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L1-DISTORTION OF WASSERSTEIN METRICS: A TALE OF

TWO DIMENSIONS

F. BAUDIER, C. GARTLAND, AND TH. SCHLUMPRECHT

Abstract. By discretizing an argument of Kislyakov, Naor and Schechtman
proved that the 1-Wasserstein metric over the planar grid {0, 1, . . . , n}2 has
L1-distortion bounded below by a constant multiple of

√
logn. We provide a

new “dimensionality” interpretation of Kislyakov’s argument, showing that if
{Gn}∞n=1 is a sequence of graphs whose isoperimetric dimension and Lipschitz-
spectral dimension equal a common number δ ∈ [2,∞), then the 1-Wasserstein
metric over Gn has L1-distortion bounded below by a constant multiple of

(log |Gn|)
1
δ . We proceed to compute these dimensions for �-powers of certain

graphs. In particular, we get that the sequence of diamond graphs {Dn}∞n=1
has isoperimetric dimension and Lipschitz-spectral dimension equal to 2, ob-
taining as a corollary that the 1-Wasserstein metric over Dn has L1-distortion

bounded below by a constant multiple of
√

log |Dn|. This answers a question
of Dilworth, Kutzarova, and Ostrovskii and exhibits only the third sequence

of L1-embeddable graphs whose sequence of 1-Wasserstein metrics is not L1-
embeddable.
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1. Introduction

Let (X, dX) be a finite metric space and P(X) the set of probability measures on
X. The 1-Wasserstein metric dW1

on P(X) is defined by

dW1
(μ, ν) = inf

γ

∫
X×X

dX(x, y)dγ(x, y),
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where the infimum is over all γ ∈ P(X × X) with marginals μ and ν. The dis-
tance dW1

(μ, ν) can be interpreted as the cost of transporting the mass of μ onto
the mass of ν where cost is directly proportional to the distance moved and to
the quantity of mass transported. The metric space (P(X), dW1

) is referred to as
the 1-Wasserstein space over X, and we denote it by Wa1(X). Wasserstein met-
rics are of high theoretical interest but most importantly they are fundamental
in applications in countless areas of applied mathematics, engineering, physics,
computer science, finance, social sciences, and more. Indeed, they provide a nat-
ural and robust way to measure the (dis)similarity between the numerous ob-
jects which can be modeled by probability distributions. We point the inter-
ested reader to some of the many monographs discussing Wasserstein metrics and
optimal transport in general ([RR98a, RR98b, Vil03, Vil09, San15, ABS21, FG21]).
For both theoretical and practical reasons, the problem of low-distortion embed-
dings of Wa1(X) into the Banach space L1 has attracted much interest. We recall
here that the distortion of one metric space (X, dX) into another (Y, dY) is the
quantity cY(X) := inff Lip(f) · Lip(f−1), where the infimum is over all injections
f : X → Y and Lip(f) is the Lipschitz constant of f . Of course, since the embedding
δ : X → Wa1(X) given by x �→ δx is isometric, the distortion of Wa1(X) into L1 is at
least as large as that of X into L1. Given a sequence of metric spaces {Xn}n∈N such
that supn∈N cL1

(Xn) < ∞, it is a natural and important problem to understand
whether or not supn∈N cL1

(Wa1(Xn)) remains finite or not. It has been observed
by many that the 1-Wasserstein metric over a tree admits a closed-formula from
which isometric embeddability into an L1-space follows immediately (cf. [Cha02],
[EM12], and the detailed analysis in [MPV23]). However, this problem has turned
out to be difficult in general, and nontrivial lower bounds for the L1-distortion of
Wasserstein metrics are known to exist only in essentially two situations: when the
ground space is the n-by-n planar grid [n]2 := {0, 1, . . . , n}2 or the k-dimensional
Hamming cube Hk, i.e. {0, 1}k equipped with the Hamming metric counting the
number of differing corresponding entries. Indeed, by [NS07, Theorem 1.1] it holds

that cL1
(Wa1([n]

2)) = Ω(
√
log n) = Ω(

√
log |[n]2|), and by [KN06, Corollary 2], it

holds that cL1
(Wa1(Hk)) = Ω(k) = Ω(log |Hk|), where |·| denotes cardinality. Note

that the fact that supk∈N cL1
(Wa1(Hk)) = ∞ was essentially proved by Bourgain

[Bou86]. The main result of this article is the provision of a third example of a
family of spaces {Xn}n∈N which embed into L1 with constant distortion but for
which {Wa1(Xn)}n∈N does not. Our family is a sequence of generalized diamond
graphs D�n

k,k equipped with the shortest path metric1 (see Example 2 and Defini-

tion 5, also Figures 1, 2), and Theorem A implies a negative answer to a question of
Dilworth-Kutzarova-Ostrovskii [DKO20, Problem 6.6] about the classical diamond
graphs {D�n

2,2}n∈N.

1Each graph D�n
k,k has L1-distortion bounded above by 14 [GNRS04, Theorem 4.1].
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Figure 1. The diamond graphs D2,2 and D3,4

Figure 2. The �-product D2,2 � D2,2 = D�2
2,2

Theorem A. For each fixed integer k � 2, cL1
(Wa1(D

�n
k,k)) = Ωk

(√
log |D�n

k,k|
)
.

We deduce Theorem A from a more general theorem on Wasserstein spaces over
graphs with certain dimension estimates (see Theorem B and the sentence following
it). Before further discussion, we set notation and introduce the key definitions.

Throughout this article, we adopt the convention that graphs are finite, con-
nected, directed, with at least one edge, and without self-loops or multiple edges
between the same pair of vertices. For a graph G, we write V (G) for the vertex
set and E(G) for the edge set. For a (directed) edge e = (u, v) ∈ E(G), we write
e− for u and e+ for v. Recall that a sequence {ui}ki=0 ⊂ V (G) is a path if, for
every 1 � i � k, one of (ui−1, ui), (ui, ui−1) belongs to E(G) (the path is directed
if always (ui−1, ui) ∈ E(G)). A metric d on V (G) is geodesic if for any two vertices
x, y ∈ V (G), there exists a path {ui}ki=0 ⊂ V (G) such that u0 = x, uk = y, and

d(x, y) =
∑k

i=1 d(ui−1, ui).

Remark 1. A geodesic metric d may be equivalently defined as the shortest path
metric with respect to the edge-weights (d(e))e∈E(G). Here and in the sequel, we

write d(e) for d(e−, e+).

When S is a finite set (typically V (G) or E(G)), we say that ν is a measure on S
if ν is a measure on the measurable space (S, 2S); the domain of ν is thus the entire
power set of S. We first define the isoperimetric dimension in the rather general
context of graphs equipped with a geodesic metric and probability measures on its
edge and vertex sets.
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Definition 1 (Isoperimetric dimension). Let G be a graph, δ ∈ [1,∞), Ciso ∈
(0,∞), μ a probability measure on V (G), ν a probability measure on E(G), and d
a geodesic metric on V (G). We say that G has (μ, ν, d)-isoperimetric dimension δ
with constant Ciso if for every A ⊂ V (G)

min{μ(A), μ(Ac)}
δ−1
δ � Ciso Perν,d(A),

where ∂GA := {(x, y) ∈ E(G) : |{x, y} ∩ A| = 1} is the edge-boundary of A, and
the (ν, d)-perimeter of A is:

Perν,d(A) :=
∑

e∈∂GA

ν(e)

d(e)
.

To the best of our knowledge, the second dimensional parameter we define is
new. It is inspired by the classical notion of spectral dimension derived from the
spectrum of a Laplace operator. We formally introduce the notion of Lipschitz
growth function as a nonlinear analogue of the eigenvalue counting function.

Definition 2 (Lipschitz growth function). Let (X, dX) be a metric space. The
Lipschitz growth function of a family of Lipschitz functions F = {fi : X → R}i∈I is
the function γF : [0,∞) → N ∪ {∞} defined by γF (s) = |{i ∈ I : Lip(fi) � s}|.

If one can define a Laplace operator Δ on X and if {fi}i∈I is an orthonormal
basis of L2(X, μ), for some probability measure μ on X, consisting of eigenfunctions

of Δ with Lip(fi) = λi, where λi is the eigenvalue of
√
Δ corresponding to fi, then

the Lipschitz growth function γ coincides with the eigenvalue counting function2,
i.e. N(λ) := |{i ∈ I : λi � λ}| = γ(λ).

Definition 3 (Lipschitz-spectral profile). Let C1, C∞, Cγ ∈ (0,∞), δ ∈ [1,∞),
and β ∈ [1,∞). For G a graph, μ a probability measure on V (G), and d a metric
on V (G), we say that G has (μ, d)-Lipschitz-spectral profile of dimension δ and
bandwidth β with constants C1, C∞, Cγ if there exists a collection of functions F =
{fi : V (G) → R}i∈I satisfying:

(1) C−1
1 � infi∈I ‖fi‖L1(μ) � supi∈I ‖fi‖L∞(μ) � C∞,

(2) {fi}i∈I is an orthogonal family in L2(μ), and
(3) for every s ∈ [1, β], γF (s) � C−1

γ sδ.

Our terminology Lipschitz-spectral dimension is motivated by the fact that in
the special situation mentioned above the estimate N(λ) � λδ says that (X, μ,Δ)
has spectral dimension at least δ. This important concept in spectral geometry
(see [Cha84] or [Can13] and the references therein) and in the field of analysis on
fractals [Kig01, Chapter 4] originates from the classical Weyl law [Wey12] (see also
[Ae07, Chapter 1]).

Theorem B. Let G be a graph equipped with a geodesic metric d on V (G). If
there exist probability measures μ and ν (on V (G) and E(G) respectively), numbers
δ ∈ [2,∞), β ∈ (0,∞), and constants Ciso, C1, C∞, Cγ ∈ (0,∞) such that G has
(μ, ν, d)-isoperimetric dimension δ with constant Ciso and (μ, d)-Lipschitz-spectral
profile of dimension δ and bandwidth β with constants C1, C∞, Cγ, then

cL1
(Wa1(G)) � 1

2CisoC2
1C∞

(
δ

Cγ

) 1
δ

(lnβ)
1
δ .

2The classical eigenvalue counting function usually counts the eigenvalues of Δ.
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Remark 2. Note that in Theorem B, it must hold that the dimension δ is at least
2. For graphs G whose dimensions are strictly between 1 and 2, like the Laakso
graphs La�n

1 of Figure 3, we do not know how to prove nontrivial lower bounds for
cL1

(Wa1(G)).

Figure 3. The Laakso graph La1

Theorem A follows immediately from Theorem B, the observation that log |D�n
k,k|

= Θk(n), and Theorem C.

Theorem C (Isoperimetric and Lipschitz-spectral dimensions of generalized dia-
mond graphs). Fix k,m ∈ N, and let d be the shortest path metric on D�n

k,m, μ the

degree-probability measure on V (D�n
k,m), and ν the uniform probability measure on

E(D�n
k,m). Then D�n

k,m has (μ, ν, d)-isoperimetric dimension 1 + logm
log k with constant

Ciso � m
2 and (μ, d)-Lipschitz spectral profile of dimension 1+ logm

log k and bandwidth

kn with constants C1 � 6, C∞ � 1, and Cγ � 2k2m2.

We refer to Corollary 2 and Corollary 5 for the proof of Theorem C.
Our proof of Theorem B follows the same outline as Naor-Schechtman’s proof of

cL1
(Wa1([n]

2)) = Ω(
√
log n). The first step is to make the following reduction to

linear maps: for X a finite-dimensional Banach space, define clinL1
(X ) := infT ‖T‖ ·

‖T−1‖, where the infimum is over all N ∈ N and linear injections T : X → �N1 . By
[NS07, Lemma 3.1] (which is only stated for planar grids, but whose proof obviously
works for any finite metric space) we have, for any finite metric space (X, dX),

(1) cL1
(Wa1(X)) = clinL1

(LF(X)),

where LF(X) is the Lipschitz-free space over X; in our setting it is the Banach dual
to the space Lip0(X) of real-valued Lipschitz functions on X vanishing at a fixed
basepoint x0 ∈ X. From there, Naor and Schechtman use a discrete version of an
argument by Kislyakov [Kis75] to prove the necessary distortion estimates for an
arbitrary linear T : LF([n]2) → �N1 . In the present work, we identify the precise
geometric data of G needed to run Kislyakov’s argument, and we are naturally led
to isolate the isoperimetric and Lipschitz-spectral dimensions as the key ingredients.

In Section 2, we review Sobolev spaces and prove a general Sobolev inequality on
“measured metric graphs” with a given isoperimetric dimension (Theorem 1). The
proof technique we use is no different than well-known existing ones (see [FF60] and
the thorough exposition from [BH97] in the smooth setting, or [Chu97], [CGY00],
and [Ost05] for the discrete setting) but we include it nonetheless because the
general inequality we require does not seem to appear in the literature.

In Section 3, we prove our adaptation of Kislyakov’s argument, namely Theo-
rem 2. Theorem B follows immediately from (1) and Theorem 2. An important
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part of the argument is that 1-summing maps from �N∞ spaces to Banach lattices are
order-bounded. In the original proof [Kis75] as well as the discretized one [NS07],
this fact is proved using the Pietsch factorization theorem. In Lemma 6, we provide
a short, self-contained proof.

In the final sections, we investigate the behavior of isoperimetric and Lipschitz-
spectral dimensions under �-products, and we obtain exact computations in the
case of �-powers of certain graphs. In Section 4, we review �-products of graphs
and corresponding operations on measures, metrics, and functions. In Section 5,
we prove general results on isoperimetric inequalities of �-products (Theorem 3)
and �-powers (Corollary 1), and in Section 6, we prove a general theorem on
the Lipschitz-spectral profiles of �-powers (Corollary 4). Theorem C follows from
Examples 2 and 5 of these sections.

2. Sobolev and isoperimetric inequalities

In this section we recall the definitions of the Sobolev spaces on graphs that will
be used in the subsequent sections.

Given a graph G and a geodesic metric d on V (G), one can define a linear
operator ∇d, which for any function f : V (G) → R returns its “d-derivative” as the
function ∇df : E(G) → R defined by

∇df(e)
def
=

f(e+)− f(e−)

d(e)
.

