 2?2—02 Vila;] € Wy_1k1,

n—2

(Waki) " p(Viai]) = Y (WaFi) ™ (VI a}])

i
[\v]

(7.0.4) (W, Fr,) 'pla)

.
=]
<.
Il
=]

3
N
3
3
|
N

(V”l[ai]) _ BZ(Vi[a;/p]) - B((Wn_le)*la).

.

Hence we finish the proof. O

However we don’t naturally have a restriction map R between residual complexes.
Nevertheless, we can use the quasi-isomorphism Cnﬁx)lom D Unxt — Kn X log,t tO
build up a map

(7.0.5) R : Ky X109t = Kn—1,x,l0g,t

in the derived category D°(X,Z/p"). For this we will need to show that p and R
induce chain maps for v, x ;. This should be well-known to experts, we add here
again due to a lack of reference.
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Lemma 7.2.
PiUn Xt = Unt1,xt, BiVnp1xt— Unxit
given by p and R termwise, are well-defined maps of complexes for both t = Zar
and t = ét.
Proof. 1t suffices to prove for ¢t = Zar. Let x € X(,) be a point of dimension ¢. Let

p: X' — {x} be the normalization of {z}. Let z’ be the generic point of X’ and
y € X' be a codimension 1 point. Denote y := p(y'). It suffices to check the
commutativity of the following diagrams in (1) and (2).

(1) Firstly,

o -1 o -1
q q q q
Wan/,lOg —_— WnQy/,lOg W"Jrle’,log > n+1Qy/,log
lp l lR lR
Wo1Q2, . —2> Qi W, — 2 W, 00
n+1%%7 10 n+1 /,log? n=fg! lo /o
st0g Yy ,tog sL0g g°

Notice that p = po R. Suppose 7’ is a uniformizer of discrete valuation ring
Oxy and u1, ..., uq are invertible elements in O . Calculate

p(9(dlog[r’]ndlog[us]y . . . dlog[ug]n))

dloglus)y, . .. dloglugln)

dloglua)nt - . . dlogluglni1)

O(dlog[r'|nt1dlog[uz]pt1 - - . dlogluglnt1))

p(dlog[r']ni1dloglus]yti - . . dlogluglnt1))
( (7| ndloglusaly . . . dlog[ug]n)),

p(
p(
p(
o(
d(p(dlog
and
p(0(dlog[u;]ndloglus], . . . dloglugl,))

=0

= p(9(dloglui]nt1dloglus]nii . . . dloglugn1))

= O(p(dloglu1]nt1dloglus]ni1 . . . dloglugln1))

= J(p(dlog[ui]ndloglusly, . .. dloglugl,)).
This proves the first diagram. Now the second.
R(0(dlog[n"],+1dlog[uz] i1 - - - dlog[uglnt1))

= R(dlog[uz]n+1 - - - dloguglnt1)

= dlog[us], . . . dlog[ug]n

= d(dlog[n'],dlog V{usy, . ..dlog Vugl,)

= O(R(dlog[n"]nt1dlogus]nt - . dlog[uglntr)),
and
R(0(dlog[u1]n+1dlog[ua]nti - - - dloglugln+1))

=0

= 0(dlog[u1]ndloglus]y, . .. dloglug],)

= O(R(dlog[u1]nt1dloglus]nti - . . dlogugln+1))-
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(2) Secondly,
W QL e W W Q8L s W Q0
lg lﬂ l/R l/R
WnJFlQ’Z:llog S "+1Qy log? W, Qq/ Jlog L> W, Qy log®

Notice that p: X' — m can be restricted to a map from {y } to @X
( {x} denotes the closure of z in X, and similarly for {y'} } {y} ). Fur-

thermore, 3/ (resp. y) belongs to the smooth locus of {y'} } (resp. {y}X),
and there p and R come from the restriction of the p and R on the re-
spective smooth locus. The map tr, induced by Milnor’s norm map, agrees
with the Grothendieck trace map Tryy, , due to Lemma 53l And accord-
ing to compatibility of the Grothendieck trace map with the Witt system
structure (i.e. de Rham-Witt system structure with zero differential) on
canonical sheaves [7, 4.1.4(6)], we arrive at the desired commutativity. [

Lemma 7.3. Assume either
o t="Zar and k =k, or
o t =46t and k being a perfect field of characteristic p > 0.

Then we have the following short exact sequence

(7.0.6)

~ P R~
0— Vi Xt — Vitj Xt — ViXt— 0,

in the category of complexes of sheaves over Xy, and a distinguished triangle

(7.0.7)

p’ R +1
K x 109t = Kitj X109t — Kj X 10g,t —

in the derived category D*(Xy, Z/p").

Proof.

(Wate) W, Q2

(1) Because of Lemma [2] it suffices to show

j
.04 _)
O%Wleoqt—)WH‘Jleoqt WQxloqt%O

is short exact for any given point z € X(4). And this is true for ¢ = ét because
of [8, Lemme 3]. And for ¢ = Zar, one further needs R'e, W, Q7 =0
for any x € X() if k = k, which is proved in [39, Cor. 2.3].

