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ON THE WEAK LEFSCHETZ PROPERTY FOR HEIGHT FOUR

EQUIGENERATED COMPLETE INTERSECTIONS

MATS BOIJ, JUAN MIGLIORE, ROSA M. MIRÓ-ROIG, AND UWE NAGEL

Abstract. We consider the conjecture that all artinian height 4 complete in-
tersections of forms of the same degree d have the Weak Lefschetz Property
(WLP). We translate this problem to one of studying the general hyperplane
section of a certain smooth curve in P

3, and our main tools are the Socle
Lemma of Huneke and Ulrich together with a careful liaison argument. Our

main results are (i) a proof that the property holds for d = 3, 4 and 5; (ii)
a partial result showing maximal rank in a non-trivial but incomplete range,
cutting in half the previous unknown range; and (iii) a proof that maximal
rank holds in a different range, even without assuming that all the generators
have the same degree. We furthermore conjecture that if there were to exist
any height 4 complete intersection generated by forms of the same degree and
failing WLP then there must exist one (not necessarily the same one) failing
by exactly one (in a sense that we make precise). Based on this conjecture we
outline an approach to proving WLP for all equigenerated complete intersec-
tions in four variables. Finally, we apply our results to the Jacobian ideal of a
smooth surface in P

3.

1. Introduction

Let A = R/I, where R = k[x1, . . . , xn] is the polynomial ring in n variables, k
is an algebraically closed field of characteristic zero and I is a homogeneous ideal
such that R/I is artinian. We say that A has the Weak Lefschetz Property (WLP)
if, for a general linear form L, the homomorphism ×L : [A]t → [A]t+1 has maximal
rank for all t.

When I = 〈F1, . . . , Fn〉 is a complete intersection, we know that for a general
choice of homogeneous polynomials F1, . . . , Fn, R/I has the WLP thanks to a result
of [23], [24] and [21]. When n = 4 and the Fi are general, even the codimension
of the set of linear forms failing maximal rank is known [3]. In [12], it was shown
that when n = 3, every complete intersection R/(F1, F2, F3) has the WLP, and
previously it was known for n = 2. It has been asked and conjectured by many
authors whether every complete intersection has the WLP (and also whether every
complete intersection has the related Strong Lefschetz Property, which we do not
consider here). The first occurrence that we could find of this conjecture is in [21]
from 1991.
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In four or more variables very little is known beyond the results mentioned
above. In this paper we consider the case of four variables. For most of this paper
we specialize to the situation where all generators have the same degree, d, although
our last result is for arbitrary degrees. As an application, we look at the special
case where I is the Jacobian ideal of a smooth surface of degree d+ 1 in P

3.
We begin by translating the problem to a much more geometric setting. If

I = 〈F1, F2, F3, F4〉, where the generators have degree d, we say that I is a complete
intersection of type (d, d, d, d). Choose two general 2-dimensional subspaces of the
4-dimensional subspace spanned by these generators. These define two disjoint
smooth complete intersection curves C1, C2 in P

3, and we show that the Hartshorne-
Rao module of C = C1 ∪ C2 is exactly A, viewed now as an R-module. Most of
the paper focuses on the intersection, Z, of C with a general hyperplane H. In the
coordinate ring S of H let IZ be the homogeneous ideal of Z and let B = S/IZ .
Let B be a general artinian reduction of B. We find a Hilbert function for Z that is
equivalent to the possession of the WLP for A, and indeed the set of possible Hilbert
functions of Z, if A were to fail to have WLP, is at the heart of our approach.

An important tool that we will use to analyze the Lefschetz behavior of A is
the beautiful Socle Lemma of Huneke and Ulrich [15]. In Section 2 we give the
following translation of the Socle Lemma (following the approach of Huneke and
Ulrich in their paper): the socle of B starts no later than the least degree of a form
vanishing on Z that does not lift to C. This is crucial to our work.

Another important tool is the fact that the general hyperplane section of a
reduced, irreducible curve (in our case C1 and C2 separately) has the Uniform
Position Property (UPP) ([13] and [14]). Even though Z does not have UPP (it is
just the union of two sets, Z = Z1 ∪Z2, of the same size such that each has UPP),
we show that the Hilbert function of Z is of decreasing type in Proposition 4.8.

Our first main result, Theorem 4.9, gives a new range where maximal rank must
hold: multiplication by a general linear form is injective from degree t−1 to degree
t for all t < � 3d+1

2 � (with a corresponding statement for surjectivity, thanks to

duality). We note that when I is the Jacobian ideal of a smooth surface in P
3,

Ilardi proved injectivity for t ≤ d. Alzati and Re subsequently proved the same
result without assuming that I is a Jacobian ideal. On the other hand, the full
WLP result is equivalent to injectivity for t = 2d − 2. Thus our result essentially
cuts in half the range that was open.

Our next results prove that WLP holds for d = 3 (Proposition 5.2), d = 4
(Theorem 5.3) and d = 5 (Corollary 5.4), all of which are new. It was already
shown in [20] that WLP holds when d = 2, and beyond d = 5 the number of
possible cases grows too large to handle in a reasonable way. The case d = 3
follows immediately from Theorem 4.9. The cases d = 4, 5, on the other hand,
are proved using a new approach involving a careful series of links applied to the
hyperplane section Z, which we view simultaneously as a series of links starting
with Z1 together with a series of links starting with Z2.

The links that we use are very balanced, treating Z1 and Z2 in exactly the same
way, in order to utilize symmetry. In fact, we use two “parallel” sequences of linked
schemes Z1 = Y0,1, Y1,1, . . . and Z2 = Y0,2, Y1,2, . . . such that, for each i, the fact
that Z1 and Z2 are indistinguishable both geometrically and numerically is also
true for Yi,1 from Yi,2. We refer to this idea as the Symmetry Principle (see (6.2)),
and it is the key to our conclusions involving the links.



1256 M. BOIJ ET AL.

In Section 6 we outline an approach to prove that every complete intersection of
type (d, d, d, d) has the WLP, for d ≥ 6. It extends the arguments we used to prove
the cases d = 4 and d = 5. There are two steps missing to prove the full result,
which we highlight as Conjectures 6.1 and 6.5. The idea is to make very careful
calculations involving the minimal free resolutions and the h-vectors of all the sets
in the series of links and show how it should be possible to reach a contradiction of
the Symmetry Principle, thus showing that WLP holds. We have not been able to
prove these conjectures for the general case, but we were able to get around them
for the cases d = 4, 5.

In Section 7.1, we apply our results to the case of Jacobian ideals of smooth
surfaces in P

3. In addition to the observations made above, we observe that every
smooth hypersurface in P

3 of degree 3, 4, 5 or 6 has a Jacobian ideal that has
the WLP, improving the known range. Finally, in Section 7.2, we use completely
different methods to prove an injectivity result for arbitrary complete intersections,
removing the assumption that all generators have the same degree. More precisely,
if the generator degrees of I are d1, d2, d3, d4 then we set d1+d2+d3+d4 = 3λ+ r,
0 ≤ r ≤ 2, and prove that the multiplication by a general linear form is injective
for t < λ. The restriction to the case d1 = · · · = d4 = d is not as strong as the
result in Theorem 4.9, but it is still stronger than the Alzati-Re result and in any
case it omits the restriction that the ideal is equigenerated.

2. Some tools for height four complete intersections

Assume from now on that R = k[x1, x2, x3, x4] is the polynomial ring in four
variables where k is an algebraically closed field of characteristic zero, and I =
〈F1, F2, F3, F4〉 ⊂ R is a homogeneous complete intersection, with degFi = d for
i = 1, 2, 3, 4 (except for Proposition 7.5). If L is a general linear form, it defines
a hyperplane H. Let S = R/〈L〉 ∼= k[x, y, z] be the coordinate ring of H. If L′ is
another general linear form and Z is a zero-dimensional subscheme of H then we
set T = S/〈L′〉 ∼= k[x, y] and we recall that an artinian reduction of S/IZ has the
same graded Betti numbers over T as S/IZ has over S.

Let I1 = 〈F1, F2〉 and I2 = 〈F3, F4〉 and let C be the curve defined by the ideal
IC = I1 ∩ I2. We make the following observations about C.

Lemma 2.1.

(a) IC is saturated and C = C1 ∪ C2 in P
3 = Proj(R), where C1 and C2 are

the disjoint complete intersections defined by I1 and I2 respectively.
(b) IC = I1 · I2.
(c) The minimal free resolution of IC is obtained as the tensor product of the

Koszul resolutions of I1 and I2. Hence in particular, the Hilbert function
of C is completely determined.

(d) For the Hartshorne-Rao module M(C) =
⊕

t∈Z
H1(IC(t)) we have

M(C) ∼= A = R/〈F1, F2, F3, F4〉.

In particular, the minimal free resolution of M(C) is given by the Koszul
resolution.

Proof. It is clear that IC is saturated. The curves are disjoint since I is artinian.
This proves (a). Part (b) follows from [22, Corollaire, page 143], since C1 and C2
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are ACM curves in P
3. Part (c) is [18, Corollaire 7.6]. For (d), from the exact

sequence

0 → IC → I1 ⊕ I2 → I1 + I2 → 0,

sheafifying and taking cohomology, we obtain the Hartshorne-Rao module as
claimed. Note that the sheafification of I1 + I2 is OP3 since C1 and C2 are dis-
joint, and that I1 + I2 = I. �

Remark 2.2. By successive use of Bertini’s theorem (see for instance [17]) we can
assume that all the Fi are smooth, and that both C1 and C2 are smooth and
irreducible.

Let L be a general linear form and let H be the hyperplane defined by L. Let Z
be the zero-dimensional scheme cut out on C by H. As a subscheme in P

3, Z has
a homogeneous ideal that we will denote by IZ , and as a subscheme of H it has a
homogeneous ideal IZ|H . Consider the exact sequence of sheaves

0 → IC(t− 1)
×L−→ IC(t) → IZ|H(t) → 0

which yields the long exact sequence

(2.1) 0 → [IC ]t−1
×L−→ [IC ]t → [IZ|H ]t → [A]t−1

×L−→ [A]t → H1(IZ|H(t))

→ H2(IC(t− 1)) → H2(IC(t)) → 0.

Since the Hilbert function of C is determined, the question of whether A has the
WLP depends completely on understanding the Hilbert function of IZ|H .

We will make use of the following observation.

Lemma 2.3. For t < 2d, the map ×L : [A]t−1 → [A]t is injective if and only if
[IZ|H ]t = 0. In particular, A has the WLP if and only if [IZ|H ]2d−2 = 0.

Proof. We note the following facts:

(i) for t < 2d we have dim[IC ]t = 0 (Lemma 2.1(c)).
(ii) R/I has no socle until the last non-zero degree (it is a complete intersection)

and is self-dual as a graded module, so to prove that R/I has the WLP
it is enough to prove injectivity of [A]2d−3 → [A]2d−2 (see for instance
[19, Proposition 2.1]).

Then the result follows from the above exact sequence, setting t = 2d− 2. �

We now recall some notation and results from [15], which we state in our setting.

Definition 2.4. Let M be a finitely generated graded R-module. We set

a−(M) = min{i| [M ]i �= 0}.

Lemma 2.5 ([15, Socle Lemma]). Let M be a non-zero finitely generated graded
R-module. Let L ∈ [R]1 be a general linear form and let

0 → K → M(−1)
×L−→ M → D → 0

be exact. If K �= 0 then a−(K) > a−(soc(D)).



1258 M. BOIJ ET AL.

Remark 2.6. Assume the following: S = k[x, y, z], Z is a zero-dimensional sub-
scheme of P2 = H with homogeneous ideal IZ ⊂ S, B = S/IZ , B̄ is an artinian
reduction of B by a linear form, and

0 →
b2⊕
i=1

S(−n2,i) →
b1⊕
i=1

S(−n1,i) → S → B → 0

is the minimal free resolution. In [15] it is also pointed out that then

soc(H1
∗(IZ)) =

b2⊕
i=1

k(−n2,i + 3) = soc(B̄)(1).