Lemma 1, which says that the operator ∇d commutes with integration, will come
in handy when the time comes to prove the coarea formula.

Lemma 1. Let {ft : V (G) → [0,∞)}t∈[0,∞) be a collection of functions. If for
all x ∈ V (G), the map t �→ ft(x) is integrable, then for all e ∈ E(G), the map
t �→ ∇d(ft)(e) is integrable and

(2) ∇dF (e) =

∫ ∞

0

∇dft(e)dt,

where F (x) =
∫∞
0

ft(x)dt.

Proof. The integrability of t �→ ∇d(ft)(e) follows immediately from the integrability
of t �→ ft(x). For all e ∈ E(G), we have

∇dF (e) =
F (e+)− F (e−)

d(e)
=

1

d(e)

(∫ ∞

0

ft(e
+)dt−

∫ ∞

0

ft(e
−)dt

)

=

∫ ∞

0

ft(e
+)− ft(e

−)

d(e)
dt =

∫ ∞

0

∇dft(e)dt.

�
If G is a graph equipped with a probability measure ν on E(G), then given a

function f : (V (G), d) → R and p ∈ [1,∞], we define the (1, p)-Sobolev semi-norm
(with respect to ν and d) of f by

‖f‖W 1,p(ν,d)
def
= ‖∇df‖Lp(ν) = Eν [|∇df |p]1/p

=

[∫
E(G)

|∇df(e)|pdν(e)
]1/p

=

⎡
⎣ ∑
e∈E(G)

|f(e+)− f(e−)|p
d(e)p

ν(e)

⎤
⎦
1/p

,
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with the usual convention when p = ∞. By the geodesicity assumption, it holds
that ‖f‖W 1,∞(ν,d) � Lip(f), with equality if and only if ν is fully supported. Note
that the Sobolev norms do not depend on the orientation chosen to unambiguously
define the derivative.

The following simple additivity property of the (1, 1)-Sobolev norm will be useful
in the ensuing arguments.

Lemma 2 (Additivity of the (1, 1)-Sobolev semi-norm). Let G be a graph equipped
with a probability measure ν on E(G) and a geodesic metric d on V (G). If for any
f : V (G) → R, we let f+ := max{0, f} and f− := −min{0, f}, then

‖f‖W 1,1(ν,d) = ‖f+‖W 1,1(ν,d) + ‖f−‖W 1,1(ν,d).

Proof. Let f : V (G) → R. We need to consider 4 sets of edges:

• P = {e ∈ E : f(e−), f(e+) � 0} and N = {e ∈ E : f(e−), f(e+) � 0},
• M1 = {e ∈ E : f(e−) < 0 < f(e+)} and M2 = {e ∈ E : f(e+) < 0 <
f(e−)}.

We clearly have that ∇df,∇d(f+),∇d(f−) vanish on P ∩ N and that all other
pairwise intersections are empty. Hence, for each g ∈ {f, f+, f−},

(3) ‖g‖W 1,1(ν,d) = ‖∇d(g)‖L1(ν) = ‖∇d(g)1P ‖L1(ν) + ‖∇d(g)1N‖L1(ν)

+ ‖∇d(g)1M1
‖L1(ν) + ‖∇d(g)1M2

‖L1(ν).

Furthermore, it also clearly holds that:

(i1) |∇d(f)1P | = |∇d(f+)1P | and |∇d(f)1N | = |∇d(f−)1N |,
(i2) |∇d(f)1Mi

| = |∇d(f+)1Mi
|+ |∇d(f−)1Mi

|, for i ∈ {1, 2},
(i3) |∇d(f+)1N | = 0 and |∇d(f−)1P | = 0.

Combining everything yields

‖f‖W 1,1(ν,d)
(3)
= ‖∇d(f)1P ‖L1(ν) + ‖∇d(f)1N‖L1(ν) + ‖∇d(f)1M1

‖L1(ν)

+ ‖∇d(f)1M2
‖L1(ν)

(i1)∧(i2)
= ‖∇d(f+)1P ‖L1(ν) + ‖∇d(f−)1N‖L1(ν)

+ ‖∇d(f+)1M1
‖L1(ν) + ‖∇d(f−)1M1

‖L1(ν)

+ ‖∇d(f+)1M2
‖L1(ν) + ‖∇d(f−)1M2

‖L1(ν)

(3)∧(i3)
= ‖f+‖W 1,1(ν,d) + ‖f−‖W 1,1(ν,d).

�

The equivalence between isoperimetric and Sobolev inequalities is well-known,
and Theorem 1, which will be used in a crucial way in the sequel, is not new.
However, because we could not locate a statement with this degree of generality,
we give its elementary proof for the convenience of the reader.

Theorem 1 (Sobolev inequality from isoperimetric inequality). Let G be a graph,
μ a probability measure on V (G), ν a probability measure on E(G), and d a geodesic
metric on V (G). If G has (μ, ν, d)-isoperimetric dimension δ with constant C, then
for every map f : (V (G), d) → R,

‖f − Eμf‖Lδ′ (μ)
� 2C‖f‖W 1,1(ν,d),
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where Eμf =
∫
V (G)

f(x)dμ(x), and δ′ is the Hölder conjugate exponent of δ, i.e.
1
δ + 1

δ′ = 1.

The proof of Theorem 1 relies on two classical but extremely useful lemmas. The
first lemma is sometimes called the layer-cake representation lemma.

Lemma 3 (Layer-cake representation). Let X be any set and f : X → [0,∞) be
any function. Then,

(4) f =

∫ ∞

0

1{f>t}dt.

Proof. For x ∈ X and t ∈ [0,∞), simply observe that 1{f>t}(x) = 1[0,f(x))(t).
Therefore, for every x ∈ X, t �→ 1{f>t}(x) is measurable, and hence∫ ∞

0

1{f>t}(x)dt =

∫ ∞

0

1[0,f(x))(t)dt = f(x).

�

The second lemma, known as the coarea formula (originally due to Federer
[Fed59]), has been established in various settings (cf. [CGY00], [Ost05]). Note
that if the metric d assigns constant diameter d0 to all the edges, then the formula
reduces to the classical equality∫

E(G)

|∇df(e)|dν(e) = d−1
0

∫ ∞

0

ν(∂G{f > t})dt.

Lemma 4 (Coarea formula). Let G be a graph, μ a probability measure on V (G), ν
a probability measure on E(G), and d a geodesic metric on V (G). Let f : V (G) →
[0,∞) be a function. Then

‖f‖W 1,1(ν,d) =

∫ ∞

0

Perν,d({f > t})dt.

Proof. Given f : V (G) → [0,∞), we compute

‖f‖W 1,1(ν,d) = ‖∇df‖L1(ν)

(4)
=
∥∥∥∇d

(∫ ∞

0

1{f>t}dt

)∥∥∥
L1(ν)

(2)
=
∥∥∥ ∫ ∞

0

∇d1{f>t}dt
∥∥∥
L1(ν)

=
∑

e∈E(G)

ν(e)

∣∣∣∣
∫ ∞

0

∇d1{f>t}(e)dt

∣∣∣∣ .
Assuming Claim 1:

Claim 1.

(5)

∣∣∣∣
∫ ∞

0

∇d1{f>t}(e)dt

∣∣∣∣ =
∫ ∞

0

∣∣∇d1{f>t}(e)
∣∣ dt,
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we can conclude the proof as follows:∑
e∈E(G)

ν(e)

∣∣∣∣
∫ ∞

0

∇d1{f>t}(e)dt

∣∣∣∣ = ∑
e∈E(G)

ν(e)

∫ ∞

0

∣∣∇d1{f>t}(e)
∣∣ dt

=

∫ ∞

0

∑
e∈E(G)

ν(e)
∣∣∇d1{f>t}(e)

∣∣ dt
=

∫ ∞

0

∑
e∈E(G)

ν(e)

∣∣∣∣1{f>t}(e
+)− 1{f>t}(e

−)

d(e)

∣∣∣∣ dt
=

∫ ∞

0

∑
e∈∂G{f>t}

ν(e)

d(e)
dt.

Hence, it remains to prove (5) for each fixed e ∈ E(G). This will obviously hold
if ∇d1{f>t}(e) � 0 for a.e. t ∈ [0,∞) or if ∇d1{f>t}(e) � 0 for a.e. t ∈ [0,∞).

Let e ∈ E(G). First suppose f(e+) � f(e−). Then ∇d1{f>t}(e) =
1

d(e) whenever

t ∈ (f(e−), f(e+)), and ∇d1{f>t}(e) = 0 whenever t 
∈ [f(e−), f(e+)]. This proves

(5) in this case. In the other case f(e+) � f(e−), we have ∇d1{f>t}(e) = −1
d(e)

whenever t ∈ (f(e+), f(e+)), and ∇d1{f>t}(e) = 0 whenever t 
∈ [f(e+), f(e−)].
Again this proves (5). �

We are now ready to prove Theorem 1.

Proof of Theorem 1. Assume G has (μ, ν, d)-isoperimetric dimension δ with con-
stant C < ∞, and let δ′ be the Hölder conjugate of δ. First observe that, for any
c ∈ R,

‖f − Eμf‖Lδ′ (μ)
� ‖f − c‖Lδ′ (μ)

+ ‖Eμ(c− f)‖Lδ′ (μ)

= ‖f − c‖Lδ′ (μ)
+ |Eμ(c− f)|

� ‖f − c‖Lδ′ (μ)
+ ‖f − c‖L1(μ)

� ‖f − c‖Lδ′ (μ)
+ ‖f − c‖Lδ′ (μ)

= 2‖f − c‖Lδ′ (μ)
.

Therefore, it suffices to prove

‖f −med(f)‖Lδ′ (μ)
� C‖f‖W 1,1(ν,d),

where med(f) ∈ R is a median of f , i.e. any real number m such that μ({f >
m}) � 1

2 and μ({f < m}) � 1
2 (which always exists). Set g := f −med(f). Since

‖g‖W 1,1(ν,d) = ‖f‖W 1,1(ν,d), it suffices to prove

(6) ‖g‖Lδ′ (μ)
� C‖g‖W 1,1(ν,d).

Note that med(g) = 0. Let g+ := max{g, 0} and g− := −min{g, 0}. Then by
definition of med(g), we have

μ({g+ > 0}) = μ({g > 0}) = μ({g > med(g)}) � 1

2
,

μ({g− > 0}) = μ({g < 0}) = μ({g < med(g)}) � 1

2
,

and hence by definition of isoperimetric dimension we get

μ({g+ > t}) 1
δ′ � C Perν,d({g+ > t}),

μ({g− > t}) 1
δ′ � C Perν,d({g− > t}),
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for all t � 0.
Notice that the left-hand-sides of the above inequalities equal the Lδ′(μ)-norms

of the indicator functions of the respective sets, and therefore

‖1{g+>t}‖Lδ′ (μ)
� C Perν,d({g+ > t}),(7)

‖1{g−>t}‖Lδ′ (μ)
� C Perν,d({g− > t}).

Together with the fact that g+, g− have disjoint supports and g = g+ − g−, we get

‖g‖δ′Lδ′ (μ)
= ‖g+‖δ

′

Lδ′ (μ)
+ ‖g−‖δ

′

Lδ′ (μ)

(4)
=
∥∥∥ ∫ ∞

0

1{g+>t}dt
∥∥∥δ′
Lδ′ (μ)

+
∥∥∥ ∫ ∞

0

1{g−>t}dt
∥∥∥δ′
Lδ′ (μ)

�
(∫ ∞

0

∥∥∥1{g+>t}

∥∥∥
Lδ′ (μ)

dt

)δ′

+

(∫ ∞

0

∥∥∥1{g−>t}

∥∥∥
Lδ′ (μ)

dt

)δ′

(7)

�
(∫ ∞

0

C Perν,d({g+ > t})dt
)δ′

+

(∫ ∞

0

C Perν,d({g− > t})dt
)δ′

coarea
= (C‖g+‖W 1,1(ν,d))

δ′ + (C‖g−‖W 1,1(ν,d))
δ′

� (C‖g+‖W 1,1(ν,d) + C‖g−‖W 1,1(ν,d))
δ′

Lem. 2
= (C‖g‖W 1,1(ν,d)

δ′ .

Taking the δ′-root of each side proves (6). �

3. A dimensionality interpretation of Kislyakov’s argument

In this section, we delve into Naor-Schechtman’s discretization of Kislyakov’s
argument. We pinpoint the crucial role of the two numerical parameters introduced
in Section 1: the isoperimetric dimension (Definition 1) and the Lipschitz-spectral
dimension (Definition 3). Fix a graph G and a geodesic metric d on V (G). In
the sequel, for μ a nonzero measure on V (G) and ν a fully-supported measure on
E(G), we denote by Lip0,μ(V (G), d) the space of functions f : V (G) → R with
Eμ[f ] = 0 equipped with the norm ‖f‖Lip := ‖f‖W 1,∞(d,ν). It is easily seen that
the map f �→ f −Eμf is an onto isometric isomorphism between Lip0(V (G), d) and

Lip0,μ(V (G), d). Let W 1,1
0, μ(d, ν) be the subspace of W 1,1(d, ν) consisting of those

functions for which Eμf = 0. The map f �→ f − Eμf is also an onto isometric
isomorphism between (the semi-normed space) W 1,1(d, ν) and (the normed space)

W 1,1
0, μ(d, ν).
Recall that a bounded linear map R : X → Y between Banach spaces is 1-

summing if there exists C ∈ (0,∞) such that

(8)
N∑
i=1

‖R(xi)‖ � C sup
x∗∈BX∗

N∑
i=1

|〈x∗, xi〉|,

for every finite subset {xi}Ni=1 ⊂ X . We denote the least such constant C such that
(8) holds by π1(R). We begin with two basic facts concerning 1-summing maps.
Their elementary proofs can be found in [DJT95, Chapter 3, Theorem 2.13].
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Lemma 5.

(1) For any probability measure P, let ι1 be the formal identity from L∞(P) to
L1(P) and X be a subspace of L∞(P). Then ι1�X : X → ι1(X ) is 1-summing
with π1(ι1�X ) = 1.

