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RIESZ AND GREEN ENERGY ON PROJECTIVE SPACES

AUSTIN ANDERSON, MARIA DOSTERT, PETER J. GRABNER, RYAN W. MATZKE,
AND TETIANA A. STEPANIUK

Abstract. In this paper we study Riesz, Green and logarithmic energy on
two-point homogeneous spaces. More precisely we consider the real, the com-
plex, the quaternionic and the Cayley projective spaces. For each of these
spaces we provide upper estimates for the mentioned energies using determi-
nantal point processes. Moreover, we determine lower bounds for these energies
of the same order of magnitude.

1. Introduction

Motivated by classical potential theory (see, for instance [40]) discrete energies
of point sets on manifolds have been studied. More precisely, for a given symmetric
and lower semi-continuous kernel K : Ω× Ω → R on a metric space Ω the discrete
energy of a set ωN = {x1, . . . , xN} ⊂ Ω is given by

EK(ωN ) =
N∑

i,j=1
i �=j

K(xi, xj).

In rather general settings the empirical measures associated to minimizing config-
urations of EK(ωN ) for N → ∞ converge weakly to the minimizing measure of the
continuous energy

IK(μ) =

∫∫
Ω×Ω

K(x, y) dμ(x) dμ(y)

amongst all Borel probability measures. For more details and a comprehensive
introduction to the subject we refer to [16].

For a sufficiently repulsive potential, one expects the minimizing configurations
of the discrete energy to be well-distributed, in some sense. Perhaps the best-
known example of such potentials are the classical Riesz s-energies (s > 0) for
infinite compact sets Ω ⊆ R

d

Js(x, y) :=
1

‖x− y‖s .
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It has been shown in [32] that, under rather general conditions, if s ≥ dim(Ω), then
the minimizers of EJs

are uniformly distributed. This uniformity of minimizers does
not hold in general for s < dim(Ω). However, due to the highly symmetric structure
of the sphere Sd−1, one finds that for the Riesz potentials Js with 0 < s < d − 1
and the logarithmic potential

J0(x, y) = − log(‖x− y‖),
which is obtained by a limiting process for s → 0, the continuous energies IJs

and IJ0
are uniquely minimized by the uniform measure on the sphere σ, and the

minimizers of the discrete energies are uniformly distributed.
The minimal energy of N points for the kernel Js (s ≥ 0) on a space Ω,

EJs
(Ω, N) = min

ωN⊂Ω
EJs

(ωN ),

has been investigated especially for the sphere Sd−1, see for instance [54, 55]. For
0 < s < d− 1 it satisfies

−C1N
1+ s

d−1 ≤ EJs
(Sd−1, N)− IJs

(σ)N2 ≤ −C2N
1+ s

d−1 ,

where C1 and C2 are positive constants. The term IJs
(σ)N2 of highest order reflects

the fact that the empirical measures of the discrete minimizers weakly tend to σ.
It is conjectured that a more precise asymptotic equation

EJs
(Sd−1, N) = IJs

(σ)N2 − CN1+ s
d−1 + o(N1+ s

d−1 )

holds, where the precise value of the constant C is believed to reflect the local struc-
ture of minimizing configuration. For more details we refer to [19] and [32]. The
conjectural values of the constant are related to zeta functions of certain lattices,
which relates the question to lattice energies on Euclidean spaces.

Motivated by these results, as well as certain other recent works mentioned below,
we extend these results known for spheres to the projective spaces FP

d−1 over
scalar domains F (the real or complex numbers, the quaternions, or the octonions).
These spaces together with the spheres are the only compact connected two-point
homogeneous spaces (see [56]). On these projective spaces, we study the energies
given by the chordal Riesz s-kernels

Ks(x, y) =
1

ρ(x, y)s
=

1

sin(ϑ(x, y))s
for s > 0,

and chordal logarithmic kernel

K0(x, y) = − log(ρ(x, y)) = − log sin(ϑ(x, y)),

where ρ and ϑ are the chordal and geodesic metrics, respectively, discussed below.
The case of s < dim(Ω) is the subject of classical potential theory (see, for instance
[40]), the corresponding kernels are called singular, whereas the kernels for s ≥
dim(Ω) are called hypersingular. Each of the projective spaces can be embedded
in a sufficiently high dimensional unit sphere, in which case the chordal distance
becomes the Euclidean distance, making these energies the natural generalization
of the classical Riesz and logarithmic energies on the sphere, but without requiring
the embedding itself.

The study of Riesz energies on projective spaces, particularly CP
d−1, has been a

subject of recent interest. In[1,4,5], the authors studied various potential theoretic
properties of the logarithmic energy on complex projective spaces. The expected
Riesz and logarithmic energies of zero sets of independent Gaussian polynomials on
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CP
d−1 (and more generally on Kähler manifolds) was determined in [26], whereas

in [9], the authors computed the expected energies for certain determinantal point
processes to find asymptotic upper bounds on the Riesz and logarithmic energies.
More qualitative properties of the minimizers of the logarithmic and Riesz energies
on the real and complex projective spaces were studied in [22]. The authors found
that the minimizers of these energies are uniformly distributed, including the hy-
persingular case, and that these minimizers approximate tight frames (acting as
element on the real and complex spheres). Moreover, as s → ∞, the minimizers of
the Riesz energies approximate best packings on these spaces (i.e. frames with low
coherence). Both tight frames on real and complex spaces as well as best packings
on Grassmannians have applications to signal processing (see, e.g., [21, 38, 45]).

Another natural kernel to study on the projective spaces is the Green function,
G(x, y), associated to the Laplace-Beltrami operator. The Green function is a
smooth potential, intrinsic to any Riemannian manifold, that behaves similarly to
a Riesz energy at short ranges. On the sphere and projective spaces, it is in fact a
function of distance only, making computations much more feasible. The minimiza-
tion of Green energies on compact Riemannian manifolds was first studied in [7],
where it was shown that the continuous Green energy is uniquely minimized by the
uniform measure and that minimizers of the discrete Green energy are uniformly
distributed. The minimizers of the Green energy have more recently been shown to
be well-seperated in [25], and to have the optimal asymptotic quadratic Wasserstein
distance from the uniform measure in [51]. Upper bounds for the minimal discrete
Green energy on complex projective spaces were determined in [9] using determi-
nantal point processes different from the ones used in our paper. This upper bound
was of the optimal order, which was determined for general compact Riemannian
manifolds in [51].

1.1. Summary of paper and main results. In Sections 1.2 and 1.3 we list some
necessary notation and properties of Jacobi polynomials, which we make extensive
use of in this paper.

In order to make this paper (mostly) self-contained and gather the required ma-
terial, in Section 2 we cover the necessary background for harmonic analysis on
compact connected two-point homogeneous spaces, as well as some of its conse-
quences. In Section 2.5, we obtain explicit formulae for the Green functions on the
projective spaces. In Section 2.6, we show that the Riesz and logarithmic kernels
are strictly positive definite, and obtain the following result:

Theorem 1.1. The continuous logarithmic energy IK0
, Green energy IG, and Riesz

s-energies IKs
, for 0 < s < dim(FPd−1), are uniquely minimized by the uniform

measure σ.
Moreover, if {ωN}∞N=2 is a sequence of minimizers for the discrete energies EK0

,

EG, or EKs
, for 0 < s < dim(FPd−1), then {ωN}∞N=2 is a sequence of uniformly

distributed point configurations.

We finish Section 2 by discussing the properties of the heat kernel we use to find
lower bounds on the minimal discrete Green energy.

In Section 3, we define determinantal point processes given by rotation invariant
kernels on the projective spaces. The processes are defined by projections to spaces
of harmonic functions, thus they are called harmonic ensembles following [12].
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In Section 4, we provide lower and upper asymptotic bounds on the minimal
discrete Riesz, logarithmic, and Green energies on the projective spaces, cumulating
in the following three results:

Theorem 1.2. Let d > 2. For each projective space FPd−1 and 0 < s < dim(FPd−1)
there exist positive constants Cs, C

′
s such that for N ≥ 2

−CsN
1+ s

dim(FPd−1) ≤ EKs
(FPd−1, N)− IKs

(σ)N2 ≤ −C ′
sN

1+ s

dim(FPd−1) .

Theorem 1.3. Let d > 2. For each projective space FP
d−1, there exist positive

constants C0, C
′
0 such that for N ≥ 2

−C0N log(N) ≤ EK0
(FPd−1, N)− IK0

(σ)N2 ≤ −C ′
0N log(N).

Theorem 1.4. Let d > 2. For each projective space FP
d−1, there exist positive

constants CG, C
′
G such that for N ≥ 2

−CGN
2− 2

dim(FPd−1) ≤ EG(FPd−1, N) ≤ −C ′
GN

2− 2

dim(FPd−1) ,

unless FP
d−1 = RP

2, in which case

−CGN log(N) ≤ EG(FPd−1, N) ≤ −C ′
GN log(N).

The order of the upper bounds for each of these results is proved in Section 4.1
through jittered sampling using equal area partitions with some extra control on the
diameters. Such partitions exist on general Ahlfors regular metric measure spaces
by [30]. However, without a deeper understanding of the geometry of these spaces,
the method of jittered sampling does not give explicit values for the constants C ′

s,
C ′

0, and C ′
G in the above theorems. In Section 4.2, we compute the expected Riesz,

logarithmic, and Green energies of the harmonic ensemble. This provides a more
concrete upper bound on the minimal energies, with an explicit constant for the
next-order term and the order of the error term, though only for certain values of
N (see (4.5), (4.7), (4.8), and (4.9)). In addition, we compute the expected Riesz

s-energy for s = dimFP
d−1 of this ensemble, resulting in an asymptotic upper

bound on the minimum of this hypersingular energy. In Section 4.3, we determine
the order of the lower bounds for the Riesz and logarithmic energies through linear
programming using the complete monotonicity of the corresponding kernels as a
function of chordal distance. Finally, in Section 4.4 we give lower bounds for the
Green energy, with explicit values of the next-order term. We achieve these lower
bounds again via linear programming, this time making use of lower bounds for the
Green function obtained from the positivity of the heat kernel.

We collect our explicit upper and lower bounds for the minimal discrete Green
energies on projective spaces, with the lower bounds holding for all N and the upper
bound holding only for certain values of N , in Table 1.

For the complex projective spaces CP
d−1 with d > 4, this upper bound is an

improvement upon the previously best known upper bound

EG(N) ≤ − d− 1

4(d− 2)

( 1

(d− 1)!

) 1
d−1

N2− 2
2d−2

for N =
(
d+n−1

n

)
[9, Theorem 1.3]. We note that in their paper, Beltrán and Etayo

took the volume of the CPd−1 to be πd−1

(d−1)! , so we have adjusted their result to match

our normalization (volume being 1). This upper bound was achieved through a de-
terminantal point process on the complex space Cd−1 with a kernel constructed
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Table 1. Lower and upper bounds for the minimal discrete Green
energy on projective spaces in terms of the number of points N .

The upper bound only holds for N = (α+β+2)n(α+2)n
(β+2)nn!

(defined in

2.1).