Still following the work of [15], let M = A = R/I and let C be as above. From
(2.1) we see that soc(D) ⊂ soc(H1

∗ (IZ|H)). We thus obtain

a−(K) > a−(soc(D)) ≥ a−(soc(H
1
∗(IZ|H))) ≥ a−(soc(B̄))− 1;

that is

(2.2) a−(K) ≥ a−(soc(B̄)).

Remark 2.7. Notice that K represents the forms in IZ|H that do not lift to IC .
Thus one way of phrasing the result of the Socle Lemma, which we will use, is that

the socle of B̄ starts no later than the least degree of a form van-
ishing on Z that does not lift to C.

Since the latter degree can sometimes be read from the Hilbert function of B̄, this
can be used to force socle elements in B̄.

For a finite (reduced) set of points Z in projective space P
n, the first difference

of the Hilbert function is a finite sequence of positive integers, also known as the
h-vector of Z. When Z is the general hyperplane section of a reduced, irreducible
curve C, it was shown by Harris (cf. [13], [14]) that Z has the so-called uniform
position property (UPP); that is, any two subsets of Z of the same cardinality have
the same Hilbert function. If the irreducible curve C lies in P

3, we may view its
general hyperplane section Z as lying in a plane P

2. Harris notes that in this case
UPP implies that the h-vector of Z is of decreasing type, meaning that once the
values experience a strict decrease, they are strictly decreasing until they reach
zero.

The following useful result of Davis [8] should be viewed as an extension of this
result. Recall that the regularity or Castelnuovo-Mumford regularity of Z agrees
with the top degree of the h-vector of Z.

Theorem 2.8 (Davis [8]). Let {hi | 0 ≤ i ≤ k} be the h-vector of a reduced zero-
dimensional subscheme Z in P

2. Suppose that ht−1 = ht > 0 for some t ≤ k.
Then

(1) The elements of the homogeneous components [IZ ]t−1 and [IZ ]t all have a
common factor, F , of degree equal to ht, which thus is a common factor for
all components in degree < t− 1 as well.

(2) F is reduced.
(3) Let Z1 be the subset of Z consisting of all the points lying on the curve F .

Then Z1 has h-vector {gi | 0 ≤ i ≤ k} where

gi = min{hi, ht}.
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In particular, the regularity of Z1 is the same as that of Z.
(4) Let Z2 be the subset of Z consisting of all points of Z that do not lie on F .

Then the h-vector of Z2 is {fi | 0 ≤ i ≤ m} where

m = (t− 2)− ht,
fi = hht+i − ght+i.

Example 2.9. Suppose that Z has h-vector (1, 2, 3, 4, 5, 6, 7, 8, 5, 3, 3, 2, 1). Then
t = 10, ht = 3, and we compute the h-vectors of Z1 and Z2 as follows (note that
the h-vector for Z2 displayed below is shifted by 3).

Z 1 2 3 4 5 6 7 8 5 3 3 2 1
Z1 1 2 3 3 3 3 3 3 3 3 3 2 1
Z2 1 2 3 4 5 2

In particular, Z contains a subset, Z1, of 33 points on a reduced cubic curve and a
subset, Z2, of 17 points that do not lie on the cubic.

3. Measuring failure of WLP

Notation 3.1. Let d ≥ 2 be an integer. We denote by CI(d, d, d, d) the space of
ideals in R = k[x1, x2, x3, x4] generated by a regular sequence of four forms of degree
d. We view CI(d, d, d, d) as a dense open subset of the Grassmannian Gr(4, N),

where N =
(
d+3
3

)
.

Let I ∈ CI(d, d, d, d). Let A = R/I and let hA be the Hilbert function of A. We
note that the socle degree of A (the last degree in which hA is non-zero) is 4d− 4,
that hA is symmetric, and that the maximum value of hA occurs exactly in degree
2d− 2. Also, A is self-dual (after a twist).

Remark 3.2. We will use Hilbert functions to measure the failure of A to satisfy
the WLP. Note first that all I ∈ CI(d, d, d, d) give rise to algebras with the same
Hilbert function, since their Betti diagrams come from the Koszul sequence and so
are identical. Furthermore, since 4d−4 is even and all the generators have the same
degree d, the Hilbert function in degree 2d − 2 is strictly greater than the Hilbert
function in any other degree.

Remark 3.3. Since A = R/I is, in particular, a Gorenstein algebra, it is self-
dual as a graded module, and as noted above its last non-zero component is in
degree 4d − 4. Hence for any L ∈ [R]1 and any i ≥ 0, by duality the rank of
the homomorphism ×L : [A]2d−3−i → [A]2d−2−i is the same as the rank of the
corresponding homomorphism from degree 2d− 2 + i to degree 2d− 1 + i.

Lemma 3.4 shows that in order to check whether A = R/I has the WLP, it is
enough to check surjectivity in just one degree (and injectivity for the first half
follows automatically).

Lemma 3.4. A has the WLP if and only if ×L : [A]2d−2 → [A]2d−1 is surjective.

Proof. Since the peak of the Hilbert function occurs in degree 2d− 2, one direction
is trivial. The reverse implication follows from the exact sequence

· · · → [A]t−1
×L−→ [A]t → [A/(L)]t → 0

and the fact that once the cokernel is zero in one degree, it is zero in all subsequent
degrees. �
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Next we show that if A fails to be surjective by the smallest amount possible
in the degree mentioned in Lemma 3.4 then it must actually be surjective in all
subsequent degrees (and by duality, injectivity only fails in one degree in the first
half, and it is by the smallest possible amount).

Lemma 3.5. If ×L : [A]2d−2 → [A]2d−1 has a one-dimensional cokernel then, in
all subsequent degrees, ×L is surjective. Consequently, failure of injectivity in the
first half is also by the smallest amount possible.

Proof. Looking at the Hilbert function of the cokernel of ×L : A(−1) → A, namely
A/(L), we have assumed that hA/(L)(2d − 1) = 1. Then Macaulay’s theorem
[7, Theorem 4.2.10 (c)] gives that hA/(L)(t) ≤ 1 for all t ≥ 2d. If hA/(L)(2d) = 1
then this is maximal growth from degree 2d− 1 to degree 2d.

We claim that this prevents I from being artinian in degree 2d. Indeed, the
fact that A/(L) has Hilbert function with maximal growth from degree 2d − 1
to degree 2d forces the ideal (I, L) to have no minimal generator in degree 2d,
since otherwise removing such a generator gives an ideal J whose Hilbert function
exceeds Macaulay’s bound. Let J be the ideal generated by (I, L)≤2d. Then by
the Gotzmann Persistence Theorem [7, Theorem 4.3.3], the value of the Hilbert
function of R/J in all degrees ≥ 2d− 1 remains 1, so in degrees ≥ 2d− 1, J is the
saturated ideal of a single point, hence not artinian. Thus also (I, L) fails to be
artinian in degrees 2d − 1 and 2d, and so in particular it is not artinian in degree
2d. The second part follows by duality. �

This motivates Definition 3.6.

Definition 3.6. Let I ∈ CI(d, d, d, d) and let L be a general linear form.

• We say that A fails WLP by one if ×L : [A]2d−2 → [A]2d−1 has a one-
dimensional cokernel.

• We say that A fails WLP by more than one if ×L : [A]2d−2 → [A]2d−1 has
a cokernel that is more than one-dimensional.

Remark 3.7. These properties can be read immediately from the Hilbert function
of A/(L):

• if hA/(L)(2d− 1) = 0 then A has WLP.
• If hA/(L)(2d− 1) = 1 then A fails WLP by one.
• If hA/(L)(2d− 1) ≥ 2 then A fails by more than one.

We do not yet know that for all I ∈ CI(d, d, d, d), A has the WLP. Nevertheless,
for fixed I there is an open subset of linear forms for which the cokernel of ×L has
the smallest Hilbert function in degree 2d− 1 among all L ∈ (P3)∗.

Lemma 3.8. Fix I ∈ CI(d, d, d, d). Let

m = min
L∈[R]1

{hA/(L)(2d− 1)}.

(Note m = 0 if and only if A has the WLP.) Let

UI = {L ∈ (P3)∗ | hA/(L)(2d− 1) = m}.

Then UI is open in (P3)∗.
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Proof. Fix a basis for [A]2d−2 and one for [A]2d−1, and say the two dimensions are
s1 and s2. Then for a linear form L = a1x1+a2x2+a3x3+a4x4, the multiplication

×L : [A]2d−2 → [A]2d−1

can be represented by an s2 × s1 matrix M of linear forms in the dual variables
a1, a2, a3, a4. The maximal minors of M may or may not all be zero. Let s be
the largest integer for which there is an s × s minor of M that is not identically
zero. The vanishing locus of the ideal generated by the s× s minors gives a closed
subscheme of (P3)∗, and the open complement represents the linear forms giving
multiplication of maximum possible rank, i.e. UI . �

Remark 3.9. Given I ∈ CI(d, d, d, d) and L ∈ [R]1, there are two reasons why
×L : [A]2d−2 → [A]2d−1 can fail to have maximal rank. One is that A might fail
to have the WLP. The other is that A does have the WLP but L is not general
enough.

Definition 3.10. We will say that L is general for I (or for A) if L ∈ UI .

4. Computations on the hyperplane section of C

We maintain the notation from Section 2, and we first note some useful facts:

• dim[IC ]t = 0 for t ≤ 2d− 1.
• dim[IC ]2d = 4.
• h2(IC(t)) = 0 for t ≥ 2d − 3 (from the Koszul resolution for ICi

and the
fact that

H2(IC(t)) ∼= H1(OC(t)) ∼= H1(OC1
(t))⊕H1(OC2

(t)) ∼= H2(IC1
(t))⊕H2(IC2

(t))

since C is a disjoint union).

Notation 4.1. Since C is a curve in P
3, and a hyperplane H is a plane, the ideal

of the hyperplane section IZ|H can be viewed as the homogeneous ideal of a finite

set of points in P
2. As already mentioned, we denote the coordinate ring of H by

S ∼= k[x, y, z], and since there is no chance of confusion, we will denote the ideal of
Z as IZ instead of IZ|H .

In the work so far we used the notation B = S/IZ , and B for the general artinian
reduction of B, consistent with [15]. However, now the geometry of Z will play a
greater role, so while we continue to use B for the coordinate ring of Z, we will use
the more suggestive notation hZ for the Hilbert function.

We first describe the Hilbert function of B = S/IZ under the assumption that
A = R/〈F1, F2, F3, F4〉 has the WLP; we shall call this the expected Hilbert function
for B.

Lemma 4.2. The algebra A has the WLP if and only if the expected h-vector of
B = S/IZ , which is the first difference of the expected Hilbert function of B, is
generic, namely it is

degree 0 1 2 . . . 2d− 3 2d− 2 2d− 1 2d
ΔhZ 1 2 3 . . . 2d− 2 2d− 1 d 0.

Proof. Notice that the sum of the entries of the claimed h-vector is 2d2 = degC, as
required. Observe that the socle degree of A is 4d− 4, so hA is strictly increasing
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until degree 4d−4
2 = 2d − 2, and then it is strictly decreasing. Recall also that

IC = I1 · I2.
Now consider the long exact sequence (2.1) and set t = 2d− 2. We know that A

has the WLP if and only if ×L : [A]2d−3 → [A]2d−2 is injective. Since [IC ]2d−2 = 0,
we get that A has the WLP if and only if [IZ ]2d−2 = 0. Furthermore, from the
Koszul resolution we see from an easy computation that

dim[A]2d−2 − dim[A]2d−3 = d.

Hence (by duality and looking at surjectivity) A has the WLP if and only if
dimker(×L) = d from degree 2d − 2 to degree 2d − 1. Then again from (2.1)
we get that A has the WLP if and only if dim[IZ ]2d−1 = d, which (after a trivial
calculation) completes the proof. �

Whether or not A has the WLP, the first difference of the Hilbert function of
Z has a nice “see-saw” behavior, in that if ΔhZ falls below the predicted value
by a fixed amount in a given degree before degree 2d − 1, then it is above the
predicted value (0) by the same amount in the corresponding degree after 2d − 1.
In particular, the value in degree 2d− 1 is d regardless of the extent to which WLP
fails to hold.