(2) If Q : W → X , R : X → Y, and S : Y → Z are bounded linear maps
between Banach spaces with R 1-summing, then S ◦ R ◦ Q is 1-summing
with π1(S ◦R ◦Q) � ‖S‖π1(R)‖Q‖.

Lemma 6 already follows from [Kis75, Proof of Theorem 3] (see also [NS07,
Lemmas 3.4, 3.5]). We provide a shorter proof for the sake of completeness.

Recall that a Banach lattice is a Banach space (X , ‖ · ‖) equipped with a partial
order � satisfying, for all α ∈ [0,∞) and x, y, z ∈ X ,

• x � y =⇒ x+ z � y + z,
• x � y =⇒ αx � αy,
• there exists a supremum x ∨ y of x, y, and
• |x| � |y| =⇒ ‖x‖ � ‖y‖, where |x| = x ∨ (−x).

The main examples of Banach lattices concerning us are the spaces �p(J), where
p ∈ [1,∞], J is some indexing set, and a � b if and only if aj � bj for all j ∈ J .

Lemma 6. Let N ∈ N. For any Banach lattice X and 1-summing linear map
R : �N∞ → X , there exists x ∈ X with ‖x‖ � π1(R) and |R(v)| � x for every
v ∈ B�N∞

.

Proof. Let X be a Banach lattice and R : �N∞ → X a 1-summing linear map. Define

x ∈ X by x :=
∑N

i=1|R(ei)|, where {ei}Ni=1 is the standard basis of �N∞. Then we
have

‖x‖ =

∥∥∥∥∥
N∑
i=1

|R(ei)|
∥∥∥∥∥ �

N∑
i=1

‖R(ei)‖ � π1(R) sup
b∈B

�N1

N∑
i=1

|〈b, ei〉|

= π1(R) sup
b∈B

�N
1

N∑
i=1

|bi| = π1(R),

and for every v ∈ B�N∞
,

|R(v)| =
∣∣∣∣∣R
(

N∑
i=1

viei

)∣∣∣∣∣ =
∣∣∣∣∣

N∑
i=1

viR (ei)

∣∣∣∣∣ �
N∑
i=1

|vi| |R (ei)| �
N∑
i=1

|R (ei)| = x.

�

Theorem 2. Let G be a graph, Ciso, C1, C∞, Cγ constants in (0,∞), μ a proba-
bility measure on V (G), ν a probability measure on E(G), and d a geodesic metric
on V (G). Let δiso ∈ [2,∞) and δspec ∈ [1,∞). If G has (μ, ν, d)-isoperimetric
dimension δiso with constant Ciso, and Lipschitz-spectral profile of dimension δspec,
bandwidth β, and constants C1, C∞, Cγ , then any D-isomorphic embedding from
the Lipschitz-free space LF(V (G), d) into a finite-dimensional L1-space �N1 satisfies

D � 1

2CisoC2
1C∞

(
δiso
Cγ

) 1
δiso

(∫ β

1

sδspec−δiso−1ds

) 1
δiso

.
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Proof. Assume that there existN ∈ N and aD-isomorphic embedding T : LF(V(G),d)
→ �N1 . By scaling, we may assume that for all x ∈ LF(V (G), d), ‖x‖LF � ‖Tx‖1 �
D‖x‖LF. The dual map T ∗ : �N∞ → Lip0(V (G), d) ≡ Lip0,μ(V (G), d) is an onto
linear map satisfying ‖T ∗‖ � D and, importantly,

(9) T ∗(B�N∞
) ⊃ BLip0,μ(V (G),d),

which follows from ‖x‖LF � ‖Tx‖1 and the Hahn-Banach theorem. Denote by

ιsob : W
1,1
0, μ(ν, d) → Lδ′iso

(μ) the formal identity. It follows from Theorem 1 and the

condition W 1,1
0, μ(ν, d) ⊂ ker(Eμ) that ‖ιsob‖ � 2Ciso. Let {fj}j∈J be a collection

of pairwise orthogonal functions realizing the (μ, d)-Lipschitz-spectral profile of di-
mension δ and bandwidth β, with constants C1, C∞, Cγ . We define a linear map
F : L1(μ) → RJ by

F(g)
def
= (Eμ[gfj ])j∈J .

Since fj ∈ L∞(μ), for all j ∈ J , F(g) is well-defined for all g ∈ Lp(μ) and p ∈
[1,∞]. Moreover, since supj∈J ‖fj‖L∞(μ) � C∞, it follows that ‖F‖L1(μ)→�∞(J) �
C∞. By orthogonality of the collection {fj}j∈J and because supj∈J ‖fj‖L2(μ) �
supj∈J ‖fj‖L∞(μ) � C∞, we have that ‖F‖L2(μ)→�2(J) � C∞. Since δ′iso � 2, the

Riesz-Thorin interpolation3 theorem tells us that F : Lδ′iso
(μ) → �δiso(J) is well-

defined and ‖F‖Lδ′
iso

(μ)→�δiso (J)
� C∞. We thus have a chain of linear maps

�N∞
T∗
→ Lip0,μ(V (G), d)

ι→ W 1,1
0, μ(ν, d)

ιsob→ Lδ′iso
(μ)

F→ �δiso(J),

where ι is the formal identity from Lip0,μ(V (G), d) into W 1,1
0, μ(ν, d). Note that the

gradient operator∇d defines a contractive linear map Lip0,μ(V (G), d) → L∞(ν) and

a linear isometric embedding W 1,1
0, μ(ν, d) → L1(ν), and that we have the following

commutative diagram:

Lip0,μ(V (G), d) W 1,1
0,μ(ν, d)

X ⊂ L∞(ν) L1(ν) ⊃ Y

ι

∇d

ι1

∇−1
d

Here, X = ∇d(Lip0,μ(V (G), d)), ι1 is the formal identity, Y = ι1(X), and ι =

∇−1
d ◦ ι1�X ◦ ∇d. Since ν is a probability measure, the above factorization and

Lemma 5 imply ι is 1-summing with π1(ι) � 1. Similarly, by Lemma 5 again,

π1(F ◦ ιsob ◦ ι ◦ T ∗) � ‖F‖ · ‖ιsob‖ · ‖T ∗‖ � 2CisoC∞D.

The above inequality together with Lemma 6 implies that there exists b ∈ �δiso(J)
with

‖b‖δiso � 2CisoC∞D,(10) ∨
a∈B�N∞

|F ◦ ιsob ◦ ι ◦ T ∗(a)| � b.(11)

3Riesz-Thorin interpolation theorem is valid for σ-finite measures and can be applied in our
situation since J is countable.
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It follows from the definition of F and from Definition 3(1) that, for all j ∈ J ,

(12) |F(fj)| � C−2
1 ej ,

where {ej}j∈J is the canonical basis of �δiso(J). Therefore,

|b|
(11)

�
∨

a∈B�N∞

|F ◦ ιsob ◦ ι ◦T ∗(a)|
(9)

�
∨
j∈J

|F(fj)|
Lip(fj)

(12)

� 1

C2
1

∨
j∈J

ej
Lip(fj)

=
1

C2
1

∑
j∈J

ej
Lip(fj)

.

By taking the norm on both sides we get

1

C2
1

⎛
⎝∑

j∈J

1

Lip(fj)δiso

⎞
⎠

1/δiso

� ‖b‖δiso
(10)

� 2CisoC∞D,

and hence

(13) D � 1

2CisoC2
1C∞

⎛
⎝∑

j∈J

1

Lip(fj)δiso

⎞
⎠

1/δiso

.

From here, we calculate the sum applying the classical formula∫
Ω

|h|pdσ = p

∫ ∞

0

tp−1σ({h > t})dt

with Ω = J and σ the counting measure:

∑
j∈J

1

Lip(fj)δiso
= δiso

∫ ∞

0

tδiso−1
∣∣{j ∈ J :

1

Lip(fj)
> t
}∣∣dt

= δiso

∫ ∞

0

1

sδiso−1

∣∣{j ∈ J :
1

Lip(fj)
>

1

s

}∣∣ 1
s2

ds

= δiso

∫ ∞

0

1

sδiso+1

∣∣{j ∈ J : Lip(fj) < s
}∣∣ds

(3)

� δiso

∫ β

1

1

sδiso+1

sδspec

Cγ
ds.(14)

Combining (13) and (14) gives us

D � 1

2CisoC2
1C∞

(δiso
Cγ

) 1
δiso
(∫ β

1

sδspec−δiso−1ds
) 1

δiso .

�

4. Brief review of graph measures and �-products

The graphs we are interested in are graphs built by taking �-product of var-
ious s-t graphs. In the first subsection we define measures on the vertex set of
general graphs induced by measures on their edge set, and in the following subsec-
tion we recall basic properties of the �-product operation relevant to the ensuing
arguments.
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4.1. Edge-induced vertex measures. Let G be a graph and α = (α(e))e∈E(G) ⊂
(0, 1). When ν is a measure on E(G), we get an induced measure μα(ν) on V (G)
defined for x ∈ V (G) by

(15) μα(ν)(x)
def
=

∑
e∈E(G)

e+=x

ν(e)α(e) +
∑

e∈E(G)

e−=x

ν(e)(1− α(e)).

It can be easily checked that μα(ν) is the unique measure on V (G) satisfying

(16)

∫
V (G)

fdμα(ν) =

∫
E(G)

(α(e)f(e+) + (1− α(e))f(e−))dν(e)

for all f : V (G) → R.

Remark 3. Whenever ν is a probability measure, so is μα(ν). If α ≡ 1
2 , we will

often suppress notation and write μ(ν) for μ 1
2
(ν). If ν is the uniform probability

measure on E(G), we call μ(ν) the degree-probability measure on V (G) because, for
all x ∈ V (G), we have

μ(ν)(x) =
deg(x)

2|E(G)| =
deg(x)∑

y∈V (G) deg(y)
.

4.2. �-products. In the sequel, an s-t graph will be a graph G equipped with two
distinguished and distinct vertices: a source vertex s(G) and a sink or target vertex
t(G), and an orientation of the edges such that every vertex in V (G) belongs to a
directed path from s(G) to t(G).

Example 1. Let k � 2 be an integer. Let Pk denote the path graph of length
k with the following concrete labelling: V (Pk) := { i

k : 0 � i � k} and E(Pk) :=

{( i−1
k , i

k ) : 1 � i � k}. The graph Pk has k + 1 vertices and k edges directed from
the source s(Pk) := 0 to the sink t(Pk) := 1, thus turning Pk into an s-t graph.
The graph Pk is typically equipped with the normalized geodesic metric induced
by the weights dPk

(e) := 1
k for every e ∈ E(Pk).

Example 2 supplies the class of graphs to which our main theorems on dimensions
of �-powers apply.

Example 2 (Generalized diamond graphs). Let k,m � 2 be integers. The m-
branching diamond graph of depth k, denoted Dk,m, is the s-t graph with vertex
set:

V (Dk,m) := V (Pk)× {1, . . . ,m}/ ∼,

where (u, i) ∼ (v, j) if and only if (u, i) = (v, j), or u = v = 0, or u = v = 1, and
directed edge set:

E(Dk,m) := {([(e−, i)], [(e+, i)]) : e ∈ E(Pk), i ∈ {1, . . . ,m}},
with source s(Dk,m) := [(0, i)] and sink t(Dk,m) := [(1, i)]. We typically equip
V (Dk,m) with the normalized geodesic metric induced by the weights dDk,m

(e) := 1
k

and E(Dk,m) with the uniform probability measure νDk,m
(e) := 1

km for every e ∈
E(Dk,m).

It seems that the first formal definition of �-product appeared in [LR10].

Definition 4 (�-product). Let H be a graph and G an s-t graph. We define the
graph �-product of H by G, denoted H �G, as follows.
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• The vertex set V (H�G) is defined to be E(H)×V (G)/ ∼, where (e1, u1) ∼
(e2, u2) if and only if

– (e1, u1) = (e2, u2), or
– e+1 = e−2 , u1 = t(G), and u2 = s(G), or
– e+1 = e+2 , u1 = t(G), and u2 = t(G), or
– e−1 = e−2 , u1 = s(G), and u2 = s(G).

For (e, u) ∈ E(H)× V (G), its equivalence class in V (H �G) is denoted by
e� u.

• The directed edge set E(H�G) is defined to be {(e� f−, e� f+) : (e, f) ∈
E(H)× E(G)}. We denote the edge (e� f−, e� f+) by e� f .

Remark 4. The assignment (e, f) �→ e � f defines a bijection E(H) × E(G) →
E(H �G). With our choice of notation, it obviously holds that (e� f)± = e� f±.

It is routine to check that H�G satisfies our standing assumptions on graphs (fi-
nite, connected, directed, with at least one edge, and without self-loops or multiple
edges between the same pair of vertices) since H and G do.

There is a canonical injection V (H) ↪→ V (H � G) given by e+ �→ e � t(G)
and e− �→ e � s(G) for every e ∈ E(H). The domain of this map is all of V (H)
since every vertex is an endpoint of at least one edge, and it is well-defined by the
definition of the equivalence relation ∼ defining V (H � G). We treat V (H) as a
subset of V (H � G) under this identification. If H is an s-t graph, then H � G
inherits an s-t structure under the choice s(H �G) := s(H), t(H �G) := t(H).

Let H and H ′ be graphs. Recall that a graph morphism is a map θ : V (H) →
V (H ′) that preserves directed edges, i.e. (θ(e−), θ(e+)) ∈ E(H ′) for every e ∈ E(H)
(we adopt the convention that all graph morphisms are directed). In this case θ
induces a well-defined map (still denoted θ) from E(H) to E(H ′) satisfying θ(e)± =
θ(e±). Let G and G′ be s-t graphs and θ : V (G) → V (G′) a graph morphism.
If θ(s(G)) = s(G′) and θ(t(G)) = t(G′), then θ is an s-t graph morphism. Let
θH : V (H) → V (H ′) be a graph morphism and θG : V (G) → V (G′) an s-t graph
morphism. We define the �-morphism θH � θG : V (H �G) → V (H ′ �G′) by

(θH � θG)(e� u) := θH(e)� θG(u).

It can be easily verified that θH � θG is a well-defined graph morphism.