Now it suffices to show that p and R for the system {K, xiog¢}n are
compatible with p and R of the s_ystem {Vn,x .t }n, via the quasi-isomorphism

xz,log,ét

Zn X,log,t- Lhe compatibility for R is clear by definition. It remains to check
the compatibility for p. Because (n Xlogit = = E3I) o Zn Xt it suffices to
check compatibility of p : D1 x¢ = Un,x¢ With p: K1 x 1 = K, x ¢ via
Cn x.t At a given degree —¢ and given point z € X(,), the map Cn Xt
Un,x,+ — I, x ¢ factors as

. . (=) Trw,ig ¢
xz,log,t (anl’)*Wan,t = (WHZI) K? = KZ,X,t'

n{a} t
The first arrow is the inclusion map and is naturally compatible with p.
The compatibility of p via the trace map is given in [7, Lemma 1.8.9]. O
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8. HIGHER CHOW GROUPS OF ZERO CYCLES

Let k be a perfect field of characteristic p > 0. In this whole section, X denotes a
separated scheme of finite type over k of dimension d with structure map 7 : X — k.

8.1. First properties.

Proposition 8.1. There is a distinguished triangle

Ch -1 +1
C T ot
L &/P" = Knx ot — Kpxet —

in the derived category Db(Xe,Z/p™). If k = k, one also has the Zariski counter-
part. Namely, we have a distinguished triangle

(8.1.1) ZS )" — K x S5 K x 45

in the derived category D*(X,Z/p™).

In particular, if kK = k and X is Cohen-Macaulay of pure dimension d, then
LS /p" is concentrated at degree —d, and the triangle 811 becomes

< p = Whwx[d] <=5 Wowy[d] T

in this case. Here Wyowx is the only non-vanishing cohomology sheaf of K, x (if
n =1, Wiwx = wx is the usual dualizing sheaf on X ).

Proof. This is direct from the main result Theorem and Remark [[LT7] O

Proposition 8.2. Assume k = k. Then higher Chow groups of zero cycles equal
the C'-invariant part of the cohomology groups of Grothendieck’s coherent dualizing
complez, i.e.,

CHo(X,q;Z/p") = H™ I (W, X, K, x)¢ L.

Proof. This follows directly from Proposition[[.I5and the main result Theorem [G.1]
|

Corollary 8.3 (Relation with p-torsion Poincaré duality). There is an isomor-
phism

Kn,X,log,ét = Rﬂ'!(Z/pn)
in D¥(Xg, Z/p"), where Rx' is the extraordinary inverse image functor defined in
[40, Exposé XVIII, Thm 3.1.4].
Proof. This follows directly from the main Theorem B0 and [26] Thm. 4.6.2]. O

Corollary 8.4 (Affine vanishing). Suppose X is affine and Cohen-Macaulay of
pure dimension d. Then

(1) Ift = Zar and k =k,
CHO(X7Q7Z/pn) =0

for q #d.
(2) Ift = ét,
R (Xe, Z /p") = 0
for q # d,d — 1. If one further assumes k = k or smoothness, the possible
non-vanishing occurs only in degree ¢ = d.
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Proof. If X is Cohen-Macaulay of pure dimension d, W, X is also Cohen-
Macaulay of pure dimension d by Serre’s Si-criterion, and K,, x: is concentrated
at degree —d for all n [0, 3.5.1]. Now Serre’s affine vanishing theorem implies
H 1(W,X,K, x:) = 0 for ¢ # d. This implies that R™IT(W,, X, K;, x.10g,t) =
0 unless ¢ = d,d — 1. With the given assumptions, Theorem implies that
CHo(X,q,Z/p") = R™9T'(Xe&, Z5 /p"™) = 0 unless ¢ = d,d — 1. If one also assumes
k = k, Proposition gives the vanishing result for ¢ = d — 1.

If X is smooth, Cg, — 1 : WnQdKét — VVan(’ét is surjective by [16, 1.6(ii)] (see
(I330)). By the compatibility of Cy, and C%, Proposition [[.20] one deduces that
C'—1:H UKy xea) = H UKy xe) is surjective. a

Generalizing Bass’s finiteness conjecture for K-groups (cf. [42, 1V.6.8]), the
finiteness of higher Chow groups in various arithmetic settings appears in the lit-
erature. The following result was first proved by Geisser [13] §5, eq. (12)] using
the finiteness result from the étale cohomology theory, and here we deduce it as a
corollary of our main theorem, which essentially relies on the finiteness of coherent
cohomologies on a proper scheme. We remark that Geisser’s result is more general
than ours in that he allows arbitrary torsion coefficients.

Corollary 8.5 (Finiteness, Geisser). Assume k = k. Let X be proper over k. Then
for any q,
CHo(X,¢; Z/p")

is a finite Z/p™-module.

Proof. According to Theorem [6.1] R™I'(X,Z% /p™) = R™T(X, Ky, x,10g). Thus it
suffices to show that for every ¢, R™I(X, K, x 104) is a finite Z/p™-module. First
of all, since the cohomology group R™T(X, K,, x,i0g) i the C’-invariant part of
R™'(X, K, x) by Proposition and Proposition R™T(X, Ky x 10g) 1S
a module over the invariant ring (Wnlﬁ)l_W“F);1 = Z/p™. Because X is proper,
R T(X, K, x) is a finite W,k-module by the local-to-global spectral sequence.
Then Proposition [A7] gives us the result.

Alternatively, we can also do induction on n. In the n = 1 case, because
R™T(X, Kx 10g) is the C’-invariant part of the finite dimensional k-vector space
H9(X,Kx) again by Proposition and Proposition [[27] it is a finite Fp-
module by p~!-linear algebra Proposition[A3l The desired result then follows from
the long exact sequence associated to (C0.7)) by induction on n. O

We refer to Definition [A-4] and Remark [A.5|(2) for the definition of the semisim-
plicity and the notation (—)ss in this context.