Lemma 4.3. Whether or not A has the WLP, suppose that ΔhZ(2d − 1 − m) =
2d−m− c. Then ΔhZ(2d− 1 +m) = c. That is, for 0 ≤ m ≤ 2d− 1, we have

ΔhZ(2d− 1−m) + ΔhZ(2d− 1 +m) = 2d−m.

In particular, ΔhZ(2d− 1) = d.

Proof. We have IC = IC1
∩IC2

= 〈F1, F2〉∩〈F3, F4〉. Since 〈F1F3, F2F4〉 is a regular
sequence, it links C to the curve D with ID = 〈F1, F4〉 ∩ 〈F2, F3〉, which is again a
union of two complete intersections of the same degree, with the same Hartshorne-
Rao module M(D) = R/〈F1, F2, F3, F4〉 (note that this module is self-dual up to
twist). For a general hyperplane H, the set of points Z cut out on C is linked on
H to the set of points Y cut out on D by a complete intersection of type (2d, 2d),
and clearly Z and Y have the same Hilbert function since C and D have the same
Hilbert function and the same Hartshorne-Rao module. The assertion of the lemma
then comes immediately from the formula for the behavior of the Hilbert function
under linkage (see [9, Theorem 3]). �
Lemma 4.4. The complete intersection A fails WLP by one if and only if the first
difference of the Hilbert function of k[x, y, z]/IZ is

degree 0 1 2 . . . 2d− 3 2d− 2 2d− 1 2d
ΔhZ 1 2 3 . . . 2d− 2 2d− 2 d 1

Proof. It follows immediately from the arguments in Lemma 3.5, Lemma 4.2, to-
gether with the exact sequence (2.1). �

Following Lemma 2.5, let K be the kernel of the multiplication A(−1)
×L−→ A.

Recall that for a graded module M we defined a−(M) to be the degree of the first
non-zero component of M .

Corollary 4.5. For t < 2d we have

dim[K]t − dim[K]t−1 = t+ 1−ΔhZ(t).

In particular, a−(K) = min{t | ΔhZ(t) < t+ 1}.
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Proof. For any fixed t, consider the long exact sequence (2.1). We know that [IC ]t =
0 for t < 2d. On the other hand, Lemma 4.3 guarantees that ΔhZ(2d− 1) < 2d, so
in the range 0 ≤ t ≤ 2d− 1 we have dim[K]t = dim[IZ ]t. Hence in this range

dim[K]t − dim[K]t−1 = dim[IZ ]t − dim[IZ ]t−1 = t+ 1−ΔhZ(t)

as claimed. �

Example 4.6. Suppose d = 6. Then the Hilbert function of R/I = M(C) is given
by the following table:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 4 10 20 35 56 80 104 125 140 146 140 125 104 80 56 35 20 10 4 1

For a general choice of I, we know from Lemma 4.2 that B = k[x, y, z]/IZ has
h-vector (i.e. first difference of the Hilbert function) equal to

(4.1)
degree 0 1 2 3 4 5 6 7 8 9 10 11 12
ΔhZ 1 2 3 4 5 6 7 8 9 10 11 6 0

if the WLP holds. Suppose that the multiplication on A from degree 7 to degree 8
fails to be injective. Then the maps from degree 8 to degree 9 and from degree 9 to
degree 10 also fail to be injective, and the kernels are isomorphic to the components
of IZ in degrees 8, 9 and 10 respectively. Lemmas 4.2–4.4 allow the following h-
vector for k[x, y, z]/IZ :

(4.2)
degree 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ΔhZ 1 2 3 4 5 6 7 8 7 7 6 6 5 3 2

but not the following one:

degree 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ΔhZ 1 2 3 4 5 6 7 8 7 7 6 6 5 4 1

Two methods will play an important role in our proofs: the symmetry principle (see
(6.2) and the Cayley-Bacharach theorem. To illustrate them suppose that (4.2) were
to occur. By Davis’ theorem (Theorem 2.8), Z contains a subset of 71 points on a
curve F of degree 7, and one point, P , not lying on F . But C1 and C2 are smooth
curves of degree 36, whose ideals were chosen as general 2-dimensional subspaces of
the 4-dimensional space of sextics spanned by F1, F2, F3, F4. Let Z1 and Z2 be the
hyperplane sections of C1 and C2, respectively, with the general plane H. Both Z1

and Z2 have the uniform position property (UPP). By symmetry (since I1 and I2
are chosen generally, so are indistinguishable), there cannot be one distinguished
point of this sort, since P would have to lie on either Z1 or Z2. Furthermore, to
illustrate another of our tools, any curve of degree 7 containing all but one point of
Z1 (resp. Z2) must contain all of Z1 (resp. Z2) by the Cayley-Bacharach property
of complete intersections.

Lemma 4.7. An h-vector of the form

degree 0 1 2 3 . . . t− 1 t t+ 1 . . .
ΔhZ 1 2 3 4 . . . t t a . . .

does not occur for the coordinate ring, B, of a general hyperplane section Z of C,
for a = t or t− 1.
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Proof. We maintain the notation of Lemma 2.5, Remark 2.6 and Remark 2.7. We
see from the h-vector that the kernel K begins in degree t (Corollary 4.5). We thus
know from (2.2) (or from Remark 2.7) that B̄ has socle in degree t−1 or t. Since IZ
has only one minimal generator F of degree ≤ t, B̄ coincides with the hypersurface
ring of F in degrees ≤ t, and the socle degree of B̄ must be t.

Suppose that a = t. Then in fact B̄ is a hypersurface ring (the corresponding
ideal has only one generator) in degrees ≤ t + 1, so we have a contradiction with
the socle in degree t− 1 or t.

Suppose that a = t − 1. Then IZ has one minimal generator F in degree t and
one minimal generator G in degree t+1. Call F̄ and Ḡ the corresponding elements
in the artinian reduction.

We first claim that these two generators have a syzygy of the form QF +LG = 0
with degQ = 2 and degL = 1. Indeed, since there is a socle element in degree t,
the minimal free resolution of IZ has a term R(−t − 2), which represents syzygies
of all generators of degrees ≤ t+ 1, of which there are only F and G.

Thus F and G have a common factor of degree t− 1 = a. By Davis’ theorem, Z
has a subset Z ′ with h-vector

degree 0 1 2 3 . . . t− 2 t− 1 t t+ 1 . . .
ΔhZ 1 2 3 4 . . . t− 1 t− 1 t− 1 t− 1 . . .

where the rest of the h-vector agrees with that of B. Thus there are two points
of Z not lying on the curve defined by this common factor. As in Example 4.6,
by symmetry, one point comes from Z1 and one comes from Z2. By assumption
and Lemma 4.3, we must have t + 1 < 2d− 1, so t− 1 < 2d− 3. But then by the
Cayley-Bacharach theorem, any curve of degree t− 1 containing all but one of the
points of the complete intersection Z1 contains all of Z1, giving a contradiction. �

Even though it is not true that Z has the UPP (see page 1258), it is still true
that the Hilbert function of Z has the decreasing type property:

Proposition 4.8. The h-vector of the general hyperplane section of C is of de-
creasing type.

Proof. Suppose that the h-vector is not of decreasing type. By definition, this
means that for some s and t we have

0 < s = ΔhZ(t− 1) = ΔhZ(t) < t.

From Lemma 4.3, a calculation gives that we must have t ≤ 2d− 1. Indeed, recall
that ΔhZ is itself an O-sequence, and if t ≥ 2d then Lemma 4.3 forces a growth
of the Hilbert function ΔhZ in degree ≤ 2d − 2 that exceeds Macaulay’s bound.
Hence s ≥ d, again by Lemma 4.3. By Theorem 2.8, Z contains a subset Z ′ lying
on a curve D of degree s and having h-vector

degree 0 1 2 3 . . . s− 2 s− 1 s . . . t− 1 t t+ 1 . . .
ΔhZ′ 1 2 3 4 . . . s− 1 s s . . . s s ht+1 . . .

We will first bound above the number of points of Z that lie off D, thus bounding
below the number of points of Z ′. By the assumption that the h-vector is not of
decreasing type, the number of points off D is not zero. At least half of these must
be points of either Z1 or Z2 (and in fact by symmetry it must be exactly half).
Without loss of generality, say it is Z1. Since C1 is a smooth irreducible curve, Z1
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satisfies the UPP. We will use this fact to get a contradiction. We will use the fact
that the h-vector of Z1 is

degree 0 1 2 3 . . . d− 2 d− 1 d . . . 2d− 3 2d− 2 . . .
ΔhZ1

1 2 3 4 . . . d− 1 d d− 1 . . . 2 1

Case 1. If t = 2d − 1 then s = d by Lemma 4.3. Then the number of points of Z
not lying on D is at most

1 + 2 + · · ·+ (d− 2) =

(
d− 1

2

)
,

so the number of points of Z on D is at least 2d2 −
(
d−1
2

)
. Hence Z1 contains at

least d2 − 1
2

(
d−1
2

)
points on D. On the other hand, the sum of the entries of the

h-vector of Z1 through degree s = d = degD is

1 + 2 + 3 + · · ·+ d+ (d− 1) =

(
d+ 1

2

)
+ (d− 1) ≤ d2 − 1

2

(
d− 1

2

)
as long as d ≥ 2. Since Z1 has the UPP, this means that any curve of degree d
containing at least d2− 1

2

(
d−1
2

)
points of Z1 must contain all of Z1. This contradicts

the fact that some points of Z, hence of Z1, do not lie on D.

Case 2. If t ≤ 2d− 2 then the number of points of Z not lying on D is at most

1 + 2 + 3 + · · ·+ (t− 1− s) =

(
t− s

2

)

(since the value of the h-vector of Z is greater than s at most up to degree t − 2,
and the value there is at most t− 1). Hence the number of points of Z that do lie
on D is at least 2d2 −

(
t−s
2

)
, so Z1 contains at least d2 − 1

2

(
t−s
2

)
points on D. Note

that we have s ≥ d, and in fact by Case 1 we can assume s > d. As before, the
sum of the entries of the h-vector of Z1 through degree s is

1 + 2 + 3 + · · ·+ (d− 1) + d+ (d− 1) + (d− 2) + · · ·+ (2d− 1− s)

=

(
d+ 1

2

)
+

(
d

2

)
−
(
2d− 1− s

2

)
.

We claim that

(4.3) d2 − 1

2

(
t− s

2

)
≥

(
d+ 1

2

)
+

(
d

2

)
−
(
2d− 1− s

2

)
.

As in Case 1, UPP for Z1 will then mean that any curve of degree s containing at
least d2 − 1

2

(
t−s
2

)
points of Z1 contains all of Z1, which gives the desired contradic-

tion. But (4.3) is equivalent to

(2d− 1− s)(2d− 2− s) ≥ (t− s)(t− s− 1)

2

which is clearly true.

�

Next we give a result for any d > 1, for any complete intersection in four variables
which is less than full WLP but improves the range where we know maximal rank
of the multiplication by a general linear form to hold.
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Theorem 4.9. Let A = R/I = R/〈F1, F2, F3, F4〉 where I is a complete intersec-
tion and degFi = d for all i. Let L be a general linear form. Then the multiplication
maps ×L : [A]t−1 → [A]t are injective for t < � 3d+1

2 �.
Proof. We have to determine the h-vector for Z with the smallest possible initial
degree, given the constraints in our lemmas. Suppose first that d is even. Then the
smallest possible initial degree comes when the h-vector has the form

(1, 2, 3, . . . , b− 1, b, b− 1, . . . , d+ 1, d, . . . ) or (1, 2, 3, . . . , b− 1, b, b, b− 2, . . . , d+ 1, d, . . . ),

where d occurs in degree 2d − 1. In both cases the initial degree is b. One checks
that this initial degree is 3d

2 . When d is odd, the smallest possible initial degree
comes, for instance, when the h-vector has the form

(1, 2, 3, . . . , b− 1, b, b− 2, . . . , d+ 1, d, . . . )

thanks to Lemma 4.7. One checks that the initial degree is 3d+1
2 . �

5. WLP for small d

In this section we prove the WLP for complete intersections of type (d, d, d, d) for
d ≤ 5. The cases 3 ≤ d ≤ 5 were previously open. In the next section we outline a
possible approach for all d and give two conjectures that, if proved, would allow to
demonstrate WLP following this approach. We maintain the notation of Remark
2.6; in particular, S = k[x, y, z] is (by slight abuse of notation) the coordinate
ring for the plane H containing the points Z. Furthermore, B = S/IZ and B̄ is
an artinian reduction of B by a linear form, say L′. We will denote by ĪZ the

ideal IZ+(L)′

(L′) in T = S/(L′), so B̄ = T/ĪZ , and recall again that the graded Betti

numbers of ĪZ over T are the same as those of IZ over S. In a similar way, for
other sets of points in H we will denote by ¯ the ideal of the artinian reduction of
those coordinate rings.