Ω lower bound upper bound

RP
2 − 1

2N log(N) +O(N) − 1
2N log(N) +O(N)

RP
3 − 3

4 (π)
1
3 N2− 2

3 +O(N log(N)) − 9
16

(
4
3

) 2
3 N2− 2

3 +O(N)

RP
d−1 − d−1

4(d−3)

( √
π

Γ(d/2)

) 2
d−1

N2− 2
d−1

+O(N2− 3
d−1 )

− (d−1)2

8(d−2)(d−3)

( √
π

Γ( d
2 )Γ(

d+1
2 )

) 2
d−1

×N2− 2
d−1 +O(N2− 3

d−1 )

CP
d−1 − d−1

4(d−2)

(
1

Γ(d)

) 1
d−1N2− 2

2d−2

+O(N2− 3
2d−2 )

− (d−1)
4(2d−3)

(
1

Γ(d)

) 2
d−1

N2− 2
2d−2

+O(N2− 3
2d−2 )

HP
d−1 − d−1

2(2d−3)

(
1

Γ(2d)

) 1
2d−2N2− 2

4d−4

+O(N2− 3
4d−4 )

− (d−1)2

(2d−3)(4d−5)

(
1

Γ(2d)Γ(2d−1)

) 1
2d−2

×N2− 2
4d−4 +O(N2− 3

4d−4 )

OP
2 − 2

7

(
6
11!

) 1
8N2− 2

16 +O(N2− 3
16 ) − 16

21

(
6

(11!)(8!)

) 1
8

N2− 2
16

+O(N2− 3
16 )

from functions on this space, and then mapping this process to the complex pro-
jective space CP

d−1 via the map z 	→ (1, z), creating the projective ensemble. As
pointed out, our upper bound also comes from a determinantal point process, but
the kernel in this instance is built directly from functions on CP

d−1. The rotational
invariance that results from this seems to lead to an improvement; however, it also

means that our bound holds for different values of N (N = ((d−1)!)2

n+1

(
d+n−1

n

)2
).

Similarly, our estimates for the minimal Riesz and logarithmic energies on com-
plex projective spaces resulting from the harmonic ensemble ((4.5) and (4.7)) gen-
erally match or improve upon previously known results. A first instance of apply-
ing point processes to obtain estimates for the Riesz and logarithmic energies on
CP

d−1 is [26]. There, Feng and Zelditch studied the expectation of these energies
for the zero set of d − 1 degree m Gaussian random polynomials. They obtain
the correct main term and the correct order of the second asymptotic term for
0 ≤ s ≤ min(4, D); nevertheless, their second order term becomes positive for s
close to 4.

More recently, Beltrán and Etayo also applied their projective ensemble to find
estimates for the minimal Riesz and logarithmic energies on CP

d−1. For 0 < s <
2d− 2 and N =

(
d+n−1

n

)
, they obtained the upper bound [9, Theorem 3.3])

EKs
(N) ≤ IKs

(σ)N2 −
(d− 1)Γ

(
d− 1− s

2

)
(Γ(d))1−

s
2d−2

N1+ s
2d−2 + o(N1+ s

2d−2 ).
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Numerical evidence strongly suggests that the coefficient of the next-order term in
this bound and the one we obtain in Theorem 4.5 equate at some unique value s =
sd−1 in each dimension, with their bound winning for values below sd−1 and ours
being better for values above sd−1. These values sd−1 appear to be bounded from
above by some constant s∗. Assuming such an s∗ exists, we believe s∗ ≈ 6.0365,
which we obtain by solving

e−
s∗
2

Γ (1 + s∗)

Γ
(
1 + s∗

2

)2 = 1,

which results from letting d to tend to infinity in the ratio of the two coefficients
and assuming them to be equal. In particular, our bound appears to represent an
improvement for all s exceeding a fixed value independent of dimension.

We also provide the expected logarithmic energy of our harmonic ensemble on
CP

d−1 in Theorem 4.7, achieving the same next order term, − 1
2d−2N log(N), as

achieved by the expected logarithmic energies in [9, Corollary 3.4] and [26, Corollary
1]. The lower bound we determine in Theorem 4.12 shows that this is indeed the
best possible coefficient for the second order term.

1.2. Notation. Throughout the paper we will use the following notations:

• The Pochhammer symbol

(x)k = x(x+ 1) · · · (x+ k − 1) =
Γ(x+ k)

Γ(x)
,

• the digamma function

ψ(x) =
Γ′(x)

Γ(x)
= −γ − 1

x
+

∞∑
n=1

(
1

n
− 1

n+ x

)
,

• the harmonic numbers

Hk =
k∑

�=1

1

	
= ψ(k + 1) + γ,

• where

γ = −Γ′(1) = lim
k→∞

Hk − log(k)

denotes the Euler-Mascheroni constant.
• We will also make frequent use of the asymptotic relations

Γ(n+ x)

Γ(n+ y)
= nx−y

(
1 +O

(
1

n

))
as n → ∞

and (
n+ x

n

)
=

nx

Γ(x+ 1)

(
1 +O

(
1

n

))
as n → ∞.

• We will denote the set of finite Borel measures on a space Ω as B(Ω), the
set of Borel probability measures as P(Ω), the set of finite signed Borel
measures as M(Ω), and the set of finite signed Borel measures with total
mass zero, i.e. ν ∈ M(Ω) satisfying ν(Ω) = 0, as Z(Ω).
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1.3. Jacobi polynomials. The classical Jacobi polynomials will play a prominent
role in this paper. Thus we collect some basic facts about them. The Jacobi

polynomials P
(α,β)
n (t) are the orthogonal polynomials for the weight function (1−

t)α(1+t)β on the interval [−1, 1]. Throughout the paper we will use the substitution
t = cos(2ϑ). The measure is then normalised and transformed to a measure on the
interval [0, π

2 ] that we denote by

(1.1) dν(α,β)(ϑ) =
1

γα,β
sin(ϑ)2α+1 cos(ϑ)2β+1 dϑ,

where

γα,β =
Γ(α+ 1)Γ(β + 1)

2Γ(α+ β + 2)
.

The Jacobi polynomials can be given by Rodrigues’ formula (see [43, p. 213])

P (α,β)
n (t) =

(−1)n

2nn!

1

(1− t)α(1 + t)β
dn

dtn
(
(1− t)n+α(1 + t)n+β

)
.

The value

P (α,β)
n (1) =

(
n+ α

n

)
and the relation∫ π

2

0

(
P (α,β)
n (cos(2ϑ))

)2
dν(α,β)(ϑ) =

α+ β + 1

2n+ α+ β + 1

(α+ 1)n(β + 1)n
n!(α+ β + 1)n

will occur frequently throughout.
We will use the summation formula

(1.2)

n∑
k=0

2k + α+ β + 1

α+ β + 1

(α+ β + 1)k
(β + 1)k

P
(α,β)
k (t) =

(α+ β + 2)n
(β + 1)n

P (α+1,β)
n (t)

at several occasions; this is a special case of a connection formula for Jacobi poly-
nomials with different parameters given in [3, Theorem 7.1.3].

Furthermore the orthogonality of the Jacobi polynomials allows expanding func-

tions F (cos(2ϑ)) ∈ L2([0, π
2 ], dν

(α,β)) in terms of P
(α,β)
n :

(1.3) F (t) =

∞∑
n=0

F̂ (n)P (α,β)
n (t),

where

(1.4) F̂ (n) =
mn(

P
(α,β)
n (1)

)2
π
2∫

0

F (cos(2ϑ))P (α,β)
n (cos(2ϑ)) dν(α,β)(ϑ)

and

mn =
2n+ α+ β + 1

α+ β + 1

(α+ β + 1)n(α+ 1)n
n!(β + 1)n

.

The convergence of the series (1.3) is a priori in the L2-sense. In the case that

F is continuous on [−1, 1] and all the coefficients F̂ (n) are non-negative, Mercer’s
theorem (see, for instance [27]) ensures absolute and uniform convergence. This
will be the content of Lemma 2.16.
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2. Harmonic analysis on two-point homogeneous spaces

2.1. Classification of two-point homogeneous spaces. We call a connected
Riemannian manifold (Ω, p) homogeneous if there is a Lie group G acting transi-
tively on Ω. This implies that Ω is homeomorphic to the quotient space G/Ga,
where Ga := {g ∈ G : ga = a} is the stabilizer of a point a ∈ Ω. The choice of
a ∈ Ω does not matter in this instance, as all stabilizers are conjugate by transi-
tivity. Let ϑp be the metric induced by the metric tensor p. The metric induces a
volume form, which we normalize to obtain the normalized surface measure σ. If
G acts by isometries this equals the measure induced by the Haar-measure on G.

If G is the isometry group of the homogeneous space Ω, we call Ω two-point
homogeneous if for all x1, x2, y1, y2 ∈ Ω with ϑp(x1, x2) = ϑp(y1, y2), there is an
isometry g ∈ G such that gxi = yi, i = 1, 2. All two-point homogeneous Riemannian
manifolds have been classified (see [36, Chapter I.4]). The noncompact spaces are
the Euclidean spaces Rd, the real, complex, and quaternionic hyperbolic spaces, and
the hyperbolic analogue of the Cayley plane [53]. The only compact connected two-
point homogeneous Riemannian manifolds are the real unit spheres S

d−1, the real
projective spaces RP

d−1, the complex projective spaces CP
d−1, the quaternionic

projective spaces HP
d−1, and the Cayley projective plane OP

2 (see [56]), with the
quotient representations given in [57, pp. 28-29]

S
d−1 ∼= SO(d)/SO(d− 1)

RP
d−1 ∼= O(d)/

(
O(d− 1)×O(1)

)
,

CP
d−1 ∼= U(d)/

(
U(d− 1)×U(1)

)
,

HP
d−1 ∼= Sp(d)/

(
Sp(d− 1)× Sp(1)

)
,

OP
2 ∼= F4/Spin(9).

When talking about the projective spaces in general we denote the scalar domain
by F.

Note that it suffices to consider FP
d−1 for d > 2 only, as FP

1 is isomorphic to
the sphere SdimR(F) (see [6, p. 170]), so those will not be considered in what follows.

For each two-point homogeneous space with underlying scalar domain F, we
associate parameters

(2.1) α = (d− 1)
dimR(F)

2
− 1, β =

{
α, for Ω = Sd−1;
dimR(F)

2 − 1, for Ω = FP
d−1.

The dependence of α and β on the space and its dimension will be clarified in
Section 2.3. Furthermore, we denote D = dim(Ω) = 2α + 2 the dimension of the
space Ω as a real manifold.

From now on, Ω always refers to a two-point homogeneous space, equipped
with metric tensor p and corresponding G-invariant probability measure σ, i.e.
the normalized uniform surface measure. We let ϑ denote the geodesic distance,
normalized to take values in [0, π

2κ ], where κ = 1
2 or κ = 1, if Ω is a sphere or

projective space, respectively. We can also define a chordal metric ρ on each of
these spaces by

(2.2) ρ(x, y) = sin(κϑ(x, y)) =

√
1− cos(2κϑ(x, y))

2
, x, y ∈ Ω.
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Note that on the sphere, this is the Euclidean distance 1
2‖x− y‖ in ambient space,

and on the complex projective space this is also known as the Fubini-Study metric.
Each projective space FP

d−1 can be canonically embedded into the unit sphere

Sd̃−1, where d̃ = d(α + 2) = d(d−1)
2 dimR(F) + d, so that the chordal metric is

equivalent to the Euclidean metric on this embedding, which we will now show.
Let H(Fd) be the set of all Hermitian d × d matrices with entries in F. We see

that H(Fd) is a linear space over R of dimension d̃, equipped with the symmetric
real-valued inner product

〈A,B〉 = 1

2
tr(ABT +BAT) = Re(tr(ABT)) = Re

d∑
i,j=1

ai,jbi,j

and norm

(2.3) ‖A‖H(Fd) = (tr(AAT))
1
2 =

( d∑
i,j=1

|ai,j |2
) 1

2

.