Corollary 8.6 (Semisimplicity). Assume k = k. Let X be proper over k. Then
for any q,
H Y (W,X, K, x)ss = CHo(X,q; Z/p"™) ®z,/pn Wik.

Proof. Since X is proper, H-4(W, X, K,, x) is a finite W,,k-module for any ¢. Then
according to Proposition [A.8]

Hﬁq(WnXa K?L,X)ss = Hﬁq(WnXa K?L,X)Clil ®Z/pn Wnk

The claim now follows from Proposition O
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8.2. Etale descent. The results Proposition 87 Proposition B8 in this subsection
are well-known to experts.

Proposition 8.7 (Gros-Suwa). Assume k = k. Then one has a canonical isomor-
phism

Un. X Zar = €xUn X6t — ReTn x 6t
in the derived category D*(X,Z/p").

Proof. If k = k, terms of the étale complex Up x 6t are e,-acyclic according to
[16, 3.16]. ]

The étale descent of Bloch’s cycle complex with Z-coefficients is shown in [13]
Thm 3.1}, assuming the Beilinson-Lichtenbaum conjecture which is now proved by
Rost and Voevodsky. Hence the étale descent holds conjecture-free. Note that one
can also deduce the mod p™ version as a corollary of Proposition B7] via Zhong’s
quasi-isomorphism in Section (which is dependent on the main result of Geisser-
Levine [14], 1.1]).

Proposition 8.8 (Geisser-Levine). Assume k = k. Then one has a canonical
isomorphism

L zan/P" = L5 60 /P" = ReZS o0 /D"
in the derived category D*(X,Z/p"). As a result,

CHO(X7 q; Z/pn) = R_qF(Xétu Z,CX,ét/pn)'
Proof. Clearly, we have the compatibility

ZCX,Zar/pn — RE*Z%,ét/pn

le‘Zar lRé*Tﬁx,éc
Vn,X,Zar — RE*VmX,ét-
EX,Z&T ~ ~ Proposition §,Z ~ Rﬁ*ax,ét
Thus Z% 7.,./p" 7 VUnXZar = €xVn X6t — Re,vn x 66 ——
c n
Re,Z /" O

Corollary 8.9. Assume k = k. Suppose X is affine and Cohen-Macaulay of pure
dimension d. Then

Re,(Z s /p") = RlexUn,x,e =0, i # —d.

Proof. This is a direct consequence of Proposition B8 Proposition [8.7] and Corol-
lary B4l a

8.3. Birational geometry and rational singularities. Recall Definition [R.10] of
resolution-rational singularities, which are more often called rational singularities
before in the literature, but here we follow the terminology from [32] (see also
Remark BTT[(1) and [32], (9.12.1)]).

Definition 8.10 (cf. [32, 9.1]). An integral k-scheme X is said to have resolution-
rational singularities if
(1) there exists a birational proper morphism f : X — X with X smooth (such

an f is called a resolution of singularities or simply a resolution of X), and
(2) R'f.O5 = Rifiwg =0fori>1. And f.05 = Ox.
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Such a map f : X — X is called a rational resolution of X.

Note that the cohomological condition ([2)) is equivalent to the following condition

(2") Ox ~ Rf.O%, fuwg ~ Rf.wg in the derived category of abelian Zariski
sheaves.

Remark 8.11.

(1) According to [32] 8.2], on integral k-schemes of pure dimension, our defi-
nitions for resolution-rational singularities and for rational resolutions are
the same as the ones in [32] 9.1].

(2) Necessary conditions for an integral k-scheme to have resolution-rational
singularities are that the scheme is normal and Cohen-Macaulay. The nor-
mality statement follows from the equality f.Ogs = Ox, and the Cohen-
Macaulay statement is a standard result, see e.g. [32], 8.3].

(3) According to [32, 9.6], resolution-rational singularities are pseudo-rational.
By definition [32] 1.2], a k-scheme X is said to have pseudo-rational sin-
gularities, if it is normal Cohen-Macaulay, and for every normal scheme
X', every projective birational morphism f : X’ — X, the composition

frwx: = Rfwx — wx is an isomorphism.

Corollary 8.12. Let X and Y be integral k-schemes of pure dimensions which
have pseudo-rational singularities. Suppose there are proper birational k-morphisms
f:Z—=Xand g: Z —Y where Z is a normal Cohen-Macaulay scheme. Then we
have

R™( X4, Z /P ) = R (Yay, Zy 4 /P")
for all ¢ and all n > 1. If we assume furthermore k = k, we also have
CHO(Xa q, Z/pn) = CHO(Y, q, Z/pn)
for all ¢ and all n > 1.

Remark 8.13.

(1) In particular, since for any rational resolution of singularities f : X = X,
X and X are properly birational as k-schemes (i.e., take Z to be X) one
can compute the higher Chow groups of zero cycles of X via those of X.

(2) Deleting the pseudo-rational singularities assumption (in particular, we re-
lax the Cohen-Macaulay assumptions on X and Y'), the proof still passes
through with the following assumption: X and Y are linked by a chain
of proper birational maps and each of these maps has its trace map be-
ing a quasi-isomorphism between the residual complexes. Such a proper
birational map is called a cohomological equivalence in [32], 8.4].

