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PSEUDO-ANOSOV SUBGROUPS OF GENERAL FIBERED

3–MANIFOLD GROUPS

CHRISTOPHER J. LEININGER AND JACOB RUSSELL

Abstract. We show that finitely generated and purely pseudo-Anosov sub-
groups of fundamental groups of fibered 3–manifolds with reducible mon-
odromy are convex cocompact as subgroups of the mapping class group via
the Birman exact sequence. Combined with results of Dowdall–Kent–Leininger
and Kent–Leininger–Schleimer, this establishes the result for the image of all
such fibered 3–manifold groups in the mapping class group.

1. Introduction

Farb and Mosher defined convex cocompactness in Mod(S)—the mapping class
group of a finite type orientable surface S of negative Euler characteristic—via
analogy with convex cocompactness of Kleinian groups [FM02]. The convex co-
compact subgroups of Mod(S) play an important role in the geometry of surface
group extensions and surfaces bundles [FM02,Ham,MS12] and have a rich dynam-
ical and geometric structure [Ham07, KL08a, KL08b, DT15, BBKL20]. One basic
property is that convex cocompact subgroups of Mod(S) are finitely generated and
purely pseudo-Anosov, that is, every infinite order element is pseudo-Anosov. In
their introductory paper, Farb and Mosher asked if this pair of properties charac-
terized convex cocompactness [FM02, Question 1.5]. A “no” answer can be used
to produce a relatively simple example of a finitely generated group that is not
hyperbolic, but has no Baumslag–Solitar subgroups, see [KL07, §8]. While, a “yes”
answer would limit the possibilities for convex compact subgroups by requiring ev-
ery finitely generated subgroup of such a group to again be convex cocompact. We
establish that the answer to Farb and Mosher’s question is yes for subgroups that
are contained in the image of the fundamental groups of fibered 3–manifold groups
inside the mapping class group, as we now explain.

Every orientable 3–manifold that fibers over a circle is the mapping torus Mf =
S × [0, 1]/(x, 1) ∼ (f(x), 0) of an orientation preserving surface homeomorphism
f : S → S. Fixing a basepoint z ∈ S ⊂ Mf , the fundamental group, Γf = π1Mf =
π1(Mf , z), splits as a semi-direct product, Γf

∼= π1S�f∗ Z, where f∗ is an automor-
phism of π1S = π1(S, z) induced by f . If φ : Γf → Z is the homomorphism of this
splitting, then we write μ : Z → 〈f〉 < Mod(S) for the monodromy homomorphism,
so that μ(φ(g)) = fφ(g) for g ∈ Γf . Setting Sz = S�{z}, the monodromy is the
descent of a homomorphism μz : Γf → Mod(Sz), with image in the finite index sub-
group Mod(Sz, z) < Mod(Sz) consisting of isotopy classes of homeomorphisms that
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fix the z–puncture. These homomorphisms fit into a commutative diagram with the
Birman exact sequence, defined by the homomorphism Φ∗ : Mod(Sz, z) → Mod(S)
induced by the inclusion Φ: Sz → S:

1 π1S Γf Z 1

1 π1S Mod(Sz, z) Mod(S) 1.

=

φ

μz μ

Φ∗

The Nielsen–Thurston Classification Theorem [FLP91] says that every element
of a mapping class group is either pseudo-Anosov, reducible, or finite order. Our
main result proves that the answer to Farb and Mosher’s question is “yes” for
subgroups of μz(Γf ) when f is an infinite order, reducible mapping class.

Theorem 1.1. Suppose χ(S) < 0 and f : S → S is a reducible, infinite order
mapping class. For any subgroup G < Γf , the group μz(G) < Mod(Sz) is convex
cocompact if and only if it is finitely generated and purely pseudo-Anosov.

Remark 1.2. We note that any finitely generated, purely pseudo-Anosov subgroup
G < Γf as in Theorem 1.1 is necessarily free; see Lemma 3.3.

The analogue of Theorem 1.1 when f is pseudo-Anosov was previously shown
to be true in [DKL14]. The analogue for f finite order is a consequence of the
result for subgroups G < π1S, proved in [KLS09, Theorem 6.1]. Indeed, in this
case μz(Γf ) contains π1S with finite index, and convex cocompactness is preserved
by passage to finite index super- and subgroups. Combining these results, we see
that the conclusion holds for any f ∈ Mod(S).

Theorem 1.3. Suppose χ(S) < 0 and let f : S → S be any mapping class. For
any subgroup G < Γf , the group μz(G) < Mod(Sz) is convex cocompact if and only
if it is finitely generated and purely pseudo-Anosov.

1.1. Known results. There are a number of other settings where finitely gener-
ated, purely pseudo-Anosov subgroups have been shown to be convex cocompact,
providing an affirmative answer to Farb and Mosher’s question [FM02, Question
1.5]. As mentioned above, if G is a subgroup of either π1S or Γf for f pseudo-
Anosov, then the inclusion of G into Mod(Sz) via the Birman exact sequence is
convex cocompact if and only if it is finitely generated and purely pseudo-Anosov
[KLS09, DKL14]. The same result has been proved under the assumption that
G is either a subgroup of an admissibly embedded1 right-angled Artin subgroup
A < Mod(S) [KMT17] or if G is contained in the genus-2 Goeritz group [Tsh21].
In [DT15], it was shown that G < Mod(S) is convex cocompact if and only if G is a
stable subgroup (except for two sporadic surfaces S), providing a purely geometric
group theoretic characterization. This was strengthened in [BBKL20] where it was
shown that G < Mod(S) is convex cocompact if and only if G is finitely generated,
purely pseudo-Anosov, and undistorted.

1It was shown in [CLM12] that admissibly embedded right-angled Artin subgroups are quite
abundant in mapping class groups. See also [Run21].
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1.2. Proof summary. When f : S → S has infinite order, μz : Γf → Mod(Sz, z)
is injective, and we identify Γf with μz(Γf ). For simplicity, we assume S is closed
in this summary, ensuring that Φ: Sz → S sends every essential curve on Sz to an
essential curve on S. To prove Theorem 1.1, we fix a finitely generated and purely
pseudo-Anosov G < Γf and show that the orbit map of G to the curve complex
C(Sz) is a quasi-isometric embedding. From [Ham07,KL08a], this is equivalent to
G being convex cocompact; see Theorem 2.4. The central task is then to find a way
to relate distances in G to distances in the curve complex.

For subgroups G < π1S, such a relationship was established in [KLS09] by
examining Ku, the stabilizer in π1S < Mod(Sz) of a simplex u ⊂ C(Sz). Using the
isometric action of π1S by deck transformations on the universal cover p : H2 → S,
we define Hu to be the convex hull of the limit set of Ku in ∂H2. The group G also
has a convex hull for its limit set, HG, on which it will act geometrically and which
therefore serves as a geometric model for G. A key argument in [KLS09] proves
that HG ∩Hu has uniformly bounded diameter, independent u. The simplices that
make up a geodesic edge path between G–orbit points in C(Sz) then give rise to
a chain of bounded diameter sets in HG. The total diameter of this chain bounds
distance by a linear function of distance in C(Sz), as required. A similar approach
is used in [DKL14] for G < Γf , when f is a pseudo-Anosov element of Mod(S). In
this case, the mapping torus Mf is a hyperbolic 3–manifold, thus the convex hulls
for G and for simplex stabilizers can be taken in H

3 instead of H2. Once again, the
key result is that these convex hulls intersect in uniformly bounded diameter sets.

Our proof in the reducible case is inspired by these methods. The first obstacle is
that Mf is not hyperbolic when f is reducible, and consequently convex hulls in the
universal cover are not as well-behaved. Instead, we use the Bass–Serre tree T dual
to the canonical reducing multicurve α for f . Suspending this canonical multicurve
α in the mapping torus Mf produces the torus decomposition, and T is the tree
dual to the tori. The action of π1S on T thus extends to an action of Γf = π1Mf ;
see §3.1. The analogues of the hull for G and for a multicurve u ⊂ C(Sz) are
then played by a G–invariant subtree TG ⊂ T and a Ku–invariant subtree Tu ⊂ T ,
respectively; see §3.3. Being purely pseudo-Anosov implies that G acts freely on T ,
and we show that TG is a geometric model for G; see Lemma 3.3. The key to proving
Theorem 1.1 rests on showing that TG ∩ Tu has bounded diameter, independent of
u ⊂ C(Sz); see Proposition 4.1.

To understand TG ∩ Tu, we return to examining the convex hulls in H
2. The

splitting of Γf
∼= π1S � 〈f〉 gives an action of Γf on ∂H2 by homeomorphisms,

extending the isometric action of π1S by deck transformations; see §3.1. This allows
us to define HG, which admits an isometric action by G0 = G∩π1S. Further, there
is a G0–equivariant inclusion TG → HG, since the action on TG is free. The quotient
p0 : HG → HG/G0 = Σ0 is an infinite type, two ended surface, and TG/G0 = σ0 is a
spine; see §3.4. The quotient group G/G0

∼= Z admits a cocompact, non-isometric
action on Σ0. While the action of G/G0 on Σ0 is not isometric, the induced action
on the spine σ0 is; see §3.5.

A critical technical step in our proof is the construction of a compact subsurface
Σ1 ⊂ Σ0 so that for any simplex u ⊂ C(Sz), there is an element g ∈ G for which
p0(TG ∩ Tg(u)) ⊂ σ0 is contained in the subsurface Σ1; see Lemma 4.5. We say a
simplex u ⊂ C(Sz) is deep if p0(TG ∩ Tu) ⊂ Σ1, and by the previous sentence, it
suffices to bound the diameter of TG ∩ Tu for deep simplices. The construction of
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Σ1 is outlined in the subsection below, but we note that π1Σ1 = G1 < G0 is a
finitely generated, purely pseudo-Anosov subgroup.

For a deep simplex u ⊂ C(Sz), the intersection HG∩Hu is contained in a uniformly
bounded neighborhood of HG1

∩Hu. Since G1 < π1S is finitely generated and purely
pseudo-Anosov, this has uniformly bounded diameter from [KLS09], as described
above. The vertices of the subtrees TG and Tu are precisely those that are dual
to regions of H2

�p−1(α) that HG and Hu respectively intersect. If we also knew
that the vertices of TG ∩ Tu were dual to regions intersected by HG ∩ Hu, then for
deep simplices, the bound on the diameter of HG∩Hu would imply one for TG∩Tu,
and we would be done. However, it is possible for both HG and Hu to intersect
the region dual to a vertex t ∈ T , while HG ∩ Hu is disjoint from it. Our proof
thus splits into two parts: bounding the diameter of a single subtree spanned by
“hull type” vertices of TG∩Tu that do come from HG∩Hu, and the complementary
subtrees of “non-hull type” vertices that do not; see §4.2.2. The former are handled
as just explained; see Lemma 4.7. For the latter, we proceed as follows.

For every path � ⊂ TG∩Tu containing only “non-hull type” vertices, we produce
geodesics δG ⊆ ∂HG and δu ⊆ ∂Hu that “run parallel” through the regions of
H

2
�p−1(α) corresponding the vertices of �. Hence we call the non-hull type vertices,

“parallel type” vertices. If � is long enough, then we show that p0(δG) ⊂ Σ1 must
project to a closed boundary geodesic of Σ1. Since this geodesic represents an
element of G1, it is pseudo-Anosov, and so further projects to a filling geodesic in
S by a result of Kra [Kra81]; see Theorem 2.2. On the other hand, δu projects
to a simple closed geodesic in S (isotopic to a component of Φ(u); see §2.2). But
if � is too long, then the simple closed geodesic image of δu runs parallel to the
filling geodesic image of δG for a long time, which is a contradiction. This proves
a uniform bound on the diameter of �; see Lemma 4.12. Combining the hull-type
and parallel-type subtree bounds for deep simplices proves a uniform bound on
diam(TG ∩ Tu), for every simplex u ⊂ C(Sz), as required.

1.3. Construction of Σ1. We now outline the construction of the compact sub-
surface Σ1 ⊂ Σ0 with the property that for every simplex u ⊂ C(Sz), the im-
age p0(TG ∩ Tu) can be translated into Σ1 by an element of G. Since the spine
σ0 = p0(TG) of Σ0 has an isometric action of Z ∼= G/G0, it suffices to prove a
uniform bound on p0(TG∩Tu) in σ0: we then simply take a sufficiently large neigh-
borhood σ1 of a fundamental domain for the action of G/G0 on the spine σ0 ⊂ Σ0,
and take Σ1 to be a thickening of σ1 in Σ0.