For F �= O, the orthogonal projector Πx ∈ H(Fd) (x ∈ F
d, ‖x‖ = 1) onto a

one-dimensional subspace xF can be given by the matrix Πx = (xixj)1≤i,j≤d, with
x = (x1, . . . , xd). Thus, the projective space can be written as

(2.4) FP
d−1 ∼= {Π ∈ H(Fd) : Π2 = Π,Tr(Π) = 1}.

The group of isometries U(d,F) acts on these projectors by g(Π) = gΠg−1.
For the Cayley plane, a similar model (as well as a detailed discussion) is given

in [6, 28]. In this model, one defines the Cayley plane by

(2.5) OP
2 ∼= {Π ∈ H(O3) : Π2 = Π,Tr(Π) = 1}.

Each matrix can be written as Πx = (xixj)1≤i,j≤3, for a vector x = (x1, x2, x3) ∈ O
3

with ‖x‖2 = |x1|2 + |x2|2 + |x3|2 = 1 and (x1x2)x3 = x1(x2x3) [33, Lemma 14.90].

Equations (2.3), (2.4), and (2.5) show us that for any Π ∈ FP
d−1, as defined by

the above models,

‖Π‖2H(Fd) = Tr(Π2) = Tr(Π) = 1,

so the projective spaces are submanifolds in the unit sphere

FP
d−1 ⊂ {Π ∈ H(Fd) : ‖Π‖H(Fd) = 1} ⊂ H(Fd) ∼= R

d̃.

This provides an embedding A of FPd−1 into the sphere Sd̃−1. The chordal metric
ρ(Π1,Π2), for Π1,Π2 ∈ FP

d−1, is then defined as the Euclidean distance in the
embedding

ρ(Π1,Π2) =
√
1− 〈Π1,Π2〉 =

1√
2
‖Π1 −Π2‖H(Fd)

=
1√
2
‖A(Π1)−A(Π2)‖.

2.2. The Laplace operator and its eigenfunctions. Let �Ω be the Laplace-
Beltrami operator on Ω induced by the Riemannian metric p, and let 0 = λ0 <
λ1 < · · · be the eigenvalues of �Ω and for each k ∈ N, let Vk := V (�Ω, λk) be the
corresponding eigenspace and mk = dim(Vk) be the multiplicity of λk. Notice that
we follow the convention of geometry choosing the sign of the operator so that the
eigenvalues are non-negative.
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We then have the following version of the Spectral Theorem [24, Chapter 3,
Theorem 1.3, and Remark 1.2]

Theorem 2.1. The eigenvalues of �Ω can be arranged in increasing order 0 =
λ0 < λ1 < · · · , where limk→∞ λk = ∞, each eigenspace Vk has finite dimension,
and

L2(Ω, σ) =

∞⊕
k=0

Vk.

For any Riemannian manifold M , we can use geodesic polar coordinates
(r, ϑ1, . . . , ϑdimR(M)−1) to parametrize a sufficiently small neighborhood U of any
point a, giving U a positive orientation and having a radial component r(x) which
is the distance of x ∈ M from a, as described in [13, Chapter 2], [48, Chapter 2.4],
and [34, Chapters IX.5, X.4, and X.7.4].

In particular, on a two-point homogeneous space Ω, such a polar coordinate
parameterization can be defined on Ωa := Ω \ SΩ(a, π

2κ ), where SΩ(a, r) = {x ∈ Ω :
ϑ(a, x) = r} for r ∈ [0, π

2κ ] [34, Chapters IX.5, X.4, and X.7.4]. This allows us to
separate �Ω into a radial and angular component on this set.

Theorem 2.2 ([34, Chapter X.7.4, Lemma 7.12]). If f ∈ C∞(Ω) and a ∈ Ω, then
on Ωa the Laplace operator can be expressed in terms of geodesic polar coordinates
by

�Ωf = − 1

A(r)

∂

∂r

(
A(r)

∂f

∂r

)
+�ϑf,

where �ϑ is the Laplace operator on SΩ(a, r), and A(r) denotes the surface measure
of SΩ(a, r).

For each r ∈ [0, π
2κ ], SΩ(a, r) is a submanifold of Ω with Riemannian structure

induced by that of Ω. In this case we have for 0 < r < π
2κ (see [35, Proposition 5.6

and p. 171])

(2.6) A(r) = cκ−2α−1 sin2α+1(κr) cos2β+1(κr),

where c is a constant depending on the structure of Ω, and the values α and β are
given by (2.1). Recall that for the spaces FPd−1 we choose κ = 1, whereas for Sd−1

we set κ = 1
2 .

For functions f only depending on r the Laplace operator then becomes

�r = − 1

sin2α+1(κr) cos2β+1(κr)

d

dr

(
sin2α+1(κr) cos2β+1(κr)

d

dr

)
,

which, making the substitution z = cos(2κr), becomes

�z = − 4κ2

(1− z)α(1 + z)β
d

dz

(
(1− z)α+1(1 + z)β+1 d

dz

)
,

see [29, pp. 177-178]. This is the Jacobi operator, for which the only eigenfunctions

continuous on [−1, 1] are the Jacobi polynomials P
(α,β)
k (z), with corresponding

eigenvalues λk = 4κ2k(k + α + β + 1) (see [52, Theorem 4.2.2]). Summing up this
discussion we have shown

Theorem 2.3. Let Ω be a two-point homogeneous space of diameter π
2κ and a ∈ Ω.

Then the eigenfunctions of �Ω on Ω depending only on ϑ(a, x) are given by

cP
(α,β)
k (cos(2κϑ(x, a))) with c ∈ R
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and the corresponding eigenvalues are

λk = 4κ2k(k + α+ β + 1)

with the values of α and β given by (2.1).

The eigenvalues and the dimensions of their corresponding eigenspaces are given
in Table 2 (see [14, 20, 31, 49]).

Table 2. The eigenvalues and dimensions of the eigenspaces of
the Laplace operator for two-point homogeneous spaces

Ω α β λk mk = dim(Vk)

S
d−1 d−3

2
d−3
2 k(k + d− 2) 2k+d−2

d−2

(
k+d−3
d−3

)
RP

d−1 d−3
2 − 1

2 2k(2k + d− 2) 4k+d−2
d−2

(
2k+d−3

d−3

)
CP

d−1 d− 2 0 4k(k + d− 1) 2k+d−1
d−1

(
d+k−2
d−2

)2
HP

d−1 2d− 3 1 4k(k + 2d− 1) 2k+2d−1
(2d−1)(2d−2)

(
k+2d−2
2d−2

)(
k+2d−3
2d−3

)
OP

2 7 3 4k(k + 11) 2k+11
1320

(
k+10

7

)(
k+7
7

)
For all two-point homogeneous spaces, we have the general formula

mk =
2k + α+ β + 1

α+ β + 1

(α+ β + 1)k(α+ 1)k
k!(β + 1)k

.

2.3. Irreducibility of representations. Let Ω be a two-point homogeneous space,
with isometry group G and Ga the stabilizer of some a ∈ Ω, meaning that Ω �
G/Ga. We then have an orthogonal representation of G in the pre-Hilbert space
C∞(Ω) given by g 	→ (f(x) 	→ f(gx)). Let V be a finite-dimensional subspace
of C∞(Ω), invariant under this representation, and let qV be the representation
induced in V .

Definition 2.4. A function f is called zonal with respect to a ∈ Ω if f(a) �= 0, and
for all g ∈ Ga and x ∈ Ω, f(gx) = f(x). The zonal functions of V form a vector
subspace of V , denoted by Za(V ).

Lemma 2.5. If V �= {0}, then Za(V ) �= {0}. If dim(Za(V )) = 1 for one (and thus
all) a ∈ Ω, qV is irreducible.

Proof. Consider the linear map φ : V → R defined by

φ(f) = f(a).

Since, by assumption, V contains a non-zero function, G is transitive on Ω, and
V is G-invariant there exists some f ∈ V such that φ(f) is not zero. Thus ker(φ) is
a subspace of V , which is invariant under Ga. The orthogonal subspace (ker(φ))⊥

is also invariant under Ga. Now, let f ∈ (ker(φ))⊥ and μ be the Haar measure on
Ga. Define f∗(x) =

∫
Ga

f(hx) dμ(h) for all x ∈ Ω. Then f∗ is in V , non-zero at a,
and is Ga-invariant, meaning it is a zonal function, proving our first statement.
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Suppose that qV is reducible. Then, since it is an orthogonal representation, we
have a decomposition

V = V ′ ⊕ V ′′,

where V ′ and V ′′ are both G-invariant and nontrivial. Then each of the two spaces
contains a nontrivial subspace of zonal functions, so dim(Za(V )) ≥ 2. �

Proposition 2.6. For each k ∈ N0, let Vk be the space of eigenfunctions of �Ω

associated to the k-th eigenvalue λk, and let qk be the orthogonal representation of

G in Vk. The zonal functions of Vk are exactly cP
(α,β)
k (cos(2κϑ(x, a))) for c ∈ R,

and so qk is irreducible.

Proof. By Lemma 2.5, Za(Vk) �= {0}, and it suffices to show that dim(Za(Vk)) ≤ 1.
Let f be a zonal function. Then two-point homogeneity and Theorem 2.3 tell us

that f(x) = cP
(α,β)
k (cos(2κϑ(x, a))) for some c ∈ R. Thus the space Za(Vk) is

one-dimensional, and the proposition is proved. �

As a consequence of Theorem 2.1 and Proposition 2.6 we have

Proposition 2.7. Let H be a finite-dimensional G-invariant subspace of L2(Ω, σ).
Then there exist 0 ≤ k1 < · · · < km such that

H = Vk1
⊕ · · · ⊕ Vkm

,

where Vk is the eigenspace of �Ω corresponding to the eigenvalue λk.

2.4. The addition formula for eigenfunctions of the Laplace operator. For
each k ∈ N0, let Yk,1, . . . , Yk,mk

be real-valued functions that form an orthonormal
basis of Vk under the inner product 〈Y, Z〉 =

∫
Ω
Y (x)Z(x) dσ(x).

Theorem 2.8 (Addition formula). For each k ∈ N0 and x, y ∈ Ω,

(2.7)

mk∑
m=1

Yk,m(x)Yk,m(y) =
mk

P
(α,β)
k (1)

P
(α,β)
k (cos(2κϑ(x, y))).

Proof. Let

Yk(x) :=

⎛⎜⎝ Yk,1(x)
...

Yk,mk
(x)

⎞⎟⎠ ,

and note that
∑mk

m=1 Yk,m(x)Yk,m(y) = Yk(x)
TYk(y). For any γ ∈ G, Yk,1(γx), . . . ,

Yk,mk
(γx) is also an orthonormal basis of Vk, thus there is a qk(γ) ∈ O(Vk), so that

Yk(γx)
TYk(γy) = (qk(γ)Yk(x))

Tqk(γ)Yk(y)

= Yk(x)
Tqk(γ)

Tqk(γ)Yk(y) = Yk(x)
TYk(y).