4.3. �-measures on �-products. Let H be a graph and G an s-t graph. When
νH and νG are measures on E(H) and E(G), respectively, we define the �-measure
νH � νG on E(H �G) by

(17) (νH � νG)(e� f)
def
= νH(e) · νG(f).

Remark 5. Obviously, under the identification E(H � G) = E(H) × E(G), the
�-measure is simply the product measure.

Combining (15) and (17), we obtain a simple identity below that will be used
repeatedly in the sequel. For e0 ∈ E(H), we define the contractions along e0 of S ⊂
V (H�G) and α = (α(e�f))e�f∈E(H�G) ⊂ (0, 1) by Se0

def
= {x ∈ V (G) : e0�x ∈ S}

and αe0
def
= (αe0(f))f∈E(G)

def
= (α(e0 � f))f∈E(G). Then, for all S ⊂ V (H �G) and

(α(e� f))e�f∈E(H�G) ⊂ (0, 1) we have

(18) μα(νH � νG)(S) =
∑

e∈E(H)

νH(e)μαe
(νG)(Se).
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Given measures νH and μG on E(H) and V (G), respectively, Riesz’s representa-
tion theorem guarantees that there exists a unique �-measure νH�μG on V (H�G)
satisfying

(19)

∫
V (H�G)

fd(νH � μG) =

∫
E(H)

(∫
V (G)

f(e� x)dμG(x)

)
dνH(e)

for all f : V (H �G) → R.
Using (18) with α ≡ 1

2 , we see that (19) implies

(20) μ(νH � νG) = νH � μ(νG)

whenever νH and νG are measures on E(H) and E(G), respectively.

4.4. �-metrics on �-products. Let H be a graph and G an s-t graph. Let
dH and dG be geodesic metrics on V (H) and V (G), respectively. We define the
�-geodesic metric dH�dG to be the unique geodesic metric on V (H�G) satisfying

(21) (dH � dG)(e� f) = dH(e) · dG(f),
for all e� f ∈ E(H �G).

Observe that for any u, v ∈ V (H) ⊂ V (H �G), it holds that

(dH � dG)(u, v) = dH(u, v) · dG(s(G), t(G)).

Hence, if the geodesic metric on G is normalized, i.e. dG(s(G), t(G)) = 1, then the
canonical inclusion of (V (H), dH) in (V (H�G), dH�dG) is an isometric embedding.
Note also that for any e ∈ E(H) and u, v ∈ V (G), it clearly holds that

(dH � dG)(e� u, e� v) = dH(e) · dG(u, v).

5. Isoperimetric dimension of �-products and �-powers

The main goal of this section is to compute the isoperimetric dimension of �-
powers of graphs. This is accomplished with Theorem 4. To prove this theorem, we
study the behavior of isoperimetric ratios under �-products. In Definition 1 and
Section 2 we considered measures on the edge and vertex sets that were independent
of each other. In our study of the isoperimetric dimension of �-products we require
a certain compatibility condition between the two measures. In some sense the
measure on the vertex set is governed by the measure on the edge set.

For G a graph, a probability measure ν on E(G), a geodesic metric d on V (G),
δ ∈ [1,∞), and α = (α(e))e∈E(G) ⊂ (0, 1), we define the isoperimetric ratio of
S ⊂ V (G) by

(22) qd,ν,α,δ(S)
def
=

Perd,ν(S)

min{μα(ν)(S), μα(ν)(Sc)} δ−1
δ

.

Thus, G has (μα(ν), ν, d)-isoperimetric dimension δ with constant C if qd,ν,α,δ(S) �
1/C for all S ⊂ V (G).

Since obviously ∂(S) = ∂(Sc) and thus Perd,ν(S) = Perd,ν(S
c), it is certainly

true that

qd,ν,α,δ(S) = max{q̃d,ν,α,δ(S), q̃d,ν,α,δ(Sc)},
where for all ∅ 
= S ⊂ V (G),

(23) q̃d,ν,α,δ(S)
def
=

Perd,ν(S)

μα(ν)(S)
δ−1
δ

.
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Note here that for all S 
= ∅, μα(ν)(S) 
= 0 since ν is fully supported and α(e) > 0
for all e ∈ E(G). We will conveniently refer to (23) as the ∼-isoperimetric ratio.
First we prove a general lemma showing that, in order to lower bound isoperimetric
ratios, it suffices to consider only connected subsets. Recall that a subset S of V (G)
is connected if any two vertices x, y in S can be connected by a path made of vertices
in S. If S ⊂ V (G), a connected component of S is a maximal connected subset of
S.

Proposition 1. Let G be a graph and ν a probability measure on E(G). Let
α = (α(e))e∈E(G) ⊂ (0, 1) and S ⊂ V (G) with μα(ν)(S) � μα(ν)(S

c) and let
S1, S2, . . . , Sn be its connected components, then

qd,ν,δ,α(S) � min
1�j�n

qd,ν,δ,α(Sj).

Proof. Since the boundaries of Sj , j = 1, 2, . . . , n, are pairwise disjoint, it follows
that

qd,ν,δ,α(S) =

∑n
j=1 Perd,ν(Sj)(∑n

j=1 μα(ν)(Sj)
) δ−1

δ

.

Thus the proposition follows from Claim 2. �

Claim 2. Let 0 < r � 1, n ∈ N, a1, . . . , an non-negative numbers, and b1, . . . , bn
positive numbers. Then

(24)

∑n
j=1 aj(∑n
j=1 bj

)r � min
1�j�n

aj
brj

.

Proof.

min
1�i�n

ai
bri

( n∑
j=1

bj

)r
=
( n∑

j=1

bj min
1�i�n

a
1/r
i

bi

)r
�
( n∑

j=1

a
1/r
j

)r
�

n∑
j=1

aj ,

where in the last inequality we used that r ∈ (0, 1]. �

5.1. Behavior of isoperimetric ratios under �-products. Throughout this
subsection, fix an isoperimetric exponent δ ∈ [1,∞), a graph H, an s-t graph G,
probability measures νH and νG on E(H) and E(G), respectively, and geodesic met-
rics dH and dG, on V (H) and V (G) respectively. We assume that dG is normalized,
meaning dG(s(G), t(G)) = 1.

First let us introduce some convenient and simplified notation. We will simply
write PerH , PerG, and PerH�G for PerνH ,dH , PerνG,dG , and PerνH�νG,dH�G

, re-
spectively. Similarly, for (α(e))e∈E(H�G), (β(e))e∈E(H), (γ(e))e∈E(G) ⊂ (0, 1), we
will omit references to the (fixed) metrics, measures, and isoperimetric exponent,
and we will abbreviate the isoperimetric ratios qdH�dG,νH�νG,δ,α, qdH ,νH ,δ,β , and
qdG,νG,δ,γ , by qH�G,α, qH,β , and qG,γ , respectively. We apply the same rules for the
∼-isoperimetric ratios. The induced measures μα(νH � νG), μβ(νH), and μγ(νG)
will be shortened to μH�G,α, μH, β, and μG, γ , respectively.

We start first with an intuitive lemma which says that the ∼-isoperimetric ratio
of a nonempty subset S of H � G contained entirely inside a copy of G (and not
containing the end vertices) is up to some natural scaling factors and appropriate
weights the ∼-isoperimetric ratio of S considered in G. For e ∈ E(H) and S ⊂
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V (G), we define the lift of S in the e-th copy of G by e � S := {e � x : x ∈ S} ⊂
V (H �G).

Lemma 7. For every (α(e))e∈E(H�G) ⊂ (0, 1), e0 ∈ E(H), and S ⊂ V (G) \
{s(G), t(G)} with S 
= ∅,

q̃H�G,α(e0 � S) =
νH(e0)

1
δ

dH(e0)
q̃G,αe0

(S).

Proof. Since S does not contain the endpoints we have ∂H�G(e0�S) = e0�∂G(S),
and thus

PerH�G(e0 � S) =
∑

e∈∂G(S)

νH(e0)νG(e)

dH(e0)dG(e)
=

νH(e0)

dH(e0)
PerG(S).

Equation (18) tells us that μH�G,α(e0 � S) = νH(e0)μG,αe0
(S), which yields

q̃H�G,α(e0 � S) =

νH(e0)
dH(e0)

PerG(S)

[νH(e0)μG,αe0
(S)]

δ−1
δ

=
νH(e0)

1
δ

dH(e0)
q̃G,αe0

(S).

�

Lemma 8 is our main technical observation for isoperimetric ratios of subsets
containing both endpoints of at least an edge in H. We need one more piece of
notation pertaining to lifts of edges of G. For e ∈ E(H), we define the lift of
F ⊂ E(G) in the e-th copy of G by e� F := {e� f : f ∈ F} ⊂ E(H �G).

Lemma 8. Let α = (α(e � f))e�f∈E(H�G) ⊂ (0, 1) and S ⊂ V (H � G), with

μH�G,α(S) � 1
2 . If there exists e0 ∈ E(H) such that {e−0 , e+0 } ⊂ S, then at least

one of the following conditions (a) and (b) hold.

(a) S ∪
(
e0 � Sc

e0

)

= V (H �G) and qH�G,α(S) � qH�G,α

(
S ∪ (e0 � Sc

e0)
)
,

or

(b) qH�G,α(S) � νH(e0)
1
δ

dH(e0)
q̃G,αe0

(Sc
e0).

Note that in (a) the complement is taken in V (G), i.e. Sc
e0

:= V (G) \ Se0 = {x ∈
V (G) : e0 � x 
∈ S}.

Proof. Assume that there exists e0 ∈ E(H) such that {e−0 , e+0 } ⊂ S. We will prove
that if (a) does not hold then (b) holds.

In the case that S ∪
(
e0 � Sc

e0

)
= V (H � G), and thus Sc = e0 � Sc

e0 ⊂ e0 �
(V (G) \ {s(G), t(G)}), it follows that

qH�G,α(S) = qH�G,α(S
c) = qH�G,α(e0 � Sc

e0)
Lem. 7

� νH(e0)
1
δ

dH(e0)
q̃G,αe0

(Sc
e0),

yielding (b).
So we assume that S ∪

(
e0 � Sc

e0

)

= V (H � G) and qH�G,α(S) < qH�G,α

(
S ∪

(e0 � Sc
e0)
)
. Necessarily Sc

e0 
= ∅. Letting S̃ := S ∪ (e0 � Sc
e0), we can also assume

without loss of generality that

(25) μH�G,α(S̃) >
1

2
� μH�G,α((S̃)

c)
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since otherwise

qH�G,α(S̃) =
PerH�G(S̃)

μH�G,α(S̃)
δ−1
δ

=
PerH�G(S)− νH(e0)

dH(e0)
PerG(Se0)

μH�G,α(S̃)
δ−1
δ

� PerH�G(S)

μH�G,α(S)
δ−1
δ

= qH�G,α(S),

contradicting our assumption. If we let

a1 := PerH�G(S)−
νH(e0)

dH(e0)
PerG(S

c
e0), a2 :=

νH(e0)

dH(e0)
PerG(S

c
e0),

b1 := μH�G,α(S
c)− νH(e0)μG,αe0

(Sc
e0), b2 := νH(e0)μG,αe0

(Sc
e0),

then

a1 + a2

(b1 + b2)
δ−1
δ

=
PerH�G(S)

μH�G,α(Sc)
δ−1
δ

� PerH�G(S)

min{μH�G,α(Sc), μH�G,α(S)}
δ−1
δ

= qH�G,α(S),

and

a1

b
δ−1
δ

1

=
PerH�G(S)− νH(e0)

dH(e0)
PerG(S

c
e0)(

μH�G,α(Sc)− νH(e0)μG,αe0
(Sc

e0)
) δ−1

δ

=
PerH�G(S̃)

μH�G,α((S̃)c)
δ−1
δ

(25)
= qH�G,α(S̃).

By our assumption, we have

(26)
a1 + a2

(b1 + b2)
δ−1
δ

<
a1

b
δ−1
δ

1

.

Then by Claim 2 in the proof of Proposition 1, it follows that

(27)
a2

b
δ−1
δ

2

� a1 + a2

(b1 + b2)
δ−1
δ

,

which gives (b) after substitution. �

Theorem 3 is our main result on isoperimetric inequalities. It relates isoperi-
metric ratios of H � G in terms of geometric parameters of H and G and their
isoperimetric ratios.

Theorem 3. For δ ∈ [1,∞), a graph H, an s-t graph G, probability measures νH
and νG on E(H) and E(G) respectively, and geodesic metrics dH and dG, on V (H)
and V (G), respectively, with dG normalized, we have

min
S�V (H�G)

S �=∅

inf
α∈(0,1)E(H�G)

qH�G,α(S) �

min

{
min

e∈E(H)

νH(e)
1
δ

dH(e)
· min

S∩{s(G),t(G)}=∅
S �=∅

inf
α∈(0,1)E(G)

q̃G,α(S) ,

min
S�V (H)

S �=∅

inf
α∈(0,1)E(H)qH,α(S)

· min
|S∩{s(G),t(G)}|=1

PerG(S)

}
.
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Proof. For convenience let us introduce the following parameters for H, G, and
H �G:

pG
def
= min

|S∩{s(G),t(G)}|=1
PerG(S),

q̃◦G
def
= min

S∩{s(G),t(G)}=∅
S �=∅

inf
α∈(0,1)E(G)

q̃G,α(S),

ρH
def
= min

e∈E(H)

νH(e)
1
δ

dH(e)
,

qK
def
= min

S�V (K)
S �=∅}

inf
α∈(0,1)E(K)

qK,α(S), for K ∈ {H,H �G}.

Let α = (α(e))e∈E(H�G) ⊂ (0, 1) be arbitrary. For each S ⊂ V (H � G) with
S 
∈ {∅, V (H �G)}, define

N(S)
def
= |{e ∈ E(H) : {e−, e+} ∩ S = ∅ but (e� V (G)) ∩ S 
= ∅}|

+ |{e ∈ E(H) : {e−, e+} ⊂ S but (e� V (G)) 
⊂ S}|.

We will prove that

(28) qH�G,α(S) � min{ρH · q̃◦G, qH · pG}

by induction on N(S) ∈ N∪{0}. As we will see, the base case N(S) = 0 requires as
much work as the inductive step. Note that N(S) = N(Sc), and hence by passing
to Sc if necessary, we may assume that μH�G,α(S) � 1

2 without changing the value
of qH�G,α(S) or N(S) (which are the only two quantities that matter).