Example 5.1. When d = 2, it was shown in [20, Corollary 4.4] that a complete
intersection of four quadrics has the WLP.

Proposition 5.2. A complete intersection of four cubics has the WLP.

Proof. We give two easy arguments based on our results. Let I be a complete
intersection of four cubics, and let Z be the corresponding set of 18 points. Now
Z is the union of two complete intersections of type (3, 3). The Hilbert function of
R/I is

degree 0 1 2 3 4 5 6 7 8 9
hR/I 1 4 10 16 19 16 10 4 1 0

and the h-vector of Z has the form

degree 0 1 2 3 4 5 6
ΔhZ 1 2 3 4 x 3 5− x 0

.

Then x cannot be 4 by Lemma 4.7, x cannot be 3 by Proposition 4.8, and it cannot
be < 3 since then the h-vector would not be an O-sequence. Hence x = 5 and R/I
has the WLP by Lemma 4.2.

Alternatively, one could simply apply Theorem 4.9 for the case d = 3 to get
injectivity from degree 3 to 4, which is enough to prove WLP. �

Theorem 5.3. A complete intersection of four forms of degree 4 has the WLP.
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Proof. Let A = R/I = R/〈F1, F2, F3, F4〉 where I is a complete intersection and
degFi = 4 for all i. Then we claim that A has the WLP. The Hilbert function of
R/I is

degree 0 1 2 3 4 5 6 7 8 9 10 11 12 13
hR/I 1 4 10 20 31 40 44 40 31 20 10 4 1 0

The midpoint of the Hilbert function of R/I is in degree 6, so we expect injectivity
for ×L : [A]t−1 → [A]t for all t ≤ 6.

Note that Z = Z1 ∪ Z2 is the general hyperplane section of C = C1 ∪ C2,
so both Z1 and Z2 are complete intersections of type (4, 4). By Theorem 4.9,
×L : [A]t−1 → [A]t is injective for t < 6. Thus [K]t = 0 for t < 6, so by Corollary
4.5 we have ΔhZ(5) = 6. As a result, the h-vector of Z has the form

degree 0 1 2 3 4 5 6 7 8 9 10
ΔhZ 1 2 3 4 5 6 7− c 4 c 0 0

(using Lemma 4.3).
We want to show c = 0. Our results give us that c can only be 1 or 2. That

is, we have to rule out (1, 2, 3, 4, 5, 6, 5, 4, 2) and (1, 2, 3, 4, 5, 6, 6, 4, 1). Notice that
there is a minimal generator for IZ in degree 6 if and only if A fails to have WLP,
so we want to show that such a generator cannot exist.

We first rule out c = 2. Suppose ΔhZ is given by

degree 0 1 2 3 4 5 6 7 8 9
ΔhZ 1 2 3 4 5 6 5 4 2 0

In particular, IZ has two minimal generators in degree 6 and possibly one in degree
7 (among possibly others), and B̄ has socle in degree ≤ 6 (using (2.2) and Corollary
4.5). Clearly it is not in degree ≤ 4.

• If B̄ has socle in degree 5 then the last free module in a minimal free
resolution of IZ , or equivalently B̄, over S has a direct summand S(−7).
So the two generators of IZ of degree 6 have a linear syzygy: L1F1+L2F2 =
0. This means that they have a common factor of degree 5. By Davis’s
theorem, all the points of Z but one lie on a curve of degree 5. But this
violates the symmetry of the situation: from the 4-dimensional vector space
[I]4 we chose two general two-dimensional subspaces to define the two curves
C1 and C2, and we are looking at a general hyperplane section of their
union. It is impossible that one of these two curves is distinguished by this
property of containing the single point not on the curve of degree 5.

• Now assume B̄ has socle beginning in degree 6 and assume that IZ has two
minimal generators, F1 and F2, of degree 6 but none of degree 7. Then we
have a quadratic syzygy Q1F1 + Q2F2 = 0. This means that F1 and F2

have a common factor, G, of degree 4. Since IZ has no minimal generator
in degree 7, G is also common to the entire component in degree 7. By
Davis’s theorem, since ΔhZ(7) = 4, all but 4 of the points of Z lie on a
curve of degree 4. By symmetry, two have to come from Z1 and two from
Z2. By liaison and UPP, any curve of degree 4 containing 14 of the 16
points of Z1 or of Z2 contains all 16 points. Thus we have a contradiction.

• Finally, assume that B̄ has socle beginning in degree 6 and assume that IZ
has two minimal generators, F1 and F2, of degree 6 and a minimal generator
G of degree 7. Then S/〈F1, F2〉 has Hilbert function with first difference
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(1, 2, 3, 4, 5, 6, 5, 5, . . . ), and so Davis’s theorem implies that all but one of
the points lies on the curve of degree 5. Again this is impossible because
of the symmetry principle.

Now we will rule out the case c = 1. Thus, we have to show that the h-vector of
Z cannot be (1, 2, 3, 4, 5, 6, 6, 4, 1).

Suppose the h-vector of Z is (1, 2, 3, 4, 5, 6, 6, 4, 1). We first consider the socle of
B̄. Thanks to Remark 2.7, there is socle in degree ≤ 6, and from the h-vector it can
only be in degree exactly 6. Since this is the Hilbert function of an artinian algebra
over k[x, y], the canonical module must have exactly one generator in its initial
degree and at least two generators in the second degree. This means that the socle is
exactly 1-dimensional in degree 8 and at least 2-dimensional in degree 7. By Lemma
6.2 we will see that in degree 2d − 1 there must be exactly a (d − 2)-dimensional
socle, so in this case it must be exactly 2-dimensional (and not 3-dimensional, even
though this is numerically possible); we will assume that here.

Hence the last free module in the minimal free resolution of IZ must at least have
free summands S(−8), S(−9)2, S(−10). The only ambiguity is the possibility of a
second summand S(−8), so we will indicate this with the exponent 1 + ε (ε ≥ 0).

What about generators? Certainly there is exactly one generator in degree 6 and
exactly two in degree 7. We must have five or six minimal generators (depending
on ε), and considering degrees we see that the only possibility for the resolution is

(5.1) 0 →

S(−8)1+ε

⊕
S(−9)2

⊕
S(−10)

→

S(−6)
⊕

S(−7)2

⊕
S(−8)2+ε

→ IZ → 0.

And remember that Z has h-vector

(1, 2, 3, 4, 5, 6, 6, 4, 1).

We will use an argument that analyzes how the Betti numbers change via a
sequence of two links,

Z := Y0 ∼ Y1 ∼ Y2

which we will now describe. A key idea is that each link will be viewed simultane-
ously as a single link and as a pair of two separate links. The rest of the proof is
going to rely on symmetry. We will perform a series of links in which we treat Z1

and Z2 equally, and come to a situation where one of them has different behavior
than the other. This will allow us to exclude the case c = 1 in view of the Symmetry
Principle (6.2).

We start with Z = Y0 = Y0,1 ∪ Y0,2, where Y0,1 and Y0,2 are disjoint complete
intersections of type (4, 4) and Z is the general hyperplane section of C = C1 ∪C2.
We saw above that IZ has one minimal generator of degree 6, two of degree 7 and
at least two of degree 8.

Both Y0,1 and Y0,2 are general hyperplane sections of smooth curves, so they
both have UPP. If the minimal generator of IY0

of degree 6 were reducible, then
either it consists of a cubic containing Y0,1 and one containing Y0,2 (which is clearly
impossible since both are complete intersections of quartics) or else there are dis-
tinguished subsets of Y0,1 and Y0,2 consisting of those points lying on the various
factors. But this violates uniformity. So without loss of generality we can assume
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that the sextic generator is irreducible. Furthermore, again by uniformity, no point
of Y0 is a singular point of the sextic.

The first link will be by a complete intersection of type (6, 8), where the curve
of degree 8 is the union of a general quartic containing Y0,1 and a general quartic
containing Y0,2. Let F be the sextic generator. Z is a set of 32 = 16 + 16 smooth
points of F . The base locus of the linear system on F of quartics containing Y0,1 is
just Y0,1, so the residual to Y0,1 in a general element of this linear system is a set of
reduced points Y1,1 on F . Similarly we get a set of reduced points Y1,2 on F , and
Y1,1 ∩Y1,2 = ∅ by generality. Since in both cases the quartic is a minimal generator
of IY0,i

, one checks that both Y1,1 and Y1,2 are complete intersections of type (2, 4).
Setting Y1 = Y1,1 ∪ Y1,2, then Y1 is reduced and is linked to Y0 = Z. In summary,

Y0,1 ∪ Y0,2 = Y0 ∼ Y1 = Y1,1 ∪ Y1,2 where Y0,1 ∼ Y1,1 and Y0,2 ∼ Y1,2.

A calculation gives that Y1 has h-vector (1, 2, 3, 4, 4, 2) and free resolution (after
splitting two terms in the mapping cone coming from minimal generators used in
the link)

0 →
S(−6)1+ε

⊕
S(−7)2

→

S(−4)
⊕

S(−5)2

⊕
S(−6)1+ε

→ IY1
→ 0.

Note that if IY1
had two minimal generators of degree 6 then the ideal Ī generated

by the quartic and two quintics would have a common factor of degree 2. By Davis’s
theorem, the subscheme of Y1 not lying on this conic has h-vector (1, 2, 2), and so
Y1,1 and Y1,2 behave differently: one of them contributes 2 points to this residual
and the other contributes 3 points. This violates symmetry, so we conclude that
ε = 0.

The second link will use curves in IY1
of degrees 4, 5, where the quartic is the

union of the conic containing Y1,1 and the conic containing Y1,2, and the residual,
Y2, has degree 20− 16 = 4 and is similarly the union of two complete intersections
of type (1, 2), so

Y1,1 ∪ Y1,2 = Y1 ∼ Y2 = Y2,1 ∪ Y2,2 where Y1,1 ∼ Y2,1 and Y1,2 ∼ Y2,2.

We first justify the existence of this link. We have seen that IY1
has one minimal

generator, say G, of degree 4 (which is the union of a conic containing Y1,1 and
a conic containing Y1,2) and two minimal generators of degree 5. Suppose that a
general choice, H, of quintic has a component in common with G. This can only
happen if H shares a line with each of the two conics, by symmetry (since neither
Y1,1 nor Y1,2 can play a different role from the other). So G is actually the union
of four lines, with four points of Y1 on each.

Now we revisit the first link. We have an irreducible curve F of degree 6 con-
taining both Y0,1 and Y0,2 and we have two parallel links. Consider the pencils
|4HF − Y0,1| and |4HF − Y1,1| of divisors on F , where HF is the divisor on F cut
out by a hyperplane (a line). Y1 is the union of a general element of the first pencil
and a general element of the second pencil, and as we have seen, these elements
are both complete intersections of type (2, 4). By Bertini, it is impossible for every
element of both of these pencils to lie on a reducible conic. Thus the second link
also exists.
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What can we say about Y2? It has degree 4 and is the union of a complete
intersection Y2,1 of type (1, 2) linked to Y1,1 and a complete intersection Y2,2 of
type (1, 2) linked to Y1,2 as above. Its h-vector is (1, 2, 1). Furthermore, there is
enough choice in the links so that Y2 is reduced.

Next one computes that the minimal free resolution of Y2 is

0 →
S(−4)
⊕

S(−3)
→

S(−3)
⊕

S(−2)2
→ IY2

→ 0.