In particular, this means that for all γ ∈ Gy (y = γy),

Yk(γx)
TYk(y) = Yk(γx)

TYk(γy) = Yk(x)
TYk(y)

making Yk(x)
TYk(y) a zonal function of x, thus it must be a multiple of

P
(α,β)
k (cos(2ϑ(x, y))):

Yk(x)
TYk(y) = ckP

(α,β)
k (cos(2κϑ(x, y))).
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Setting x = y and integrating yields
mk∑
m=1

∫
Ω

Yk,m(x)2 dσ(x) = mk = ckP
(α,β)
k (1),

which gives (2.7). �
We note that one can achieve such an addition formula without making use of

properties of the Laplace operator and its eigenfunctions, and rather making use of
representation theory (see [23, Chapter 9.2.1], [42, Section 3.2]).

Remark 2.9. From now on we only consider the projective spaces RP
d−1, CPd−1,

HP
d−1, and OP

2; the case of the sphere Sd−1 has been treated in a very similar
manner in [12]. Thus we set κ = 1 for the remaining part of the paper.

As a corollary of the area formula (2.6), we can see that the weighted measure
ν(α,β) given by (1.1) is related to integration on Ω in the following way: for any
a ∈ Ω, and F (cos(2ϑ)) ∈ L1([0, π2 ], ν

α,β),

(2.8)

∫
Ω

F (cos(2ϑ(x, a))) dσ(x) =

π
2∫

0

F (cos(2ϑ)) dνα,β(ϑ).

2.5. The Green function. The Green function G of the Laplace-Beltrami oper-
ator is given by the integral operator solving the equation

�Ωg = f

by

g(x) =

∫
Ω

G(x, y)f(y) dσ(y)

with the additional condition
∫
Ω
g(x) dσ(x) = 0. In the case of two-point homoge-

neous spaces the bivariate function G(x, y) actually only depends on the distance
between x and y (see [7]). In fact, as we will show below, the Green functions on
the projective spaces have the following closed form expressions.

Proposition 2.10. The Green function for a projective space Ω is given by

G(x, y) =
1

4(α+ β + 1)

(
α∑

�=1

(
α
�

)
(	− 1)!

(β + α+ 1− 	)�

1

ρ(x, y)2�
− 2 log(ρ(x, y))

− ψ(α+ β + 1)− ψ(α+ β + 2)− γ + ψ(β + 1)

)
for α ∈ N0 and

G(x, y) =
cos(ϑ(x, y))

2α+ 1

(π
2
− ϑ(x, y)

) α− 1
2∑

�=0

( 12 )�

	!

1

ρ(x, y)2�+1

+
1

4α+ 2

α− 1
2∑

�=1

1

	

(
(α+ 1− 	)�

(α+ 1
2 − 	)�

−
( 12 )�

	!

)
1

ρ(x, y)2�

− 1

2α+ 1
Hα− 1

2
− 1

(2α+ 1)2

for α ∈ 1
2 + N0.
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Proof. Using the addition formula (2.7) we obtain the formal expression

G(x, y) =
∞∑

n=1

2n+ α+ β + 1

4(α+ β + 1)n(n+ α+ β + 1)

(α+ β + 1)n
(β + 1)n

P (α,β)
n (cos(2ϑ(x, y))).

Indeed, this series converges absolutely only for α < 1
2 , converges conditionally for

1
2 ≤ α < 3

2 , and does not converge at all for α ≥ 3
2 . We will show that the series

converges in the sense of Abel’s summation method (see [58]) and we will compute
the limit.

We start with [3, p. 301, eq. (6.4.7)]

∞∑
n=0

(α+ β + 1)n
(β + 1)n

P (α,β)
n (t)zn =

1

(1 + z)α+β+1 2F1

(
α+β+1

2 , α+β+2
2

β + 1

∣∣∣∣∣ 2z(1 + t)

(1 + z)2

)
and define

Gα,β(cos(2ϑ)) =
1

η
lim
z→1

∞∑
n=1

2n+ η

4n(n+ η)

(η)n
(β + 1)n

P (α,β)
n (cos(2ϑ))zn

=

1∫
0

(
1

(1 + z)η
2F1

( η
2 ,

η+1
2

β + 1

∣∣∣∣ 4 cos(ϑ)2z(1 + z)2

)
− 1

)
1 + zη

4ηz
dz,

where the convergence of the integral shows the existence of the limit for | cos(ϑ)| <
1. Here we have set η = α+β+1 for short, which we will use for this computation
in the sequel.

The coefficient of cos(ϑ)2n for n ≥ 1 is given by

(η)2n
(β + 1)nn!

∫ 1

0

zn

(1 + z)2n+η

1 + zη

4ηz
dz,

where we have used

4n
(η
2

)
n

(
η + 1

2

)
n

= (η)2n.

The integral is split into two parts; we first use the substitution z = 1
t to obtain∫ 1

0

zn+η−1

(1 + z)2n+η
dz =

∫ ∞

1

tn−1

(1 + t)2n+η
dt.

This shows that (see [43, p. 6])∫ 1

0

zn

(1 + z)2n+η

1 + zη

4ηz
dz =

1

4η

∫ ∞

0

zn−1

(1 + z)2n+η
dz =

(n− 1)!

4η(n+ η)n
.

For the constant term in the Taylor expansion we obtain

Cη = −
∫ 1

0

(
1− 1

(1 + z)η

)
1 + zη

4ηz
dz = − 1

4η
(ψ(η + 1) + γ) .

This can be obtained by splitting the integral in a similar way as above with some
slight modification to preserve convergence.

Putting everything together yields

Gα,β(cos(2ϑ)) =
1

4(α+ β + 1)

(
− (γ + ψ(α+ β + 2))

+

∞∑
n=1

(α+ β + 1)n
n(β + 1)n

cos(ϑ)2n
)
.
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The derivation up to now was valid for all α, β > −1. For the specific values of α
and β occurring in the context of projective spaces it turns out that the functions
Gα,β are indeed elementary. For an alternative derivation of the Green function on

the spaces FPd−1 we refer to [7, Appendix A.1].
For α = k ∈ N0 this is immediate from the observation that

(α+ β + 1)n
n(β + 1)n

=
(n+ β + 1)k
n(β + 1)k

,

which is a polynomial in n of degree k divided by n. More precisely, we have

(n+ β + 1)k =
k∑

�=0

(
k

	

)
(β + 1)k−�(n)�,

from which we derive

∞∑
n=1

(α+ β + 1)n cos(ϑ)
2n

n(β + 1)n

=
1

(β + 1)k

k∑
�=0

(
k

	

)
(β + 1)k−�

∞∑
n=1

(n)�
n

cos(ϑ)2n

=
k∑

�=1

(
k
�

)
(	− 1)!

(β + k + 1− 	)�

1

sin(ϑ)2�
+ log

1

sin(ϑ)2

− (ψ(β + k + 1)− ψ(β + 1)) .

For α ∈ N0 this gives

Gα,β(cos(2ϑ)) =
1

4(α+ β + 1)

(
α∑

�=1

(
α

	

)
(	− 1)!

(β + α+ 1− 	)�

1

sin(ϑ)2�
− γ

+ log
1

sin(ϑ)2
− ψ(α+ β + 1)− ψ(α+ β + 2)− ψ(β + 1)

)
.

The case that α ∈ 1
2 +N0 only occurs in the case of real projective spaces, when

β = − 1
2 . In this case we consider the functions

Fk(z) =
∞∑

n=1

(k + 1)n

n( 12 )n
zn

Gk(z) = 2(k + 1)

∞∑
n=0

(k + 2)n

( 32 )n
zn = 2(k + 1) 2F1

(
1, k + 2

3
2

∣∣∣∣ z);
these satisfy F ′

k = Gk. From [47, p. 463, eqns. 132, 133] we infer that

Gk(z) =
( 32 )k

k!

arcsin(
√
z)√

z

1

(1− z)k+
3
2

+
k∑

�=0

(k + 3
2 − 	)�

(k + 1− 	)�

1

(1− z)�+1
.
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From this we compute

Fk(z) =
2
√
z arcsin(

√
z)√

1− z

k∑
�=0

( 12 )�

	!

1

(1− z)�

+

k∑
�=1

1

	

(
(k + 3

2 − 	)�

(k + 1− 	)�
−

( 12 )�

	!

)
1

(1− z)�
−Hk,

which can be checked by differentiation. We get

Gk+ 1
2 ,−

1
2
(cos(2ϑ)) =

1

2(k + 1)
cos(ϑ)

(π
2
− ϑ
) k∑

�=0

( 12 )�

	!

1

sin(ϑ)2�+1

+
1

4(k + 1)

k∑
�=1

1

	

(
(k + 3

2 − 	)�

(k + 1− 	)�
−

( 12 )�

	!

)
1

sin(ϑ)2�

− 1

2(k + 1)
Hk − 1

4(k + 1)2
.

�

Putting everything together we derive the asymptotic main term of the Green
function

(2.9) Gα,β(cos(2ϑ)) =
Γ(α)Γ(β + 1)

4Γ(α+ β + 2)

1

sin(ϑ)2α
+O

(
1

sin(ϑ)2α−1

)
,

for α > 0 and

(2.10) G0,− 1
2
(cos(2ϑ)) = − log(sin(ϑ)) +O (1) ,

for Ω = RP
2.

2.6. Minimizers of the Riesz, Green, and logarithmic energies. In this
section, we prove that the uniform measure on Ω induced by the Haar measure of
the group acting on Ω minimizes the Riesz, Green and logarithmic energies.

Theorem 2.11. The logarithmic energy IK0
, the Green energy IG, and the Riesz

s-energies IKs
, for 0 < s < 2α+2, are uniquely minimized by the uniform measure

σ, with

IKs
(σ) =

Γ(α+ β + 2)Γ(α+ 1− s
2 )

Γ(α+ 1)Γ(α+ β + 2− s
2 )

,(2.11)

IK0
(σ) =

1

2
(ψ(α+ β + 2)− ψ(α+ 1)),(2.12)

and

(2.13) IG(σ) = 0.

Moreover, if {ωN}∞N=2 is a sequence of minimizers for the discrete energies EK0
,

EKs
, or EG, then the normalized counting measures

νωN
=

1

N

N∑
j=1

δzj

converge weakly to σ.
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We note that this has already been proven for Green energies in [7, Theorem 1.1],

and the uniformity of minimizers for logarithmic and Riesz energies on RP
d−1 and

CP
d−1 was proven in [22, Theorem 4.1].
In general, the minimal discrete and continuous energies of some kernel K are

related in the following way

Theorem 2.12 ([16, Theorem 4.2.2]). Let K be a lower semi-continuous kernel on
Ω, and μ be a minimizer of IK . Then for all N ∈ N \ {1},

EK(N) ≤ N(N − 1)IK(μ),

and

lim
N→∞

EK(N)

N2
= IK(μ).

If {ωN}∞N=2 is a sequence of optimal K-energy configurations and ν is a weak∗ limit
point of the normalized counting measures νωN

, then ν is an equilibrium measure
of IK .