Assume that N(S) = 0. Noting that |Se ∩ {s(G), t(G)}| = 1 ⇐⇒ e ∈ ∂H(S ∩
V (H)) and because N(S) = 0 we have

∂H�G(S) =
⋃

e∈∂H(S∩V (H))

(
e� ∂G(Se)

)
,

and thus

(29) PerH�G(S) =
∑

e∈∂H(S∩V (H))

νH(e)

dH(e)
PerG(Se).

It follows from (18) that

μH�G,α(S)
(18)
=

∑
e∈E(H)

νH(e)μG,αe
(Se)

(15)
=

∑
e∈E(H)

e−,e+∈S

νH(e)+
∑

e∈E(H)

e+∈S,e−�∈S

νH(e)μG,αe
(Se)+

∑
e∈E(H)

e−∈S,e+ �∈S

νH(e)μG,αe
(Se),

where the last equality follows from the assumption that N(S) = 0, and thus that
e+, e− ∈ S implies that Se = V (G), and e+, e− 
∈ S implies that Se = ∅. Hence
after defining

β(e)
def
=

⎧⎪⎨
⎪⎩

1
2 if e+, e− ∈ S, or e+, e− 
∈ S,

μG,αe
(Se) if e+ ∈ S, and e− 
∈ S,

1− μG,αe
(Se) if e+ 
∈ S, and e− ∈ S,
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we get
(30)

μH�G,α(S) =
∑

e∈E(H),

e+∈S∩V (H)

νH(e)β(e)+
∑

e∈E(H),

e−∈S∩V (H)

νH(e)(1−β(e))
(15)
= μH,β(S∩V (H)).

Combining (29) and (30), we obtain

qH�G,α(S) =
PerH�G(S)

μH�G,α(S)
δ−1
δ

(29)∧(30)
=

∑
e∈∂H(S∩V (H))

νH(e)
dH(e) PerG(Se)

μH,β(S ∩ V (H))
δ−1
δ

� PerH(S ∩ V (H)) · pG
μH, β(S ∩ V (H))

δ−1
δ

= qH, β(S ∩ V (H)) · pG � qH · pG,

where in the last equality, we have used the fact that μH,β(S∩V (H))
(30)
= μ̄H�G,α(S)

� 1
2 . Inequality (28) follows in the base case N(S) = 0.
Now we prove the inductive step. Assume N(S) > 0 and that (28) holds for

all S′ ⊂ V (H � G) with S′ 
∈ {∅, V (H � G)} and N(S′) < N(S). Of course, in
this situation we have two cases: (I) there exists e ∈ E(H) with {e−, e+} ⊂ S
but e � V (G) 
⊂ S, and (II) there exists e ∈ E(H) with {e−, e+} ∩ S = ∅ but
(e� V (G)) ∩ S 
= ∅.

Assume that (I) holds. Let e0 ∈ E(H) such that {e−0 , e+0 } ⊂ S but e0�V (G) 
⊂ S.
Then, setting S′ := S ∪ (e0�Sc

e0) (and recalling that we may assume μH�G,α(S) �
1
2 ), Lemma 8 implies that one of the following holds:

(a) S′ 
∈ {∅, V (H �G)} and qH�G,α(S) � qH�G,α(S
′).

(b) qH�G,α(S) � ρH · q̃◦G.
Since N(S′) = N(S)− 1, if (a) holds, then we get (28) by the inductive hypothesis.
If (b) holds then we get (28) automatically. This completes the proof for case (I).

Now assume that (II) holds. Let B be a connected component of S with
qH�G,α(S) � qH�G,α(B), which exists by Proposition 1. Note that μH�G,α(B) �
μH�G,α(S) � 1

2 . Consider the set F := {e ∈ E(H) : {e−, e+} ∩ B = ∅ but (e �
V (G)) ∩ B 
= ∅}. Since B is a connected component, necessarily |F | ∈ {0, 1}.
Therefore exactly one of the following two subcases must hold: (i) |F | = 1, i.e.
there exist e ∈ E(H) and B′ ⊂ V (G) \ {s(G), t(G)} such that B = e � B′ , or (ii)
|F | = 0, i.e. {e ∈ E(H) : {e−, e+} ∩ B = ∅ but (e� V (G)) ∩ B 
= ∅} = ∅. Assume
that (i) holds. Then Lemma 7 implies qH�G,α(B) � ρH · q̃◦G, and (28) follows.
Finally, assume that (ii) holds. Then the following is true.

• Since B ⊂ S is a connected component,

{e ∈ E(H) : {e−, e+} ⊂ B but (e� V (G)) 
⊂ B}
⊂ {e ∈ E(H) : {e−, e+} ⊂ S but (e� V (G)) 
⊂ S}.

• Since we are in case (II),

{e ∈ E(H) : {e−, e+} ∩ S = ∅ but (e� V (G)) ∩ S 
= ∅} 
= ∅.
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• Since we are in subcase (ii),

{e ∈ E(H) : {e−, e+} ∩B = ∅ but (e� V (G)) ∩B 
= ∅} = ∅.
These three items together with the definition of N(S), N(B) imply N(B) < N(S).
Hence (28) holds by the inductive hypothesis. This completes the proof of the
inductive step in all cases. �

5.2. The isoperimetric dimension of �-powers. In this subsection, we again
fix an isoperimetric exponent δ ∈ [1,∞), an s-t graph G, a normalized geodesic
metric dG on V (G), and a fully supported probability measure νG on E(G). We
retain the same notation from the previous subsection.

Definition 5 (�-powers). Given an s-t graph G, we define its n-th �-power G�n

for n ∈ N recursively as follows: G1 := G and G�n+1 := G�n �G.

Remark 6. It holds that E(G�n) = {�n
j=1ej : {ej}nj=1 ∈ E(G)}, where �n

j=1ej is
defined in the obvious way.

Recall the following notation from the previous subsection:

qG�n,α = min
S�V (G�n)

S �=∅

Perν�n
G ,dG

(S)

min
{
μα(ν

�n
G )(S), μα(ν

�n
G )(Sc)

} δ−1
δ

,

qG�n = inf
α∈(0,1)E(G�n)

qG�n,α,

q̃◦G = min
S∩{s(G),t(G)}=∅

S �=∅

inf
α∈(0,1)E(G)

q̃G,α(S).

We characterize precisely when a �-power admits a uniform lower bound on the
isoperimetric ratio.

Theorem 4. Let G be an s-t graph and assume that |V (G)| > 2. Then the following
conditions are equivalent:

(1) There exists c > 0 such that for all n ∈ N,

min
S�V (G�n)

S �=∅

Perν�n
G ,d�n

G
(S)

min
{
μ(ν�n

G )(S), μ(ν�n
G )(Sc)

} δ−1
δ

� c.

(2)

ρG
def
= min

e∈E(G)

ν
1
δ

G(e)

dG(e)
� 1 and pG

def
= min

S⊂V (G)
|S∩{s(G),t(G)}|=1

PerνG,dG(S) � 1.

(3) There exists c > 0 such that for all n ∈ N,

inf
α∈(0,1)E(G�n)

min
S�V (G�n)

S �=∅

Perν�n
G ,d�n

G
(S)

min
{
μα(ν

�n
G )(S), μα(ν

�n
G )(Sc)

} δ−1
δ

� c.

Moreover, in both (1) and (3), c can be taken to be

min{PerνG,dG(S) : ∅ 
= S � V (G)}.

Proof. We retain the notational conventions from the previous subsection, e.g.,
PerG�n means Perν�n

G ,d�n
G

and μG�n,α means μα(ν
�n
G ).
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The implication (3) =⇒ (1) is immediate, and the implication (2) =⇒ (3)
holds by induction, using Theorem 3. Indeed, let

c
def
= min{PerνG,dG(S) : ∅ 
= S � V (G)}.

Then clearly qG � c. Moreover, q̃◦G � c and assuming that qG�n � c, for some
n ∈ N, we first observe that

ρG�n
def
= min

e∈E(G�n)

ν
1
δ

G�n(e)

dG�n(e)

(Rem. 6)∧(17)∧(21)
= min

e1,e2,...en∈E(G)

∏n
j=1 ν

1
δ

G(ej)∏n
j=1 dG(ej)

� 1

and then by applying Theorem 3 to H = G�n and G, we obtain from the induction
hypothesis that

qG�(n+1) � min{ρG�n · q̃◦G, qG�n · pG} � min{q̃◦G, qG�n} � c.

It remains to prove that (1) implies (2), which we do by contraposition. Assume
that (2) does not hold, so that ρG < 1 or pG < 1. Assume first that ρG < 1.

Let e ∈ E(G) such that νG(e)
1
δ

dG(e) < 1. Set S := V (G) \ {s(G), t(G)} 
= ∅, and

Sn := e�n �S ⊂ V (G�n�G) for n ∈ N. Since νG is fully supported and E(G) has
more than two edges, νG(e) < 1. From this we get

μG�n+1(Sn) = μG�n+1(e�n � S)
(20)
= ν�n

G (e�n)μG(S) = νG(e)
nμG(S) →

n→∞
0.

Therefore, for n sufficiently large, μG�n+1(Sn) � 1
2 . Using this we get, for all n

sufficiently large,

qG�n+1, 12
(Sn) = q̃G�n+1, 12

(Sn)
Lem. 7
=

ν�n
G (e�n)

1
δ

dG�n(e�n)

PerG(S)

μG(S)
δ−1
δ

=

(
νG(e)

1
δ

dG(e)

)n
PerG(S)

μG(S)
δ−1
δ

→
n→∞

0.

This shows (1) in the case ρG < 1.
Now assume that pG < 1. Choose any S ⊂ V (G) with |S ∩ {s(G), t(G)}| = 1

and

PerG(S) = min{PerG(B) : B ⊂ V (G), |B ∩ {s(G), t(G)}| = 1} < 1.

Without loss of generality we may assume that s(G) ∈ S and t(G) 
∈ S. The
set S must be connected, because otherwise the connected component of S con-
taining s(G) would have strictly smaller perimeter. By the same reasoning, since
PerG(S

c) = PerG(S), S
c must also be connected. We consider 2 cases: either S or

Sc is a singleton, and neither S nor Sc is a singleton.

Case 1. Either S or Sc is a singleton.
We will only treat the case that S is a singleton, since the argument in the other

case is identical. Then we have that S = {s(G)}, and hence by our convention of
the orientation of an s-t graph,

1 > PerG({s(G)}) =
∑

e∈E(G)

e−=s(G)

νG(e)

dG(e)
.(31)
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Let e0 ∈ E(G) such that e−0 = s(G) and such that there exists e1 ∈ E(G) with
e−1 = e+0 (such an edge e0 must exist since V (G) has more than 2 elements). We
define, for n ∈ N, n � 2,

Sn := e0 � V (G�n−1) ⊂ V (G�G�(n−1)) = V (G�n).

It holds that

∂G�n(Sn) = {f1 � f2 � · · · � fn ∈ E(G�n) : f−
1 = e+0 , f

−
j = s(G) for 2 � j � n}

∪ {f1 � f2 � · · · � fn ∈ E(G�n) : f1 
= e0, f
−
j = s(G) for 1 � j � n}.

Note that at least the first of above two sets cannot be empty by choice of e0. It
follows that

PerG�n(Sn) =

⎛
⎜⎜⎝ ∑

e∈E(G)

e−=e
+
0

νG(e)

dG(e)

⎞
⎟⎟⎠
⎛
⎜⎝ ∑

f∈E(G)

f−=s(G)

νG(f)

dG(f)

⎞
⎟⎠

n−1

+

⎛
⎜⎝ ∑

e∈E(G)\{e0}
e−=s(G)

νG(e)

dG(e)

⎞
⎟⎠
⎛
⎜⎝ ∑

f∈E(G)

f−=s(G)

νG(f)

dG(f)

⎞
⎟⎠

n−1

=

⎛
⎜⎜⎝ ∑

e∈E(G)\{e0}
e−=s(G)

νG(e)

dG(e)
+
∑

e∈E(G)

e−=e
+
0

νG(e)

dG(e)

⎞
⎟⎟⎠
⎛
⎜⎝ ∑

f∈E(G)

f−=s(G)

νG(f)

dG(f)

⎞
⎟⎠

n−1

=

⎛
⎜⎜⎝ ∑

e∈E(G)\{e0}
e−=s(G)

νG(e)

dG(e)
+
∑

e∈E(G)

e−=e
+
0

νG(e)

dG(e)

⎞
⎟⎟⎠PerG({s(G)})n−1 (31)→

n→∞
0.

Thus, the proof that (1) is not satisfied is complete in this case if we can verify that

inf
n∈N

min{μG�n(Sn), μG�n(Sc
n)} > 0.

First note that

μG�n(Sn) = μG�n(e0 � V (G�n−1))
(20)
= νG(e0)μG�(n−1)(V (G�n−1)) = νG(e0)

� min
e∈E(G)

νG(e) > 0.

Secondly, there must exist e2 ∈ E(G) with e+2 = t(G) and e−2 
= s(G), from which

it follows that e2 � e2 � V (G�n−2) is a subset of V (G�G�G�(n−2)) = V (G�n)
disjoint from Sn, and thus

μG�n(Sc
n) � μG�n(e2 � e2 � V (G�n−2))

(20)
= ν�2

G (e2 � e2) � min
e∈E(G)

νG(e)
2 > 0.

Case 2. min{|S|, |Sc|} � 2.
Since S and Sc are connected, there exist e1, e2 ∈ E(G) such that e−1 , e

+
1 ∈ S

and e−2 , e
+
2 ∈ Sc. We define Sn ⊂ V (G�n) recursively for all n ∈ N. Let S1 := S

and

Sn+1 :=
⋃

e∈E(G)

e� S′
n,e ⊂ V (G�G�n),
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where

S′
n,e :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
V (G�n) e−, e+ ∈ S

∅ e−, e+ 
∈ S

Sn e− ∈ S, e+ 
∈ S

Sc
n e+ ∈ S, e− /∈ S

.