To bound the diameter of p0(TG ∩ Tu) in σ0, we utilize Masur and Minsky’s
subsurface projections [MM00]. For simplicity we describe the idea in the case
where our reducible surface homeomorphism f : S → S is a Dehn twist about
a single curve α. First, we let A → S be the annular cover whose core curve
is α, and for every simplex u ⊂ C(Sz), let π(v) be the subsurface projection of
v = Φ(u) ⊂ C(S) to the arc graph of A; see §5.2. Next, for every edge e ⊂ TG,
there is a dual geodesic α̃e ⊂ p−1(α), and we can identify the annulus A with the
quotient A = H

2/ Stabπ1S(α̃e). There are two boundary components of ∂HG that
non-trivially intersect α̃e, and we let Δe denote their image in A, viewed as a subset
of the arc graph of A; see §5.1. These sets Δe decorate the edges e of TG and are
G–equivariant, with Δg(e) = fφ(g)(Δe) where f

φ(g) is the image of g ∈ G under the
homomorphism G → 〈f〉; see Lemma 5.2.
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The key idea is now the following: any edge e for which the intersection number
of an arc in Δe with one from π(v) is sufficiently large is a “dead end”, beyond which
the hull type subtree and any parallel type subtree cannot extend; see Lemma 5.6
and Lemma 5.9. Since σ0 has finite valence, distant vertices in σ0 should basically
differ by a large power of the generator of G/G0, which is isotopic to a large power
of the Dehn twist f . Thus for a geodesic � in TG ∩ Tu with p0(�) sufficiently long,
there must be two edges e, e′ of � and an element of g ∈ G so that e′ = g(e) and
|φ(g)| is large. However, if Δe and π(v) have small intersection number (because
e is not a “dead end”), then Δe′ = Δg(e) = fφ(g)(Δe) and π(v) will have large
intersection number (depending on |φ(g)|). Thus we get a bound on how large
|φ(g)| can be, and hence a bound on how long p0(�) can be.

Our proof in the general case of arbitrary reducible f follows the same basic
idea using the subsurface projection to the complementary components of S�α to
give a decoration on the vertices of TG in addition to decorations of edges coming
from the annular covers. The argument is complicated by the fact that f may act
trivially on some subsurfaces and some annuli; see §5 for details.

2. Preliminaries

Throughout, S will denote a connected orientable finite type surface with neg-
ative Euler characteristic. We will equip this surface with a complete hyperbolic
metric of finite area that identifies H2 with the universal cover p : H2 → S. Given
a point z ∈ S, we let Sz denote the surface obtained by puncturing S at z. We
also equip Sz with a complete, finite area hyperbolic metric. The curve complex of
S (or Sz) is the flag simplicial complex C(S) whose vertices are isotopy classes of
essential, simple closed curves on S with two isotopy classes joined by an edge if
they have disjoint representatives. Each vertex of C(S) has a unique geodesic rep-
resentative and two vertices will be joined by an edge if and only if these geodesic
representatives are disjoint. Hence, each simplex of C(S) corresponds to a multic-
urve on S, which has a unique geodesic representative. Whenever convenient, we
will assume that a simplex/multicurve v ⊂ C(S) is represented in S as a geodesic
multicurve.

Given a surface with boundary Y , we define the arc and curve complex to be the
flag simplicial complex AC(Y ) whose vertices are isotopy classes of both essential,
simple closed curves and isotopy classes of essential arcs meeting the boundary of
Y precisely in their endpoints.2 As with the curve complex, two vertices of AC(Y )
are joined by an edge if there are disjoint representatives for the isotopy classes.

When S is a once-punctured torus or four-punctured sphere, one usually makes
a different definition for C(S), but we do not do that here. In particular, these
curve complexes are discrete, countable sets. On the other hand, if Y is a torus
with one boundary component or a sphere with at least one boundary component
and the sum of the number of boundary components and punctures equal to 4, then
we do take the usual modified definition for AC(Y ) in which vertices are joined by
an edge if they intersect once or twice for these two types of surfaces, respectively.
The reason is that for C(S), we need Theorem 2.3 to hold, while for AC(Y ), we will
use coarse geometric properties in §5.

2One often allows properly embedded arcs with ends in cusps of Y , if any, but we will not need
such arcs in our work, so omit them in our definition.
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If A → S is an annular cover, let Ā denote the compact annulus obtained from
A by adding its ideal boundary from the hyperbolic metric on S. This compacti-
fication, Ā, of A is independent of the choice of metric. The arc complex A(A) is
the flag simplicial complex whose vertices are isotopy classes of essential arcs on Ā,
where unlike other surfaces with boundary, isotopies of Ā are required to be the
identity on ∂Ā. Edges of A(A) correspond to pairs of isotopy classes with represen-
tatives having disjoint interiors. The annuli of primary interest come from curves
w ∈ C(S). More precisely, every such curve w determines a conjugacy class of
cyclic subgroups of π1S and hence an annular covering (unique up to isomorphism)
A = Aw → S for which w lifts to the core curve.

2.1. Mapping class groups and Birman exact sequence. We recall that the
mapping class group of S is the group of orientation preserving homeomorphisms
(or diffeomorphisms) of S, modulo the normal subgroup of those homeomorphisms
that are isotopic to the identity,

Mod(S) = Homeo+(S)/Homeo0(S).

Every element of Mod(S) is thus the isotopy class of a homeomorphism.
Recall that we have fixed a basepoint z ∈ S, and Sz = S�{z}. We write

Φ: Sz → S for the inclusion. The puncture of Sz that accumulates on z via Φ is
called the z–puncture and we often refer to Φ as the map that “fills the z–puncture
back in”.

We are interested in the finite index subgroup Mod(Sz, z) < Mod(Sz) consisting
of isotopy classes of homeomorphisms that fix the z–puncture. Any homeomor-
phism ϕ : Sz → Sz defining an element of Mod(Sz, z) uniquely determines a home-
omorphism ϕ′ : S → S extending over the point z by sending it to itself and by
the formula ϕ′ ◦ Φ = Φ ◦ ϕ on Sz. When the context makes the meaning clear, we
usually abuse notation and use the same symbol ϕ to denote the mapping class in
Mod(Sz, z), a representative homeomorphism of Sz, as well as the unique extension
to a homeomorphism of S.

The extension of a homeomorphism of (Sz, z) over the point z via the map Φ
defines a surjective homomorphism Φ∗ : Mod(Sz, z) → Mod(S), and the Birman’s
exact sequence [Bir69] identifies an isomorphism of the kernel of Φ∗ with π1S:

1 π1S Mod(Sz, z) Mod(S) 1.
Φ∗

It will be useful to describe explicitly the isomorphism of the kernel of Φ∗ with
π1S. If ϕ : Sz → Sz represents an element of the kernel, then the extension ϕ : S →
S over the point z is isotopic to the identity, by an isotopy that does not preserve z.
If ϕt : S → S is the isotopy so that ϕ0 = ϕ and ϕ1 = 1S , then defining γ(t) = ϕt(z),
we see that γ is a loop based at z. The isomorphism of the kernel with π1S assigns
the homotopy class of γ to ϕ ∈ Mod(Sz, z). Alternatively, we can think of producing
a homeomorphism ϕ : Sz → Sz by pushing z around the loop γ−1 by an isotopy on
S; we call this the point push around γ−1.

Another perspective is useful in our setting. Fix a point z̃ ∈ p−1(z). Any home-
omorphism ϕ : Sz → Sz (representing an element of Mod(Sz, z)) has a unique lift
ϕ̃ : H2 → H

2 fixing z̃. The lift ϕ̃ is a quasi-isometry,3 and so has a unique extension

3When S has cusps we assume any homeomorphism ϕ of S is an isometry in some neighborhood
of the cusps; this is a convenience, however, as the extension of the lift to ∂H2 → ∂H2 exists
independent of this assumption.
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to a homeomorphism ∂H2 → ∂H2. Any other representative of the isotopy class
of ϕ in Mod(Sz, z) has the same extension, since the lift of the isotopy moves all
points a bounded hyperbolic distance, thus we obtain an action of Mod(Sz, z) on
∂H2.

Next observe that if ϕ0 : S
z → Sz represents an element in the kernel of Φ∗, and

ϕt : S → S is the isotopy to the identity. This isotopy lifts to an isotopy ϕ̃t from
the lift ϕ̃0 fixing z̃ to a lift of the identity. The resulting lift of the identity, ϕ̃1, is
thus a covering transformation, namely the one associated to γ (as defined above
by γ(t) = ϕt(z)). Thus, we have the following:

Proposition 2.1 (cf. [LMS11, §1.2.3]). The restriction of the action of Mod(Sz, z)
on ∂H2 to π1(S) agrees with the extension of the isometric covering action of π1S
on H

2.

Kra’s Theorem [Kra81] describes precisely which elements of π1S represent
pseudo-Anosov elements of Mod(Sz, z). Recall that a loop is filling if it cannot
be homotoped disjoint from any essential simple closed curve (and is thus a prop-
erty of the homotopy class).

Theorem 2.2 ([Kra81]). An element of π1S represents a pseudo-Anosov element
of Mod(Sz, z) if and only if it is represented by a filling loop.

Since being pseudo-Anosov is equivalent to not having any isotopy classes of pe-
riodic simple closed curves, the point pushing description of Birman’s isomorphism
suggests a proof of Theorem 2.2; see [FM12, §14.1.4].

2.2. Fibers and trees. We let Cs(Sz) ⊂ C(Sz) denote the subcomplex spanned
by curves whose image under Φ: Sz → S is an essential curve on S. We call
the vertices of Cs(Sz) the surviving curves of Sz. Since Φ maps disjoint curves
to disjoint curves, it induces a simplicial, surjective map, which we also denote
Φ: Cs(Sz) → C(S) by an abuse of notation. Given any simplex, v ⊂ C(S), we
let Φ−1(v) denote the preimage of the barycenter of v. The following is proved in
[KLS09].

Theorem 2.3. For any simplex v ⊂ C(S), there is a π1S–equivariant homeomor-
phism from the Bass–Serre tree T dual to v to Φ−1(v) ⊂ Cs(Sz). The image of a
vertex t ∈ T under this homeomorphism is the barycenter of a simplex ut ⊂ Cs(Sz)
for which Φ(ut) = v and Φ|ut

is injective. Moreover, t, t′ ∈ T are joined by an edge
if and only if ut ∪ ut′ spans a simplex of Cs(Sz).

The proof of Theorem 2.3 involves some ideas that will be useful for us, which
we briefly describe. Given a simplex u ⊂ C(Sz), we let Ku denote the stabilizer
of u in π1S < Mod(Sz, z) and Hu ⊂ H

2 denote the convex hull of the limit set
of Ku in ∂H2 (if it is non-empty). If u ⊂ Cs(Sz), v = Φ(u), and Φ|u is injective,
then p : H2 → S maps the interior H◦

u ⊂ Hu to a component of S�v (where v is
realized by its geodesic representative). Up to isotopy, p(H◦

u) is the Φ–image of
the component U ⊂ Sz

�u containing the z–puncture. One way to think about
this fact is that point pushing around a loop preserves u precisely when the loop
is disjoint from u, that is, when the loop (intersected with Sz) is contained in U .
When Φ|u is not injective, the component of Sz

�u containing the z–puncture is
a once-punctured annulus, making Ku an infinite cyclic group. In any case, the
stabilizer of Hu is exactly Ku; see [KLS09, Theorem 4.1].
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2.3. Convex cocompactness. Farb and Mosher originally defined convex com-
pactness in the mapping class group using the action on Teichmüller space; see
[FM02]. For our purposes, it will be most convenient to use the following formula-
tion due to Kent–Leininger and independently Hamenstädt.

Theorem 2.4 ([KL08a,Ham07]). A subgroup of the mapping class group is convex
cocompact if and only if it is finitely generated and the orbit map to the curve
complex is a quasi-isometric embedding.

We will apply this to the case of subgroups of Mod(Sz). We note that since the
inclusion of a finite index subgroup into a bigger group is a quasi-isometry, convex
cocompactness survives passage between finite index super- and subgroups.

3. Set up

We now fix a homeomorphism f : S → S that defines an infinite order, reducible
mapping class in Mod(S). We let Γ denote the π1S–extension group Γf that is the
fundamental group of the mapping torus for f . Since f defines an infinite order
mapping class, the homomorphism μz : Γ → Mod(Sz, z) is injective and we identify
Γ with its image in Mod(Sz, z). Let α = α1 ∪ . . . ∪ αn ⊂ S be the canonical
reduction system for the reducible mapping class defined by f ; see [Iva92]. Since
convex cocompactness is preserved by passing to finite index super-groups and
Γfn < Γf has finite index, we can replace f with a power when it is helpful. We
do so, and thus (after an isotopy if necessary) assume that f fixes each curve αi

and each component of S�α. By possibly raising to a further higher power, we
can also assume that f restricted to each component of S�α is either the identity
or pseudo-Anosov. We also assume throughout that α is realized as a geodesic
multicurve in S with respect to our fixed hyperbolic metric.