Thus, if the continuous energy is minimized by the uniform measure, we should
expect uniformly distributed discrete minimizers. That the uniform measure (uni-
quely) minimizes the energies follows from the strict positive definiteness of the
kernels, which we show below.

Definition 2.13. We call a kernel conditionally positive definite if for all ν ∈ Z(Ω),
for which the energy is well defined, IK(ν) ≥ 0. We call a kernel positive definite if
for all ν ∈ M(Ω) for which the energy is well defined, IK(ν) ≥ 0. We call a kernel
strictly positive definite or conditionally strictly positive definite if it is positive
definite or conditionally positive definite, respectively, and IK(ν) = 0 only if ν = 0.

Theorem 2.14 (see [16, Theorem 4.2.7]). If K is conditionally strictly positive
definite, then IK has a unique minimizer in P(Ω).

We note that the proofs for Theorems 2.12 and 2.14 given in [16] are for compact
subsets of Rd, but they can be generalized to compact metric spaces by straight
forward adaptations of the arguments.

Corollary 2.15. If K is conditionally strictly positive definite and isometry in-
variant, then σ is the unique minimizer of IK .

Proof. Suppose that μ minimizes IK . Since K is isometry invariant, we have for
all g ∈ G,

IK(μ) =

∫∫
Ω×Ω

K(x, y) dμ(x) dμ(y)

=

∫∫
Ω×Ω

K(g(x), g(y)) dμ(x) dμ(y)

= IK(g#(μ)),

where g#(μ) is the pushforward measure of μ under g. Since μ must be unique, it
must be isometry invariant, giving us our claim. �

Lemma 2.16 gives more information on the convergence of Jacobi series as in
(1.3).
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Lemma 2.16. If F ∈ C([−1, 1]) and K(x, y) = F (cos(2ϑ(x, y))) is conditionally
positive definite, then

F (t) =

∞∑
n=0

F̂ (n)P (α,β)
n (t),

where the series converges absolutely and uniformly on [−1, 1].

Proof. We first observe that K(x, y)+C is positive definite for a large enough con-
stant C by [15, Theorem 2]. Thus we can assume without loss of generality that
K(x, y) is positive definite. The operator TK : f 	→

∫
Ω
K(x, y)f(y) dσ(y) is then

compact and thus has finite dimensional eigenspaces. By the G-invariance of K
and σ, these eigenspaces are also G-invariant. Thus by Proposition 2.7 the eigen-
functions of TK are eigenfunctions of the Laplace operator and the corresponding
eigenvalues are positive. Then the claim follows from Mercer’s theorem (see, for
instance [27]). �
Theorem 2.17. If F ∈ C([−1, 1]), then K(x, y) = F (cos(2ϑ(x, y))) is

(1) conditionally positive definite if and only if F̂ (n) ≥ 0 for all n ∈ N,

(2) positive definite if and only if F̂ (n) ≥ 0 for all n ∈ N0,

(3) conditionally strictly positive definite if and only if F̂ (n) > 0 for all n ∈ N,

(4) strictly positive definite if and only if F̂ (n) > 0 for all n ∈ N0.

Proof. The forward direction for each of these follows from [15, Theorem 2 and
Section III], with a slight alteration for the strict case.

Part (2) then follows from [15, Lemma 2] and that uniform limits of positive
definite functions are positive definite.

Now, suppose that F̂ (n) > 0 for all n ∈ N0. Then K is positive definite, so by
Lemma 2.16, the addition formula (2.7), and the density of {Yn,k : n ∈ N0, k ∈
{1, . . . , dim(Vn)}} in C(Ω), we have for any μ ∈ M(Ω), not identically zero,

IK(μ) =

∞∑
n=0

F̂ (n)

∫∫
Ω×Ω

P (α,β)
n (cos(2ϑ(x, y))) dμ(x) dμ(y)

=
∞∑
n=0

mn∑
k=1

F̂ (n)P
(α,β)
n (1)

mn

∫∫
Ω×Ω

Yn,k(x)Yn,k(y) dμ(x) dμ(y)

=

∞∑
n=0

mn∑
k=1

F̂ (n)P
(α,β)
n (1)

mn

(∫
Ω

Yn,k(x) dμ(x)
)2

> 0,

proving (4). Parts (1) and (3) now follow from [15, Theorem 2]. �
Theorem 2.18. For 0 ≤ s < D, the Riesz kernel Ks is strictly positive definite.

Proof. For ε > 0 and s ≥ 0, let

Ks,ε(x, y) =

⎧⎨⎩
(
ε+ 1−cos(2ϑ(x,y))

2

)− s
2

for s > 0

− 1
2 log

(
ε+ 1−cos(2ϑ(x,y))

2

)
for s = 0

and

Fs,ε(t) =

⎧⎨⎩
(
ε+ 1−t

2

)− s
2

for s > 0

− 1
2 log

(
ε+ 1−t

2

)
for s = 0

.
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Note that for all x, y ∈ Ω, Ks,ε(x, y) is strictly decreasing in ε, and
limε→0 Ks,ε(x, y) = Ks(x, y). Now, suppose that μ ∈ M(Ω) (not identically zero)
such that IKs

(μ) is well defined. There exists μ+, μ− ∈ B(Ω) such that μ = μ+−μ−,
and so, by the Monotone Convergence Theorem, we have

IKs
(μ) = IKs

(μ+)− 2

∫∫
Ω×Ω

Ks(x, y)dμ
+(x)dμ−(y) + IKs

(μ−)

= lim
ε→0

⎛⎝IKs,ε
(μ+)− 2

∫∫
Ω×Ω

Ks,ε(x, y)dμ
+(x)dμ−(y) + IKs,ε

(μ−)

⎞⎠
= lim

ε→0
IKs,ε

(μ).

We now show that IKs,ε
(μ) is positive and strictly decreasing as a function of ε,

for all s ≥ 0.
For ε > 0,

(2.14)
(
ε+

1− t

2

)− s
2

=
(
ε+ 1

)− s
2

∞∑
k=0

(
k + s

2 − 1

k

)( t+ 1

2(ε+ 1)

)k
and

(2.15) − log
(
ε+

1− t

2

)
= − log

(
ε+ 1

)
+

∞∑
k=1

1

k

( t+ 1

2(ε+ 1)

)k
,

with the series converging uniformly on [−1, 1].
The polynomials (t + 1)k can be expressed as linear combinations of Jacobi

polynomials; the coefficients are given by

mn

P
(α,β)
n (1)2

∫ π
2

0

(1 + cos(2ϑ))kP (α,β)
n (cos(2ϑ)) dνα,β(ϑ)

=
mn

P
(α,β)
n (1)2

(
k

n

)
2k(α+ 1)n(β + 1)k
(α+ β + 2)n+k

.

Together with the series expansions (2.14) and (2.15) this shows that F̂s,ε(n) > 0
for all s ≥ 0, n ∈ N0, for ε sufficiently small.

These coefficients are positive, meaning that Ks,ε is strictly positive definite, for
ε sufficiently small, by Theorem 2.17. Since μ �= 0, we know (from the density of
span({Yn,k : n ∈ N0, 1 ≤ k ≤ dim(Vn)}) in C(Ω)) that for some m ∈ N0, we must
have ∫∫

Ω×Ω

P (α,β)
m (cos(2ϑ(x, y))) dμ(x) dμ(y) > 0.

Since the coefficients F̂s,ε(n), for n ∈ N0, are strictly decreasing in ε and positive,
the positive definiteness of the Jacobi polynomials and Lemma 2.16 gives us, for
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0 ≤ s < D,

IKs
(μ) = lim

ε→0
IKs,ε

(μ)

= lim
ε→0

∞∑
n=0

F̂s,ε(n)

∫∫
Ω×Ω

P (α,β)
n (cos(2ϑ(x, y))) dμ(x) dμ(y)

≥ lim
ε→0

F̂s,ε(m)

∫∫
Ω×Ω

P (α,β)
m (cos(2ϑ(x, y))) dμ(x) dμ(y)

> 0.

This proves conditional strict positive definiteness. �
Theorem 2.19 (see [7, Proposition 3.14]). The Green function G(x, y) is condi-
tionally strictly positive definite.

Proof of Theorem 2.11. The first part of our claim follows from Theorems 2.18 and
2.19 and Corollary 2.15. Equations (2.11), (2.12), and (2.13) follow from direct
computation or our assumptions on G.

By Theorem 2.12, any weak∗ limit point of {νωN
: N ≥ 2} must be σ. We know,

by the Banach-Alaoglu Theorem, that P(Ω) is weak∗ compact. Thus the sequence
(νωN

) has a limit point, which has to be σ by Theorem 2.12. Thus the sequence
(νωN

) converges to σ and the second part of our claim now follows. �
2.7. The heat kernel. Using the theory of the heat kernel for a compact Rie-
mannian manifold (see, for example, [48]) we obtain a lower bound for the Green
function G(x, y) on each of the (compact) projective spaces.

The heat kernel on Ω is the unique function Ht(x, y) := H(t, x, y) ∈ C∞(R+ ×
Ω× Ω) satisfying

�xH(t, x, y) +
∂

∂t
H(t, x, y) = 0(2.16)

lim
t→0+

∫
Ω

H(t, x, y)f(y) dσ(y) = f(x)(2.17)

for each f ∈ C∞(Ω), where �x = �Ω is the Laplace operator in the variable x.
Similar to the case of the Green function, the spectral theorem and the addition

formula (2.7) together imply that Ht(x, y) has a series expansion in terms of the
Jacobi polynomials over L2(Ω, σ):

Ht(x, y) =
∞∑

n=0

e−4n(n+α+β+1)t 2n+ α+ β + 1

(α+ β + 1)

× (α+ β + 1)n(α+ 1)n
n!(β + 1)n

P (α,β)
n (cos(2ϑ(x, y))).

Contrasting with the formal expansion for G(x, y), the series expansion of
Ht(x, y) is uniformly convergent in x, y ∈ Ω for all t > 0.

Integrating (1−Ht(x, y)) with respect to t, we arrive at the kernel

Gt(x, y) =
∞∑

n=1

e−4n(n+α+β+1)t 2n+ α+ β + 1

4n(n+ α+ β + 1)

× (α+ β + 2)n−1(α+ 1)n
(β + 1)nn!

P (α,β)
n (cos(2ϑ(x, y))),

(2.18)
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which we may use to provide an explicit lower bound on the Green function.

Lemma 2.20. For all t > 0 and x �= y we have

(2.19) G(x, y) ≥ Gt(x, y)− t.

This approximation is originally due to Elkies, and Lang presents a proof in
[41, Lemma 5.2]. We shall also provide a proof, which uses the non-negativity of
the heat kernel.

Theorem 2.21. For all x, y ∈ Ω and t > 0,

Ht(x, y) ≥ 0.

Non-negativity follows from the fact that ∂
∂t+�x is a parabolic differential oper-

ator, thus satisfying a strong maximum principle (see [46, Chapter 3, Theorem 3],
[41, page 152].)

Proof of Lemma 2.20. We observe that

Gt(x, y) =

∫
Ω

G(x, z)Ht(z, y) dσ(z).