In particular we have S′
n,e1 = V (G�n) and S′

n,e2 = ∅. For all n ∈ N, we have

∂G�(n+1)(Sn+1) =
⋃

e∈∂GS

e� ∂G�nS′
n,e,

and thus

PerG�n+1(Sn+1) =
∑

e∈∂G(S)

νG(e)

dG(e)
PerG�n(S′

n,e)

=
∑

e∈∂G(S)

νG(e)

dG(e)
PerG�n(Sn) = PerG(S) PerG�n(Sn),

from which we deduce by induction that

PerG�n(Sn) = PerG(S)
n →

n→∞
0.

On the other hand,

μG�n(Sn) = μG�n

( ⋃
e∈E(G)

e� S′
n−1,e

)
� μG�n(e1 � S′

n−1,e1)

= μG�n(e1 � V (G�(n−1)))
(20)
= νG(e1),

and observing that Sc
n =

⋃
e∈E(G) e�[S′

n,e]
c, a similar argument shows that μG�n(Sc

n)

� ν(e2). Combining these last three estimates yields

qG�n, 12
(Sn) →

n→∞
0,

proving the negation of (1).

�

We immediately get Corollary 1, which characterizes the isoperimetric dimension
of G�n in terms of easily verifiable conditions on G.

Corollary 1. If an s-t graph G satisfies |V (G)| > 2, then the following are equiv-
alent:

(1) For all n ∈ N, G�n has (μ(ν�n
G ), ν�n

G , d�n
G )-isoperimetric dimension δ =

maxe∈E(G)
log(νG(e))
log(dG(e)) with constant C � maxS�V (G)

S �=∅
PerνG,dG(S)

−1.

(2) There exist δ ∈ [1,∞) and C ∈ (0,∞) such that, for all n ∈ N, G�n has
(μ(ν�n

G ), ν�n
G , d�n

G )-isoperimetric dimension δ with constant C.
(3) min S⊂V (G)

|S∩{s(G),t(G)}|=1

PerνG,dG(S) � 1.

5.3. Applications. In this section we show how to apply the results in Section 5
to two important sequences of graphs.
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5.3.1. Isoperimetric dimensions of diamond graphs. Let k,m � 2 be integers. Re-
call from Example 2 that the m-branching diamond graph of depth k, Dk,m, is
equipped with νDk,m

the uniform probability measure on E(Dk,m) and dDk,m
the

normalized geodesic metric on V (Dk,m). It can be easily verified that
PerνDk,m

,dDk,m
(S) � 1 for every S ⊂ V (Dk,m) with |S ∩ {s(Dk,m), t(Dk,m)}| = 1.

Indeed, by symmetry and the fact that connected components of S have smaller
perimeter than S, it suffices to check the inequality assuming that S is connected,
s(Dk,m) ∈ S, and t(Dk,m) 
∈ S. It is clear that any such set S must be a union of

directed paths {Pi}ji=1, 1 � j � m, starting at the common vertex s(Dk,m) and
ending at non-neighboring vertices. It is easily seen that PerνDk,m

,dDk,m
(S) = 1

in this case. It is also clear that max∅
=S�V (G) PerνG,dG(S)
−1 � m

2 , and thus by
Corollary 1, we get that:

Corollary 2. For all, k,m � 2 and all n ∈ N, D�n
k,m has (μ(ν�n

Dk,m
), ν�n

Dk,m
, d�n

Dk,m
)-

isoperimetric dimension 1+ logm
log k with constant C � m

2 . In particular, the classical

binary diamond graph D�n
2,2 has (μ(νD�n

2,2
), νD�n

2,2
, dD�n

2,2
)-isoperimetric dimension 2

with constant C � 1.

5.3.2. Isoperimetric dimensions of Laakso graphs. Let La1 denote the level 1 Laakso
graph (originally studied by Lang and Plaut [LP01, Theorem 2.3]) depicted in Fig-
ure 3. We give labels to the vertices as V (La1) = {s(La1) = u0, u1/4, u1/2+, u1/2−,
u3/4, u1 = t(La1)} so that the edge set is

E(La1) = {(u0, u1/4), (u1/4, u1/2+), (u1/4, u1/2−), (u1/2+, u3/4), (u1/2−, u3/4), (u3/4, u1)}.

Equip V (La1) with the normalized geodesic metric dLa1(e) := 1
4 for every e ∈

E(La1). If νLa1,u is the uniform probability measure on E(La1), then

PerνLa1,u,dLa1
({s(La1)}) =

2

3

and thus by Corollary 1, there is no δ < ∞ such that Lan := La�n
1 has

(μ(ν�n
La1,u

), ν�n
La1,u

, d�n
La1

)-isoperimetric dimension δ with a fixed constant C ∈ (0,∞).

However, if νLa1,p is the probability measure on E(La1) defined by νLa1,p(e) := 1
4

if e ∈ {(u0, u1/4), (u3/4, u1)} and νLa1,p(e) :=
1
8 otherwise, then it is easy to check

that PerνLa1,p,dLa1
(S) � 1 for every ∅ 
= S � V (La1). Therefore, since log(1/8)

log(1/4) = 3
2 ,

Corollary 1 gives:

Corollary 3. There is C < ∞ such that, for every n ∈ N, Lan has
(μ(ν�n

La1,p
),ν�n

La1,p
, d�n

La1
)-isoperimetric dimension 3

2 with constant C < ∞.

6. Lipschitz-spectral profile of �-products and �-powers

The main goal of this section is to compute the Lipschitz-spectral profile of
�-powers of s-t graphs G when E(G) is equipped with the uniform probability
measure (Corollary 4). This result will be obtained as a particular case of a more
general study of the Lipschitz-spectral profile of �-products (Theorems 5, 6, 7).
Throughout this section, fix an integer k � 2.

Remark 7. We remark that none of the results of this section require the vertices in
an s-t graph G to lie on a directed edge path from s(G) to t(G); the results apply
to more general graphs.
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6.1. Operators between function spaces. We introduce various operators be-
tween function spaces that we use to build orthogonal sets of Lipschitz functions
on �-products. The first two operators are �-products and barycentric extensions
of functions. These operators are defined whenever the relevant graphs are s-t.

Definition 6 (�-products of functions). Given a graph H, s-t graph G, and func-
tions h : E(H) → R, g1 : V (G) → R, g2 : E(G) → R with g1(s(G)) = g1(t(G)) = 0,
we define h� g1 : V (H �G) → R and h� g2 : E(H �G) → R by (h� g1)(e�u) :=
h(e) · g1(u) and (h � g2)(e � e′) := h(e) · g2(e′). Note that h � g1 is well-defined
because g1(s(G)) = g1(t(G)) = 0.

Given a real-valued function f on V (H), a barycentric extension operator will
return a function on V (H � Pk) by taking a natural barycentric combination of
the values of f at the two corresponding vertices of H where each copy of Pk is
attached.

Definition 7 (Barycentric extension). Given a graph H and function f : V (H) →
R, we define its barycentric extension B(f) : V (H � Pk) → R by

B(f)(u) := (1− i
k )f(e

−) + i
kf(e

+)

for all u = e� i
k ∈ V (H � Pk).

The next two operators, pullbacks and conditional expectations, require a graph
morphism θ : V (G) → V (G′) and a measure μG on V (G) rather than an s-t
structure.

Let G,H be graphs and θ : V (G) → V (G′) a graph morphism. We define σ(θ)
to be the σ-algebra on V (G) or E(G) generated by θ. That is, the atoms of σ(θ)
are preimages of singleton subsets of V (G′) or E(G′) under θ, and σ(θ) is generated
by these atoms.

Definition 8 (Pullbacks induced by graph morphisms). Let G,H be graphs and

θ : V (G) → V (G′) a graph morphism. For a given function f ∈ RV (G′), we
define its pullback by θ∗(f) := f ◦ θ ∈ RV (G). Since θ is a graph morphism, it
induces a well-defined map θ : E(G) → E(G′), and thus we get a pullback operator

θ∗ : RE(G′) → RE(G) given by the same formula.

Remark 8. A function on V (G) or E(G) is σ(θ)-measurable if and only if it is in
the image of θ∗.

Definition 9 (Conditional expectations induced by graph morphisms). Let G,G′

be graphs, θ : V (G) → V (G′) a graph morphism, and νG a measure on E(G). We
define Eθ

νG
to be the conditional expectation with respect to the measure space

(E(G), σ(θ), νG). That is, for every g : E(G) → R, Eθ
νG

(g) : E(G) → R is σ(θ)-
measurable and satisfies∫

E(G)

h · Eθ
νG

(g)dνG =

∫
E(G)

h · gdνG

for every σ(θ)-measurable h : E(G) → R.

6.2. Strongly orthogonal sets of Lipschitz functions on �-products. Def-
inition 10 is the crucial strengthening of orthogonality needed to study Lipschitz-
spectral profile of �-products.
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Definition 10 (Strong orthogonality). When H is a graph and f : V (H) → R is
a function, we define the induced edge-functions f−, f+ : E(H) → R by f−(e) :=
f(e−) and f+(e) := f(e+). For νH a measure on E(H) and f, g : V (H) → R,
we say that f and g are strongly νH-orthogonal if fε1 and gε2 are orthogonal in
L2(E(H), νH) for all ε1, ε2 ∈ {−,+}. We say that a set of functions F ⊂ RV (H) is
strongly νH -orthogonal if f, g are strongly νH -orthogonal for all f 
= g ∈ F .

Remark 9. It follows easily from (16) that strong νH -orthogonality of f, g : V (H) →
R implies orthogonality of f and g in L2(V (H), μ(νH)), and this is all that is needed
as far as Lipschitz-spectral profile is concerned. However, for our inductive argu-
ment to close in the proof of Theorem 5, we need to consider strongly orthogonal
sets of functions.

The main goal of this subsection is to extend a given strongly νH-orthogonal set
of functions on V (H) to a strongly νH�νG-orthogonal set of functions on V (H�G)
with control on the L1, L∞, and Lipschitz norms of the functions. To do this, we
must work with a special class of graphs G.

ForG an s-t graph, a graph morphism π : V (G) → V (Pk) is called a Pk-collapsing
map if π−1({0}) = {s(G)} and π−1({1}) = {t(G)}.

Example 3 (Pk-collapsing map for diamonds). Let k,m � 2 be integers. Recall
from Example 2 the diamond graph Dk,m with vertex set V (Dk,m) := V (Pk) ×
{1, . . .m}/ ∼, where (u, i) ∼ (v, j) if and only if (u, i) = (v, j), u = v = 0, or
u = v = 1. The map π : V (Dk,m) → V (Pk) defined by π([(u, i)]) := u is a
Pk-collapsing map. See Figure 4.

Figure 4. The s-t graphs D2,2 and D3,4 and their Pk-collapsing
maps π

Definition 11. Let H be a graph and G an s-t graph with Pk-collapsing map π.
Let F1 ⊂ RV (H), F2 ⊂ RE(H), F3 ⊂ RV (G) be sets of functions with f3(s(G)) =
f3(t(G)) = 0 for every f3 ∈ F3. Then we define the collection of functions
F (F1, F2, F3) ⊂ RV (H�G) by

F (F1, F2, F3) := ((idH � π)∗ ◦ B)(F1) ∪ (F2 � F3).

In Definition 11, (idH �π)∗ ◦B should be thought to transfer the set of functions
F1 on V (H) to the set of functions ((idH � π)∗ ◦ B)(F1) on V (H �G) in a natural
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Figure 5. Construction of the set F (F1, F2, F3) from the sets
F1 = {φ}, F2 = {ψ1, ψ2, ψ3, ψ4} and F3 = {φ}. The set
F (F1, F2, F3) consists of the top right function ((idD2,2

�π)∗◦B)(φ)
and the bottom row of functions ψ1 � φ, ψ2 � φ, ψ3 � φ, ψ4 � φ.

way that preserves L1, L∞, and Lipschitz norms and also strong orthogonality.
The second set F2 � F3 will be strongly orthogonal if F2 and F3 are each strongly
orthogonal, and F2�F3 will be strongly orthogonal to ((idH �π)∗ ◦B)(F1) if F3 ⊂
ker(Eπ

μα(νG)) for all α ∈ Δ. See Figure 5 for an example when H = G = D2,2. By

repeating the procedure demonstrated in this figure, one may obtain orthogonal sets
of functions Fn ⊂ L2(D

�n
2,2 ) witnessing the Lipschitz-spectral profile of D�n

2,2 having

dimension 2, bandwidth 2k, and uniform control on the constants. Readers who
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are interested only in the diamond graphs D�n
2,2 may wish to provide these simpler

details for themselves and avoid the technicalities presented in the remainder of the
section (which are necessary for our result on general �-products).

Theorems 5–7 establish the precise facts needed to calculate the Lipschitz-spectral
profile. We save the proofs until the ensuing subsection. After stating the theorems,
we give as a corollary a lower bound on the Lipschitz-spectral profile of �-powers
for certain graphs, such as the diamond graphs.

Theorem 5 (Preservation of strong orthogonality). Let H be a graph, G an s-t
graph with Pk-collapsing map π, and νH , νG measures on E(H), E(G). Suppose
that

• F1 ⊂ RV (H) is strongly νH-orthogonal,
• F2 ⊂ RE(H) is orthogonal in L2(E(H), νH), and
• F3 ⊂ RV (G) is strongly νG-orthogonal and (F3)−, (F3)+,⊂ ker(Eπ

νG
).

Then F (F1, F2, F3) ⊂ RV (H�G) is strongly νH � νG-orthogonal.

Let εj := ( j−1
k , j

k ) be the jth edge of Pk. We say that a measure νPk
on E(Pk) is

reflection invariant if νPk
(εj) = νPk

(εk−j+1) for every 1 � j � k. It is easy to see
that if νPk

is reflection invariant, then the induced measure μ(νPk
) on V (Pk) is also

reflection invariant in the sense that μ(νPk
)( jk ) = μ(νPk

)(k−j
k ) for every 0 � j � k.

ForH a graph and F ⊂ RV (H), we say that F has the edge-sign property if f(e−)·
f(e+) � 0 for every f ∈ F and {e−, e+} ∈ E(H). Whenever μ is a measure on a set
S and p ∈ [1,∞], we write inf ‖F‖Lp(μ) and sup ‖F‖Lp(μ) to denote inff∈F ‖f‖Lp(μ)

and supf∈F ‖f‖Lp(μ), respectively.