A complementary subsurface of α is defined as the path metric completion Y of a
component Y ◦ ⊂ S�α. Such a complementary subsurface Y is a hyperbolic surface
with geodesic boundary and the inclusion Y ◦ → S�α extends to an immersion
Y → S that is injective on the interior, and at most 2-to-1 at points of ∂Y . By
an abuse of notation, we often write Y ⊂ S or refer to the map Y → S as the
inclusion.

Write Y1, . . . , Yk to denote the complementary subsurfaces of α. Since each αi

and each Y ◦
j is invariant by f , we obtain “restricted” maps f |Yj

: Yj → Yj . We
can re-index the complementary subsurfaces so that there is some 0 ≤ m ≤ k such
that for j ≤ m, f |Yj

is pseudo-Anosov on Yj and for j > m, f |Yj
is the identity.

We refer to these subsurfaces Yj as the pseudo-Anosov components and the identity
components, respectively.

Given f as above, we fix a finitely generated subgroup G < Γ that is purely
pseudo-Anosov as a subgroup of Mod(Sz). If G is in the kernel of the homomor-
phism Φ∗ : Γ → 〈f〉 < Mod(S), then G is contained in π1S, and hence is convex
cocompact in Mod(Sz) by [KLS09, Theorem 6.1]. Thus, we may assume that Φ∗
sends G onto the subgroup of 〈f〉 generated by fn for some n > 0. By passing
to a further power if necessary, we can assume that n = 1; this will be convenient
for notational purposes later and does not affect any other properties of f we have
already assumed. If φ|G is injective, then G ∼= Z, and the theorem also follows, so
we assume G0 = ker(φ|G) = G ∩ π1S is non-trivial (hence infinite).
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3.1. Action on H
2 and T . We assume that in our fixed hyperbolic metric, the

lengths of the components of α are short enough that any two components of p−1(α)
are distance at least 2 apart in H

2. The action of π1S on H
2 preserves p−1(α), and

we let T denote Bass–Serre tree dual to p−1(α). The action of π1S on H
2 and T

extends to an action of Γ as we now explain.
As in §2.1, given any ϕ ∈ Γ we write ϕ : Sz → Sz for a representative and

its extension ϕ : S → S (after filling the z–puncture back in). Since ϕ ∈ Γ, the
homeomorphism ϕ : S → S is isotopic (ignoring z) to fk, for some k ∈ Z. The lift
ϕ̃ : H2 → H

2 fixing z̃ is thus isotopic to a lift of fk (not necessarily fixing z̃), and

so has the same extension to ∂H2. Given any lift f̃ : H2 → H
2 of f , any lift of fk

is then obtained by composing f̃k with an element of π1S. Conversely, any such
composition is a lift of fk. Hence, the action of Γ on ∂H2 factors through an iso-

morphism with the group 〈f̃ , π1S〉 acting on ∂H2. This isomorphism Γ ∼= 〈f̃ , π1S〉
then defines an action on H

2 extending the covering action of π1S. Alternatively,

the given lift f̃ is equivariantly isotopic to the lift ϕ̃ of some ϕ ∈ Γ with Φ∗(ϕ) = f .
Then Γ = π1S � 〈ϕ〉 acts on H

2 so that π1S acts by covering transformations and

ϕk acts by f̃k for all k ∈ Z.
An alternative way to see the action of Γ on H

2 is to consider the universal

covering M̃f of the mapping torus, lift the suspension flow, and consider the quotient
by the flow lines. Since the universal cover H2 of S intersects each lifted flow line

once, the flow space is identified with H
2 and the action of Γ on M̃f descends to an

action of Γ on H
2 which agrees with the covering action when restricted to π1S.

Since f preserves α, f̃ preserves p−1(α). Therefore, Γ acts on the Bass–Serre
tree T dual to α. Since f fixes each Yi and each curve in α, a pair of vertices/edges
of T is in the same Γ–orbit if and only if they are in the same π1S–orbit. Unlike the
action on H

2, this action on T is by isometries. For each edge e ⊂ T , we write α̃e to
denote the component of p−1(α) that is dual to e. We choose a Γ–equivariant map
H

2 → T sending α̃e to the midpoint of e, and each component of S�p−1(α) to the
1
2–neighborhood of the dual vertex. There are many such choices, and we sometimes
make a choice of one that is convenient for certain applications; for example, we
may take such a map to be K–Lipschitz, where K depends only on the minimal
distance between pairs of components of p−1(α). We also choose a π1S–equivariant
map T → Φ−1(α) ⊂ Cs(Sz) ⊂ C(Sz) as in Theorem 2.3, identifying vertices and
edges of T with simplices of C(Sz) in Φ−1(α).

3.2. Subsurfaces and annuli for vertices and edges. For each vertex t ∈ T ,

we let Ỹ ◦
t denote the component of H2

�p−1(α) dual to t, and use Ỹt for its closure.

Let Kt = Stabπ1S(Ỹt) and define Yt to be Ỹt/Kt. We can identify each Yt with
exactly one of the complementary subsurfaces Y1, . . . , Yk as follows: for a vertex
t ∈ T , let Υt = H

2/Kt. The surface Yt is then the convex core of Υt and there is a
unique i(t) ∈ {1, . . . , k} so that the covering map Υt → S maps the interior of Yt

isometrically onto Y ◦
i(t) ∈ {Y ◦

1 , . . . , Y
◦
k }. If t and t′ are in the same Γ–orbit, then

Υt and Υt′ are equivalent covers of S with different choices of base point. Hence
there is an isomorphism of covering spaces Υt → Υt′ that sends Yt isometrically to
Yt′ . In particular, Yi(t) = Yi(t′) and we use this to identify Yt = Yi(t) = Yi(t′) = Yt′ .

For each edge e ⊂ T , we let Ke = Stabπ1S(α̃e) and define Ae to be the annulus
H

2/Ke. There exists a unique i(e) ∈ {1, . . . , n} so that p(α̃e) = αi(e). When
convenient, we will also write αe = αi(e). When e and e′ are in the same Γ–orbit,
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Ae and Ae′ are equivalent annular covers of S with core curve αe. Hence, we can
isometrically identify all these annuli: Ae = Ai(e) = Ai(e′) = Ae′ .

We note that each vertex t and edge e of T is identified with simplices at and ae
of Cs(Sz), respectively, by Theorem 2.3, and Kt = Kat

and Ke = Kae
are indeed

special cases of simplex stabilizers (so the notation is compatible with that in §2.2).
Moreover, Ỹt = Hat

and α̃e = Hae
, as in §2.2. Using this, and the fact that the

Γ–orbits and π1S–orbits of vertices and edges of T are the same, it follows that the
π1S–equivariant map T → Φ−1(α) ⊂ Cs(Sz) ⊂ C(Sz) is also Γ–equivariant.

3.3. Hulls and trees. We now define invariant subtrees of the Bass–Serre tree T
for the simplex stabilizers Ku as well as our purely pseudo-Anosov subgroup G < Γ.
These subtrees will allow us to translate distances in C(Sz) to distances in G.

For each simplex u ⊂ C(Sz), the stabilizer Ku < π1S acts by isometries on T .
If the action of Ku does not have a global fixed point, we let Tu be the minimal
invariant subtree of Ku. In this case, Tu is the union of the axes of loxodromic
elements; see, e.g. [Bes02, Proposition 2.9]. If Ku has a global fixed point in T , we
define Tu to be the maximal fixed subtree. We can readily determine the structure
of Tu by examining the component of Sz

�u that contains the z–puncture.

Lemma 3.1. Let u ⊂ C(Sz) be a multicurve and U be the component of Sz
�u that

contains the z–puncture.

(1) The action of Ku on T has a global fixed point if and only if α can be
isotoped to be disjoint from Φ(U) in S.

(2) When Ku has a global fixed point, Tu is either a single vertex t ∈ T or a
single edge e ⊂ T . Moreover, Tu is an edge e if and only if U is a once-
punctured annulus and each component of Φ(∂U) is isotopic to the curve
αe of α.

(3) If u contains a non-surviving curve, then Tu is a single vertex.
(4) When u consist only of surviving curves and Tu is not an edge, then t ∈ Tu

if and only if Hu ∩ Ỹ ◦
t = ∅.

Proof. As described in §2.2, Ku is the group of all pushes along loops in U based
at z (after filling the z–puncture back in). This group is naturally isomorphic to
π1(Φ(U), z) < π1(S, z) = π1S. Hence Ku contains a hyperbolic isometry of π1S if
and only if Φ(U) is not a once-punctured disk.

Now observe that Φ(U) is a once-punctured disk if and only if u contains a non-
surviving curve. In this case, Ku is an infinite cyclic group generated by a parabolic

isometry. Hence, there is an invariant horoball for Ku that is contained in Ỹ ◦
t for

some vertex t ∈ T . It follows that Ku fixes no geodesic in p−1(α), but fixes Ỹ ◦
t .

This implies Tu = {t}, which proves part (3).
We now focus on the case where Φ(U) is not a once-punctured disk, so Ku

contains a hyperbolic isometry of π1S, or equivalently, when Hu is non-empty.
The fixed points in T of the hyperbolic elements of π1S are determined by their

axes in H
2 as follows. Let g ∈ π1S be hyperbolic and let γg be the axis of g in H

2.

If γg ⊂ Ỹ ◦
t for some vertex t ∈ T , then t is the unique fixed point of g. If γg = α̃e

for some geodesic α̃e ⊂ p−1(α), then the edge e ⊂ T is the maximal fixed subtree
of g in T . Finally, if γg crosses a geodesic in p−1(α), then periodicity says the set of
geodesics in p−1(α) that γg crosses will be the edges of a bi-infinite geodesic �g ⊂ T .
In this case, g acts loxodromically on T , and its axis in T is �g. Conversely, if g acts
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loxodromically on T with axis �g ⊂ T , then γg crosses all the geodesics in p−1(α)
corresponding to the edges of �g.

Returning to Ku, if Hu contains a bi-infinite geodesic that intersects a geodesic
in p−1(α) transversely, then there is some hyperbolic element of Ku whose H

2–
axis crosses a geodesic in p−1(α). Since this element will act loxodromically on
T , Ku has no global fixed point, and thus Tu is the union of axes of the elements
of Ku that act loxodromically on T . A vertex t ∈ T is then on the T–axis of a
loxodromic element g ∈ Ku if and only if g is a hyperbolic element of π1S whose

H
2–axis intersects Ỹt in a bounded diameter segment. Thus, t ∈ Tu if and only

if Hu ∩ Ỹ ◦
t = ∅, proving part (4). In this case, p(H◦

u) is isotopic to Φ(U), so Hu

containing a geodesic that intersects a geodesic in p−1(α) transversely ensures that
α cannot be isotoped to be disjoint from Φ(U), proving (the contrapositive of) one
of the implications in part (1).

If Hu does not contain a geodesic that intersects a geodesic in p−1(α) transversely,

then either H◦
u is contained entirely in Ỹ ◦

t for some vertex t ∈ T or Hu is one of

the geodesics α̃e ⊂ p−1(α). If H◦
u ⊂ Ỹ ◦

t , then Tu = {t}. In this case, p(H◦
u) is

isotopic to Φ(U), so H◦
u ⊂ Ỹ ◦

t implies Φ(U) is disjoint from α. If Hu = α̃e, then
Ku = Stabπ1S(Hu) is an infinite cyclic group generated by a hyperbolic isometry
whose axis is the geodesic α̃e. Thus, Tu = e and p(Hu) = αe ⊂ α. It follows that
Φ(∂U) is an annulus with core curve isotopic to αe. Thus, U is a once-punctured
annulus and α can be isotoped to be disjoint from Φ(U). Combined with the case
where Φ(U) is a once-punctured disk, this proves the other implication of part (1).
Furthermore, when combined with the discussion above from the proof of part (3),
we also deduce part (2). This completes the proof of the lemma. �

These invariant subtrees have the following intersection property for nested sim-
plices. This allows us to produce paths in T from paths in C(Sz).

Lemma 3.2. Let u,w be simplices of C(Sz). If u ⊆ w, then Tu ∩ Tw = ∅.

Proof. Since u ⊆ w, we have Kw < Ku. If Ku has a global fixed point, then Tu is
the maximal fixed subtree of Ku, and hence Tw is also the maximal fixed subtree
of Kw. In this case, Tu ⊆ Tw. If neither has a global fixed point, then Tu and Tw

are the minimal invariant subtrees of Ku and Kw, respectively, and so Tw ⊆ Tu. In
either of these cases, Tu ∩ Tw = ∅.