This function is defined for all (x, y) ∈ Ω2 for t > 0 by the integrability of G(x, y).
Furthermore, for all x �= y we have

�xGt(x, y) +
∂

∂t
Gt(x, y) = 0

lim
t→0

Gt(x, y) = G(x, y)

by (2.16), (2.17), the integrability of G, and the continuity of G for x �= y.
Then, by the defining property of G, we have

�xGt(x, y) = Ht(x, y)− 1.

From this, and Theorem 2.21, we derive, for t1 > t0 > 0,

−(t1 − t0) ≤
∫ t1

t0

(Ht(x, y)− 1) dt = Gt0(x, y)−Gt1(x, y).

Taking the limit t0 → 0 and using (2.17), we obtain (2.19). �

In Section 4.4, we use this result to obtain lower estimates for the Green energy
on each of the projective spaces.

3. Rotation invariant determinantal point processes on two-point

homogeneous spaces

We denote as X a (simple) random point process in the space Ω. A point process
X is a random measure taking integer values. The random variable X (F ) is then
counting the number of points of the process in F , for all Borel sets F ⊂ Ω. A
process is called simple, if for any p ∈ Ω we have X ({p}) ≤ 1, almost surely.

The joint intensities ρ(x1, . . . , xk) are functions defined in Ω such that for any
family of mutually disjoint subsets F1, . . . , Fk ⊂ Ω

E[X (F1) · · ·X (Fk)] =

∫
· · ·
∫

F1×···×Fk

ρ(x1, . . . , xk) dσ(x1) · · · dσ(xk),

and we assume that ρ(x1, . . . , xk) = 0, when xi = xj for i �= j.



1060 ANDERSON, DOSTERT, GRABNER, MATZKE, AND STEPANIUK

Definition 3.1. A random point process (see, e.g., [39, Chapter 4]) is called de-
terminantal with kernel K : Ω×Ω → C if it is simple and the joint intensities with
respect to a background measure σ are given by

ρ(x1, . . . , xk) = det(K(xi, xj))1≤i,j≤k,

for every k ≥ 1 and x1, . . . , xk ∈ Ω.

In [39], it is shown that a determinantal process samples exactly N points if and
only if it is associated to the projection of L2(Ω, σ) to an N -dimensional subspace
H. Let φ1, . . . , φN be an orthornormal basis of H, then the projection kernel is
given by

KH(x, y) =

N∑
k=1

φk(x)φk(y).

By the Macchi–Soshnikov theorem (see, e.g., [39, Theorem 4.5.5]) the projection
kernel K defines a determinantal point process.

By Proposition 2.7 the only finite-dimensional G-invariant subspaces of L2(Ω, σ)
are finite orthogonal sums of eigenspaces of �Ω. Thus it is natural to consider the
subspace

H = V0 ⊕ · · · ⊕ Vk

and the corresponding projection kernel given by

K(α,β)
n (x, y) =

n∑
k=0

mk∑
m=1

Yk,m(x)Yk,m(y), x, y ∈ Ω.

This defines a G-invariant determinantal point process.

Using the addition formula (2.7) and (1.2) the kernel K(α,β)
n (x, y) can be written

in the form

K(α,β)
n (x, y) =

n∑
k=0

mk

P
(α,β)
k (1)

P
(α,β)
k (cos(2ϑ(x, y))

=
(α+ β + 2)n
(β + 1)n

P (α+1,β)
n (cos(2ϑ(x, y)), x, y ∈ Ω.

(3.1)

Then, for these kernels we have that

N = tr(K(α,β)
n (x, x)) =

∫
Ω

K(α,β)
n (x, x) dσ(x) = K(α,β)

n (1)

=
n∑

k=0

mk =
(α+ β + 2)n(α+ 2)n

(β + 1)nn!
∼ Γ(β + 1)

Γ(α+ β + 2)

n2α+2

Γ(α+ 2)
,

(3.2)

which by the Macchi–Soshnikov theorem is the number of points sampled by the

determinantal process associated to the kernel K(α,β)
n , almost surely. We shall call

these determinantal point processes harmonic ensembles.
Determinantal point processes are very convenient probabilistic models for the

study of energy expressions due to the following theorem (see e.g., [39, Equation
(1.2.2)]).
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Proposition 3.2. Let K(x, y) be a projection kernel with trace N in Ω, and let
ωN = {x1, . . . , xN} ⊂ Ω be N random points generated by the corresponding de-
terminantal point process X . Then, for any measurable f : Ω × Ω → [0,∞), we
have

EXN

⎛⎝∑
k �=j

f(xk, xj)

⎞⎠
=

∫∫
Ω×Ω

(
K(x, x)K(y, y)− |K(x, y)|2

)
f(x, y) dσ(x) dσ(y).

4. Bounds for the Green, Riesz, and logarithmic energies on

projective spaces

One often studies random configurations of points to find upper estimates for
the minimal energy. However, no local repulsion occurs between i.i.d. random
points, meaning that sampled points may concentrate near one another, and so the
expected discrete energy, N(N − 1)IK(μ), is too coarse of an estimate for a good
upper bound. One can prevent this clumping of sampled points by distributing one
point in each part of a partition of Ω (i.e. jittered sampling). Alternatively, one can
also generate random point sets with local repulsion built in, using determinantal
point processes. Recently, determinantal point processes have been used to find
bounds on energies in various symmetric spaces (see, e.g. [2, 8–12,37, 44]).

Here, we use both jittered sampling and the determinantal point processes intro-
duced in Section 3 to compute the expectations of the discrete Riesz, Green, and
logarithmic energies under these models. These, of course, provide upper bounds
for the minimal energies. For the lower bounds of these energies, we use linear
programming. As in the case of the sphere, the next-order terms in the upper and
lower bounds obtained by these ideas have the same orders of magnitude in terms
of the number of points N .

We recall that D = (d− 1) dimR(F) is the dimension of the space FPd−1. In this
section it is convenient to use this notation to make the statement of the results
transparent.

4.1. Upper bounds using jittered sampling. Since each projective space is a
connected Ahlfors regular metric measure space with finite measure, we may use
the following (formulated for our context):

Proposition 4.1 ([30, Theorem 2]). For each projective space Ω, there exist positive
constants c1 and c2 such that for all N sufficiently large, there is a partition of Ω

into N regions each of measure 1
N , contained in a geodesic ball of radius c1N

− 1
D ,

and containing a geodesic ball of radius c2N
− 1

D .

Proposition 4.2. For the projective space Ω and 0 ≤ s < D, there is some positive
constant cΩ,s such that for N ∈ N sufficiently large,

EKs
(N) ≤

{
N2IKs

(σ)− cΩ,sN
1+ s

D for s > 0

N2IKs
(σ)− cΩ,sN log(N) for s = 0

.

Proof. Since sin(ϑ) < ϑ < 2 sin(ϑ) for ϑ sufficiently small, Proposition 4.1 gives us
that there exists some positive constant c3 such that for N sufficiently large, there
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is a partition of Ω into N regions, D1, . . . , DN , each of measure 1
N and contained

in a chordal ball of radius c3N
− 1

2α+2 .
Letting dσj(x) := N1Dj

dσ(x), we have for 0 < s < D,

EKs
(N) ≤

∫
Ω

· · ·
∫
Ω

∑
i �=j

Ks(zi, zj) dσ1(z1) · · · dσN (zN )

= N2
∑
i �=j

∫∫
Di×Dj

Ks(zi, zj) dσ(zi) dσ(zj)

= N2

( ∫∫
Ω×Ω

Ks(x, y) dσ(x) dσ(y)−
N∑
j=1

∫∫
Dj×Dj

Ks(x, y) dσj(x) dσj(y)

)

≤ N2IKs
(σ)−

N∑
j=1

1

diam(Dj)s
≤ N2IKs

(σ)− 1

(2c3)s
N1+ s

D .

The logarithmic case works similarly. �
Using (2.9) and (2.10) we immediately have Corollary 4.3.

Corollary 4.3. For the projective space Ω there is some positive constant cΩ,G

such that for N ∈ N sufficiently large,

EG(N) ≤
{
−cΩ,GN log(N) for Ω = RP

2

−cΩ,GN
2− 2

D for Ω �= RP
2 .

4.2. Upper bounds using determinantal point processes. In this section
we study the expectation of EKs

and EG under the harmonic ensemble given by
the projection kernel (3.1). Taking this kernel restricts the number of points to

the subsequence N = (α+β+2)n(α+2)n
(β+2)nn!

for n ∈ N0. For the Riesz and logarithmic

energies, this amounts to the computation of integrals of the form

EXN

[
EKs

]
=

∫∫
Ω×Ω

K(α,β)
n (1)2 −K(α,β)

n (cos(2ϑ(x, y)))2

sin(ϑ(x, y))s
dσ(x) dσ(y).

Using (2.8) this simplifies to

(α+ β + 2)2n
(β + 1)2n

∫ π
2

0

1

sin(ϑ)s

(
P (α+1,β)
n (1)2 − P (α+1,β)

n (cos(2ϑ))2
)
dνα,β(ϑ).

We first observe that the integral can be written as

1

γα,β

∫ π
2

0

P
(α+1,β)
n (1)2 − P

(α+1,β)
n (cos(2ϑ))2

sin(ϑ)2
sin(ϑ)2α+3−s cos(ϑ)2β+1 dϑ.

Now the limit of the quotient exists for ϑ → 0, which shows that the integral
converges if 2α+ 3− s > −1. This gives

Theorem 4.4. The expected Riesz s-energy EXN

[
EKs

]
is finite if and only if

s < D + 2.

Furthermore, using a similar reasoning the integral

(4.1)

∫ π
2

0

1

sin(ϑ)s
P (α+1,β)
n (cos(2ϑ))2 dνα,β(ϑ)
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converges, if and only if s < D. In order to derive the asymptotic behaviour of
these integrals for n → ∞ we use the classical Hilb approximation for the Jacobi
polynomials (see [52, Theorem 8.21.12])

1(
n+α+1

n

)P (α+1,β)
n (cos(2ϑ)) sin(ϑ)α+

3
2 cos(ϑ)β+

1
2

= Γ(α+ 2)ñ−α−1
√
ϑJα+1(2ñϑ) +

{
O
(
ϑα+3

)
for 0 ≤ ϑ ≤ c

n

O
(
ϑ

1
2n−α− 5

2

)
for c

n ≤ ϑ ≤ π
4

,

(4.2)

where Jα(x) denotes the Bessel function and ñ = n+ 1
2 (α + β + 1). The O-terms

are uniform in ϑ ∈ [0, π
4 ] (we use a weaker formulation here than what is known).

For studying the asymptotic behaviour of (4.1) we insert (4.2) and obtain∫ π
4

0

1

sin(ϑ)s
P (α+1,β)
n (cos(2ϑ))2 dνα,β(ϑ)

=
1

γα,β

(
n+ α+ 1

n

)2

Γ(α+ 2)2ñ−2α−2

∫ π
4

0

ϑ

sin(ϑ)s+2
Jα+1(2ñϑ)

2 dϑ

+O
(
n2α+2

∫ 1
n

0

ϑ2α+ 5
2−s dϑ+ n−2

∫ π
4

1
n

ϑ− 3
2−s dϑ

)
,

where we have used the estimates

Jα+1(x) =

{
O(xα+1) for x → 0

O(x− 1
2 ) for x → ∞

for the first and the second integral in the O-term, respectively. We also estimated
sin(ϑ) trivially with ϑ. The error term then turns into O(ns− 3

2 ).
Thus we are left with the asymptotic evaluation of the integral∫ π

4

0

ϑ

sin(ϑ)s+2
Jα+1(2ñϑ)

2 dϑ.