Theorem 6 (Preservation of edge-sign property and L1, L∞-norms). Suppose that
H,G, π, νH , νG are as in Theorem 5. Suppose

• F1 ⊂ RV (H) is any subset,
• F2 ⊂ RE(H) is any subset, and
• F3 ⊂ RV (G) satisfies F3(s(G)) = F3(t(G)) = {0}.

Then

(32) sup ‖F (F1, F2, F3)‖L∞(νH�μ(νG))

= max{sup ‖F1‖L∞(μ(νH)), sup ‖F2‖L∞(νH) · sup ‖F3‖L∞(μ(νG))}.

Additionally, if π#νG is reflection invariant and if F1, F3 have the edge-sign prop-
erty, then

F (F1, F2, F3) has the edge-sign property,(33)

inf ‖F (F1, F2, F3)‖L1(νH�μ(νG))

= min{inf ‖F1‖L1(μ(νH)), inf ‖F2‖L1(νH) · inf ‖F3‖L1(μ(νG))}.

(34)

Theorem 7 (Increase of Lipschitz growth function). Suppose that H,G, π are as in
Theorem 5 and that V (H), V (G) are equipped with geodesic metrics dH , dG. Equip
V (H �G) with the �-geodesic metric dH � dG. Suppose that

• F1 ⊂ RV (H) is any subset,
• F2 ⊂ RE(H) is any subset, and
• F3 ⊂ RV (G) is any subset with F3(s(G)) = F3(t(G)) = {0}.
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Then, for s � 0

γF(F1,F2,F3)(s) � γF1
(s) + |F2| · γF3

⎛
⎝ s

supf2∈F2
supe∈E(H)

|f2(e)|
dH(e)

⎞
⎠ .

Definition 12 (Base functions). Let G be an s-t graph with Pk-collapsing map π,
and let νG be the uniform probability measure on E(G). We say that φ : V (G) → R

is a base function of G if φ has the edge-sign property and φ−, φ+ ∈ ker(Eπ
νG

).

Remark 10. Let G, π, νG be as in Definition 12. Although it will not be needed
for our purposes, it can be checked that a nonzero base function on G exists if and
only if one of the following holds.

• |π−1( jk )| � 3 for some j
k ∈ V (Pk).

• π−1( jk ) = {u1, u2} for some j
k ∈ V (Pk) and u1 
= u2 ∈ V (G) with

deg+(u1)

deg+(u2)
=

deg−(u1)

deg−(u2)
, where deg±(u) = |{e ∈ E(G) : e± = u}|.

Corollary 4 and the example following it are our main applications of the tools
developed in this section.

Corollary 4 (Lipschitz-spectral profile of �-powers). Suppose that G is an s-t
graph with Pk-collapsing map π, νG is a probability measure on E(G), and dG is a
geodesic metric on V (G). If

(1) νG is uniform,
(2) νPk

:= π#νG is reflection invariant,
(3) G admits a nonzero base function φ, and
(4) dG(e) =

1
k for every e ∈ E(G),

then, for every n � 1, G�n has (d�n
G , μ(ν�n

G ))-Lipschitz-spectral profile of dimension
log |E(G)|

log k and bandwidth kn, with constants CL1
� 2

‖φ‖L∞(μ(νG))

‖φ‖L1(μ(νG))
, CL∞ � 1, Cγ �

2|E(G)|2.

Note that in the conclusion of Corollary 4, the dimension and constants CL1
,

CL∞ , Cγ are independent of n and that the bandwidth grows exponentially with n.

Proof. Assume νG, νPk
, dG are as above, and let φ̃ be a nonzero base function. We

prove the following stronger statement by induction: For every n � 1, there exists

a set of functions Fn
1 ⊂ RV (G�n) satisfying:

(1) Fn
1 has the edge-sign property.

(2) Fn
1 is strongly ν�n

G -orthogonal.

(3)

(
2
‖φ̃‖L∞(μ(νG))

‖φ̃‖L1(μ(νG))

)−1

� inf ‖Fn
1 ‖L1(μ(ν

�n
G )) � sup ‖Fn

1 ‖∞ � 1.

(4) γFn
1
(km) � (2|E(G)|)−1(km)

log |E(G)|
log k for every 1 � m � n.

By Remark 9, to prove the desired estimates on the Lipschitz-spectral profile, only
orthogonality in L2(V (G�n), μ(ν�n

G )) and not the full force of (2) is needed, and
(1) is not needed at all. However, for the induction to close, we do need (1) and
(2).

Define φ := φ̃

‖φ̃‖∞
. Then we have

• ‖φ‖∞ = 1,
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• φ−, φ+ ∈ ker(Eπ
νG

),

• ‖φ‖L1(μ(νG)) =
‖φ̃‖L1(μ(νG))

‖φ̃‖∞
, and

• φ has the edge-sign property.

Note that the edge-sign property, ‖φ‖∞ = 1, and dG(e) = 1
k for all e ∈ E(G)

together imply

• Lip(φ) � k.

We now begin the inductive proof. The base case n = 1 is satisfied by F 1
1 = {φ}.

Let n � 2, and assume that the statement holds for n− 1. Let Fn−1
1 ⊂ RV (G�n−1)

be a set of functions satisfying (1)-(4) given by the induction hypothesis. Let
F2 ⊂ L2(E(G�n−1), ν�n−1

G ) be an orthogonal subset such that sup ‖F2‖∞ � 1,

inf ‖F2‖1 � 1
2 , and |F2| � 1

2 |E(G�n−1)|. Such a set exists by uniformity of ν�n−1
G

and by Sylvester’s construction of Hadamard matrices (see Lemma A). Then we

define Fn
1 := F (Fn−1

1 , F2, {φ}) ⊂ RV (G�n−1�G). By Theorem 5 and the inductive
hypothesis, Fn

1 is strongly ν�n
G -orthogonal, verifying (2). By Theorem 6 and the

inductive hypothesis, Fn
1 has the edge-sign property, verifying (1). We now verify

(3)-(4).
By (20), Theorem 6, and the inductive hypothesis,

inf ‖Fn
1 ‖L1(μ(ν

�n
G )) = inf ‖Fn

1 ‖L1(ν
�n−1
G �μ(νG))

= min{inf ‖Fn−1
1 ‖L1(μ(ν

�n−1
G )), inf ‖F2‖L1(ν

�n−1
G ) · ‖φ‖L1(μ(νG))}

�
(
2

‖φ̃‖∞
‖φ̃‖L1(μ(νG))

)−1

sup ‖Fn
1 ‖∞ = max{sup ‖Fn−1

1 ‖∞, sup ‖F2‖∞ · ‖φ‖∞} = 1,

verifying (3).
Finally, we verify (4). By Theorem 7, the facts that |F2| � 1

2 |E(G�n−1)| =
1
2 |E(G)|n−1, sup ‖F2‖∞ � 1, and Lip(φ) � k, and the inductive hypothesis applied

to (4) for Fn−1
1 , we get, for any 1 � m � n,

γFn
1
(km) � γFn−1

1
(km) + |F2| · γ{φ}

(
km

kn−1 sup ‖F2‖∞

)

�
{
γFn−1

1
(km) m � n− 1

1
2 |E(G)|n−1 m = n

�
{
(2|E(G)|)−1(km)

log |E(G)|
log k m � n− 1

1
2 |E(G)|n−1 m = n

= (2|E(G)|)−1(km)
log |E(G)|

log k .

�

We now apply our machinery to compute the Lipschitz-spectral profile of dia-
mond graphs. Let k,m � 2 be integers. Recall from Example 2 the definition of
the diamond graph Dk,m, with νDk,m

the uniform probability measure on E(Dk,m)
and dDk,m

the normalized geodesic metric on V (Dk,m), and recall the Pk-collapsing
map π : V (Dk,m) → V (Pk) from Example 3. It is clear that νPk

:= π#νDk,m
is the

uniform probability measure on E(Pk), and hence is reflection-invariant. Further-
more, we may define a base function φ : V (Dk,m) = V (Pk) × {1, . . .m}/ ∼→ R
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by

φ([(u, i)])
def
=

⎧⎪⎨
⎪⎩
1 i odd, i < m, [(u, i)] 
∈ {s(Dk,m), t(Dk,m)}
−1 i even, [(u, i)] 
∈ {s(Dk,m), t(Dk,m)}
0 otherwise

.

See a picture of φ for D2,2 in the top left corner of Figure 5.
The following can be directly computed.

• φ has the edge-sign property.
• φ−, φ+ ∈ ker(Eπ

νDk,m
).

• ‖φ‖∞ = 1.

• ‖φ‖1 =
2(k−1)·2�m

2 �
2km � 1

3 .

Hence, by Corollary 4, we obtain:

Corollary 5. The diamond graph D�n
k,m has (d�n

Dk,m
, ν�n

Dk,m
)-Lipschitz-spectral profile

of dimension 1 + logm
log k , bandwidth kn, and constants CL1

� 6, CL∞ � 1, Cγ �
2k2m2.

6.3. Supporting propositions and lemmas. In this subsection, we prove a host
of supporting lemmas and propositions. Each proposition is directly used in the
next subsection to prove the main theorems (Theorems 5 , 6 , 7), and each lemma
is used in the proof of one of the propositions. These results illustrate how our
various operators commute with each other and behave with respect to L1, L∞,
and Lipschitz norms and strong orthogonality.

We begin with a set of three propositions pertaining to the induced edge-function
operators that are used in the proof of Theorem 5. The first two, Propositions 2 and
3, can be viewed as stating that induced edge-function operators (·)± : RV (H′) →
RE(H′) commute with pre-� operators h�(·) : RV (G) → RV (H�G) and with pullback
operators θ∗.

Proposition 2. For every graph H, s-t graph G, functions h : E(H) → R, g :
V (G) → R with g(s(G)) = g(t(G)) = 0, and ε ∈ {−,+},

(h� g)ε = h� gε.

Proof. Let H,G, h, g, ε be as above. Let e1 � e2 ∈ E(H �G). Then

(h� g)ε(e1 � e2) = (h� g)((e1 � e2)
ε) = (h� g)(e1 � eε2)

= h(e1) · g(eε2) = h(e1) · gε(e2) = (h� gε)(e1 � e2).

�

Proposition 3. Let θ : V (G) → V (G′) be a graph morphism between graphs. For
every f : V (G′) → R and ε ∈ {−,+},

θ∗(f)ε = θ∗(fε).

Proof. Let f, ε be as above. Let e ∈ E(G). Then we have

θ∗(f)ε(e) = θ∗(f)(eε) = f(θ(eε)) = f(θ(e)ε) = fε(θ(e)) = θ∗(fε)(e).

�
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The third proposition on induced edge-function operators illustrates how cer-
tain inner-products of B(f)± and B(f ′)± can be expressed as linear combinations
of f±f

′
±, f±f

′
∓. This proposition easily implies the fact that the barycentric ex-

tension operator B preserves strong orthogonality, which is crucial to the proof of
Theorem 5.

Proposition 4. For every graph H, measure νPk
on E(Pk), f, f

′ : V (H) → R, and
ε, ε′ ∈ {−,+}, there exist scalars c1, c2, c3, c4 ∈ R such that, for every e1 ∈ E(H),∫

E(Pk)

(B(f)ε B(f ′)ε′)(e1�e2)dνPk
(e2)=(c1f−f

′
−+c2f−f

′
++c3f+f

′
−+c4f+f

′
+)(e1).

Proof. Let H, νPk
, f, f ′, ε, ε′ be as above. We will show the proof in the case ε = −

and ε′ = +. The other cases can be treated similarly. For any e1 ∈ E(H), we have∫
E(Pk)

(B(f)− B(f ′)+)(e1 � e2)dνPk
(e2)

=

k∑
i=1

((1− i−1
k )f(e−1 ) +

i−1
k f(e+1 ))((1− i

k )f
′(e−1 ) +

i
kf

′(e+1 ))νPk
(( i−1

k , i
k ))

=

(
k∑

i=1

(1− i−1
k )(1− i

k )νPk
(( i−1

k , i
k ))

)
f(e−1 )f

′(e−1 )

+

(
k∑

i=1

(1− i−1
k )( i

k )νPk
(( i−1

k , i
k ))

)
f(e−1 )f

′(e+1 )

+

(
k∑

i=1

( i−1
k )(1− i

k )νPk
(( i−1

k , i
k ))

)
f(e+1 )f

′(e−1 )

+

(
k∑

i=1

( i−1
k )( i

k )νPk
(( i−1

k , i
k ))

)
f(e+1 )f

′(e+1 )

= (c1f−f
′
− + c2f−f

′
+ + c3f+f

′
− + c4f+f

′
+)(e1).

�

We require one more proposition to be used in the proof of Theorem 5. It shows
a commutation relation between pre-� operators and conditional expectations.

Proposition 5. Let H be a graph, θ : V (G) → V (G′) an s-t graph morphism
between s-t graphs, and νH , νG measures on E(H), E(G). Then for any h : E(H) →
R and g : E(G) → R,

EidH�θ
νH�νG

(h� g) = h� Eθ
νG

(g).

Proof. Let h, g be as above. We need to show that h � Eθ
νG

(g) is σ(idH � θ)-
measurable and satisfies

(35)

∫
E(H�G)

φ · (h� Eθ
νG

(g))d(νH � νG) =

∫
E(H�G)

φ · (h� g)d(νH � νG)

for every σ(idH � θ)-measurable φ : E(H � G) → R. Since Eθ
νG

(g) is σ(θ)-

measurable, there exists f ′ : E(G′) → R such that Eθ
νG

(g) = θ∗(f ′). It is immediate

to check that (idH � θ)∗(h � f ′) = h � θ−1(f ′), which shows that h � Eθ
νG

(g) is
σ(idH � θ)-measurable.
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Finally we verify (35). Let (idH � θ)∗(f) : E(H � G) → R be an arbitrary
σ(idH � θ)-measurable function. For each e1 ∈ E(H), define fe1 : E(G′) → R by
fe1(e2) := f(e1 � e2). It is immediate to check that for every e1 � e2 ∈ E(H �G),
(idH � θ)∗(f)(e1 � e2) = θ∗(fe1)(e2). Then we have∫

E(H�G)

(idH � θ)∗(f) · (h� Eθ
νG

(g))d(νH � νG)

(17)
=

∫
E(H)

∫
E(G)

((idH � θ)∗(f) · (h� Eθ
νG

(g)))(e1 � e2)dνG(e2)dνH(e1)

=

∫
E(H)

h(e1)

∫
E(G)

(θ∗(fe1) · Eθ
νG

(g))(e2)dνG(e2)dνH(e1)

=

∫
E(H)

h(e1)

∫
E(G)

(θ∗(fe1) · g)(e2)dνG(e2)dνH(e1)

=

∫
E(H)

∫
E(G)

((idH � θ)∗(f) · (h� g))(e1 � e2)dνG(e2)dνH(e1)

(17)
=

∫
E(H�G)

(idH � θ)∗(f) · (h� g)d(νH � νG).