Finally, suppose Tu is a minimal invariant subtree for Ku and Tw is the maximal
fixed subtree of Kw. By Lemma 3.1, either Tw is a vertex or edge, and in either
case, there is an element g ∈ Kw whose fixed point set is exactly Tw. Since Tu

has no global fixed point, there is an axis � ⊂ Tu for an element h ∈ Ku acting
loxodromically on Tu. If � ∩ Tw = ∅, then Tu ∩ Tw = ∅, as required. On the
other hand, if � ∩ Tw = ∅, then � ∩ g(�) = ∅, and the geodesic from � to g(�) must
non-trivially intersect Tw. Since this geodesic is contained in Tu, it follows that
Tu ∩ Tw = ∅. �

Recall that we have fixed a finitely generated and purely pseudo-Anosov sub-
group G < Γ and have passed to an appropriate power of f so that Φ∗(G) = 〈f〉.
We have G0 = G ∩ π1S, and by our assumptions above, G0 is an infinite, normal
subgroup. Define HG to be the convex hull of the limit set of the action of G on
∂H2. Since we are assuming G = G0, the action of G on H

2 is not by isometries
and does not necessarily preserve HG. However, since G0 is a normal subgroup of
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G, the limit sets of G0 and G in ∂H2 are equal and G0 does act isometrically on
H

2 preserving HG.
Since G does act by isometries on the Bass–Serre tree T , we can use T to produce

a geometric model for G as follows: since G is purely pseudo-Anosov and torsion
free, no element of G fixes any simplex of C(Sz). Hence, G acts freely on T as its
vertices and edges are Γ–equivariantly identified with simplices of Cs(Sz) in Φ−1(α).
Thus, the minimal invariant subtree TG of the action of G on T is again the union
of axes of loxodromic element of G. A compact fundamental domain for this action
can be found by taking the minimal subtree containing a base vertex v ∈ TG and
all the translates of v by a finite set of generators of G. Thus, the action of G on
TG gives G a graph of groups decomposition with trivial vertex and edge groups.
This proves Lemma 3.3.

Lemma 3.3. The group G is free. Moreover, the tree TG has uniformly finite
valence and a free, cocompact G–action.

Remark 3.4. Since G0 is a normal, infinite subgroup of G, the tree TG is also the
minimal invariant tree of the action of G0 on T . Hence TG is also the union of the
axes of the loxodromic elements of G0.

Since every element of G0 is loxodromic on TG, and since G and G0 have equal
limit sets in ∂T and ∂H2, a similar argument as Item (4) for Lemma 3.1 shows that
the same conclusion holds for TG and HG.

Lemma 3.5. A vertex t ∈ T is a vertex of TG if and only if Ỹ ◦
t ∩ HG = ∅.

3.4. The G0–quotient and its spine. Since G0 acts freely on TG, there is a G0–
equivariant embedding TG → HG sending vertices inside the component they are
dual to (in aG–equivariant way) and sending edges to geodesic segments. Therefore,
we get a surface with a spine

TG/G0 = σ0 ⊂ Σ0 = HG/G0.

Figure 1 gives an example of Σ0 and its spine σ0.

Figure 1. Part of Σ0 and its spine σ0 ⊂ Σ0. Each edge ε ⊂ σ0

transversely intersects its dual arc aε.

Each edge e ⊂ TG intersects exactly one component α̃e ⊂ p−1(α) and we define

ãe = α̃e ∩ HG.

We write aε ⊂ Σ0 for the image of ãe in Σ0 where e ⊂ TG is an edge that projects
to ε; note that for any two edges ε, ε′ of σ0, aε ∩ ε′ is empty if ε = ε′, while aε ∩ ε′

is a single point if ε = ε′.
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3.5. Polygons and G–quotient. For each vertex t ∈ TG, the intersection Ỹt∩HG

is an even-sided polygon with sides alternating between arcs contained in p−1(α)
and those in HG. Indeed, the sides in p−1(α) are precisely the arcs ãe where e is

an edge of TG adjacent to t. We let Z̃t ⊂ HG be this polygon corresponding to the

vertex t ∈ TG, and we write ∂αZ̃t to denote the union of the sides ãe over all edges
e adjacent to t; see Figure 2.

Z̃t

Ỹt

Σ0

Zτ

p0

Figure 2. Left: The polygon Z̃t ⊂ HG ∩ Ỹt (shaded). Right: The
“image” polygon Zτ in Σ0.

Let p̃0 : H
2 → S̃0 = H

2/G0 be the quotient by G0, which contains Σ0 as its
convex core (by definition), and write p0 = p̃0|HG

: HG → Σ0 for the restriction.

Let η : S̃0 → S be the associated covering corresponding to G0 < π1S, so that
η ◦ p̃0 = p.

Now η−1(α) ∩ Σ0 is a union of the geodesic arcs aε over all edges ε of σ0. The

further restriction of p0 to Z̃t is injective on Z̃t�∂αZ̃t and maps ∂αZ̃t into η−1(α).

For a vertex τ ∈ σ0, write Zτ = Z̃t where t is a vertex of TG with p0(t) = τ ,
and write Zτ → Σ0 to denote the restriction of p0. This map is injective, except

possibly on the points of ∂αZ̃t. As an abuse of notation, we write Zτ ⊂ Σ0 (even
though it is not necessarily embedded). See Figure 2.

Since G0 is a normal subgroup of G, we have an action of G/G0
∼= Z on S̃0, and

we observe that each element of G/G0 acts as a lift of a power of f to the covering

space S̃0. The action of G/G0 on S̃0 is free because the action of G/G0 on σ0 is free.
The action of G/G0

∼= Z does not preserve Σ0, but we can find a homeomorphism

f : S̃0 → S̃0 so that f(Σ0) = Σ0 and f is properly isotopic the generator of G/G0

by an isotopy that preserves η−1(α). If the generator sends a vertex τ ∈ σ0 to a
vertex τ ′ ∈ σ0, then f(Zτ ) = Zτ ′ ; indeed, we use this to define the isotopy of the
generator to the map f. By further proper isotopy preserving η−1(α) and Σ0, we
may assume f(σ0) = σ0. The action of 〈f〉 on Σ0 is a topological covering space
action with compact quotient Σ containing a spine σ = σ0/〈f〉.

We note that the map g �→ fφ(g) defines a homomorphism G → 〈f〉 that descends
to an isomorphism G/G0

∼= 〈f〉. Since φ|G is surjective, we also note that f is
isotopic to a lift of f . Moreover, the projection TG → σ0 is equivariant with respect
to this homomorphism.
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4. Reduction to a diameter bound for p0(TG ∩ Tu)

In this section we reduce the proof of Theorem 1.1 to proving that the diameter
of p0(TG∩Tu) is uniformly bounded for all simplices u ⊂ C(Sz). This has two steps.
First we show that Theorem 1.1 follows from a uniform bound on the diameter of
TG ∩ Tu. Second we show that the diameter bound on TG ∩ Tu follows from the a
priori weaker bound on the diameter of p0(TG∩Tu). The proof of Theorem 1.1 will
then be completed in §5 where we verify that p0(TG ∩ Tu) is uniformly bounded.

4.1. First reduction. We give the proof of Theorem 1.1 assuming Proposition
4.1.

Proposition 4.1. Given G < Γ finitely generated and purely pseudo-Anosov in
Mod(Sz), there exists D > 0 so that for all u ⊂ C(Sz) we have

diam(TG ∩ Tu) ≤ D.

Proof of Theorem 1.1 assuming Proposition 4.1. Let P : T → TG be the closest
point projection. Observe that P maps any connected subset of T�TG to a point.
In particular, for any geodesic segment σ outside TG, P (σ) is a point. Now suppose
u ⊂ C(Sz) is any simplex and σ is a geodesic in Tu. Then σ = σ0σ1σ2, where σ1

is a (possibly empty) geodesic segment in TG ∩ Tu and σ0, σ2 meet TG in at most
one point. It follows that P (σ) is either a point or P (σ) = σ1. In either case,
diam(P (σ)) ≤ D by Proposition 4.1.

Fix a vertex t ∈ TG and let u ∈ C(Sz) be a curve in the simplex that is the image
of t in Φ−1(α) ⊂ C(Sz). Consider the orbit map G → C(Sz) given by g → g(u).
Write dT for the (geodesic) metric on TG and dC for the metric on the 1–skeleton
of C(Sz).

Claim 4.2. dT (t, g(t)) ≤ 2DdC(u, g(u)) +D.

Assuming Claim 4.2, we complete the proof of the theorem. Fix a finite gener-
ating set for G and write dG for the word metric. A standard application of the
triangle inequality implies that the orbit map G → G · u ⊂ C(Sz) is Lipschitz with
respect to dG. Next, note that the orbit map G → G · t ⊂ TG is a (κ, λ)–quasi-
isometry, for some κ, λ, and thus by Claim 4.2

dG(1, g) ≤ κdT (t, g(t)) + λ ≤ 2κDdC(u, g(u)) + κD + λ.

Therefore, the orbit map G → G · u ⊂ C(Sz) is a quasi-isometric embedding, and
hence G is convex cocompact by Theorem 2.4.

Proof of Claim 4.2. Let n = dC(u, g(u)) and write u = u0, u1, . . . , un = g(u) for
the vertices of a C(Sz)–geodesic from u to g(u). Consider the set of simplices

w2j = {uj} and w2i+1 = {ui, ui+1},
for j = 0, . . . , n and i = 0, . . . , n − 1. In particular, w2j,2j+2 ⊂ w2j+1 for all
j = 0, . . . , n− 1. By Lemma 3.2, this implies

Twk
∩ Twk+1

= ∅ for all k = 0, . . . , 2n− 1.

We also observe that since u is a vertex of the simplex defined by t, we have
{t} = Tt ⊆ Tu and likewise {g(t)} = Tg(t) ⊆ Tg(u).

Now construct a path γ : [0, 2n+ 1] → T by

• γ(0) = t,
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• γ(2n+ 1) = g(t),
• γ([k, k + 1]) ⊂ Twk

is a geodesic segment.

This is possible because Twk
∩ Twk+1

= ∅ for all k = 0, . . . , 2n − 1. Hence, we can
define γ(k + 1) to be any point in the intersection of these subtrees, and then take
γ|[k,k+1] to be a geodesic segment in Twk

connecting the points γ(k), γ(k+1) ∈ Twk
.

At the endpoints, we note that γ(0) = t ∈ Tu = Tw0
and γ(2n+1) = g(t) ∈ Tg(u) =

Tw2n
.

Now consider the path P ◦ γ : [0, 2n+ 1] → TG. As noted above, since

γ([k, k + 1]) ⊂ Twk
,

Proposition 4.1 implies diam(P ◦ γ([k, k + 1])) ≤ D. Now, P ◦ γ is a path in TG

between t and g(t), and thus we have

dT (t, g(t)) ≤ diam(P ◦ γ) ≤ (2n+ 1)D = 2DdC(u, g(u)) +D,

which proves the claim. �

Having proved Claim 4.2, we have proved Theorem 1.1 assuming Proposition 4.1.
�

4.2. Second reduction. Having reduced the proof of Theorem 1.1 to Proposi-
tion 4.1, which asserts a uniform bound on the diameter of TG ∩ Tu, we proceed to
our second reduction. The goal of this section is to deduce such a uniform bound
from the following bound in σ0 = TG/G0.

Proposition 4.3. Given G < Γ finitely generated and purely pseudo-Anosov in
Mod(Sz), there exists D′ > 0 so that for any simplex u ⊂ C(Sz),

diam(p0(TG ∩ Tu)) ≤ D′,

where the diameter of p0(TG ∩ Tu) is computed in σ0.

We postpone the proof of Proposition 4.3 to §5 and focus this subsection on
using Proposition 4.3 to prove Proposition 4.1. Our proof of Proposition 4.1 has
two parts. First we show that it suffices to verify the proposition for multicurves
u where p0(TG ∩ Tu) lands sufficiently deep in a specific subgraph of σ0. Then, we
verify that p0(TG ∩ Tu) is uniformly bounded for these “deep” multicurves.

The following easy fact allows us to adjust simplices by elements of G.

Lemma 4.4. For any g ∈ G and simplex u ⊂ C(Sz) we have

g(TG ∩ Tu) = TG ∩ Tg(u).