We substitute 2ñϑ = τ and split the integral to obtain

(2ñ)s

(∫ √
n

0

τ−s−1Jα+1(τ )
2 dτ +O

(
1

n

)

+

∫ ñπ
2

√
n

τ

(2ñ)s+2 sin(τ/2ñ)s+2
Jα+1(τ )

2 dτ

)
;

here we have replaced sin(ϑ) with ϑ and controlled the error in the range ϑ < 1/
√
n.

The second integral can be estimated by O(n− s+1
2 ). For the first integral we use

[43, Section 3.8.5]

(4.3)

∫ ∞

0

τ−s−1Jα+1(τ )
2 dτ =

1

2s+1

Γ(s+ 1)Γ(α+ 1− s
2 )

Γ( s+1
2 )2Γ(α+ 2 + s

2 )

with an error ∫ ∞

√
n

τ−s−1Jα+1(τ )
2 dτ = O(n− s+1

2 ).
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For the remaining integral we estimate

∫ π
2

π
4

1

sin(ϑ)s
P (α+1,β)
n (cos(2ϑ))2 dνα,β(ϑ)

= O
(∫ π

2

0

P (α+1,β)
n (cos(2ϑ))2 dνα+1,β(ϑ)

)
= O

(
1

n

)
.

Putting everything together, we obtain

∫ π
2

0

1

sin(ϑ)s
P (α+1,β)
n (cos(2ϑ))2 dνα,β(ϑ)

=

(
n+α+1

n

)2
2γα,β

Γ(s+ 1)Γ(α+ 1− s
2 )

Γ( s+2
2 )2Γ(α+ 2 + s

2 )
ñs−2α−2 +O(n

s−1
2 ).

This gives

EXN

[
EKs

]
= K(α,β)

n (1)2Γ(α+ β + 2)Γ
(
α+ 1− s

2

)
×
(

1

Γ(α+ β + 2− s
2 )

− Γ(s+ 1)Γ(α+ 2)2

Γ( s+2
2 )2Γ(α+ 2 + s

2 )Γ(β + 1)
ñs−2α−2

)
+O

(
n2α+2+ s−1

2

)
.

(4.4)

Theorem 4.5. For 0 < s < D the expected value of the Riesz energy satisfies

EXN

[
EKs

]
= IKs

(σ)K(α,β)
n (1)2

−
Γ(s+ 1)Γ(α+ 1− s

2 )Γ(β + 1)

Γ( s2 + 1)2Γ(α+ 2 + s
2 )Γ(α+ 1)Γ(α+ β + 2)

ns+D +O(ns+D−1).

In terms of the number of points N this gives

EKs
(N) ≤ EXN

[
EKs

]
=IKs

(σ)N2 −
Γ(s+ 1)Γ(α+ 1− s

2 )Γ(β + 1)

Γ( s2 + 1)2Γ(α+ 2 + s
2 )Γ(α+ 1)Γ(α+ β + 2)

×
(
Γ(α+ β + 2)Γ(α+ 2)

Γ(β + 1)

) 2α+s+2
2α+2

N1+ s
D +O(N1+ s−1

D ).

(4.5)

For the limiting case s = D, we observe that the implicit constant in the error
term in (4.4) remains bounded for s → D. Thus we can take the limit s → D to
obtain

Theorem 4.6. The expected energy in the limiting case s = D satisfies

EXN

[
EKD

]
=
Γ(α+ β + 2)

Γ(β + 1)
K(α,β)

n (1)2
(
2 log(n)

+ ψ(2α+ 3)− 2ψ(α+ 2)− ψ(β + 1)
)
+O(nD−1).
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In terms of the number of points N this gives

EKD
(N) ≤ EXN

[
EKD

]
=

Γ(α+ β + 2)

(α+ 1)Γ(β + 1)

×N2
(
log(N) + log

(
Γ(α+ 2)Γ(α+ β + 2)

Γ(β + 2)

)
+ 2(α+ 1) (ψ(2α+ 3)− 2ψ(α+ 2)− ψ(β + 1))

)
+O(N2− 1

D ).

(4.6)

For the logarithmic energy we follow the same line of reasoning as above. We
first compute the integral∫ π

2

0

log

(
1

sin(ϑ)

)
dνα,β(ϑ) =

1

2
(ψ(α+ β + 2)− ψ(α+ 1)) ,

which is done by computing

∂

∂s

∫ π
2

0

sin(ϑ)−s dνα,β(ϑ)

∣∣∣∣∣
s=0

.

Then we derive the asymptotic behaviour of∫ π
2

0

log

(
1

sin(ϑ)

)
P (α+1,β)
n (cos(2ϑ))2 dνα,β(ϑ)

by using (4.2) again. This gives∫ π
4

0

log

(
1

sin(ϑ)

)
P (α+1,β)
n (cos(2ϑ))2 dνα,β(ϑ)

=
1

γα,β

(
n+ α+ 1

n

)2

Γ(α+ 2)2ñ−2α−2

×
∫ π

4

0

log

(
1

sin(ϑ)

)
ϑ

sin(ϑ)2
Jα+1(2ñϑ)

2 dϑ

+O
(
n2α+2

∫ 1
n

0

log(ϑ)ϑ2α+ 5
2 dϑ+ n−2

∫ π
4

1
n

log(ϑ)ϑ− 3
2 dϑ

)
.

The error term becomes O(n− 3
2 log(n)). The remaining integral is then treated as

above, which gives∫ π
4

0

log

(
1

sin(ϑ)

)
ϑ

sin(ϑ)2
Jα+1(2ñϑ)

2 dϑ

=

∫ ∞

0

log

(
2ñ

τ

)
Jα+1(τ )

2 dτ

τ
+O

(
log n

n

)
=

1

2(α+ 1)
log(2n)

− 1

4(α+ 1)2
(2(α+ 1)(ψ(α+ 1) + log(2)) + 1) +O

(
log n

n

)
,
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where we have used∫ ∞

0

1

t
Jα+1(t)

2 dt =
1

2(α+ 1)∫ ∞

0

log(t)

t
Jα+1(t)

2 dt =
1

2(α+ 1)
(ψ(α+ 1) + log(2)) +

1

4(α+ 1)2
,

which can be derived from (4.3).
The remaining integral∫ π

2

π
4

log

(
1

sin(ϑ)

)
P (α+1,β)
n (cos(2ϑ))2 dν(α,β)(ϑ)

can be estimated by O( 1n ) as above. Putting everything together, this shows:

Theorem 4.7. The expected value of the logarithmic energy satisfies

EXN

[
EK0

]
= IK0

(σ)K(α,β)
n (1)2

− Γ(β + 1)

Γ(α+ 2)Γ(α+ β + 2)
nD

(
log(n)− ψ(α+ 1) + ψ(α+ 2)

2

)
+O(nD−1 log n).

In terms of the number of points this gives

EK0
(N) ≤ EXN

[
EK0

]
=IK0

(σ)N2 − N

D

(
log(N) + log

(
Γ(α+ 2)Γ(α+ β + 1)

Γ(β + 1)

)

− (α+ 1)(ψ(α+ 1) + ψ(α+ 2))

)
+O(N1− 1

D logN).

(4.7)

Remark 4.8. A different approach to the asymptotic study of integrals of the form
(4.1) was used in [50] and [18]. There the integral was rewritten as a sum using
connection formulas and the orthogonality relations. The generating functions of
these expressions can then be expressed in terms of hypergeometric functions; in
some special cases there is a closed form expression.

By (2.9) and (2.10), the Green energy is closely related to the Riesz energy with
exponent s = D−2 = 2α (or the logarithmic energy for D = 2); the main difference
between the Green energy and this Riesz energy is that the integral of the Green
function vanishes. Inserting (2.9) into Theorem 4.5 we have

Theorem 4.9. If α > 0, the expected value of the Green energy under the harmonic
ensemble is given by

EXN

[
EG

]
= − Γ(β + 1)2

4α(2α+ 1)Γ(α+ 1)2Γ(α+ β + 2)2
n2D−2 +O(n2D−3).

In terms of the number of points N this gives

EG(N) ≤ EXN

[
EG

]
= − (α+ 1)2

4α(2α+ 1)

(
Γ(α+ 2)Γ(α+ β + 2)

Γ(β + 1)

) 1
α+1

N2− 2
D +O(N2− 3

D ).
(4.8)
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If Ω = RP
2, then

EG(N) ≤ EXN

[
EG

]
= −N

2

(
log(N)− 1 + 2γ

)
+O(N

1
2 logN).

(4.9)

4.3. Lower bounds for Riesz energy. In this section we develop lower bounds
for the Riesz and logarithmic energies using a method which originates from [54]
for the case of the sphere. This method has then been refined in [17] to provide
matching asymptotic orders for the upper and lower bounds; a general version,
again for the sphere, is given in [16, Theorem 6.4.4].

We present a slightly simplified proof for the lower bounds. For this purpose we
need some lemmas.

Lemma 4.10. If K(x, y) = g(cos(2ϑ(x, y))) is continuous and positive definite,
then

EK(N) ≥ ĝ(0)N2 − g(1)N.

We recall that a function f : I → R is called completely monotone on an interval
I if for all n ≥ 0

∀u ∈ I : (−1)nf (n)(u) ≥ 0.

Lemma 4.11. Let f be completely monotone on [0,∞), and g(1 − 2u) = f(u)
for u ∈ [0, 1]. Then the coefficients ĝ(n) as given in (1.4) are all non-negative for
n ≥ 0.

Taking u = sin(ϑ(x, y))2, and using (2.2), we see that g is a function of
cos(2ϑ(x, y)). Moreover g(t) is absolutely monotonic on [−1, 1] (i.e. all deriva-
tives of g are non-negative). The proof is then essentially the same as the proof
of [16, Theorem 5.2.14], changing Gegenbauer polynomials and weights to Jacobi
polynomials and weights.

Let f be completely monotone on (0,∞). From Taylor’s formula with the integral
form of the remainder term we obtain, for u > 0,

f(u) =
n∑

k=0

δk

k!
(−1)kf (k)(u+ δ) +

(−1)n+1

n!

∫ δ

0

tnf (n+1)(u+ t) dt.

This observation was the main ingredient in [17]. All summands are positive and
finite for δ > 0 and u ∈ [0,∞). Furthermore, all summands are positive definite,
taking u = sin(ϑ(x, y))2 by Lemma 4.11 and Theorem 2.17.

We apply Lemma 4.10 to the function

Fn,δ(u) =
n∑

k=0

δk

k!
(−1)kf (k)(u+ δ) ≤ f(u)− (−1)n+1

n!

∫ δ

0

tnf (n+1)(u+ t) dt,

with the inequality being an equality for u > 0, to obtain

EKf
(ωN ) ≥N2

(∫ π
2

0

f(sin(ϑ)2) dν(α,β)(ϑ)

− (−1)n+1

n!

∫ δ

0

tn
∫ π

2

0

f (n+1)
(
t+ sin(ϑ)2

)
dν(α,β)(ϑ) dt

)
−NFn,δ(0).