�
The second set of propositions shows how L1, L∞, and Lipschitz norms are

affected by �-operators, B-operators, and pullback operators. They will be used in
the proofs of Theorems 6 and 7.

Proposition 6. Let H be a graph, G an s-t graph, νH , μG measures on E(H), V (G),
and dH , dG geodesic metrics on V (H), V (G). Equip V (H �G) with the �-measure
νH �μG, and equip V (H �G) with the �-geodesic metric dH � dG. Then for every
h : E(H) → R and g : V (G) → R with g(s(G)) = g(t(G)) = 0, the following hold.

• ‖h� g‖∞ = ‖h‖∞‖g‖∞.
• Lip(h� g) = supe∈E(H) |h(e)| dH(e)−1 Lip(g).

• ‖h� g‖L1(νH�μG) = ‖h‖L1(νH)‖g‖L1(μG).

Proof. Let h, g be as above. The first item is obvious. For the second, let e1 � e2 ∈
E(H �G). Then we have

|∇(h�g)(e1�e2)| = (dH�dG)(e1�e2)
−1|(h�g)((e1�e2)

+)− (h�g)((e1�e2)
−)|

= dH(e1)
−1dG(e2)

−1|h(e1)g(e+2 )− h(e1)g(e
−
2 )|

= |h(e1)|dH(e1)
−1|∇(g)(e2)|.

Since e1 � e2 ∈ E(H � G) was arbitrary, the conclusion follows by taking the
supremum of each side. The third item follows immediately from (19) and the
definition of h� g. �

Proposition 7 on preservation of Lp norms follows more or less immediately from
the definition of pushforward measure π#νG and the defining property of graph
morphisms θ. It is used in the proof of Theorem 6.

Proposition 7. Let H be a graph, θ : V (G) → V (G′) an s-t graph morphism
between s-t graphs, and νH , νG measures on E(H), E(G). Then for every f : V (H�
G′) → R and p ∈ [1,∞],

‖(idH � θ)∗(f)‖Lp(νH�μ(νG)) = ‖f‖Lp(νH�μ(θ#νG)).
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Proof. Let g : V (H � G′) → R be any function. For each e ∈ E(H), define the
contraction of g along e by ge : V (G′) → R by ge(u) := g(e�u). The conclusion of
the proposition follows by choosing g = |f |p (for p < ∞, the conclusion is obvious
for p = ∞) and applying the following calculation:

∫
V (H�G)

(idH � θ)∗(g)d(νH � μ(νG))

(19)
=

∫
E(H)

∫
V (G)

g(e� θ(u))dμ(νG)(u)dνH(e)

(16)
=

∫
E(H)

∫
E(G)

g(e� θ(e−1 )) + g(e� θ(e+1 ))

2
dνG(e1)dνH(e)

=

∫
E(H)

∫
E(G)

ge(θ(e1)
−) + ge(θ(e1)

+)

2
dνG(e1)dνH(e)

=

∫
E(H)

∫
E(G)

θ∗(ge−)(e1) + θ∗(ge+)(e1)

2
dνG(e1)dνH(e)

=

∫
E(H)

∫
E(G′)

ge−(e1) + ge+(e1)

2
dθ#νG(e1)dνH(e)

(16)
=

∫
E(H)

∫
V (G′)

ge(u)dμ(θ#νG)(u)dνH(e)

=

∫
E(H)

∫
V (G′)

g(e� u)dμ(θ#νG)(u)dνH(e)

(19)
=

∫
V (H�G′)

gd(νH � μ(θ#νG)).

�

Lemma 9 states that barycentric extension operators preserve expectations when
νPk

is reflection invariant. It is only used to prove Proposition 8, which in turn is
used in the proofs of Theorems 6 and 7.

Lemma 9. Let H be a graph and νH a measure on E(H). Then for any reflection
invariant probability measure μPk

on V (Pk) and function f : V (H) → R,

∫
V (H�Pk)

B(f)d(νH � μPk
) =

∫
V (H)

fdμ(νH).

Proof. Let νPk
, f be as above. It is easily verified from the definition that

(36)
B(f)(e� i

k ) + B(f)(e� (1− i
k ))

2
=

f(e−) + f(e+)

2
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for every e ∈ E(H) and i
k ∈ V (Pk). Then using the reflection invariance of μPk

we
have

∫
V (H�Pk)

B(f)d(νH � μPk
)
(19)
=

∫
E(H)

(∫
V (Pk)

B(f)(e� i
k )μPk

( i
k )

)
dνH(e)

=

∫
E(H)

(∫
V (Pk)

B(f)(e� i
k )

(
μPk

( i
k ) + μPk

(1− i
k )
)

2

)
dνH(e)

(36)
=

∫
E(H)

(∫
V (Pk)

f(e−) + f(e+)

2
μPk

( i
k )

)
dνH(e)

=

∫
E(H)

f(e−) + f(e+)

2
dνH(e)

(16)
=

∫
V (H)

fdμ(νH).

�

Barycentric extension operators preserve L∞-norms, Lipschitz constants, and,
under certain restrictions, L1-norms.

Proposition 8. For any graph H and function f : V (H) → R,

• ‖B(f)‖∞ = ‖f‖∞,
• Lip(B(f)) = Lip(f).

Moreover, if νH is a measure on E(H), μPk
is a reflection invariant probability

measure on V (Pk), and f satisfies the edge-sign property, then

• ‖B(f)‖L1(νH�μPk
) = ‖f‖L1(μ(νH)).

Proof. The first two items are obvious and we omit their proofs. For the third,
since f has the edge-sign property, it is clear that | B(f)| = B(|f |). Together with
Lemma 9, this gives us∫

V (H)

|f |dμ(νH)
Lem. 9
=

∫
V (H�Pk)

B(|f |)d(νH�μPk
)=

∫
V (H�Pk)

| B(f)|d(νH�μPk
).

�

Proposition 9 shows how one may commute pullback operators with the gradient
operator, which implies that pullback operators preserve Lipschitz constants. It is
used in the proof of Theorem 7.

Proposition 9. Let θ : V (G) → V (G′) a surjective graph morphism between graphs
and dG′ , dG geodesic metrics on V (G′), V (G) such that dG′(θ(e)) = dG(e) for every
e ∈ E(G). Then for every f : V (G′) → R,

• (∇dG ◦ θ∗)(f) = (θ∗ ◦ ∇dG′ )(f),
• Lip(θ∗(f)) = Lip(f).
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Proof. Let f : V (G′) → R and e ∈ E(G′) be arbitrary. Since θ is a graph morphism,
θ(e±) = θ(e)±. Then we have

∇dG(θ
∗(f))(e) =

θ∗(f)(e+)− θ∗(f)(e−)

dG(e)
=

f(θ(e+))− f(θ(e−))

dG(e)

=
f(θ(e)+)− f(θ(e)−)

dG(e)
=

f(θ(e)+)− f(θ(e)−)

dG′(θ(e))

= (∇dG′ f)(θ(e)) = θ∗(∇dG′ f)(e).

The second item follows from the first and the fact that ‖θ∗(g)‖∞ = ‖g‖∞ since
θ is surjective. �

6.4. Proofs of main theorems. In this final subsection, we provide the proofs
of Theorems 5, 6, and 7. We start with the proof of Theorem 5 regarding the
preservation of strong orthogonality. This proof requires Propositions 2, 3, 4, and
5.

Proof of Theorem 5. Let f 
= f ′ ∈ F1 and ε, ε′ ∈ {−,+}. By Proposition 4, there
are scalars c1, c2, c3, c4 ∈ R such that, for every e1 ∈ E(H),
(37)∫
E(Pk)

(B(f)ε B(f ′)ε′)(e1�e2)dπ#νG(e2)=(c1f−f
′
−+c2f−f

′
++c3f+f

′
−+c4f+f

′
+)(e1).

Then we have∫
E(H�G)

((idH � π)∗ ◦ B)(f))ε((idH � π)∗ ◦ B)(f ′))ε′d(νH � νG)

Prop. 3
=

∫
E(H�G)

(idH � π)∗(B(f)ε)(idH � π)∗(B(f ′)ε′)d(νH � νG)

=

∫
E(H�Pk)

B(f)ε B(f ′)ε′d(νH � π#νG)

=

∫
E(H)

∫
E(Pk)

(B(f)ε B(f ′)ε′)(e1 � e2)dπ#νG(e2)dνH(e1)

(37)
=

∫
E(H)

(c1f−f
′
− + c2f−f

′
+ + c3f+f

′
− + c4f+f

′
+)dνH

= 0,

where the last equality holds since f, f ′ are assumed to be strongly νH -orthogonal.
This proves that ((idH � π)∗ ◦ B)(F1) is strongly νH � νG-orthogonal.

Now let f � g 
= f ′ � g′ ∈ F2 � F3. Then we have∫
E(H�G)

(f � g)ε(f
′ � g′)ε′d(νH � νG)

Prop. 2
=

∫
E(H�G)

(f � gε)(f
′ � g′ε′)d(νH � νG)

=

∫
E(H)

ff ′dνH

∫
E(G)

gεg
′
ε′dνG

= 0,

where the last equality holds since F2 is νH -orthogonal and F3 is strongly νG-
orthogonal. This proves that F2 � F3 is strongly νH � νG-orthogonal.
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It remains to verify strong νH � νG-orthogonality between ((idH � π)∗ ◦ B)(F1)
and F2 �F3. Let ((idH � π)∗ ◦ B)(f) ∈ ((idH � π)∗ ◦ B)(F1) and f ′ � g′ ∈ F2 �F3.
It follows immediately from Proposition 3 that ((idH � π)∗ ◦ B)(f)ε is σ(idH � π)-

measurable. Then if we can show (f ′ � g′)ε′ ∈ ker(EidH�π
νH�νG

), we have the desired
orthogonality and the proof is complete.

EidH�π
νH�νG

((f ′ � g′)ε′)
Prop. 2
= EidH�π

νH�νG
(f ′ � g′ε′)

Prop. 5
= f ′ � Eπ

νG
(g′ε′) = 0,

where the last equation holds by assumption on F3. �
We now provide the details of the proof of Theorem 6 pertaining to the preser-

vation of edge-sign property and L1, L∞-norms. This proof requires Propositions
6, 7, and 8.

Proof of Theorem 6. Let ((idH � π)∗ ◦ B)(f1) ∈ ((idH � π)∗ ◦ B)(F1) and f2 � f3 ∈
F2 � F3. First we have, for p ∈ {1,∞},

‖((idH�π)∗◦B)(f1)‖Lp(νH�μ(νG))
Prop. 7
= ‖B(f1)‖Lp(νH�μ(π#νG))

Prop. 8
= ‖f1‖Lp(μ(νH)),

‖f2 � f3‖p
Prop. 6
= ‖f2‖p · ‖f3‖p,

which proves (32) and (34).
Furthermore, it is clear that ((idH �π)∗◦B)(f1) has the edge-sign property since

f1 does and that f2�f3 has the edge-sign property since f3 does, proving (33). �
Final, the proof of Theorem 7 is given below, thereby completing the proof of

the main results. This proof requires Propositions 6, 8, and 9.

Proof of Theorem 7. Let s � 0. Of course, it is easy to see from the definitions
that it suffices to prove

γ((idH�π)∗◦B)(F1)(s) = γF1
(s),

γF2�F3
(s) � |F2| · γF3

(
s

sup Lip(F2)

)
,

where supLip(F2) := supf2∈F2
supe∈E(H)

|f2(e)|
dH(e) , and the above follow from

Lip(((idH � π)∗ ◦ B)(f1)) = Lip(f1),

Lip(f2 � f3) � sup
e∈E(H)

|f2(e)|
dH(e)

Lip(f3),

|((idH � π)∗ ◦ B)(F1)| = |F1|,
|F2 � F3| = |F2||F3|

for every f1 ∈ F1, f2 ∈ F2, and f3 ∈ F3. The first line follows from Propositions 8
and 9, the second from Proposition 6, and the third and fourth are obvious. �

Appendix A

In this short appendix we recall for the convenience of the reader the construction
of orthogonal sets needed in the proof of Corollary 4.

Lemma A.1. Let P be the uniform probability measure on a finite set Ω. Then
there exists a collection of functions {fj : Ω → R}j∈J such that
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• {fj}j∈J is orthogonal as a subset of L2(Ω,P),
• supj∈J ‖fj‖L∞(P) � 1,

• infj∈J ‖fj‖L1(P) � 1
2 , and

• |J | � 1
2 |Ω|.

Proof. Let n ∈ N such that 2n � |Ω| < 2n+1. Choose any subset S ⊂ Ω with
|S| = 2n, and choose an arbitrary enumeration of its elements, say S := {si}2

n

i=1.
Let H = [hij ]

2n

i,j=1 be a 2n×2n Hadamard matrix, meaning one whose columns (and
therefore rows) are orthogonal and such that hij ∈ {−1, 1} for every 1 � i, j � 2n.
Such a matrix exists by Sylvester’s construction [Hor07, § 2.1.1]. For each 1 � j �
2n, we associate to the jth column of H a function fj : Ω → R defined by

fj(ω)
def
=

{
hij ω = si,

0 ω 
∈ S.

Then the collection {fj}2
n

j=1 satisfies the four desired properties. �
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