The key observation is that there can be no splitting of the S(−3) in both free
modules. Indeed, this resolution comes from the minimal free resolution for IY1

given above, which has a redundant S(−6), and the link is done with a complete
intersection, say X, of type (4, 5). The generators for IY1

have degrees 4, 5 and 6.
Then the mapping cone relating the resolutions of IY1

, IX and IY2
allows only split-

ting of the summands S(−4) and S(−5) from the resolution for IY1
. In particular,

the summands S(−6) occurring (redundantly) in the minimal free resolution of IY1

survive to the resolution for IY2
, but with the twisting they both become S(−3)

and neither is split off.
But this minimal free resolution (with the repeated S(−3)) defines the union of a

point and three additional collinear points. The former point is distinguished in this
set of four points. But it must arise either from the series of links Y0,1 ∼ Y1,1 ∼ Y2,1

or the series of links Y0,2 ∼ Y1,2 ∼ Y2,2. By the symmetry of this construction, such
a special, distinguished, point is impossible. �

Since our main result is not quite to the point of proving WLP, we also give a
complete proof for the case d = 5 even though there are no new ideas beyond the
d = 4 case.

Corollary 5.4. Let A = R/I = R/〈F1, F2, F3, F4〉 where I is a complete intersec-
tion and degFi = 5 for all i. Then A has the WLP.

Proof. The argument is very similar to that of Theorem 5.3, with a few minor
differences. Now the midpoint of the Hilbert function of R/I is in degree 8, and
we expect injectivity for ×L : [A]t−1 → [A]t for all t ≤ 8. In this case Theorem 4.9
gives it to us for t ≤ 7, so we only have to prove it for t = 8. Now we get that ΔhZ

must have the form

degree 0 1 2 3 4 5 6 7 8 9 10 11
ΔhZ 1 2 3 4 5 6 7 8 9− c 5 c 0

and we must have 0 ≤ c ≤ 3 to preserve decreasing type. Again we are trying to
show that c = 0, and to show this we are supposing c > 0 in order to obtain a
contradiction. And this means that there is an unexpected generator in degree 8,
which we will use and which will lead to the contradiction.

Note first that for such c there is a c-dimensional vector space of forms of degree
8 containing Z (which is the smallest such degree). As in the proof of Theorem 5.3,
the general such element is reduced and irreducible and smooth at the points of Z,
since (a) both Z1 and Z2 have UPP and lie on no curve of degree ≤ 4, and (b) by
symmetry neither can behave in a way different from the other.

Since we will again have to follow a sequence of parallel links, we maintain the
notation that Z = Y0 = Y0,1 ∪ Y0,2, a disjoint union of complete intersections of
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type (5, 5). We link using a general element of degree 8 (which is irreducible) and
the union of two forms of degree 5, being general elements of [IY0,1

]5 and [IY0,2
]5.

Case 1 (c = 3). In this case the h-vector of Y0 is

degree 0 1 2 3 4 5 6 7 8 9 10 11
ΔhY0

1 2 3 4 5 6 7 8 6 5 3

and the h-vector of the residual Y1 is (1, 2, 3, 4, 5, 6, 4, 3, 2). Because of irreducibility
and the abundance of choices for the link, we can assume that Y1 lies on an irre-
ducible sextic. We note that Y1 is the union of two complete intersections of type
(3, 5). Now we link Y1 using two sextics, one of which is irreducible and the other is
the union of the cubic containing Y1,1 and the cubic containing Y1,2. The residual
has h-vector (1, 2, 1, 1, 1), meaning that there are exactly five points on a line and
one point not on the line. But this violates symmetry since the distinguished point
must either come originally from Y0,1 or from Y0,2. Contradiction.

Case 2 (c = 2). Now the h-vector of Y0 is

degree 0 1 2 3 4 5 6 7 8 9 10 11
ΔhY0

1 2 3 4 5 6 7 8 7 5 2

and the h-vector of the residual Y1 is (1, 2, 3, 4, 5, 6, 5, 3, 1). But note that Y1 is
still the union of two complete intersections of type (3, 5). Linking again using two
sextics, one of which is irreducible and the other is the union of the cubic containing
Y1,1 and the cubic containing Y1,2, we obtain a residual that is the union of two
complete intersections of type (1, 3) and has h-vector (1, 2, 2, 1).

Thanks to Lemma 2.5, B̄ has socle in degree ≤ 8. It cannot be in degree
≤ 6. If there were socle in degree 7 then the minimal free resolution would have
a summand S(−9) in the second free module, meaning that the two generators of
degree 8 have a linear syzygy and hence a common factor. But we know they form
a regular sequence, so this is impossible. Hence there is a summand S(−10)1+α in
the second free module in the resolution for IY0

.
Up to twist, the artinian reduction (whose Hilbert function is the h-vector of

Y0) has dual given by its canonical module, and the socle elements of the artinian
reduction correspond to generators for the canonical module. Thus there is a 2-
dimensional socle in degree 10 (the initial degree of the canonical module, up to
twist). Since the canonical module is a module over a polynomial ring in two
variables, the two generators in minimal degree span at most a 4-dimensional com-
ponent in the second degree. Thus we deduce from the equality ΔhY0

= 5 that
there is at least a 1-dimensional socle in degree 9. Turning to minimal generators,
in addition to the ones mentioned above there may be generators in degrees 10 and
11. So the minimal free resolution has the shape

0 →

S(−10)1+α

⊕
S(−11)1+β

⊕
S(−12)2

→

S(−8)2

⊕
S(−9)
⊕

S(−10)γ

⊕
S(−11)δ

→ IY0
→ 0.
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Since the twists have to add to the same thing in both free modules, we obtain the
equation

20 = 10(γ − α) + 11(δ − β).

We conclude that β = δ and γ = 2 + α. Our first link uses a generator of degree
8 and one of degree 10 to get a residual Y1 with h-vector (1, 2, 3, 4, 5, 6, 5, 3, 1).
Computing the mapping cone and splitting the summands S(−8) and S(−10) we
obtain for the residual Y1 the minimal free resolution

0 →

S(−7)β

⊕
S(−8)1+α

⊕
S(−9)
⊕

S(−10)

→

S(−6)2

⊕
S(−7)1+β

⊕
S(−8)1+α

→ IY1
→ 0.

(In particular there is a redundant S(−8) that does not split off.) As in the case
c = 3, Y1 = Y1,1 ∪ Y1,2, the union of two complete intersections of type (3, 5).

Note that to obtain Y1,1 and Y1,2 we found the residual to Y0,1, Y0,2 respectively
on the irreducible curve of degree 8 cut out by the two pencils of quintics, each
of which has as base locus the sets Y0,1, Y0,2. So Y1,1 and Y1,2 have UPP and in
particular Y1 lies in a complete intersection of type (6, 6). The residual, Y2, has
h-vector (1, 2, 2, 1) and is the union of two complete intersections of type (1, 3). Its
minimal free resolution has the form

0 →
S(−4)1+α

⊕
S(−5)1+β

→

S(−2)
⊕

S(−3)
⊕

S(−4)1+α

⊕
S(−5)β

→ IY2
→ 0.

From this we see immediately that α = β = 0 since the h-vector is (1, 2, 2, 1). But
the fact that there is a generator in degree 4 forces four points on a line, which is
impossible since if two points from each of Y2,1 and Y2,2 lie on this line then all of
Y2 lies on the line, and otherwise we have a violation of the symmetry principle.

This concludes the case c = 2.

Case 3 (c = 1). We now show that c = 1 is impossible. Now the h-vector hZ is

(1, 2, 3, 4, 5, 6, 7, 8, 8, 5, 1).

There is at least one socle element in degree 8 (and none earlier), at least three in
degree 9 (considering the canonical module of B̄ as in the computation of the socle
for the artinian reduction of S/IY0

in Case 2), and exactly one in degree 10. In
terms of minimal generators for IZ , we have exactly one in degree 8 and exactly
three in degree 9. There may be some in degree 10, but as before (using UPP of
the two subsets) we can rule out any of degree 11. So far, to build the minimal free
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resolution, we have

0 →

S(−10)1+ε1

⊕
S(−11)3+ε2

⊕
S(−12)

→

S(−8)
⊕

S(−9)3

⊕
S(−10)ε3

→ IZ → 0.

Since the sum of the twists of the first free module must equal the sum of the twists
of the second one, we get

55 + 10ε1 + 11ε2 = 35 + 10ε3, i.e. 20 = 10(ε3 − ε1)− 11ε2.

This forces ε2 = 0 and ε3 − ε1 = 2 (so in particular ε3 ≥ 2), i.e. setting ε := ε1 we
have the minimal free resolution is

0 →

S(−10)1+ε

⊕
S(−11)3

⊕
S(−12)

→

S(−8)
⊕

S(−9)3

⊕
S(−10)2+ε

→ IZ → 0.

(To prove that ε2 = 0 we could also have invoked the argument at the beginning
of Section 6, as we did in Theorem 5.3, but it seemed simpler to use the numerical
argument above.)

Now we play the same game as above. We have Z = Y0 = Y0,1 ∪ Y0,2 and we
link Y0 ∼ Y1 where the octic is irreducible and the 10-ic is the union of a general
element of degree 5 in [IY0,1

]5 and a general element of degree 5 in [IY0,2
]5. This

links Y0 to a residual Y1 that is the union of two complete intersections, Y1,1 and
Y1,2, of type (3, 5) and has h-vector (1, 2, 3, 4, 5, 6, 6, 3) and minimal free resolution

0 →
S(−9)3

⊕
S(−8)1+ε

→

S(−8)1+ε

⊕
S(−7)3

⊕
S(−6)

→ IY1
→ 0,

where the redundant S(−8) does not split. We also know that the generator of
degree 6 is the product of the cubics in IY1,1

and IY1,2
.

Now we link Y1 to Y2 using the above-mentioned sextic and a general element
of degree 7 in IY1

(which will be irreducible). The residual, Y2, has h-vector
(1, 2, 3, 4, 2) and is the union of two complete intersections of type (2, 3). Its minimal
free resolution is

0 →
S(−6)2

⊕
S(−5)1+ε

→
S(−5)1+ε

⊕
S(−4)3

→ IY2
→ 0.

We note in passing that we must have ε = 0. Indeed, from the Hilbert function we
see ε ≤ 1. If ε = 1 then there are two minimal generators in degree 5. Setting J to
be the ideal generated by the three quartics in the artinian reduction, the Hilbert
function of R̄/J is (1, 2, 3, 4, 2, 2, . . . ) which forces the quartics to have a common
factor of degree 2. By Davis’s theorem, there are three points of Y2 not on this
conic, which violates symmetry.
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We would like to link Y2 using two quartics, and we see now that this can only
fail to be possible if the component in degree 4 has a common factor of degree 1. We
again set J to be the ideal generated by the three quartics in the artinian reduction.
Then R̄/J has Hilbert function (1, 2, 3, 4, 2, 1, 1, . . . ). Since B̄ has Hilbert function
(1, 2, 3, 4, 2), we conclude that Z has five points on the linear common factor. Again
this is impossible by symmetry.

We conclude that we can link using two quartics, one of which is the obvious
union of two conics, to get a residual Y3 that is the union of two complete intersec-
tions of type (1, 2) and has h-vector (1, 2, 1) and minimal free resolution

0 →
S(−4)
⊕

S(−3)
→

S(−3)
⊕

S(−2)2
→ IY3

→ 0.

This forces Y3 to have a subscheme of degree 3 lying on a line, and again we have
a violation of the symmetry principle. �

6. A strategy for degree 6 and higher

The results of Sections 3 and 4 give strong restrictions on the possible Hilbert
function of the general hyperplane section of C and consequently on the possible
behavior of R/I from the point of view of the WLP. However, we also saw in
Section 5 that as d increases, the cases that one has to check to prove WLP become
overwhelming. Even for d = 4 and 5 it was complicated, and we did not push
beyond that point.

Nevertheless, there is strong indication that this approach will work for arbitrary
d. In this section we give a detailed outline of how a proof should proceed, refining
the approach that we used for d = 4, 5. Unfortunately, we are forced to leave open
two points on which the whole proof will ultimately rest, which we will label as
formal conjectures. The first is a reduction step, and the second is a technical
point that we have not yet resolved.

The first conjecture is that it is enough to check the case where WLP fails by
one.

Conjecture 6.1. If there is a complete intersection J ∈ CI(d, d, d, d) (see Notation
3.1) that fails WLP by more than one then there also exists a complete intersection
I ∈ CI(d, d, d, d) that fails WLP by exactly one.