(3) If normal Macaulayfications for integral varieties exist (e.g., conjecture [32]
1.13] is true), the assumption of Corollary can be weakened to the
following: Let X and Y be integral k-schemes of pure dimensions which
have pseudo-rational singularities and are properly birational, i.e., there
are proper birational k-morphisms f : Z — X and g : Z — Y with Z
being some integral scheme. In fact, we can replace Z by a normal Cohen-
Macaulay scheme by the following process. Using Chow’s Lemma [32] 4.1],
we know that there exist projective birational morphisms 1z —> Z and

g’ : Zo — Z such that the compositions Z; —> Z X and Z5 —> 7%y
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are also birational and projective. Let U C Z be an open dense subset such
that f’ and ¢’ restricted to the preimage of U are isomorphisms. Take Z’ to
be the Zariski closure of the image of the diagonal of U in Z; X z Z5 with the
reduced scheme structure. Then the two projections Z/ — Z1 and Z' — Z5
are also projective and birational. This means that by replacing Z’ with
Z, f with Z’ — X and g with Z’ — Y, we can assume our f : Z7 — X,
g : Z — Y to be projective birational and our Z to be integral. Using
normal Macaulayfication [32, 1.13] we can additionally assume that Z is
normal Cohen-Macaulay.

In particular, since the conjecture [32] 1.13] is known to be true for
varieties of dimension at most 4 over algebraically closed fields (cf. [32]
1.14(iii)]), one can state Corollary with this weakened assumption in
this case.

Proof. Note that f and g are pseudo-rational modifications by [32) 9.7]. Suppose
that X is of pure dimension d. Then so is Z. Now [32] 8.6] implies that the trace
map of f induces an isomorphism

Try: RfKzy — Kx,
in D*(X;,Z/p). Thus
Tryiog Rf*KZ,log,t = Kx 109t

is also an isomorphism in D*(Xy,Z/p). Consider the diagram

n—1

p R +1
(831) f*KZ,log,t —_— f*KmZ,log,t - f*K’Vl—1,Z7l097t - f*KZ>ZOg7t[1]

Try,i0g Trw,, f,10g Trw, _y f,l0g lTrf,zog[ll
pnfl

P +1
KX,log,t —— Kn,X,log,t —— anl,X.,log,t E—— KX,log,t[]-]
in D*(X;,Z/p). The first row is Rf. applied to the triangle (Z.0.7) on Z. The
second row is the triangle (CO7) on X. The left square commutes on the level
of complexes by the compatibility of the trace map with p [7, 1.8.9]. To prove
commutativity of the middle square in the derived category, it suffices to show the
square

~ R ~
f*Vn,Z,t > f*anl,Z,t

lf* lf*
~ R~
Vn,X,t — > Vn—1,X,t

commutes on the level of complexes. Since the vertical maps f, for Kato-Moser
complexes are tr (cf. Section M), which are by definition the reduction of the
norm maps for Milnor K-theory, they agree with the Grothendieck trace maps
Trw, s, Trw, .7 by Lemma 53] And according to the compatibility of R with
the Grothendieck trace maps [7, 4.1.4(6)], we arrive at the desired commutativity.
The right square in (83 commutes by the naturality of the “4+1” map. With all
these commutativities we conclude that the vertical maps in (831 define a map

of triangles. By induction on n we deduce that

’I‘I‘an,log : Rf*Kn,Z,log,t — Kn,X,log,t
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is an isomorphism in D®(X;,Z/p"™) for every n. The main result Theorem thus
implies
R0 (Zst, 2% 4, /p") = R™T (Xer, L 0/D")
for all ¢ and n. If k = k, the same theorem also implies that
CHO(Z7 q, Z/pn) = CHO(Xa q, Z/pn)
for all ¢ and n.
Now replacing f by g everywhere in the above argument we get the result. [

8.4. Galois descent.

Corollary 8.14. Let X and Y be separated schemes of finite type over k of di-
mension d. Let f :' Y — X be a finite étale Galois map with Galois group G.
Then

R0 (X, 2% /p") = BT (Yer, Z5- /p")°.
If k =k, we also have
CHo (X, d; Z/p") = CHo(Y, d; Z/p")°.
Proof. The pullback f* induces two canonical maps

L s = (FZ56)%, 7 Knxoget = (foKnyiiog.6)C

Both of them are isomorphisms of complexes, because each term of these complexes
is an étale sheaf. Because of the contravariant functoriality with respect to étale
morphisms (Proposition [6.3] and [43] 2.15]), (},, © ¢ is G-equivariant. That is, the
diagram
Clogo¥
L & /D" —— > K X log.ét

- |

Clogo®
(f*ng,ét/P")G l (feKn,vi0g.6t)¢

commutes.
Applying R™IT( X, —) to the isomorphism f* : K, x 09,6t — (f*Kn)yJomét)G,
one gets
R™T(Xet, Kn X 10g.6t) = BT (Xet, (feKn vii0g.et)?)-

Consider the local-to-global spectral sequence associated to the right hand side of
this equality, there is only one non-zero term in the E..-page with total degree —d
(which is a term in the Fs-page), thus we have

RidF(Xétv (f*Kn,Y,log,ét)G) - HO (Xét7 Hid((f*Kn,Y,log,ét)G))-

G

Because (—)¢ commutes with taking kernels and with H, we have

HO(Xeo, HU(feKnviioget))) = HY(Xet, H™ U (FeKn viiog.et)) -
Because f, preserves kernels, we have
H®(Xeo, H™ ([ Knvioge)© = H (Y, H (K viioge) -
Again by the observation from the spectral sequence, this means

H(Yeo, H UKo yioget))® = R (Y, K yioget)©
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Since Zlog 01} is G-equivariant, the main Theorem implies
R™T(Xa, 25 [1") = R™T (Yer, Z /).
If k = k, Proposition B8 implies
CHo (X, d; Z/p") = CHo(Y, d; Z/p")°.