Proof. Since g ∈ G, we have g(TG) = TG. Since Kg(u) = gKug
−1, by considering

the two cases (minimal invariant subtree or maximal fixed subtree), we see that
g(Tu) = Tg(u). Therefore, we have

TG ∩ Tg(u) = g(TG) ∩ g(Tu) = g(TG ∩ Tu). �

Lemma 3.1(2) says that if Tu has finite diameter, then in fact the diameter is at
most 1. Thus it will suffice to examine TG ∩ Tu only for simplices u ⊂ C(Sz) where
Tu has infinite diameter. In particular, by Lemma 3.1(3) we can assume all curves
of u are surviving.
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4.2.1. Reduction to deep simplices. Let e1, . . . , er be a set of 〈f〉–orbit representa-
tives of edges of σ0. Let σ1 ⊂ σ0 be a connected subgraph containing e1, . . . , er so
that the distance in σ0 from any edge ei to a point outside σ1 is at least D′ + 2,
where D′ is the constant from Proposition 4.3. We further assume the following
for each boundary component δ of ∂Σ0: if δ

∗ is the minimal length loop in σ0 that
is freely homotopic in Σ0 to δ, then there exists i ∈ Z so that fi(δ∗) ⊂ σ1. This
is possible since there are only finitely many 〈f〉–orbits of boundary components
of Σ0. Since σ0 has no valence 1 vertices by virtue of being the quotient of axes
of loxodromics, we can enlarge σ1 to ensure it also has no valence 1 vertices and
that σ1 contains all edges with endpoints in its vertex set. We say that a simplex
u ⊂ Cs(Sz) is deep if N2(p0(TG ∩ Tu)) ⊂ σ1 where N2(·) is the 2–neighborhood in
σ0.

Lemma 4.5, combined with Lemma 4.4, shows that it suffices to verify Proposi-
tion 4.1 for deep simplices.

Lemma 4.5. For any simplex u ⊂ C(Sz), there exists g ∈ G so that g(u) is a deep
simplex. That is,

N2(p0(TG ∩ Tg(u))) ⊂ σ1.

Proof. For any u, there is j ∈ Z and one of the chosen 〈f〉–orbit representatives of
edges ei so that

ei ⊂ f
j(p0(TG ∩ Tu)).

Then N2(f
j(p0(TG ∩ Tu))) ⊂ σ1 by Proposition 4.3.

Now we let g ∈ G be any element that maps to fj by the homomorphism G →
〈f〉. Since p0|TG

: TG → σ0 is equivariant with respect to this homomorphism,
Lemma 4.4 implies

p0(TG ∩ Tg(u)) = p0(g(TG ∩ Tu)) = fj(p0(TG ∩ Tu)).

Combining this with the previous paragraph proves the lemma. �
4.2.2. Subtree decomposition and bounding TG∩Tu for deep simplices. We now use
Proposition 4.3 to uniformly bound the diameter of TG ∩ Tu when u is a deep
simplex (and thus for any simplex, by Lemmas 4.4 and 4.5). We start by dividing
the vertices of TG ∩ Tu into two sets.

Definition 4.6. Given a simplex u ⊂ Cs(Sz), say that a vertex t ∈ TG ∩ Tu is of
hull type if

HG ∩ Hu ∩ Ỹ ◦
t = ∅.

Any vertex that is not hull type is called parallel type.

The reason for the name “parallel type” comes from Lemma 4.10, which says
parallel type vertices must arise from single components of ∂HG and ∂Hu running
parallel to each other.

Lemma 4.7 verifies that the set of hull type vertices spans a subtree of TG ∩ Tu.

Lemma 4.7. If the set of hull type vertices is non-empty, then it spans a subtree
of TG ∩Tu. That is, every vertex of the smallest subtree containing all the hull type
vertices is of hull type.

Proof. If t, s ∈ TG ∩ Tu are hull type vertices, let x, y ∈ HG ∩ Hu be points with

x ∈ Ỹ ◦
t and y ∈ Ỹ ◦

s . Then the geodesic [x, y] ⊂ H
2 is contained in HG ∩ Hu by

convexity. Adjusting our equivariant map H
2 → T if necessary (see §3.1), we may
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assume it sends [x, y] to a geodesic from t to s in TG ∩ Tu. Every vertex of this
geodesic is therefore of hull type. �

We call the subtree of TG ∩ Tu from Lemma 4.7 the hull subtree, and denote
it TH

u,G. Each maximal connected subgraph of the complement of TH
u,G is also a

subtree of TG ∩ Tu. We call these components the parallel subtrees of TG ∩ Tu. To
avoid arguing in separate cases, we allow the possibility that TH

u,G is empty (i.e. if

there are no hull type vertices) in which case TG∩Tu is the unique parallel subtree.
If TG ∩ Tu = TH

u,G, then we consider any parallel subtree to be empty.
Before bounding the diameter of the hull and parallel subtrees, we need some

additional terminology. Let Σ1 be the compact subsurface of Σ0 defined by

Σ1 =
⋃

τ∈σ
(0)
1

Zτ .

We note that if τ, τ ′ are endpoints of an edge ε ⊂ σ1, then there are corresponding
arcs ∂αZτ , ∂αZτ ′ which are identified in Σ0 (hence in Σ1) and which transversely

intersect ε. Conversely, if τ, τ ′ ∈ σ
(0)
1 are vertices for which arcs of ∂αZτ and

∂αZτ ′ are identified in Σ1, then this arc is transverse to an edge ε ⊂ σ0, which
must be in σ1 since its endpoints are. It follows that the inclusion σ1 → Σ1 is a
homotopy equivalence. Let G1 < G0 be the image of the fundamental group of Σ1

in G0 = π1Σ0. Equivalently, G1 < G0 is the image of the fundamental group of σ1

inside G0 = π1σ0.
Let σ̃1 ⊂ TG be the component of p−1

0 (σ1) that is G1–invariant and define

H
1
G =

⋃
t∈σ̃

(0)
1

Z̃t.

Note that H1
G is the minimal, closed, G1–invariant subspace of HG that projects to

Σ1. We also let HG1
be the convex hull of the limit set of G1.

Let R be the maximum of the diameters of the polygons Zτ over all vertices
τ ∈ σ1 and observe that

H
1
G ⊂ NR(HG1

),

since σ1 contains no valence 1 vertices. To see this, note that any closed loop in σ1

without backtracking that visits every vertex of σ1 has geodesic representative γ in
Σ0 that meets Zτ for every vertex τ ∈ σ1. Therefore, for every vertex t ∈ σ̃1, there
is a geodesic in the preimage of γ that is invariant by an infinite cyclic subgroup

of G1 and passes through Z̃t. Since any such geodesic is contained in HG1
, every

point of H1
G is within R of a point of HG1

.
We now explain how to bound the diameter of the hull subtree of TG ∩ Tu for

deep simplices.

Lemma 4.8. There is a constant DH > 0 so that for any deep simplex u ⊂ Cs(Sz),
the diameter of TH

u,G is at most DH.

Proof. Wemay assume that Tu has infinite diameter, since otherwise it has diameter
at most 1, according to Lemma 3.1(2), and the conclusion is trivial. In particular,

(Z̃t�∂αZ̃t)∩Hu = ∅ if and only if t ∈ TH
u,G by Lemma 3.1(4). Since HG =

⋃
t∈T

(0)
G

Z̃t

and TH
u,G ⊂ σ̃1 (because u is a deep simplex) we have

HG ∩ Hu = H1
G ∩ Hu.
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Choose our equivariant map H
2 → T to be Lipschitz (see §3.1). This map sends

HG ∩Hu to a set of Hausdorff distance at most 1
2 from TH

u,G, and thus it suffices to
prove a bound on the diameter of the intersection HG ∩ Hu.

To prove such a bound, first observe that

HG ∩ Hu = H
1
G ∩ Hu ⊂ NR(HG1

) ∩ Hu.

Now G1 is finitely generated because Σ1 is compact and G1 is a purely pseudo-
Anosov subgroup of π1S < Mod(Sz, z) because G0 is a purely pseudo-Anosov
subgroup. The argument in §5 of [KLS09] shows that if H < π1S < Mod(Sz, z)
is finitely generated and purely pseudo-Anosov, then there is uniform bound on
the diameter of NR(HH) ∩ Hu. In particular, there is a bound on the diameter
of NR(HG1

) ∩ Hu determined only by G1, which thus also bounds the diameter of
HG ∩ Hu. �

Remark 4.9. The proof in §5 of [KLS09] actually proves a bound on N1(HH)∩Hu,
but the “1” was an arbitrary choice, and the same proof applies replacing 1 with
any constant R > 0.

To bound the diameter of the parallel subtrees, we need the following result,
which justifies the name of “parallel type” for the vertices that are not hull type.

Lemma 4.10. Let u ⊂ Cs(Sz) be a multicurve such that Tu has infinite diameter,
and let t0, . . . , tn be the vertices of an edge path in TG ∩Tu. Let ei be the edge from
ti−1 to ti and α̃i be the geodesic in p−1(α) that is dual to the edge ei. If each ti is
of parallel type, there then exist geodesics δG ⊆ ∂HG and δu ⊆ ∂Hu so that

• δu and δG intersect each α̃i transversely;

• δu and δG do not intersect in Ỹti for any i ∈ {0, . . . , n}.

Proof. Note, each ti being of parallel type means that any geodesics satisfying the
first item must automatically satisfy the second. Hence it suffices to produce the
geodesics δG ⊆ ∂HG and δu ⊆ ∂Hu that intersect each α̃i.

Convexity ensures that HG and Hu intersect each α̃i in a (possibly non-compact)
non-empty, closed interval. If the vertices ti−1 and ti are both of parallel type, then
these intervals are disjoint, hence there must be xi ∈ ∂HG ∩ α̃i and yi ∈ ∂Hu ∩ α̃i

so that the open interval of α̃i between xi and yi does not intersect either HG or
Hu. Moreover, the xi and yi must be arranged so that the geodesic from xi to xi+1

does not cross the geodesic from yi to yi+1. Let α̃+
i ∈ ∂H2 be the endpoint of the

subray of α̃i starting at yi and passing through xi. Similarly, let α̃−
i ∈ ∂H2 be the

endpoint of the subray of α̃i starting at xi and passing through yi; see Figure 3.
Since the geodesic from xi to xi+1 does not cross the geodesic from yi to yi+1, there
are disjoint arcs I+, I− ⊂ ∂H2 so that α̃+

1 , . . . α̃
+
n ⊂ I+ and α̃−

1 , . . . α̃
−
n ⊂ I−.

Let δi be the component of ∂Hu that contains yi for i ∈ {0, . . . , n−1}. If δi does
not also include yi+1, then δi must have an endpoint on the arc of ∂H2 between α̃+

i

and α̃+
i+1 (contained in I+). But that would require δi to cross the geodesic from xi

to xi+1 as shown in Figure 3. Since the geodesic from xi to xi+1 is contained in HG

and δi is contained in Hu, this would contradict that ti+1 is a parallel type vertex
for i ∈ {0, . . . , n− 1}. Hence there is a single boundary component δu ⊂ ∂Hu that
contains all the yi. A completely analogous argument shows that there is a single
boundary component δG ⊆ ∂HG that contains all the xi. �
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yi yi+1

xi xi+1

α̃+
i α̃+

i+1

α̃−
i α̃−

i+1

δi

Figure 3. Arrangement of xi and yi

We also need this basic fact about quadrilaterals in the hyperbolic plane, the
proof of which is left as an exercise in hyperbolic geometry.

Lemma 4.11. For each r ≥ 0 and 0 < ε ≤ 1, there exists C ≥ 0 so the following
holds. Let γ1, γ2, γ3, γ4 be the 4-sides of a convex quadrilateral in H

2, labeled so that
γ1 is opposite γ3. If d(γ1, γ3) ≥ C, then there exist subsegments s2 ⊆ γ2, s4 ⊆ γ4,
each of length at least r, so that s2 ⊆ Nε(s4) and s4 ⊆ Nε(s2).

We now bound the diameter of the parallel subtrees.

Lemma 4.12. There is a constant D‖ > 0 so that for any deep simplex u ⊂ Cs(Sz),
the diameter of any parallel subtree of TG ∩ Tu is at most D‖.

Proof. By the Collar Lemma [Kee74], we may (and will) assume that the hyperbolic
metric on S is chosen so that each component of α is short enough to ensure that
the distance between two different geodesics in p−1(α) is at least 1. Let t0, . . . , tn be
the vertices of a geodesic edge path in one of the parallel subtrees of TG ∩ Tu, then
let α̃i be the geodesic of p

−1(α) that is dual to the edge from ti−1 to ti. By Lemma
4.10, there are geodesics δG ⊆ ∂HG and δu ⊆ ∂Hu that form a convex quadrilateral
with α̃1 and α̃n. We first show that if n is large enough, then p0 maps δG onto a
simple closed geodesic c that is contained in ∂Σ0 ∩ ∂Σ1.

Since Σ1 is the union of the polygons Zτ for τ ∈ σ
(0)
1 , every component c ⊂ ∂Σ1

is either a closed curve in ∂Σ0 or c∩ ∂Σ0 is a disjoint union of geodesic arcs. Since
Σ1 is compact, there exists L > 0 so that every component of ∂Σ0∩∂Σ1 has length
at most L.