More precisely, we conjecture that the locus X ⊂ CI(d, d, d, d) of complete in-
tersections that fail by more than one is contained in the closure of the locus Y of
complete intersections that fail by exactly one.

Of course the idea is to show that neither J nor I actually exist, i.e. that X and
Y are empty. Here is the difficulty to proving our conjecture. We start with the
complete intersection J and choose a linear form L that is general for J . It is not
too hard to show that then there is a complete intersection I for which ×L fails
WLP by one. But it is not clear why L is also general for I.

Assuming Conjecture 6.1, we can assume now without loss of gen-
erality that R/I fails the WLP by exactly one, and seek a contra-
diction.

It is important to note that the cases d = 4, 5 did not make such an assumption;
those proofs are complete.
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As before we denote by Z the general hyperplane section of the union C of two
complete intersection curves C1, C2 obtained by taking two general 2-dimensional
subspaces of the 4-dimensional vector space spanned by F1, F2, F3, F4. Of course Z
is the union of two complete intersection sets of points in P

2.
By Lemma 4.4, the stated failure of injectivity translates to a Hilbert function

ΔhZ as follows.

degree 0 1 2 3 . . . 2d− 3 2d− 2 2d− 1 2d 2d+ 1
ΔhZ 1 2 3 4 . . . 2d− 2 2d− 2 d 1 0.

As in Corollary 5.4, we first describe the minimal free resolution of IZ , and we
start by considering the socle of the artinian reduction of B = S/IZ . It is clear
that there is a one-dimensional socle in degree 2d. In degree 2d− 1 there is either
a (d− 2)-dimensional socle or a (d− 1)-dimensional socle.

Lemma 6.2. The artinian reduction of B = S/IZ has a (d− 2)-dimensional socle.

Proof. Suppose the dimension of the socle in degree 2d−1 were (d−1)-dimensional.
Call B̄ the artinian reduction of B, whose Hilbert function is ΔhZ . Quotienting
out its (d − 1)-dimensional socle in degree 2d − 1, we get an algebra k[x, y]/J
whose Hilbert function in degree 2d − 1 and 2d is equal to 1. Thus [J ]2d has a
linear gcd, which lifts to a gcd of IZ . A theorem of Davis ([8, Theorem 4.1]; see
also [2, Theorem 2.4]) then gives that Z contains 2d+ 1 points on a line, which is
absurd since Z is the union of two sets of points with the uniform position property.
This proves that the dimension of the socle in degree 2d−1 is d−2, as claimed. �

Finally, as before, there has to be non-zero socle in degree 2d− 2 since there is a
curve of degree 2d− 2 containing Z that does not lift to C. It is not clear yet what
the dimension of the socle in this degree is.

For generators, we have exactly one in degree 2d− 2 and d− 2 in degree 2d− 1.
There is none in degree 2d+1. We have some in degree 2d that we have to compute.
After a computation with the twists as we did in Theorem 5.3, we get a minimal
free resolution of the form

(6.1) 0 →

S(−2d− 2)
⊕

S(−2d− 1)d−2

⊕
S(−2d)1+ε

→

S(−2d+ 2)
⊕

S(−2d+ 1)d−2

⊕
S(−2d)2+ε

→ IZ → 0,

where ε ≥ 0. The idea of our approach will rest on the fact that the redundancy
in the minimal free resolution (in this case S(−2d)) is preserved in the sequence of
linked sets of points that we will produce. More precisely, the strategy will be to
study a series of d − 2 specific links, and obtain a contradiction after the last link
(or earlier).

We start with the set Z which is the disjoint union of two complete intersections,
Z1 and Z2 of type (d, d). The result of each link will again be a scheme-theoretic
union of two complete intersections of the same type (but we do not claim a priori
that they are reduced or disjoint in general).

Setting the notation, let Z = Y0 = Y0,1 ∪ Y0,2; then for i = 1, . . . , d − 2, the
i-th link will send Yi−1 = Yi−1,1 ∪ Yi−1,2 to Yi = Yi,1 ∪ Yi,2, where Yi,1 and Yi,2

are complete intersections of the same type. More precisely, the i-th link will start
with Yi−1 = Yi−1,1 ∪ Yi−1,2 and will consist of a regular sequence (Fi, Gi) where
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Fi is a form of some degree, say ai, in IYi−1
and Gi = Gi,1Gi,2 is the product of

two forms of the same degree, say bi, one in IYi−1,1
and one in IYi−1,2

. To represent
such a link numerically, we will use the notation (ai, bi + bi).

We consider such a sequence of links both as linking Yi−1 to Yi, and the same
time as representing two “parallel” sequences of links, where we view (Fi, Gi,1) as a
link from Yi−1,1 to Yi,1 and (Fi, Gi,2) as a link from Yi−1,2 to Yi,2 separately. Thus
we have

Yi−1 = Yi−1,1 ∪ Yi−1,2
(ai,bi+bi)∼ Yi = Yi,1 ∪ Yi,2.

It is crucial to note that we start with Z1 and Z2 that are indistinguishable both
geometrically and numerically, and at each step the choices of the links (Fi, Gi,1Gi,2)
do not “favor” either Yi,1 over Yi,2 or vice versa. Thus we have the

(6.2) Symmetry Principle For each choice of i, there can be no geometric or

numerical property distinguishing Yi,1 from Yi,2.

For the sake of clarity, our argument will proceed as follows:

(i) describe numerically the sequence of links that we will use,
(ii) look at the h-vectors, assuming such links exist,
(iii) look at the resolutions, again assuming that the links exist,
(iv) justify the existence of the links, and finally
(v) put it all together for the conclusion.

The goal is to obtain a contradiction. We stress that for Steps (i), (ii) and (iii) we
will focus on the numerical information of the desired links and residuals, and will
discuss the existence of these links only in Step (iv). Once the existence of these
links is established, the fact that the residuals are unions of complete intersections
of certain types is a routine calculation obtained by looking at the “parallel” links
separately (e.g. for the first link, a complete intersection of type (d, d) is linked
by a complete intersection of type (d, 2d − 2) to a complete intersection of type
(d, d− 2)).

Step (i). For each link the following describes the starting set Yi−1 = Yi−1,1∪Yi−1,2

as a union of complete intersections, then gives the degrees of the generators of the
complete intersection giving the link, and finally describes the residual as a union
of complete intersections. There is a total of d− 2 links.

link starting points link residual points
# Yi−1 in P

2 type Yi in P
2

1 Y0 = CI(d, d) ∪ CI(d, d) (d+ d, 2d− 2) Y1 = CI(d, d− 2) ∪ CI(d, d− 2)
2 Y1 = CI(d, d− 2) ∪ CI(d, d− 2) ((d− 2) + (d− 2), 2d− 3) Y2 = CI(d− 3, d− 2) ∪ CI(d− 3, d− 2)
3 Y2 = CI(d− 3, d− 2) ∪ CI(d− 3, d− 2) ((d− 3) + (d− 3), 2d− 6) Y3 = CI(d− 4, d− 3) ∪ CI(d− 4, d− 3)
4 Y3 = CI(d− 4, d− 3) ∪ CI(d− 4, d− 3) ((d− 4) + (d− 4), 2d− 8) Y4 = CI(d− 5, d− 4) ∪ CI(d− 5, d− 4)
...

...
...

...
d− 2 Yd−3 = CI(2, 3) ∪ CI(2, 3) (2 + 2, 4) Yd−2 = CI(1, 2) ∪ CI(1, 2).

It is certainly true, since we can view the parallel links separately, that the
residuals are scheme-theoretic unions of complete intersections. Unfortunately after
the first couple of links we do not know that these complete intersections are reduced
or disjoint, although we believe this to be true. In any case, the last link results in
a zero-dimensional scheme of degree 4, together with the promised redundancy of
the minimal free resolutions, and this will allow us to conclude just as in Theorem
5.3.
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Step (ii). Next we look at the h-vectors. The h-vector for the starting set Z is
ΔhZ : (0, 1, 2, 3, 4, . . . , 2d− 3, 2d− 2, 2d− 2, d, 1) and we can compute the sequence
of h-vectors of the residuals. The following lists the sequence of h-vectors of the
residuals.

deg:
0 1 2 3 4 . . . 2d− 10 2d− 9 2d− 8 2d− 7 2d− 6 2d− 5 2d− 4 2d− 3 2d− 2 2d− 1 2d

Y0 1 2 3 4 5 . . . 2d− 9 2d− 8 2d− 7 2d− 6 2d− 5 2d− 4 2d− 3 2d− 2 2d− 2 d 1
Y1 1 2 3 4 5 . . . 2d− 9 2d− 8 2d− 7 2d− 6 2d− 5 2d− 4 2d− 4 d− 2
Y2 1 2 3 4 5 . . . 2d− 9 2d− 8 2d− 7 2d− 6 d− 3
Y3 1 2 3 4 5 . . . 2d− 9 2d− 8 d− 4
Y4 1 2 3 4 5 . . . d− 5

...
Yd−3 1 2 3 4 2
Yd−2 1 2 1

Step (iii). Next we derive the minimal free resolutions, assuming the existence
of the links. The main observation is that in each step, even if all conceivable
summands split in the mapping cones, there remains a redundant term in the free
resolution; if fewer splittings occur, there could only be more redundancy. The
desired contradiction at the end is based on the existence of this redundancy.

The first complete intersection in the first table links Z = Y0 to a residual curve
Y1 = Y1,1 ∪ Y1,2, where Y1,1 and Y1,2 are complete intersections as described in the
top of the fourth column in the table in Step (i). A mapping cone starting with
(6.1) (and splitting the summand corresponding to the minimal generator of degree
2d− 2 used in the link) gives a minimal free resolution

0 →
S(−2d+ 2)1+ε

⊕
S(−2d+ 1)d−2

→

S(−2d+ 4)
⊕

S(−2d+ 3)d−2

⊕
S(−2d+ 2)1+ε

→ IY1
→ 0.

(It is less obvious that the generator of degree 2d in the complete intersection is a
minimal generator of IZ , so we note that ε may have grown by one here, but by
slight abuse of notation we continue to write 1+ ε with ε ≥ 0. This is the only time
we will have this ambiguity.)

The next link, using a complete intersection of type ((d− 2) + (d − 2), 2d− 3),
uses two minimal generators and the residual, Y2, has minimal free resolution

0 →
S(−2d+ 5)1+ε

⊕
S(−2d+ 4)d−3

→
S(−2d+ 6)d−2

⊕
S(−2d+ 5)1+ε

→ IY2
→ 0.

Notice the redundant S(−2d + 5) and the fact that the next link will involve two
forms of degree 2d − 6, hence we cannot split off any redundant terms from this
resolution in the next mapping cone. One checks that this redundancy persists in
the same way until the end.

Step (iv). Notice that in the desired sequence of links described in Step (i) the first
two are a bit different from the rest, in that the third and subsequent links are by
forms of the same degree (one reducible) whereas the first two are not of this form.
Now we justify the existence and important properties of the first two links.
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Proposition 6.3. The first link exists. That is, Y0 is linked by a complete inter-
section (G0,1G0,2, F0) of type (2d, 2d − 2) to Y1, where G0,1 is a general element
of [IY0,1

]d and G0,2 is a general element of [IY0,2
]d; both are smooth. The residual,

Y1 = Y1,1 ∪ Y1,2 is reduced. In particular Y1,1 and Y1,2 have no points in common,
and both are complete intersections of type (d, d−2). The unique form F0 of degree
2d− 2 in IY0

is irreducible.

Proof. We have that Z = Y0 = Y0,1 ∪ Y0,2 is the general hyperplane section of
the curve C = C1 ∪ C2 in P

3, and each of the latter two curves is a smooth
complete intersection curve in P

3 of type (d, d). Hence both Y0,1 and Y0,2 are
reduced complete intersection sets of points with UPP. Furthermore, there are
pencils P0,1 and P0,2 of forms of degree d defining Y0,1 and Y0,2, respectively, so
in particular the base locus of each of these pencils is the corresponding complete
intersection set of points. Hence a general element in P0,1 and a general element
in P0,2 will each be smooth.