APPENDIX A. SEMILINEAR ALGEBRA

Definition A.1. Let k be a perfect field of positive characteristic p, and V be a
finite dimensional k-vector space. A p-linear map (resp. p~!-linear map) on V is a
map T : V — V, such that

Tv+w)=TwW)+T(w), T(w)=cPTW), v,weV,cek
(resp. T(v +w) =TW) +T(w), T(cw)=cPT(w), v,weV,cek).

We say a map T : V — V is semilinear if it is either p-linear or p~!-linear. A
semilinear map T : V — V is called semisimple if ImnT = V.

Remark A.2. Let T be a semilinear map.
(1) Note that

{cek|P=c}=F,={cek|cP=c}
The fixed point of T
VT = v eV | T(v) = v}

is an F,-vector space.
(2) There is a descending chain of k-vector subspaces of V'

Im7 >Im7%?>--->ImT" > ....

Since V is finite dimensional, it becomes stationary for some large N € N.

Define
Veo 1= [ Im(T") = Im(T") = Im(T"*") = ...
n>1
Obviously,
(a) Vs is a k-vector subspace of V' that is stable under T'. T is semisimple
on V.

(b) VI-T c V.

The proof of the following result is given in [20] for p-linear maps, but an anal-
ogous proof also works for p~!-linear maps.

Proposition A.3 ([20, Exposé XXII, Cor. 1.1.10, Prop. 1.2]). Suppose k is a
separably closed field of positive characteristic p. Then
1-T:V >V
is surjective. And
Vvss ~ Vl_T ®Fp k>
which in particular means V'=T is a finite dimensional F,-vector space with
dimpp Vi-T = dimy, V.

We generalize the definition of a semilinear map.
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Definition A.4. Let k be a perfect field of positive characteristic p, and let W,k
be the ring of the n-th truncated Witt vectors of k. Let M be a finitely generated
W, k-module. A p-linear map (resp. p~'-linear map) on M is a map T : M — M,
such that

T(m+m')=T(m)+T(m"), T(cm)=W,Fx(c)T(m), m,m eM,ceW,k
(resp. T(m+m")=T(m)+T(m), T(em)=W,F; ()T (m), m,m'eM,ceW,k).

Here F}, denotes the p-th power Frobenius on the field k. We say that T is semilinear
if it is either p-linear or p~!-linear in this sense. A semilinear map T : V — V is
called semisimple if ImT =V

Remark A.5. Let T be a semilinear map in the sense of Definition [A-4]
(1) Write 0 = W,,F};, (resp. o = W, F} ). Then
(Wok)'= 7 :={ce W,k | o(c) =c} =Z/p"
for both cases. The fixed point of T’
MY T = {me M| T(m)=m}

is a Z/p™-module.
(2) As in the case of vector spaces,

Im7 >Im7T?> - >ImT" > ...

is a descending chain of W, k-submodules of M. It becomes stationary
for some large N € N, because M as a finitely generated W, k-module is
artinian. Define the W, k-submodule of M

M = () Im(T") = Im(T") = Im(T"*!) = ...

n>1
Then
(a) My is a Wy k-submodule of M that is stable under T. T is semisimple
on M.

(b) M'*=T C M.
(C) (M/p)ss = ss/p - M/p
Proposition A.6. Let k be a separably closed field of positive characteristic p.
Then
1-T:-M—-M
18 surjective.

Proof. Take m € M. Because M is finitely generated as a W, k-module, M/pM is
a finite dimensional k-vector space. Then Proposition [A.3]implies that there exists
an m' € M, such that (1 — T)(m’) —m € pM. That is, there exists an m; € M
such that

(1=T)(m") = m+ pms.
Do the same process with m; instead of m, one gets an m} € M and an mg € M
such that

(1 =1T)(my) = m1 + pmo.
Thus

(L=T)(m —pm}) =m —p°ma.
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Repeat this process. After finitely many times, because p™ = 0 in Wk,
(1 —T)(m/—pm/1—|-..._;’_(_1)n—1pn—1m/ ) —m.

n—1

]

Proposition A.7. Let k be a separably closed field of positive characteristic p.
Then

(1) M1/ (pM) T = (M/p)t T

(2) M*=T s a finite Z/p™-module.

Proof. Since W,k is of p"-torsion, we know that p™M = 0 for some m < n. Do
induction on the smallest number m such that p”™ M = 0. If m = 1, the first claim
is trivial, and M = M/p is actually a finite dimensional k-vector space, thus the
second claim follows from Proposition

Now we assume m > 1. Note that T induces a semilinear map on pM and pM is
a finite W, k-module, so by Proposition[A.6lthe map 1—T : pM — pM is surjective.
Now we have the two rows on the bottom of the following diagram being exact:

0 0 0
00— M'"T/(pM)""T — M/p "2 M/p 0
1-T -7
00— M M M 0
1—-T 1-T
0 (pM) pM pM 0
0 0 0

The vertical maps between the last two rows are natural inclusions, and the first
row is the cokernels of these inclusion maps. The snake lemma implies that the
first row is exact, which means that

M/ (pM) T = (M/p)' T
This is a finite Z/p™-module by the case m = 1. On the other hand, since p
pM = 0, the induction hypothesis applied to the W,k-module pM gives (pM)*~T

which is a finite Z/p™-module. Now the vertical exact sequence on the left gives
that M'~7 is a finite Z/p™-module. O

m—1

Proposition A.8. Let k be a separably closed field of positive characteristic p.
Then we have an identification of W, k-modules

Mss =~ MliT ®Z/p" Wnk
Proof. For the finite dimensional k-vector space M /p, Proposition [A.3] tells us that
(M/p)ss = (M/p)' T ®p, k.