Let δ′G be the subsegment of δG between α̃1 and α̃n. Now δ′G is the concatenation

of arcs in ∂Z̃t�∂αZ̃t where t ∈ {t0, . . . , tn}. Since the geodesics in p−1(α) are at least
1 apart, if n ≥ L+ 2, then the length of δ′G is at least L+ 1. Moreover, p0(ti) ∈ σ1

because each ti ∈ TG ∩ Tu and u is a deep simplex. This means p0(δ
′
G ∩ ∂Z̃ti) is

contained in ∂Σ0 ∩ ∂Σ1 for each i ∈ {1, . . . , n− 1}, and thus p0(δ
′
G) ⊂ ∂Σ0 ∩ ∂Σ1.

Since the components of ∂Σ0 ∩ ∂Σ1 that are not closed curves in ∂Σ0 are all arcs
of length at most L, p0 maps δ′G onto a closed curve c ⊂ ∂Σ0. Because c is a closed
geodesic and δ′G is a subsegment of δG, this means the entire geodesic δG must also
map onto c.

Let c1, . . . , ck be the closed curves in ∂Σ0 ∩ ∂Σ1. For each ci, there is a geodesic
curve γi ⊂ S so that the element of G1 = π1Σ1 ≤ π1S that corresponds to ci
is represented in π1S < Mod(Sz; z) by the point push of z along γ−1

i . Because
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G1 < G and G is purely pseudo-Anosov, Theorem 2.2 says each γi fills S, and
hence these are not simple. Moreover, p̃−1

0 (ci) ⊆ p−1(γi) where p̃0 is the covering

map H
2 → S̃0.

Claim 4.13 puts a bound on how long a lift of a simple closed curve can travel
close to a lift of one of the γi.

Claim 4.13. There are r ≥ 0 and 0 < ε ≤ 1 independent of u so that for any
i ∈ {1, . . . , k} and any geodesic γ̃ ∈ p−1(γi) the following holds. Let β ⊂ S be a

closed curve and β̃ be a geodesic in p−1(β). If Nε(β̃) ∩ γ̃ contains a geodesic of
length at least r, then β is not simple.

Proof. Let ε ≤ 1/16 be small enough so that if x is a self-intersection point of one
of the γi, the 8ε-neighborhood of x on S is isometric to the 8ε-ball in H

2. Let r0
be the maximum of all the lengths of all the γi, then let r = 3r0 +1. These ε and r
depend on the hyperbolic metric on S and the group G, but not on the multicurve
u.

Let β ⊂ S be a closed curve, then let β̃ ∈ p−1(β) and γ̃ ∈ p−1(γi) be as described

in the statement of the claim. Fix a self-intersection point x of γi. Since Nε(β̃)
contains a subsegment of γ̃ of length at least r and r is more than twice as long

as the length of γi, there must exist ỹ1, w̃1, ỹ2, w̃2 ∈ β̃ so that the geodesic on S
that connects p(ỹ1) and p(w̃1) and the geodesic that connects p(ỹ2) and p(w̃2) must

cross; see Figure 4. Since these geodesics are subsegments of β = p(β̃), we have
that β cannot be simple. �

ỹ1

w̃1

ỹ2

w̃2

γ̃ β̃

p
x

p(ỹ1)

p(w̃1)

p(ỹ2) p(w̃2)

∈ p−1(x)

p−1(x) �

Figure 4. A curve β cannot be simple if there is a lift β̃ that runs
close to a lift γ̃ of a non-simple curve γi for a long enough time

Let C be the constant from Lemma 4.11 for the r and ε from Claim 4.13. Suppose
for the purposes of contradiction that n ≥ max{C + 2, L + 3}. Recall, δu and δG
form a convex quadrilateral with α̃1 and α̃n. By choice of the hyperbolic metric
on S, α̃1 and α̃n are at least n − 2 ≥ C apart. Hence Lemma 4.11 says there is a
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subsegment of δu that is contained in the ε–neighborhood of δG. As shown above,
n ≥ L+2 implies p0(δG) = ci for some i ∈ {1, . . . , k}. On the other hand, p(δu) is a
simple curve because p(∂Hu) ⊆ Φ(u) as described in §2.2. However, this contradicts
Claim 4.13, so we must have n < max{C+2, L+2}. Since C and L do not depend
on u, setting D‖ = max{C + 2, L+ 3} completes the proof of Lemma 4.12. �

Armed with bounds on the diameter of the hull and parallel subtrees, we can
now prove Proposition 4.1.

Proof of Proposition 4.1 assuming Proposition 4.3. Recall, we wish to prove a uni-
form bound D on the diameter of TG ∩ Tu for every simplex u ⊂ C(Sz). We claim
that setting D = DH + 2D‖ + 2 suffices.

By Lemma 3.1, parts (2) and (3), we can assume u ⊂ Cs(Sz) and Tu has infinite
diameter, while Lemmas 4.4 and 4.5 say it suffices to bound diam(TG∩Tu) when u is
a deep simplex. Let t, t′ ∈ TG∩Tu be any two vertices. The geodesic, �, connecting
t and t′ decomposes into at most five segments, two contained in parallel subtrees,
one in the hull subtree, and a pair of edges connecting the segments in parallel
subtrees to the segment in the hull subtree. It follows from Lemmas 4.8 and 4.12
that the length of � is at most D. Since t, t′ were arbitrary, this completes the
proof. �

5. Bounding the diameter of p0(Tu ∩ TG)

The goal of this section is to prove Proposition 4.3, which asserts the existence of
a uniform bound D′ on the diameter of p0(Tu∩TG) in σ0. As shown in the previous
section, this will complete the proof of Proposition 4.1 and hence Theorem 1.1.

Recall from §3 that α = α1∪. . .∪αn is the canonical reduction system of the pure,
reducible homeomorphism f with complementary subsurfaces Y1, . . . , Yk. For each
edge e of T (or σ0), we write Ae = Ai(e) for the annular cover of S corresponding to

the component αe = αi(e) ⊂ α; if e is an edge in T , then Ae = H
2/Ke. If e ⊂ T and

g ∈ Γ, then we have a canonical identification Ae = Ag(e). Likewise, for each vertex
t of T (or σ0), we write Yt = Yj(t) for the corresponding complementary subsurface

of S, given by Yt = Ỹt/Kt for t ∈ T . If t ∈ T , g ∈ Γ, then Yt = Yg(t). Observe that
f acts on each AC(Yj) by restricting f |Yj

and on each A(Ai) by lifting f to Ai.
We say that a vertex t ∈ T is a pseudo-Anosov vertex (resp. identity vertex )

of T if f acts by a pseudo-Anosov (resp. by the identity) on Yt; that is, if Yt is a
pseudo-Anosov (resp. identity) component of f . Recall, by [MM99] f will act by a
pseudo-Anosov on Yt if and only if f acts loxodromically on AC(Yt). We say e is a
twist edge of T if f acts loxodromically on A(Ae). This occurs if the complementary
components Yj ,Yj′ of α that meet the curve αe are identity components, and hence
f acts by a power of a Dehn twist in αe, or if at least one of Yj or Yj′ are pseudo-
Anosov components that act by (possibly fractional) non-canceling Dehn twists
about the boundary component(s) corresponding to αe. Since the assignments of
Yt and Ae are G–equivariant, the labeling of pseudo-Anosov/identity vertex and
twist edge are also G–equivariant. Hence they descend to give the same labels to
vertices and edges of σ0 = TG/G0. Lemma 5.1 ensures that every path of length 2
in T contains either a twist edge or a pseudo-Anosov vertex.

Lemma 5.1. For any non-twist edge, e ⊂ TG, at least one endpoint is a pseudo-
Anosov vertex.
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Proof. If neither endpoint of e is a pseudo-Anosov vertex, then f must act as a
Dehn twist about αe, since otherwise αe would not be in the canonical reduction
system for f . Thus, e is a twist edge. �

5.1. Edge and vertex decorations. To each edge e and vertex t of TG we will
assign a bounded diameter subset Δe and Δt of the arc and curve graph of Ae and
Yt, respectively. We call these decorations of the edges and vertices.

For each edge e of TG, there are exactly two geodesics in ∂HG that non-trivially
intersect α̃e. Define Δe ⊂ A(Ae) to be the union of the images of these two geodesics
under the covering map H

2 → Ae. If e and e′ are edges of TG that are in the same
G0–orbit, then Δe = Δe′ because G0 preserves HG and Ae = Ae′ .

For each vertex t in TG, each geodesic arc γ̃ in Z̃t ⊂ Ỹt with endpoints in

∂αZ̃t = Z̃t∩p−1(α) projects to a geodesic path γ in Yt; see Figure 5. For each such
path γ, we consider the self-intersection number I(γ), which is the minimum number
of double points of self-intersection over all representatives of the homotopy class
rel endpoints (which is realized by the unique geodesic representative orthogonal to
the boundary). For each t, there are only finitely many homotopy classes of such
arcs, γ1, . . . , γr(t), and we set

Δt = {β ∈ AC(Yt) | i(β, γj) ≤ 2I(γj) for some j ∈ {1, . . . , r(t)}}.

Note that by taking a representative of γj with only double points of self-intersection
realizing I(γj), we can construct an arc βj in Yt from surgery on these self-
intersection points, and then pushing off, so that i(βj , γj) ≤ 2I(γj). In particu-
lar, Δt = ∅. Moreover, any β with i(β, γj) ≤ 2I(γj) also has i(β, βj) ≤ 2I(γj)
since βj is constructed from arcs of γj . Since distance is bounded by a function
of intersection number (see e.g. [MM99]), it follows that Δt has finite diameter in
AC(Yt). As with the edge decorations, if t and t′ are vertices in the same G0–orbit,
then Δt = Δt′ .

Z̃t

Ỹt

Yt

Figure 5. Left: The polygon Z̃t ⊂ HG (shaded) contained in Ỹt

and essential geodesics segments contained in it. Right: The image

of Z̃t and its arcs in Yt = Ỹt/Kt.
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Lemma 5.2 describes how these decorations behave under arbitrary elements of
G. Recall that φ : G → Z is the homomorphism so that fφ(g) = Φ∗(g) for any
g ∈ G.

Lemma 5.2. For any edge e or vertex t of TG and g ∈ G, we have

Δg(e) = fφ(g)(Δe) and Δg(t) = fφ(g)(Δt).

Proof. Observe that each g ∈ G maps each geodesic of ∂HG to a bi-infinite path
that is homotopic, rel the ideal endpoints, to a geodesic in ∂HG (since these are
completely determined by the components of p−1(α) that are intersected). Since g
descends to the lift of fφ(g) on each Ae = Ag(e), the first equation follows.

For the second equation, let γ̃ ⊂ Z̃t be any geodesic arc with endpoints in ∂αZ̃t

and γ the image path in Yt. Next, observe that g descends to the restriction of fφ(g)

to Yt = Yg(t), and so maps γ to a path fφ(g)(γ), which is homotopic to the image

of a geodesic in Z̃g(t). Therefore, the restriction of fφ(g) to Yt maps the finite set
of homotopy classes of paths defining Δt to those defining Δg(t), and hence sends
Δt to Δg(t). �

As a consequence, we have

Corollary 5.3. There exists a constant B0 > 0 so that

diam(Δe), diam(Δt) ≤ B0

for all vertices t and edges e of TG.

Proof. There are only finitely many G–orbits of edges and vertices in TG and for
any g ∈ G, fφ(g) acts by simplicial automorphisms on A(Ae) and AC(Yt) for every
edge e and vertex t. By Lemma 5.2, it follows that

diam(Δg(e)) = diam(fφ(g)(Δe)) = diam(Δe)

and
diam(Δg(t)) = diam(fφ(g)(Δt)) = diam(Δt).

Therefore, we can take B0 to be the maximum diameter of Δe and Δt taken over
a finite set of G–orbit representatives of edges e and vertices t. �

Since Δe = Δe′ and Δt = Δt′ for e, e′ or t, t′ in the same G0–orbit, these
decorations on edges and vertices descend to decorations on the edges and vertices
of σ0 = TG/G0. We denote these by Δε and Δτ for an edge ε or vertex τ of σ0.
Since f is isotopic to a lift of f to S0 preserving Σ0 and its spine σ0, the action
of G/G0

∼= 〈f〉 on σ0 = TG/G0 and Σ0 = HG/G0 also induces an action on the
decorations, satisfying the analogous formula to Lemma 5.2:

(1) Δfn(ε) = fn(Δε) and Δfn(τ) = fn(Δτ )

for every edge ε and vertex τ of σ0 and every n ∈ Z.

5.2. Projections. Given a multicurve v ⊂ C(S), Masur and Minsky defined a
projection of v to the arc and curve graph of subsurfaces and annular covers of S
[MM00]. We will describe these projection in the special cases of Ae and Yt.