We know from the h-vector that there is a unique form F0 of degree 2d − 2
containing Y0. If this form were not reduced then removing a factor would yield a
curve of lower degree containing all of the points, which is ruled out by the h-vector.
Hence F0 is reduced.

We now claim that F0 is smooth at the points of Y0. By the uniform position
principle (see [14, page 85]), the points of Y0 are indistinguishable, so the alternative
is that F0 must be singular at each of the d2 points of Y0,1 and each of the d2

points of Y0,2. Let G0,1 be a general element of P0,1 and let G0,2 be a general
element of P0,2. Since P0,1 and P0,2 each define a finite set of points, the product
G0 = G0,1G0,2 does not have any component in common with F0. But then the
complete intersection of F0 and G0 has degree at least 2 · 2d2 = 4d2, while the
product of degrees is only (2d− 2)(2d) < 4d2. This eliminates the possibility that
F0 is singular at each of the points, and we are done with the claim.

It follows from what we have said that the first link exists. Furthermore, by
choosing a general element of each pencil, G0 will meet F0 transversally at every
point of intersection. Consequently for the linked set we have

Y1,1 and Y1,2 are reduced and disjoint from each other.

The fact that Y1,1 is a complete intersection of type (d, d− 2) follows immediately
from the fact that Y0,1 is a complete intersection of type (d, d) and it is linked
to Y1,1 by a complete intersection of type (d, 2d − 2); similarly Y1,2 is a complete
intersection of type (d, d− 2).

Claim. The unique form F0 of degree 2d− 2 in IY0
is irreducible.

Suppose F0 = H1 · · ·Hr are the irreducible components of G. The d2 points of
Y0,1 have UPP (since C1 is a smooth complete intersection curve) and the same is
true for Y0,2. Let W1 be the subset of Y0,1 lying on H1 and let W2 be the subset
of Y0,2 lying on H1. Let P ∈ W1 and choose Q ∈ Y0,1 such that Q /∈ W1. In
[14], Harris showed that the monodromy groups for C1 and for C2 are both the full
symmetric group, so there is some loop γ in a suitable open set of (P3)∗ so that
moving the hyperplane along γ interchanges P and Q but leaves all other points of
Y0,1 fixed. We can further arrange it so that γ does not move any points of Y0,2 (it
is enough that γ avoid planes that are tangent to C2). But W1∪W2 determines G1,
so by monodromy (W1\{P}) ∪ {Q} ∪W2 determines H1. (If it did not, F0 would
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not be unique.) This is a contradiction since Q does not lie on G1. This proves the
Claim. �

Proposition 6.4. The second link exists. That is, Y1 is linked by a complete
intersection (G1,1G1,2, F1) of type (2d − 4, 2d − 3) to Y2, where G1,1 ∈ [IY1,1

]d−2

and G1,2 ∈ [IY1,2
]d−2. The residual, Y2 = Y2,1 ∪ Y2,2 is reduced, and in particular

Y2,1 and Y2,2 have no points in common. Note that G1,1G1,2 is the unique element
of IY1

of degree 2d− 4.

Proof. Now Y1 = Y1,1∪Y1,2 is the residual in the first link; note again that without
loss of generality, Y1,1 and Y1,2 are reduced and disjoint. We have seen that Y0,1

is linked in a complete intersection of type (d, 2d− 2) to the complete intersection
Y1,1 of type (d, d − 2), and similarly Y0,2 is linked to Y1,2 of the same type. But
above we computed the minimal free resolution of Y1 and saw that there is a unique
curve of degree 2d − 4 containing Y1. Hence this curve is the union of the unique
curve G1,1 of degree d−2 containing Y1,1, and the unique curve G1,2 of degree d−2
containing Y1,2; both G1,1 and G1,2 are reduced since Y1 is.

From the resolution we know not only that IY1
has exactly one minimal generator

of degree 2d − 4 (namely G1,1G1,2), but also exactly d − 2 minimal generators of
degree 2d− 3 and at least one minimal generator of degree 2d− 2. For the second
link, we want to show that there is a regular sequence of type (2d − 4, 2d − 3) in
IY1

. The alternative is that all the minimal generators of IY1
of degree ≤ 2d − 3

have a common factor. For the sake of contradiction, suppose this were the case.
Let H be the common factor. Notice that 1 ≤ deg(H) < d− 2 since H would have
to be a factor of G1,1 (and also of G1,2). By slight abuse of notation, we will use
H to denote both the form and the corresponding curve.

G1,1 and G1,2 are not necessarily irreducible, but they have to act the same way,
by the Symmetry Principle. By assumption, all forms of degree ≤ 2d − 3 in IY1

have H as a factor so in particular the product G1,1G1,2 has H as a factor. If any
polynomial divides both G1,1 and G1,2 then in fact we can divide G1,1G1,2 by this
polynomial and get a polynomial of degree < 2d − 4 containing Y1, contradicting
the Hilbert function of Y1. Thus H must be reducible, with one (not necessarily
irreducible) factor dividing G1,1 and the other dividing G1,2. By symmetry these
factors must have the same degree, so deg(H) must be even, say deg(H) = 2�.
Then there are reduced forms P1, P2,M1,M2 such that

• deg(P1) = deg(P2) = �,
• H = P1P2,
• G1,1 = M1P1,
• G1,2 = M2P2,
• G1,1, G1,2 have no common factor, and
• all forms in IY1

of degree ≤ 2d− 3 have P1P2 as a factor.

Now, Y1,1 is the reduced complete intersection of M1P1 and a form of degree d, so
it contains exactly d� points of H. Similarly, Y1,2 contains d� points of H. Then
all together, we conclude for the common factor H that

(6.3) H contains 2�d points of Y1, an even number.

Using methods introduced by Davis [8], consider the exact sequence

(6.4) 0 → S/(IY1
: H)(−2�)

×H−→ S/IY1
→ S/(IY1

, H) → 0.
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The ideal IY1
: H is the saturated ideal of the set of points of Y1 not on the curve

defined by H. The saturation of the ideal (IY1,H) defines the set of points of Y1 on
H. Let us denote by Ā the points of Y1 on H and by A′ the points not on H, so
Y1 = Ā ∪ A′.

Notice that

(6.5) [(IY1
, H)]t = [(H)]t

for all t ≤ 2d− 3. Thus from (6.4) we also get for the h-vectors

ΔhS/IA′ (t− 2�) = ΔhS/IY1
(t)− 2�

for all 2� ≤ t ≤ 2d− 3.
We know that the h-vector of S/IY1

is

deg: 0 1 2 3 4 . . . 2d− 10 2d− 9 2d− 8 2d− 7 2d− 6 2d− 5 2d− 4 2d− 3 2d− 2
1 2 3 4 5 . . . 2d− 9 2d− 8 2d− 7 2d− 6 2d− 5 2d− 4 2d− 4 d− 2 0

In particular, it is zero in degree 2d− 2. From (6.4) we thus get that ΔhS/IA′ (2d−
2−2�) = 0. These facts imply that h1(IY1

(2d−3)) = 0 and h1(IA′(2d−3−2�)) = 0.
Now from the exact sequence

0 → (IY1
: H)(−2�)

×H−→ IY1
→ (IY1

, H) → 0,

sheafifying and taking cohomology in degree 2d−3, we get that (IY1
, H) is saturated

in degrees ≥ 2d − 3, i.e. it agrees with IĀ in degrees ≥ 2d − 3. By (6.5), we see
that in degree 2d− 3 we have (IY1

, H) = (H), which we now know agrees with IĀ
in that degree. Then we can complete (6.5) as follows:

[(IY1
, H)]t = [(H)]t = [(IY1

, H)sat]t = [IĀ]t

for all t ≤ 2d− 3.
It follows that S/IĀ has h-vector

deg: 0 1 2 3 . . . 2�− 2 2�− 1 2� 2�+ 1 . . . 2d− 6 2d− 5 2d− 4 2d− 3 2d− 2
1 2 3 4 . . . 2�− 1 2� 2� 2� . . . 2� 2� 2� 2� 0

In particular, Y1 has exactly

2�(2d− 2�− 1) +

(
2�

2

)
= 2�

[
(2d− 2�− 1) +

2�− 1

2

]
points on H. But in (6.3) we computed that there are 2�d points of Y1 on H, so

d = (2d− 2�− 1) +
2�− 1

2
.

But 2� is even, so the righthand side is not even an integer, and we have a contra-
diction. Hence there is no common factor, and the second link also exists: Y1 is
linked to Y2 by a complete intersection of type (2d− 4, 2d− 3). It is clear from the
uniqueness of the form of initial degree 2d− 4 that both forms participating in this
link are minimal generators of IY1

. �

The first two links were special (numerically), but now all the rest of the links
follow the same pattern. For the i-th links, i ≥ 3, we want to link Yi−1 = Yi−1,1 ∪
Yi−1,2 (i ≥ 3) to Yi = Yi,1∪Yi,2 using a complete intersection of type ((d− i)+(d−
i), 2d−2i). The ideal of Yi−1 has d− i+1 minimal generators in degree 2d−2i (the
initial degree), so certainly if the regular sequence exists, the link is done with two
minimal generators (and so the residual has one fewer minimal generator). One
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of these minimal generators is the union of a curve N1 of degree d − i containing
Yi−1,1 and a curve N2 of degree d− i containing Yi−1,2.

Suppose first that all the desired links from Step (i) exist. We end with a scheme
Yd−2 of degree 4, whose minimal free resolution has a redundant term. This can
only be a copy of S(−3) in both free modules, i.e. the minimal free resolution of
Yd−2 is

0 →
S(−3)
⊕

S(−4)
→

S(−2)2

⊕
S(−3)

→ IYd−2
→ 0.

Even if all the links exist, we do not claim that the residuals continue to be reduced,
even though we verified this in the first two links (Propositions 6.3 and 6.4). In
particular, Yd−2 may be non-reduced. However, it must have degree 4, and it must
contain a scheme Yd−2,1 of degree 2 and a scheme Yd−2,2 of degree 2, obtained via
the parallel links.

Claim. Yd−2 must have a subscheme of degree 3 lying on a line, which gives a
contradiction.

Indeed, we have seen that IYd−2
has two minimal generators of degree 2 and one

of degree 3, and that it has degree 4. If there were a regular sequence of two forms
of degree 2, Yd−2 would be a complete intersection, contradicting what we know to
be the minimal free resolution. Thus the forms of degree 2 have a degree 1 common
divisor. By Davis’s theorem Yd−2 has a subscheme of degree 3 lying on this line.
But then either Yd−2,1 or Yd−2,2, but not both, must lie on this line. This violates
the Symmetry Principle, giving the desired contradiction. This would conclude not
only the proof of the Claim, but in fact the proof that R/I has the WLP (always
assuming Conjecture 6.1).

The last issue is to deal with the existence of the remaining links. For any i,
with 3 ≤ i ≤ d− 2, if the i-th link does not exist then certainly there is a common
factor in the initial degree of the ideal of Yi−1.

Conjecture 6.5. For any i, 3 ≤ i ≤ d−2, if the i-th link does not exist, i.e., there
is a common factor in the initial degree of the ideal of Yi−1, then this common
factor defines a curve that contains enough points of Yi−1 so that one obtains a
contradiction using the Symmetry Principle in the same way as was done in the
proof of Proposition 6.4.

7. Some additional results and consequences

7.1. Jacobian ideals. We now give a consequence of our results to Jacobian ideals.
We recall that if X : f = 0 is a smooth hypersurface of degree d+ 1 in P

n defined
by a homogeneous polynomial f then the Jacobian ideal J(X) (or J(f)) is the

homogeneous ideal generated by the partial derivatives ∂f
∂xi

, 0 ≤ i ≤ n, and it is a
complete intersection generated by forms of degree d since X is smooth.

In [16] G. Ilardi posed the following question:

Does the Jacobian ideal of a smooth hypersurface have the Weak
Lefschetz Property?

Ilardi proves the following partial answer. We will slightly change her notation
to agree with ours. For a graded algebra A, having WLP in degree t will mean that
the multiplication map ×L : [A]t → [A]t+1 has maximal rank.
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Proposition 7.1 (Ilardi [16]). Let X : f = 0 be a hypersurface in P
n of degree

d+ 1 > 2, such that its singular locus Xs has dimension at most n − 3. Then the
ideal J(X) has the WLP in degree d− 1.