In other words, there exist my,...,mq € M (d = dimg, M/p), such that m; +
pM,...,mq +pM € (M/p)*~T generate (M/p)ss as a k-vector space. Because
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of Proposition [AX7|(1), one can choose my, ..., mq € M*~T. Since M is a finite
generated W, k-module, My as a submodule is also finitely generated over W, k.
Note moreover that (M/p)ss = Mss/p. Apply Nakayama’s lemma, my, ..., mg €
M'=T generate M, as a W, k-module. O

ACKNOWLEDGMENTS

This paper is adapted from my PhD thesis. I'd like to express the deepest
gratitude to my advisor, Kay Riilling, for suggesting me this topic, for providing
a lecture on the de Rham-Witt theory, for sharing his private manuscript and
observations, and for the numerous discussions and guidance during the whole time
of my PhD. In particular, Proposition [[LT5] Proposition [L2T} and Proposition
were already contained in his unpublished manuscript. Alexander Schmitt has
read the preliminary version of this paper with great care and provided detailed
comments on the mathematical contents, grammatical errors and typos. Thomas
Geisser has also given detailed comments to the preliminary version of this work.
In particular, he pointed out that Proposition B8lis in fact a corollary of [14] 8.4].
Yun Hao kindly provided me his notes on an elementary proof of Proposition [A3l
The anonymous referee has written a report with many detailed suggestions. In
particular, Lemma [[LJO and Lemma [[.T4] are rewritten following the comments
there. Sandor Kovacs informed me about an update in the normality condition in
[32]. Accordingly, the statement of Corollary BI2 was changed, and Remark B13|(3)
was added. (In particular, the statement in Corollary [IL2(6) remains valid.) T am
indebted to them all.

REFERENCES

[1] Pierre Berthelot, Hélene Esnault, and Kay Rilling, Rational points over finite fields for
regular models of algebraic varieties of Hodge type > 1, Ann. of Math. (2) 176 (2012), no. 1,
413-508, DOI 10.4007/annals.2012.176.1.8. MR2925388

[2] S. Bloch, The moving lemma for higher Chow groups, J. Algebraic Geom. 3 (1994), no. 3,
537-568. MR1269719

[3] Spencer Bloch, Algebraic cycles and higher K-theory, Adv. in Math. 61 (1986), no. 3, 267—
304, DOI 10.1016/0001-8708(86)90081-2. MR852815

[4] Spencer Bloch and Kazuya Kato, p-adic étale cohomology, Inst. Hautes Etudes Sci. Publ.
Math. 63 (1986), 107-152. MR849653

[5] Michel Brion and Shrawan Kumar, Frobenius splitting methods in geometry and representa-
tion theory, Progress in Mathematics, vol. 231, Birkh&user Boston, Inc., Boston, MA, 2005.
MR2107324

[6] Andre Chatzistamatiou and Kay Riilling, Higher direct images of the structure sheaf
in positive characteristic, Algebra Number Theory 5 (2011), no. 6, 693-775, DOI
10.2140/ant.2011.5.693. MR2923726

[7] Andre Chatzistamatiou and Kay Riilling, Hodge- Witt cohomology and Witt-rational singu-
larities, Doc. Math. 17 (2012), 663-781. MR3001634

[8] Jean-Louis Colliot-Thélene, Jean-Jacques Sansuc, and Christophe Soulé, Torsion dans le
groupe de Chow de codimension deuz (French), Duke Math. J. 50 (1983), no. 3, 763-801,
DOI 10.1215/S0012-7094-83-05038-X. MR714830

[9] Brian Conrad, Grothendieck duality and base change, Lecture Notes in Mathematics,
vol. 1750, Springer-Verlag, Berlin, 2000, DOI 10.1007/b75857. MR1804902

[10] Torsten Ekedahl, On the multiplicative properties of the de Rham-Witt complez. I, Ark. Mat.
22 (1984), no. 2, 185-239, DOI 10.1007/BF02384380. MR765411

[11] Lei Fu, Etale cohomology theory, Revised edition, Nankai Tracts in Mathematics, vol. 14,
World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015, DOI 10.1142/9569.
MR 3380806


https://www.ams.org/mathscinet-getitem?mr=2925388
https://www.ams.org/mathscinet-getitem?mr=1269719
https://www.ams.org/mathscinet-getitem?mr=852815
https://www.ams.org/mathscinet-getitem?mr=849653
https://www.ams.org/mathscinet-getitem?mr=2107324
https://www.ams.org/mathscinet-getitem?mr=2923726
https://www.ams.org/mathscinet-getitem?mr=3001634
https://www.ams.org/mathscinet-getitem?mr=714830
https://www.ams.org/mathscinet-getitem?mr=1804902
https://www.ams.org/mathscinet-getitem?mr=765411
https://www.ams.org/mathscinet-getitem?mr=3380806

(12]
(13]
[14]

[15]

[16]

(17)

(18]

[19]

[20]

21]

22]

(23]
24]
[25]

[26]

(27]

28]
[29]
[30]
31]
£

(33]

(34]

BLOCH’S CYCLE COMPLEX AND COHERENT DUALIZING COMPLEXES 905

Thomas Geisser, Motivic cohomology over Dedekind rings, Math. Z. 248 (2004), no. 4, 773—
794, DOI 10.1007/s00209-004-0680-x. MR2103541

Thomas Geisser, Duality via cycle complezes, Ann. of Math. (2) 172 (2010), no. 2, 1095-1126,
DOI 10.4007/annals.2010.172.1095. MR2680487.