For each vertex t ∈ TG, the multicurve v intersects Yt in a collection of disjoint
curves and arcs, producing a (possibly empty) simplex of AC(Yt). Let πt(v) ⊂
AC(Yt) be this simplex. We observe that πt(v) is precisely the set of essential arcs

and curves that are in the image of p−1(v) ∩ Ỹt under the covering map Ỹt → Yt
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(compare with the definition of Δt). Since Yt = Yt′ if t and t′ are in the same
G–orbit, we have πt(v) = πt′(v) in this case.

For an edge e ⊂ TG, we define πe(v) ⊂ A(Ae) to be the set of essential arcs in the
preimage of v under the covering map Ae → S. As in the case of πt, we note that
πe(v) is precisely the essential arcs in the image of p−1(v) under the covering map
H

2 → Ae (compare with the definition of Δe). Since v is a collection of disjoint
curves, πe(v) is a simplex of A(Ae). Recall, the core curve of Ae is (a lift of) one
of the curves αe in α. Thus, we have πe(v) = ∅ if and only if i(v, αe) = 0. Since
Ae = Ae′ when e and e′ are in the same G–orbit, we have πe(v) = πe′(v) for such
pairs of edges.

Since Ae and Yt are determined by the G–orbit of the edge or vertex, we can
define projection for vertices and edges of σ0 by

πε(v) = πe(v) and πτ (v) = πt(v),

where ε = p0(e) and τ = p0(t).
Given an edge e or vertex t of TG (or σ0), we let d(Δe, πe(v)) and d(Δt, πt(v))

denote the diameter of Δe ∪ πe(v) and Δt ∪ πt(v) in A(Ae) and AC(Yt), respec-
tively. Our proof of Proposition 4.3 hinges upon understanding for how many
vertices/edges in a row these diameters can be large along a path in TG.

For an edge ε ⊂ σ0 or vertex τ ∈ σ0 and B > 0, define:

E(v,B) = {ε ⊂ σ0 | ε is a twist edge of σ0, πε(v) = ∅, and d(Δε, πε(v)) ≤ B},
V(v,B) = {τ ∈ σ0 | τ is a pA vertex of σ0, πτ (v) = ∅, and d(Δτ , πτ (v)) ≤ B}.

We view these both as sets of edges and vertices, respectively, and as subgraphs of σ0

(defined by taking the union of the corresponding set of edges/vertices). Let V,E >
0 be the number of G–orbits of vertices and edges in TG, respectively. Equivalently,
V,E are the number of 〈f〉–orbits of vertices and edges in σ0, respectively.

Lemma 5.4. For any B > 0 there exists M > 0 so that the following hold for each
multicurve v ⊂ C(S):

(1) E(v,B) is a union of at most E sets of diameter at most M .
(2) V(v,B) is a union of at most V sets of diameter at most M .

Proof. Fix B ≥ 0 and a multicurve v ⊂ C(S). For part (1), it suffices to fix a twist
edge ε ⊂ σ0 and bound the diameter of the subset of E(v,B) consisting of edges in
the set 〈f〉 · ε by a constant Mε, independent of v.

For this, suppose πε(v) = ∅. Since the monodromy f fixes the annulus Aε, we
have πfn(ε)(v) = πε(v) for all n ∈ Z. Moreover, Lemma 5.2 says Δfn(ε) = fn(Δε).
Therefore

d(Δfn(ε), πfn(ε)(v)) = d(fn(Δε), πε(v))

for each n ∈ Z.
Since f acts loxodromically on A(Aε), the set of integers n for which fn(Δε) can

intersect the B–neighborhood of πε(v) is contained in an interval of integers Iε ⊂ Z

whose width, Wε, depends only on B and the loxodromic constants of the action
of f on A(Aε) (and in particular, it is independent of v). Thus we have

〈f〉 · ε ∩ E(v,B) ⊆
⋃
n∈Iε

f
n(ε).

The union on the right has diameter at most Wε times the distance in σ0 between
ε and f(ε) (or equivalently, the distance between fn(ε) and fn+1(ε), for any n ∈ Z).
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Thus, this bound also bounds the diameter of 〈f〉ε ∩ E(v,B). This implies part (1)
as we can take any M that is at least the maximum of such bound over all E orbit
representatives of edges

The proof for part (2) is nearly identical, choosing a pseudo-Anosov vertex and
using Yτ instead of Aε and the fact that f acts loxodromically on AC(Yτ ). �

The following is an immediate corollary of Lemma 5.4 plus the bound on the
valence of σ0 (or more directly from the proof).

Corollary 5.5. For each B ≥ 0 there exists N ≥ 0 so that for each multicurve
v ⊂ C(S), we have

|E(v,B)| ≤ N and |V(v,B)| ≤ N.

5.3. Parallel type subtrees proof. We now prove that the image under p0 of
any parallel subtree of TG ∩ Tu is uniformly bounded. The main fact we need is
that large vertex and edge projection can only occur along the leaves of the parallel
subtrees.

Lemma 5.6. There exists B1 ≥ 0 so that the following hold for each multicurve
u ⊂ Cs(Sz).

(1) Let � be an edge path of length 2 in TG∩Tu, t be the middle vertex of �, and
v = Φ(u). If each vertex of � is of parallel type, then d(Δt, πt(v)) ≤ B1.

(2) Let � be an edge path of length 3 in TG∩Tu, e be the middle edge of TG∩Tu,
and v = Φ(u). If each vertex of e is of parallel type, then d(Δe, πe(v)) ≤ B1.

Proof. First let � be path of length 2 in TG ∩ Tu. Let e1, e2 be the edges of � and t
be the middle vertex. Let α̃i be the geodesic of p−1(α) that is dual to the edge ei.
If each vertex of � is of parallel type, then Lemma 4.10 says there exist geodesics

δG ⊆ ∂HG and δu ⊆ ∂Hu that intersect α̃1 and α̃2, but do not intersect in Ỹt. Hence

there is a straight line homotopy relative ∂Ỹt of δG ∩ Ỹt to δu ∩ Ỹt. Since δu and

δG intersect the same components of ∂Ỹt, this straight line homotopy descends to a

homotopy relative ∂Yt of p(δG∩ Ỹt) to p(δu∩ Ỹt). In particular, p(δG∩ Ỹt) is an arc

on Yt that is equal to p(δu ∩ Ỹt) as an element of AC(Yt). Since p(δu ∩ Ỹt) ⊆ πt(v)

and p(δG ∩ Ỹt) ⊆ Δt, part (1) of the lemma now follows from Corollary 5.3 for any
B1 ≥ B0 + 1.

Now, let � be a path of length 3 in TG ∩ Tu. Let e1, e2, e3 be the edges of � and
α̃i be the geodesic of p−1(α) that is dual to the edge ei. If each vertex of � is of
parallel type, then Lemma 4.10 says there exist geodesics δG ⊆ ∂HG and δu ⊆ ∂Hu

that intersect each of α̃1, α̃2, and α̃3, but do not intersect each other between α̃1

and α̃3. Now, α̃1 and α̃3 determine a unique convex ideal rectangle R; see Figure
6. Let β1 and β2 be the other two sides of R.

We claim that for each non-identity element g ∈ Ke2 , we have g(R) ∩ R = ∅.
If this is true, then the rectangle R will embed onto the annulus Ae2 = H

2/Ke2 .
In particular, the images of δu and δG would be disjoint from the image of β1

in Ae2 . Since δG ⊆ ∂HG and δu ⊆ ∂Hu, these project to arcs in Δe2 ⊂ A(Ae2)
and πe2(v) ⊂ A(Ae2), respectively, which are distance at most 2 apart in A(Ae2).
Therefore,

d(Δe2 , πe2(v)) ≤ 2 +B0 + 1 = B0 + 3

by Corollary 5.3, and thus, setting B1 = B0 + 3 proves part (2) of the lemma.
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α̃1

α̃2

α̃3

δG

δu

β1

β2

Figure 6. The shaded rectangle R is the unique ideal rectangle
with sides α̃1 and α̃3

It therefore remains to prove that g(R) ∩ R = ∅ for each non-trivial g ∈ Ke2 .
First recall that Ke2 = Stabπ1S(α̃2) is a cyclic group generated by a hyperbolic
isometry of H2 with axis α̃2. Since α̃1 and α̃3 lie on different sides of α̃2, the only

way for g(R) ∩ R = ∅ is for g(̃αi) ∩ α̃i = ∅ for either i = 1 or i = 3 (or both).
However, no two geodesics in p−1(α) intersect because α is a collection of disjoint
simple closed curves, and every non-identity element of Ke2 takes every element
of p−1(α) − {α̃2} to a different element of p−1(α) − {α̃2}. Together these imply

that g(̃αi) ∩ α̃i = ∅ for i ∈ {1, 3} and g ∈ Ke2 not equal to the identity. Hence
g(R)∩R = ∅ for each non-trivial g ∈ Ke2 . This proves the claim above, and hence
Lemma 5.6. �

Combining Lemma 5.6 with Corollary 5.5 will produce the desired bound on the
images of the parallel subtrees.

Lemma 5.7. There exists D1 ≥ 0 so that for any multicurve u ⊂ C(Sz), if P is a
parallel subtree of TG ∩ Tu, then diam(p0(P )) ≤ D1.

Proof. Let N be the constant from Corollary 5.5 for B = B1. We claim that taking
D1 = 3N + 6 will suffice to prove the lemma.

Let τ = p0(t) and τ ′ = p0(t
′) be vertices of p0(P ). Let � be a geodesic path in

P from t to t′ and let γ be the path in σ0 that is the image of � under p0. Let
t = t0, . . . , tn = t′ be the vertices of � and let ei be the edge of � between ti−1 and
ti. Let v = Φ(u). By Lemma 5.6, we have

d(Δei , πei(v)) ≤ B1 and d(Δtj , πtj (v)) ≤ B1

for each i ∈ {2, . . . , n− 2} and j ∈ {1, . . . , n− 1}. Since

d(Δei , πei(v)) = d(Δp0(ei), πp0(ei)(v)) and d(Δtj , πtj (v)) = d(Δp0(tj), πp0(ti)(v)),

Corollary 5.5 implies that the path γ ⊂ σ0 contains at most N + 2 distinct twist
edges and at most N + 2 distinct pseudo-Anosov vertices. Lemma 5.1 implies that
every edge of γ is either a twist edge or has a pseudo-Anosov vertex as an endpoint.
Hence, γ is contained in

⋃
{N1(τ ) | τ a pA vertex of γ} ∪

⋃
{ε | ε a twist edge of γ}.
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Since the diameter of N1(τ ) is at most 2, and there are at most N+2 pseudo-Anosov
vertices and twist edges, we have

diam(γ) ≤ 2(N + 2) + (N + 2) = 3N + 6.

Since γ = p0(�) and � is an arbitrary path in P , this implies diam(p0(P )) ≤ 3N+6 =
D1 as desired. �

5.4. Hull type subtree proof. Recall that TH
u,G ⊂ Tu ∩TG is the hull subtree, as

defined in §4.2.2. In this subsection we prove the following.

Lemma 5.8. There exists D2 > 0 so that if u ⊂ Cs(Sz) is a simplex, then
diam(p0(T

H
u,G)) ≤ D2.

The first ingredient in the proof of Lemma 5.8 is the following.

Lemma 5.9. There exists a constant B2 ≥ B0 with the following property. For any
multicurve u ⊂ Cs(Sz), edge e ⊂ TH

u,G, and vertex t ∈ TH
u,G, we have the following.

(1) If d(Δe, πe(Φ(u))) > B2, then TH
u,G = e.

(2) If d(Δt, πt(Φ(u))) > B2, then t is a valence 1 vertex of TH
u,G.

Remark 5.10. Note that since B2 ≥ B0, it follows that d(Δe, πe(v)) > B2 implies
πe(v) = ∅ by Corollary 5.3. Similarly, if d(Δt, πt(v)) > B2 then πt(v) = ∅.

Proof. We start with the proof of part (2), which is more direct. For this, it suffices
to take any B2 ≥ B0. To see this, suppose u ⊂ Cs(Sz) is any multicurve, v = Φ(u),
and t ∈ TH

u,G is a vertex with valence at least 2. This means that Hu ∩ HG must

intersect two distinct components α̃e, α̃e′ ⊂ p−1(α), where e, e′ are adjacent to t.
Let γ̃ be a geodesic arc from α̃e to α̃e′ contained in Hu ∩ HG. Observe that γ̃ is
therefore disjoint from p−1(v), and hence the image, γ, in Yt is disjoint from the
intersection of v with Yt. But then, every arc and curve in πt(v) is disjoint from γ
which implies πt(v) ⊂ Δt. This means that d(Δt, πt(v)) ≤ diam(Δt) ≤ B0 ≤ B2.
Thus, any vertex of TH

u,G with d(Δt, πt(v)) > B2 must have valence 1, proving (2).