In [1], A. Alzati and R. Re proved this same injectivity for any complete inter-
section generated by forms of degree d, not only for Jacobian ideals.

We give some answers to Ilardi’s question arising from our work. First we note
that our results show that in some cases R/J(X) has the full WLP rather than
WLP in a certain degree.

Corollary 7.2. Let F be a smooth hypersurface in P
3 of degree 3, 4, 5 or 6. Then

the Jacobian ideal J = 〈∂F∂w , ∂F
∂x ,

∂F
∂y ,

∂F
∂z 〉 has the WLP.

Using Theorem 4.9 we also get an improvement of Ilardi’s result in the case of
four variables:

Corollary 7.3. Let X : f = 0 be a smooth hypersurface in P
3 of degree d+ 1 > 2.

Then the ideal J(X) has the WLP in all degrees ≤ � 3d+1
2 �−2, i.e. ×� : [R/J(X)]t →

[R/J(X)]t+1 is injective for all t ≤ � 3d+1
2 � − 2.

We remark that WLP is equivalent to injectivity for all t ≤ 2d− 3, so Corollary
7.3 covers approximately half the range left open by the Ilardi and Alzati-Re result.

7.2. A result for non-equigenerated complete intersections. Even if we
prove Conjectures 6.1 and 6.5, it would remain to prove that all codimension
four complete intersections (with generators of possibly different degree) have the
WLP. In Proposition 7.5 we deal with complete intersections of arbitrary degrees
d1, d2, d3, d4 and from the stability of the associated syzygy bundle we will deduce
the injectivity in a range unfortunately not as good as the one that we get when
d1 = · · · = d4 (see Theorem 4.9). However, it does not assume that the degrees are
equal, and it introduces a different approach.

For the sake of completeness we recall the following result on vector bundles that
will be crucial in the proof of Proposition 7.5.

Proposition 7.4 ([11, Theorem 3.4] (due to Schneider), and [11, Theorem 6.1]).
Let E be a normalized (i.e. −2 ≤ c1(E) ≤ 0) rank 3 stable vector bundle on P

3.
The restriction of E to a general plane is stable unless one of the following holds:

(i) c1(E) = −2 and E = TP3(−2), where TP3 is the tangent bundle on P
3;

(ii) c1(E) = −1 and E = Ω1(1), where Ω = Ω1
P3 is the sheaf of Kähler differen-

tials;
(iii) c1(E) = 0 and c2(E) ≤ 3;
(iv) c1(E) = 0 and E = S2(N ) where N is the null correlation bundle and

S2(N ) is the second symmetric power;
(v) c1(E) = 0 and E fits in the exact sequence

0 → Ω(1) → E → OH0
(−c2(E) + 1) → 0

for some plane H0 in P
3.

Proposition 7.5. Let A = R/I = R/〈F1, F2, F3, F4〉 where I is a complete inter-
section and degFi = di. Set d1 + d2 + d3 + d4 = 3λ + r, 0 ≤ r ≤ 2. Let L be a
general linear form. Then the multiplication maps ×L : [A]t−1 → [A]t are injective
for t < λ.
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Proof. We will assume that d1 ≤ d2 ≤ d3 ≤ d4. We distinguish two cases.

(1) If d1+d2+d3+d4

3 ≤ d4, then d1 + d2 + d3 + d4 = 3λ + r ≤ 3d4, so λ ≤ d4. If
t < λ then [A]t−1 and [A]t coincide with the corresponding components of
the coordinate ring of a complete intersection of positive Krull dimension,
so the result is obvious.

(2) Assume that d1+d2+d3+d4

3 > d4. Consider the syzygy bundle

E := ker

(
4⊕

i=1

OP3(−di)
(F1,F2,F3,F4)−→ OP3

)

associated to (F1, F2, F3, F4). E is a rank 3 vector bundle on P
3 with c1(E) =

−(d1 + d2 + d3 + d4). Note that H1
∗ (E) =

⊕
t∈Z

H1(E(t)) ∼= A (cf. [5,
Proposition 2.1], although this was already used implicitly in [12, Theorem
2.3]). Let us check that E is μ-stable. To this end, we consider the exact
sequence

0 −→ OP3 −→
4⊕

i=1

OP3(di) −→ E∗ −→ 0.

By hypothesis we have

μ(E∗) :=
c1(E∗)

rk(E∗)
=

∑4
i=1 di
3

> max{di} = d4.

So we can apply [4, Corollary 2.7], and conclude that E∗ is μ-stable. Since
μ-stability is preserved under dualizing we also have that E is μ-stable.

Now we want to consider the restriction to a general plane H. We
claim that by Proposition 7.4, the restriction E|H of E to H ⊂ P

3 is also
μ-stable. This is because our rank 3 vector bundle is not one of the few
exceptions listed in that result. Indeed, recall that H1

∗ (E) is isomorphic
to our artinian algebra R/I. The non-zero summands of R/I go from
the homogeneous part of degree zero until the homogeneous part of degree
d1 + d2 + d3 + d4 − 4 (assuming di ≥ 2; if one is smaller than 2 we are
dealing with a complete intersection in 3 variables and the result is known).
Moreover we know exactly the dimension of the homogeneous part of degree
i, for 0 ≤ i ≤ d1 + ..+ d4 − 4. They are (1, 4, h2, . . . , h2, 4, 1).

We claim that our vector bundle E is not one of the exceptions listed
in Proposition 7.4. Exception (i) has H1

∗ (E) = 0, while (ii) has H1
∗ (E)

concentrated in only one degree. So in neither case do we haveH1
∗ (E) ∼= R/I

(up to twist).
For the remaining three exceptions, (v) corresponds again to a bundle E

(or E∗) with H1
∗ (E) concentrated in only one degree and all the others are

0, which is not our case – indeed, only H1E(−1) �= 0.
Exception (iv) corresponds to the second symmetric power of the null

correlation bundle N . We claim that again is not our case because the co-
homology satisfies dimH1(S2(N )(−2)) = 1, dimH1(S2(N )(−1)) = 4 and
dimH1(S2(N )) = 5, and this cannot be the start of the Hilbert function
of a complete intersection. Indeed, the null correlation bundle is a rank
2 vector bundle N on P

3 with c1(N ) = 0. Therefore we have an exact
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sequence

0 →
2∧
N → N ⊗N → S2(N ) → 0,

and
∧2 N ∼= OP3(c1(N )) ∼= OP3 . We deduce that H1((N ⊗ N )(t)) ∼=

H1(S2(N )(t)) for all t ∈ Z, from which the result follows from a calculation.
Finally, we consider exception (iii). This corresponds to c1 = 0 and

c2 = 3 and again we claim this is not our case. Indeed, assume without
loss of generality that 2 ≤ d1 ≤ d2 ≤ d3 ≤ d4. We know that c1(E) =
−(d1 + d2 + d3 + d4) and

(7.1) c2(E) = d1d2 + d1d3 + · · ·+ d3d4.

We have c1(Enorm) = 0 if and only if c1(E) ≡ 0 (mod 3). Thus we can
write

−(d1 + d2 + d3 + d4) = −3p

and in particular −(d1+d2+d3+d4) ≡ 0 ( mod 3). At the beginning of this
proof we divided into two cases, and the current case is d1+d2+d3+d4

3 > d4.

Thus d1+d2+d3+d4

3 ≥ d4 + 1, i.e.

(7.2) d1 + d2 + d3 ≥ 2d4 + 3.

Since p = (d1 + d2 + d3 + d4)/3 we have c1(Enorm) = c1(E(p)) = 0 and

c2(Enorm) = c2(E(p)) = c2(E)− 3p2

= c2(E)−
1

3

⎛
⎝d21 + d22 + d23 + d24 + 2 ·

∑
1≤i<j≤4

didj

⎞
⎠ .

We will use (7.1) and (7.2), as well as the following inequalities:

d1d2 ≥ d21, d2d3 ≥ d22, d24 ≥ d23.

Thus

c2(Enorm) =
1

3

⎡
⎣
⎛
⎝ ∑

1≤i<j≤4

didj

⎞
⎠− d21 − d22 − d23 − d24

⎤
⎦

=
1

3

⎡
⎣d4(d1 + d2 + d3) +

⎛
⎝ ∑

1≤i<j≤3

didj

⎞
⎠− d21 − d22 − d23 − d24

⎤
⎦

≥ 1
3

[
d4(2d4 + 3) + d1d2 + d1d3 + d2d3 − d21 − d22 − d23 − d24

]
≥ 1

3 (3d4 + d1d3)
≥ 1

3 (3 · 2 + 2 · 2) > 3.

Thus our vector bundle E does not fall into any of the exceptions listed in
Proposition 7.4, and E|H is stable for a general plane H. In particular, we

have H0(H, E|H(t)) = 0 for all t < λ. Looking at the long exact sequence
in cohomology of the exact sequence

0 → E(t− 1)
×L−→ E(t) → E|H(t) → 0,

we see that if L is a linear form defining H then ×L : [A]t−1 → [A]t is
injective for all t < λ.

�
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8. Final comments and questions

(1) The most obvious open question is whether the WLP holds for arbitrary
complete intersections in arbitrarily many variables. This is the Holy Grail
of this line of investigation. So far it is known in two or three variables
[12], the complete intersection of at most four quadrics [20] and now we
have results for complete intersection of forms of the same degree d ≤ 5 in
four variables. It might be profitable to apply the methods of this paper
to complete intersections generated by six forms of the same degree d in
six variables. That means studying the union of two complete intersection
surfaces in P

5, whose general hyperplane section is the union of two com-
plete intersection curves in P

4. Of course such a union in P
4 is not ACM,

as was the case for the hyperplane sections in this paper.
(2) Once we show that all complete intersections have the WLP, it remains to

show that they all have the SLP. This is open even in codimension 3, but
it is known in codimension 2 [12]. It is worth noting that results of Dimca,
Gondim and Ilardi [10] give SLP for the Jacobian ring of a smooth cubic
surface in P

3 and of a smooth quartic curve in P
2. Also, a result of Bricalli,

Favale and Pirola [6] gives SLP for the complete intersection of five forms
of degree 2 in k[x0, . . . , x4]; in particular, the Jacobian ring of a smooth
cubic 3-fold in P

4 has the SLP.
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[22] Jean-Pierre Serre, Algèbre locale. Multiplicités (French), Lecture Notes in Mathematics,
vol. 11, Springer-Verlag, Berlin-New York, 1965. Cours au Collège de France, 1957–1958,
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Corts Catalanes 585, 08007 Barcelona, Spain

Email address: miro@ub.edu

Department of Mathematics, University of Kentucky, 715 Patterson Office Tower,

Lexington, Kentucky 40506-0027

Email address: uwe.nagel@uky.edu

https://mathscinet.ams.org/mathscinet-getitem?mr=660047
https://mathscinet.ams.org/mathscinet-getitem?mr=1970804
https://mathscinet.ams.org/mathscinet-getitem?mr=579101
https://mathscinet.ams.org/mathscinet-getitem?mr=685427
https://mathscinet.ams.org/mathscinet-getitem?mr=1211996
https://mathscinet.ams.org/mathscinet-getitem?mr=3810300
https://mathscinet.ams.org/mathscinet-getitem?mr=1661859
https://mathscinet.ams.org/mathscinet-getitem?mr=1073438
https://mathscinet.ams.org/mathscinet-getitem?mr=2719680
https://mathscinet.ams.org/mathscinet-getitem?mr=3041764
https://mathscinet.ams.org/mathscinet-getitem?mr=1136655
https://mathscinet.ams.org/mathscinet-getitem?mr=0201468
https://mathscinet.ams.org/mathscinet-getitem?mr=578321
https://mathscinet.ams.org/mathscinet-getitem?mr=951211

	1. Introduction
	2. Some tools for height four complete intersections
	3. Measuring failure of WLP
	4. Computations on the hyperplane section of 𝐶
	5. WLP for small 𝑑
	6. A strategy for degree 6 and higher
	7. Some additional results and consequences
	7.1. Jacobian ideals
	7.2. A result for non-equigenerated complete intersections

	8. Final comments and questions
	Acknowledgments
	References