(4.10)
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We now apply the above observations to the functions

fs(u) =

{
u−s/2 for s > 0

− 1
2 log(u) for s = 0.

Then the derivatives are given by

f (k)
s (u) = (−1)kcs,kfs+2k(u),

with

cs,k =

⎧⎪⎨⎪⎩
1 for k = 0(
s
2

)
k

for s > 0 and k > 0
1
2 (k − 1)! for s = 0 and k > 0.

Then (4.10) becomes

EKs
(ωN )

≥ N2

⎛⎜⎝
π
2∫

0

fs(sin(ϑ)
2) dν(α,β)(ϑ)− cs,n+1

n!

δ∫
0

tn

π
2∫

0

dν(α,β)(ϑ)

(t+ sin(ϑ)2)
s
2+n+1

dt

⎞⎟⎠
−N

(
fs(δ) + δ−

s
2

n∑
k=1

cs,k
k!

)
.

The inner integral then computes as
π
2∫

0

dν(α,β)(ϑ)

(t+ sin(ϑ)2)
s
2+n+1

= (1 + t)−
s
2−n−1

2F1

(
β + 1, s

2 + n+ 1

α+ β + 2

∣∣∣∣ 1

1 + t

)
.

From standard transformations for hypergeometric functions (see [43, Section 2.4.1])
we obtain the asymptotic equivalent as t → 0

(1 + t)−
s
2−n−1

2F1

(
β + 1, s

2 + n+ 1

α+ β + 2

∣∣∣∣ 1

1 + t

)
∼

Γ(α+ β + 2)Γ( s2 + n− α)

Γ(β + 1)Γ( s2 + n+ 1)
tα−

s
2−n

valid for n > α − s
2 . Thus we choose n as the smallest integer with this property

and obtain as δ → 0∫ δ

0

tn

π
2∫

0

dν(α,β)(ϑ)

(t+ sin(ϑ)2)
s
2+n+1

dt ∼
Γ(α+ β + 2)Γ( s2 + n− α)δα+1− s

2

Γ(β + 1)Γ( s2 + n+ 1)(α+ 1− s
2 )

.

Choosing δ = N− 1
α+1 gives

Theorem 4.12. Let 0 < s < D, then there is a constant Cs,D > 0 such that

EKs
(ωN ) ≥ IKs

(σ)N2 − Cs,DN1+ s
D .

For s = 0 there is a constant C0,D > 0 such that

EK0
(ωN ) ≥ IK0

(σ)N2 − 1

D
N logN − C0,DN.



RIESZ AND GREEN ENERGY ON PROJECTIVE SPACES 1069

4.4. Lower bounds for the Green energy. In this section we compute lower
estimates for Green energy on each of the projective spaces. For RP

2 the lower
bound follows immediately from the lower bound on the logarithmic energy.

Theorem 4.13. There exists some constant CG > 0 such that the Green energy of
every point configuration ωN on RP

2, with N ≥ 2, satisfies

EG(ωN ) ≥ −1

2
N log(N)− CGN.

Proof. This follows immediately from Theorem 4.12 and the fact that

G(x, y) = K0(x, y)− IK0
(σ)

on RP
2. �

For the other spaces, we employ a method developed in [41, Chapter VI, § 5],
which makes use of Lemma 2.20.

Theorem 4.14. If α = 1/2 (i.e. Ω = RP
3) , the Green energy of any collection of

distinct points {x1, . . . , xN} ⊂ Ω is bounded below by

EG(ωN ) ≥ −3

4
π

1
3N2−2/3 +O(N log(N)).

For α > 1/2 (i.e. all projective spaces except RP2 and RP3),

EG(ωN ) ≥ −1 + α

4α

(
Γ (β + 1)

Γ(α+ β + 2)

) 1
α+1

N2− 2
D +O(N2− 3

D ).

In order to prove Theorem 4.14, we need the following two lemmas. The proof
of the lemmas are given after the proof of Theorem 4.14.

Lemma 4.15. For δ, c, d ≥ 0, and as t → 0

∞∑
k=1

(ck + d)
δ
e−2(ck+d)2t =

(2t)−
δ+1
2

2c
Γ

(
δ + 1

2

)
+O(t−δ/2).

Lemma 4.16. For d ≥ 0,
∑∞

k=1 (2k + d)
−1

e−2(2k+d)2t = O(log(t)), as t → 0.

Proof of Theorem 4.14. For some t > 0 and any collection of distinct points

{x1, . . . , xN} ⊂ Ω,

we get

N∑
j �=i

G(xj , xi) +N(N − 1)2t ≥
N∑
j �=i

G2t(xj , xi).
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Moreover from (2.18) it follows

N∑
j �=i

G2t(xj , xi) =
N∑
j �=i

∞∑
k=1

e−2λkt

λk

mk∑
�=1

Yk,�(xj)Yk,�(xi)

=

∞∑
k=1

1

λk

mk∑
�=1

⎛⎜⎝
∣∣∣∣∣∣
N∑
j=1

e−λktYk,�(xj)

∣∣∣∣∣∣
2

−
N∑
j=1

e−2λkt|Yk,�(xj)|2

⎞⎟⎠
≥−

∞∑
k=1

1

λk

mk∑
�=1

N∑
j=1

e−2λkt|Yk,�(xj)|2

=−
N∑
j=1

G2t(xj , xj) = −NG2t(x, x).

For all t ≥ 0 and x, y ∈ Ω

Gt(x, y) =

∞∑
k=1

mk

λk

P
(α,β)
k (cos(2ϑ(x, y)))

P
(α,β)
k (1)

e−λkt,

therefore G2t(x, x) is equal to

∞∑
k=1

2k + α+ β + 1

4k(k + α+ β + 1)

(α+ β + 2)k−1(α+ 1)k
(β + 1)kk!

e−8k(k+α+β+1)t

=
γα,β

2Γ(α+ 1)2

×
∞∑
k=1

2k + α+ β + 1

k(k + α+ β + 1)

Γ(k + α+ β + 1)Γ(k + α+ 1)

Γ(k + 1)Γ(k + β + 1)
e−8k(k+α+β+1)t.

Taking into account that

2k + α+ β + 1

k(k + α+ β + 1)

Γ(k + α+ β + 1)Γ(k + α+ 1)

Γ(k + 1)Γ(k + β + 1)

= 2

(
k +

α+ β + 1

2

)2α−1(
1 +O

(
1

k

))

we obtain for 0 < t � 1, G2t(x, x) equals

γα,β
Γ(α+ 1)2

∞∑
k=1

(
k +

α+ β + 1

2

)2α−1

e−8k(k+α+β+1)t

(
1 +O

(
1

k

))

=
γα,βe

2(α+β+1)2t

22α−1Γ(α+ 1)2

∞∑
k=1

e−2(2x+α+β+1)2t

(2k + α+ β + 1)
1−2α

(
1 +O

(
1

k

))
.
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Applying Lemma 4.15 for α > 1/2, δ = 2α − 1, c = 2 and d = α + β + 1, we
obtain

G2t(x, x) =
e2(α+β+1)2tγα,β
Γ(α+ 1)222α−1

(
Γ(α)

2α+2
t−α +O(t−α+1/2)

)
+O(t−α+1/2)

=
Γ(α)γα,β

Γ(α+ 1)223α−1
(1 +O(t))

(
t−α +O(t−α+1/2)

)
=

Γ(β + 1)

αΓ(α+ β + 1)223α+2
t−α +O(t−α+1/2).

By choosing t = 1
8

(
Γ(β+1)

Γ(α+β+2)

) 1
α+1

N− 1
α+1 in order to obtain a maximal lower bound

and applying (3.2), we get

EG(ωN ) ≥ −1 + α

4α

(
Γ(β + 1)

Γ(α+ β + 2)

) 1
α+1

N2− 1
α+1 +O(N2− 3

2(α+1) ).

Applying Lemma 4.16 for α = 1/2, δ = 0, c = 2 and d = α+ β + 1, we obtain

G2t(x, x) =
γα,βe

2t

Γ(α+ 1)2

∞∑
k=1

e−2(2x+α+β+1)2t

(2k + α+ β + 1)1−2α

(
1 +O

(
1

k

))
.

Due to Lemma 4.16,
∞∑
k=1

e−2(2x+α+β+1)2tO
(
1

k

)
= O(log(t)).

Furthermore, applying Lemma 4.15,
∞∑
k=1

e−2(2x+α+β+1)2t = 2−3/2t−1/2
√
π +O(1).

Hence, we obtain

G2t(x, x) =
γα,β

Γ(α+ 1)2
23/2t−1/2

√
π +O(log(t)).

By choosing t = 1
8

(
Γ(β+1)

Γ(α+β+2)

) 1
α+1

N− 1
α+1 with α = 1/2 and β = −1/2, we get

EG(ωN ) ≥ −3

4
π

1
3N2−2/3 +O(N log(N)).

�
Proof of Lemma 4.15. Since

∞∑
k=1

(ck + d)δ e−2(ck+d)2t −
∫ ∞

1

(cx+ d)δ e−2(cx+d)2tdx

is lower bounded by e−2(c+d)2t(c + d)δ − e−δ/2
(

δ
4t

)δ/2
and upper bounded by

e−δ/2
(

δ
4t

)δ/2
, we obtain

∞∑
k=1

(ck + d)δ e−2(ck+d)2t =

∫ ∞

1

(cx+ d)δ e−2(cx+d)2tdx+O(t−δ/2)

=

∫ ∞

0

(cx+ d)
δ
e−2(cx+d)2tdx+O(t−δ/2).
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In the last equation we used the fact that

0 ≤
∫ 1

0

(cx+ d)
δ
e−2(cx+d)2tdx ≤ e−δ/2

(
δ

4t

)δ/2

.

Substituting y by (cx+ d)
√
2t lead to the following equation

∞∑
k=1

(ck + d)
δ
e−2(ck+d)2t

=

∫ ∞

d
√
2t

yδe−y2

(2t)−δ/2dy +O(t−δ/2)

=
1

c
(2t)−

δ+1
2

(∫ ∞

0

yδe−y2

dy −
∫ d

√
2t

0

yδe−y2

dy

)
+O(t−δ/2)

=
1

2c
(2t)−

δ+1
2 Γ

(
δ + 1

2

)
+O(t−δ/2).

�

Proof of Lemma 4.16. The following sum

∞∑
k=1

(2k + d)−1 e−2(2k+d)2t −
∫ ∞

1

(2x+ d)−1 e−2(2x+d)2tdx

is lower bounded by 0 and upper bounded by 1
2+de

−2(2+d)2t. Therefore, we obtain

∞∑
k=1

(2k + d)−1 e−2(2k+d)2t =

∫ ∞

1

(2x+ d)−1 e−2(2x+d)2tdx+O(1).

Let y = (2x+ d)
√
2t, then∫ ∞

1

e−2(2x+d)2t

(2x+ d)
dx =

∫ ∞

(2+d)
√
2t

√
2t

y
e−y2

(2
√
2t)−1dy

=
1

2

∫ ∞

(2+d)
√
2t

1

y
e−y2

dy

=
Γ(0, (2 + d)22t)

4

=
1

4

(
−γ − log((2 + d)22t)−

∞∑
k=1

(−(2 + d)22t)k

k!k

)
.

�
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