We now explain part (1). Fix an edge e ⊂ TG and let δ1, δ2 be the two geodesics
in ∂HG meeting the geodesic α̃e dual to e. The basic idea is that if d(Δe, πe(v)) is
large, then there must be many geodesics of p−1(v) that cross both δ1 and δ2 and
α̃e, so that for any u with Φ(u) = v, a component of Hu ∩ HG that meets α̃e is
trapped in a bounded region. We now proceed to the proof, and refer the reader
to Figure 7 to aid in the argument.

First observe that there are at most four edges e′ adjacent to e such that at
least one of δ1 or δ2 crosses the geodesic α̃e′ . Write α̃j

i ⊂ p−1(α) for the geodesics

corresponding to these edges so that δi non-trivially intersects α̃j
i for i, j = 1, 2.

Next, choose an n–sheeted covering pe : Ãe → Ae, for some n > 0, so that the

projection H
2 → Ãe is injective on the region bounded by δ1 and δ2 (which contains

HG) as well as on each α̃j
i for i, j = 1, 2. We denote the images of the δi and α̃j

i

in Ãe by the same name. We also use pe to denote the induced map between arc

graphs pe : A(Ãe) → A(Ae). The core curve of Ãe is an n–fold cover of the core
curve αe of Ae, and we denote it by αn

e . See Figure 7. Observe that the degree n
necessary to arrange that all of these things happen can be chosen to depend only
on the G–orbit of e, and since there are only finitely many G–orbits of edges in TG,
we can in fact assume that n is independent of e.
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δ1

δ2

α̃2
1

α̃2
2

α̃1
1

α̃1
2

Ãe

αn
e

Hu ∩ HG

ṽ1 ṽ2

Figure 7. A schematic of Ãe

Next, observe that for any arc γ ∈ A(Ãe), we have

i(pe(γ), pe(δi)) ≤ n (i(γ, δi) + 1)

for i = 1, 2. Since distances in arc graphs of annuli are given by intersection number
plus 1, it follows that

d(pe(γ), pe(δi)) ≤ n d(γ, δi) + 1,

for i = 1, 2. In particular, note that

d(πe(v),Δe) = d(πe(v), pe(δ1) ∪ pe(δ2))
≤ n d(p−1

e (πe(v)), δ1 ∪ δ2) + 1
≤ n (d(p−1

e (πe(v)), δi) + 1) + 1,

for each i = 1, 2, since d(δ1, δ2) = 1 in A(Ãe).
We set B2 ≥ max{B0, 10n+1}. Suppose u ⊂ Cs(Sz) is any multicurve for which

TH
u,G contains e, v = Φ(u), and d(πe(v),Δe) > B2. Since the diameter of p−1

e (πe(v))

is 1, it follows that for any ṽ ∈ p−1
e (πe(v)) and i = 1, 2, we have

d(ṽ, δi) ≥ d(p−1
e (πe(v)), δi)− 1.

Combining this with the inequalities above gives

d(ṽ, δi) ≥
1

n
(d(πe(v),Δe)− 1)− 2 >

1

n
(B2 − 1)− 2 ≥ 1

n
10n− 2 ≥ 8.

Thus, any ṽ ∈ p−1
e (πe(v)) intersects each of δ1 and δ2 in at least 7 points in Ãe.

Since ṽ and δi are geodesics in Ãe, the difference in the number of intersection
points on the two sides of the core geodesic αn

e is at most 1. It follows that there
are at least 3 points of intersection of ṽ with each of δ1 and δ2 on either side of αn

e .
We now see that for any ṽ ∈ p−1

e (πe(v)) there are arcs of intersection of ṽ in

Ãe with the region bounded by δ1 and δ2 that contains HG, on both sides of αn
e .

Moreover, there are such segments that meet δ1 and δ2 between the geodesics {α̃j
i}i,j

(since once ṽ meets α̃j
i it can intersect δi in at most one more point), and therefore,

each segment is contained in the image of the corresponding Zt, for t an endpoint
of e.

Since TH
u,G contains e, the projection of Hu ∩ HG to Ãe necessarily intersects

αn
e . It is therefore contained in the region between two of the segments of any ṽ

described above. In fact, it follows that there are ṽ1, ṽ2 ∈ p−1
e (πe(v)) such that

Hu ∩ HG is contained in the region bounded by these two geodesics together with
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δ1 and δ2; see Figure 7. This implies that TH
u,G = e, as required. This completes

the proof of (1), and hence Lemma 5.9. �
The second ingredient is the following bound on paths that are not contained in

the subsets E(v,B) and V(v,B) from §5.1. Recall that E denotes the number of
G/G0–orbits of edges in σ0.

Lemma 5.11. Let B2 be as in Lemma 5.9 and suppose u ⊂ Cs(Sz) is any multi-
curve, v = Φ(u), and γ ⊂ TH

u,G is an embedded edge path such that p0(γ) ⊂ σ0 is

disjoint from E(v,B2) ∪ V(v,B2). Then the length of γ is at most 2E + 2.

Proof. Suppose that the length of γ is greater than 2E + 2 and let γ0 ⊂ γ be the
subpath obtained by deleting the first and last edges. Note this path contains no
valence 1 vertices of TH

u,G, and consequently by Lemma 5.9, every vertex t of γ0 is

either an identity (non-pseudo-Anosov) vertex or has πt(v) = ∅. Since TH
u,G cannot

be a single edge, another application of Lemma 5.9 implies that for every edge e
of γ0, either e is a non-twist edge or πe(v) = ∅. In fact, we claim that something
stronger holds for edges.

Claim 5.12. For every edge e of γ0, πe(v) = ∅.
Proof. If e is a twist edge, then we have already noted that πe(v) = ∅, so it suffices
to assume e is a non-twist edge. In this case, at least one of its endpoints, call it t,
is a pseudo-Anosov vertex and hence πt(v) = ∅. Since v cannot intersect the core
curve αe ⊂ Ae without intersecting Yt, it follows that πe(v) = ∅. �

Since the length of γ0 is greater than 2E, there must be a pair of edges e0, e1
of γ0 so that e0 and e1—viewed as oriented edges, oriented by an orientation on
γ0—differ by an element g ∈ G. Without loss of generality, suppose e0 is the first of
these edges encountered along γ0. Recall (see §3.4) that we have embedded TG into
HG ⊂ H

2, G–equivariantly on the vertices. Using this, we let γ1 be the subsegment
of γ0 that begins with e0 and ends with e1. Let ν1 ⊂ γ1 be the subpath starting
from e0 ∩ α̃e0 and ending at e1 ∩ α̃e1 .

Claim 5.13. The path ν1 is homotopic, rel endpoints, in H
2 to a path ν′1 which is

disjoint from p−1(v).

Proof. Since πe(v) = ∅ for every edge e of γ0, it follows that p
−1(v) is disjoint from

α̃e for every such edge e. Let t ∈ ν1 be any vertex and let e, e′ ⊂ γ1 be the edges
for which t = e ∩ e′ with e appearing before e′. Let νt ⊂ ν1 be the subpath from
e∩ α̃e to e′∩ α̃e′ . Either we can homotope νt, rel endpoints, to a path disjoint from
p−1(v), or else some component of ṽ ⊂ p−1(v) separates α̃e from α̃e′ . The latter
situation cannot happen, however, because then Hu ∩HG would have to lie on one
side or the other of ṽ, contradicting the fact that e and e′ are in TH

u,G. We can
then combine the homotopies for each subpath νt associated to each vertex t of ν1,
producing the required homotopy for ν1. �

The rest of the proof splits into two cases.

Case 1. There is some vertex t in ν1 for which πt(v) = ∅.
Note that πt(v) = ∅ implies t is an identity vertex. If πt(v) contains a simple

closed curve, then denote it by w and note that it is a component of v. Otherwise,
πt(v) is a collection of arcs with endpoints on the boundary of Yt. In this case, let
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a be an arc of πt(v) and c ⊂ ∂Yt ⊂ α be the component(s) of ∂Yt containing the
endpoints of a. The boundary of a small neighborhood of a ∪ c contains either one
or two essential curves on Yt; see [MM00, §2]. Define w to be one of these curves.

In either case, by further homotopy if necessary, we may assume that ν′1 is disjoint
from p−1(w). This is obvious if w ⊂ v, while for the other case, we argue as follows.
Since πe(v) = ∅ for every edge e of γ0, no component of c is in p(α̃e) for any edge
e of γ0. Hence, p(ν′1) is disjoint from both c and the arc a, ensuring ν′1 is disjoint
from p−1(w).

Now, the element g ∈ G maps α̃e0 to α̃e1 . Let ν′′1 be the path obtained by
concatenating ν′1 with an arc of α̃e1 from the terminal endpoint of ν′1 to the g–
image of the initial endpoint. Since α̃e1 is disjoint from p−1(w), it follows that ν′′1
is disjoint from p−1(w). Now set

ν̃ =
⋃
n∈Z

gn(ν′′1 ),

which is a bi-infinite, g–invariant path. Furthermore, since w is a simple closed
curve contained in an identity complementary region, p−1(w) is invariant by g as
well. In particular, ν̃ is also disjoint from p−1(w). That is, ν̃ is contained in a
single component of H2

�p−1(w), and therefore, g is contained in the stabilizer of
this set. The closure of this component is Hu0

for some curve u0 with Φ(u0) = w,
and therefore g fixes u0, contradicting the fact that G is purely pseudo-Anosov.
This contradiction shows that Case 1 cannot happen.

Case 2. For every vertex t of ν1 we have πt(v) = ∅.

Under these assumptions, we note that v is disjoint from every complementary
subsurface Yj that p(ν1) intersects. In particular, there must be some curve αi ∈ α
that is disjoint from p(ν1). We can then build ν′′1 and ν̃ as we did above, but in
this case, the bi-infinite path ν̃ is disjoint from p−1(αi) instead of p−1(w). Since
p−1(αi) is invariant by g, we again find that ν̃ is contained in a set Hu0

where u0

is a curve with Φ(u0) = αi. As before, this implies g fixes u0, which is another
contradiction. Therefore, Case 2 cannot happen either. Since Cases 1 and 2 account
for all possibilities, we see that the assumption that γ had length greater than 2E+2
was impossible. �

Lemma 5.11 uniformly bounds the length of any subsegment of p0(T
H
u,G) that is

outside of the set E(v,B2) ∪ V(v,B2). Combining this with the fact that E(v,B2)
and V(v,B2) are finite collections of uniformly bounded diameter sets (Lemma 5.4),
we can produce a uniform bound of diam(p0(T

H
u,G)).

Proof of Lemma 5.8. Recall that E and V respectively denote the number ofG/G0–
orbits of edges and vertices in σ0. Let M > 0 be the constant from Lemma 5.4 for
B = B2 and set D2 = (E + V )(2M + 2E + 3).

Recall that E(v,B2)∪V(v,B2) ⊂ σ0 is a union of at most E+V sets of diameter
at most M by Lemma 5.4. If TH

u,G does not intersect any of these sets, then

Lemma 5.11 says diam(p0(T
H
u,G)) ≤ 2E+2 ≤ D2. Otherwise, let L ≤ E+V be the

number of these sets that non-trivially intersect p0(T
H
u,G), and let X1, . . . , XL be

these sets (whose diameters are thus at most M). According to Lemma 5.11, the
maximal length of an edge path in p0(T

H
u,G) outside the union of these sets is at most

2E+2. Therefore the maximum distance from any point of p0(T
H
u,G) toX1∪. . .∪XL



PSEUDO-ANOSOV SUBGROUPS OF FIBERED 3–MANIFOLDS 1171

is at most 2E + 3. The collection {NM+2E+3(Xj)}Lj=1 is then a connected cover of

p0(T
H
u,G), where each set has diameter at most 2M +2E+3. Thus, the diameter of

p0(T
H
u,G) is at most L(2M+2E+3) ≤ (E+V )(2M+2E+3) = D2, as required. �

5.5. Combining bounds. The proof of Proposition 4.3 is now straightforward.

Proposition 4.3. Given G < Γ finitely generated and purely pseudo-Anosov in
Mod(Sz), there exists D′ > 0 so that for any simplex u ⊂ C(Sz),

diam(p0(TG ∩ Tu)) ≤ D′,

where the diameter of p0(TG ∩ Tu) is computed in σ0.

Proof. Observe that Tu∩TG is a union of TH
u,G and some set of parallel type subtrees,

each of which is connected by an edge to TH
u,G. Therefore, by Lemmas 5.7 and 5.8,

the diameter of p0(Tu ∩ TG) is at most 2D1 +D2 + 2. �
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