Thomas Geisser and Marc Levine, The K-theory of fields in characteristic p, Invent. Math.
139 (2000), no. 3, 459493, DOI 10.1007/s002220050014. MR1738056

Thomas Geisser, Motivic cohomology, K-theory and topological cyclic homology, Handbook
of K-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 193-234, DOI 10.1007/3-540-27855-9_6.
MR2181824

Michel Gros and Noriyuki Suwa, Application d’Abel-Jacobi p-adique et cycles algébriques
(French), Duke Math. J. 57 (1988), no. 2, 579-613, DOI 10.1215/S0012-7094-88-05726-2.
MR962521

Michel Gros and Noriyuki Suwa, La conjecture de Gersten pour les faisceauxr de Hodge- Witt
logarithmique (French), Duke Math. J. 57 (1988), no. 2, 615-628, DOI 10.1215/S0012-7094-
88-05727-4. MR962522

A. Grothendieck, Eléments de géométrie algébrique. IV. Etude locale des schémas et des
morphismes de schémas. II (French), Inst. Hautes Etudes Sci. Publ. Math. 24 (1965), 231.
MR199181

A. Grothendieck, Eléments de géométrie algébrique. IV. Etude locale des schémas et des
morphismes de schémas IV (French), Inst. Hautes Etudes Sci. Publ. Math. 32 (1967), 361.
MR 238860

Groupes de monodromie en géométrie algébrique. II (French), Lecture Notes in Mathematics,
Vol. 340, Springer-Verlag, Berlin-New York, 1973. Séminaire de Géométrie Algébrique du
Bois-Marie 1967-1969 (SGA 7 II); Dirigé par P. Deligne et N. Katz. MR0354657

Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-
Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck,
given at Harvard 1963/64; With an appendix by P. Deligne. MR0222093

Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-Verlag,
Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961.
MR0224620

Lars Hesselholt, The big de Rham-Witt complez, Acta Math. 214 (2015), no. 1, 135-207,
DOI 10.1007/s11511-015-0124-y. MR3316757

Luc Illusie, Compleze de de Rham-Witt et cohomologie cristalline (French), Ann. Sci. Ecole
Norm. Sup. (4) 12 (1979), no. 4, 501-661. MR565469

Luc Illusie and Michel Raynaud, Les suites spectrales associées au complexe de de Rham- Witt
(French), Inst. Hautes Etudes Sci. Publ. Math. 57 (1983), 73-212. MR699058

Uwe Jannsen, Shuji Saito, and Kanetomo Sato, Etale duality for constructible sheaves on
arithmetic schemes, J. Reine Angew. Math. 688 (2014), 1-65, DOI 10.1515/crelle-2012-0043.
MR3176615

Kazuya Kato, A Hasse principle for two-dimensional global fields, J. Reine Angew. Math. 366
(1986), 142-183, DOI 10.1515/crll.1986.366.142. With an appendix by Jean-Louis Colliot-
Thélene. MR833016

Kazuya Kato, Duality theories for the p-primary étale cohomology. I, Algebraic and topolog-
ical theories (Kinosaki, 1984), Kinokuniya, Tokyo, 1986, pp. 127-148. MR 1102256

Kazuya Kato, Duality theories for p-primary etale cohomology. 1I, Compositio Math. 63
(1987), no. 2, 259-270. MR906374

Nicholas M. Katz, Nilpotent connections and the monodromy theorem: Applications of a
result of Turrittin, Inst. Hautes Etudes Sci. Publ. Math. 39 (1970), 175-232. MR291177
Moritz Kerz, Milnor K -theory of local rings with finite residue fields, J. Algebraic Geom. 19
(2010), no. 1, 173-191, DOI 10.1090/51056-3911-09-00514-1. MR2551760

S. J. Kovacs, Rational singularities, larXiv:1703.02269v13, 2022.

Andreas Langer and Thomas Zink, De Rham-Witt cohomology for a proper and smooth
morphism, J. Inst. Math. Jussieu 3 (2004), no. 2, 231-314, DOI 10.1017/S1474748004000088.
MR2055710

Matthew Morrow, K -theory and logarithmic Hodge- Witt sheaves of formal schemes in char-
acteristic p (English, with English and French summaries), Ann. Sci. Ec. Norm. Supér. (4)
52 (2019), no. 6, 1537-1601, DOI 10.24033/asens.2415. MR4061020


https://www.ams.org/mathscinet-getitem?mr=2103541
https://www.ams.org/mathscinet-getitem?mr=2680487
https://www.ams.org/mathscinet-getitem?mr=1738056
https://www.ams.org/mathscinet-getitem?mr=2181824
https://www.ams.org/mathscinet-getitem?mr=962521
https://www.ams.org/mathscinet-getitem?mr=962522
https://www.ams.org/mathscinet-getitem?mr=199181
https://www.ams.org/mathscinet-getitem?mr=238860
https://www.ams.org/mathscinet-getitem?mr=0354657
https://www.ams.org/mathscinet-getitem?mr=0222093
https://www.ams.org/mathscinet-getitem?mr=0224620
https://www.ams.org/mathscinet-getitem?mr=3316757
https://www.ams.org/mathscinet-getitem?mr=565469
https://www.ams.org/mathscinet-getitem?mr=699058
https://www.ams.org/mathscinet-getitem?mr=3176615
https://www.ams.org/mathscinet-getitem?mr=833016
https://www.ams.org/mathscinet-getitem?mr=1102256
https://www.ams.org/mathscinet-getitem?mr=906374
https://www.ams.org/mathscinet-getitem?mr=291177
https://www.ams.org/mathscinet-getitem?mr=2551760
https://arxiv.org/abs/1703.02269v13
https://www.ams.org/mathscinet-getitem?mr=2055710
https://www.ams.org/mathscinet-getitem?mr=4061020

906

FEI REN

[35] Thomas Moser, A duality theorem for étale p-torsion sheaves on complete varieties over a

finite field, Compositio Math. 117 (1999), no. 2, 123-152, DOI 10.1023/A:1000892524712.
MR1695861

[36] Yu. P. Nesterenko and A. A. Suslin, Homology of the general linear group over a local ring,

and Milnor’s K-theory (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 121—
146, DOI 10.1070/IM1990v034n01ABEH000610; English transl., Math. USSR-Izv. 34 (1990),
no. 1, 121-145. MR992981

[37] Markus Rost, Chow groups with coefficients, Doc. Math. 1 (1996), No. 16, 319-393.

MR1418952

[38] T. Stacks Project Authors, Stacks Project, 2018, https://stacks.math.columbia.edu.
[39] Noriyuki Suwa, A note on Gersten’s conjecture for logarithmic Hodge-Witt sheaves, K-

Theory 9 (1995), no. 3, 245-271, DOI 10.1007/BF00961667. MR1344141

[40] Théorie des topos et cohomologie étale des schémas. Tome 3. Lecture Notes in Mathematics,

Vol. 305. Springer-Verlag, Berlin-New York, 1973. Séminaire de Géométrie Algébrique du
Bois-Marie 1963-1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec
la collaboration de P. Deligne et B. Saint-Donat.

[41] Burt Totaro, Milnor K -theory is the simplest part of algebraic K -theory, K-Theory 6 (1992),

no. 2, 177-189, DOI 10.1007/BF01771011. MR1187705

[42] Charles A. Weibel, The K-book, Graduate Studies in Mathematics, vol. 145, American

Mathematical Society, Providence, RI, 2013. An introduction to algebraic K-theory, DOI
10.1090/gsm/145. MR3076731

[43] Changlong Zhong, Comparison of dualizing complezes, J. Reine Angew. Math. 695 (2014),

1-39, DOI 10.1515/crelle-2012-0088. MR3276153

BERGISCHE UNIVERSITAT WUPPERTAL, GAUSS STRASSE 20, D-42119 WUPPERTAL, GERMANY
Email address: renfei@uni-wuppertal.de


https://www.ams.org/mathscinet-getitem?mr=1695861
https://www.ams.org/mathscinet-getitem?mr=992981
https://www.ams.org/mathscinet-getitem?mr=1418952
https://stacks.math.columbia.edu
https://www.ams.org/mathscinet-getitem?mr=1344141
https://www.ams.org/mathscinet-getitem?mr=1187705
https://www.ams.org/mathscinet-getitem?mr=3076731
https://www.ams.org/mathscinet-getitem?mr=3276153

	Introduction
	Part 1. The complexes
	1. Kato’s complex 𝐾_{𝑛,𝑋,𝑙𝑜𝑔,𝑡}
	2. Bloch’s cycle complex ℤ_{𝕏,𝕥}^{𝕔}
	3. Kato’s complex of Milnor 𝐾-theory 𝐶^{𝑀}_{𝑋,𝑡}
	4. Kato-Moser’s complex of logarithmic de Rham-Witt sheaves 𝜈̃_{𝑛,𝑋,𝑡}

	Part 2. The maps
	5. Construction of the chain map 𝜁_{𝑛,𝑋,𝑙𝑜𝑔,𝑡}:𝐶^{𝑀}_{𝑋,𝑡}\xrightarrow{}𝐾_{𝑛,𝑋,𝑙𝑜𝑔,𝑡}
	6. Combine 𝜓_{𝑋,𝑡}:ℤ^{𝕔}_{𝕏,𝕥}→ℂ^{𝕄}_{𝕏,𝕥} with 𝜁_{𝕟,𝕏,𝕝𝕠𝕘,𝕥}:ℂ^{𝕄}_{𝕏,𝕥}\xrightarrow{}𝕂_{𝕟,𝕏,𝕝𝕠𝕘,𝕥}

	Part 3. Applications
	7. De Rham-Witt analysis of 𝜈̃_{𝑛,𝑋,𝑡} and 𝐾_{𝑛,𝑋,𝑙𝑜𝑔,𝑡}
	8. Higher Chow groups of zero cycles
	Appendix A. Semilinear algebra
	Acknowledgments
	References


