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BUBBLING AND EXTINCTION FOR SOME FAST DIFFUSION

EQUATIONS IN BOUNDED DOMAINS

TIANLING JIN AND JINGANG XIONG

Abstract. We study a Sobolev critical fast diffusion equation in bounded
domains with the Brézis-Nirenberg effect. We obtain extinction profiles of its
positive solutions, and show that the convergence rates of the relative error in
regular norms are at least polynomial. Exponential decay rates are proved for
generic domains. Our proof makes use of its regularity estimates, a curvature
type evolution equation, as well as blow up analysis. Results for Sobolev
subcritical fast diffusion equations are also obtained.

1. Introduction

Let Ω be a bounded domain in R
n, n ≥ 3, with smooth boundary ∂Ω. We con-

sider the Cauchy-Dirichlet problem for the fast diffusion equation with the Sobolev
critical exponent

∂

∂t
u

n+2
n−2 = Δu+ bu in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(·, 0) = u0 ≥ 0 in Ω,

(1)

where Δ =
∑n

i=1
∂2

∂x2
i
is the Laplace operator, u0 is not identically zero, and

(2) b ∈ [0, λ1) is a constant

with λ1 being the first eigenvalue of −Δ in Ω with zero Dirichlet boundary condi-
tion. Hence, the operator −Δ− b is coercive on the Sobolev space H1

0 (Ω). The fast
diffusion equations arise in the modelling of gas-kinetics, plasmas, thin liquid film
dynamics driven by Van der Waals forces, and etc. If b = 0, this Sobolev critical
equation (1) can be viewed a unnormalized Yamabe flow with metrics degenerate
on the boundary.

The theory of existence and uniqueness of solutions to (1) is well understood, see
Vázquez [41, 42]. If u0 ∈ Lq(Ω) for some q > 2n

n−2 , then the solution will become
instantaneously positive in Ω and globally bounded. Moreover, the solution will
vanish in a finite time T ∗ > 0. If we assume that u0 ∈ H1

0 (Ω)∩Lq(Ω) for some q >
2n
n−2 , then it follows from the work of Chen-DiBenedetto [15], DiBenedetto-Kwong-

Vespri [23] and Jin-Xiong [29] that the solution is of C3,2
x,t (Ω×(0, T ∗)). In particular,
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the solutions are classical. Therefore, when we investigate the asymptotic behavior
of nonnegative solutions to (1) as t approaching to the extinction time T ∗, there is
no loss of generality to consider classical (up to the boundary) solutions to (1).

When n+2
n−2 is replaced by p ∈ (1, n+2

n−2) if n ≥ 3, or p ∈ (1,∞) if n = 1, 2, which
is a Sobolev subcritical exponent, the extinction behavior of solutions to the fast
diffusion equation

∂

∂t
up = Δu in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞)
(3)

has been well-studied. By the scaling

(4) v(x, t) =
( p

(p− 1)(T ∗ − τ )

) 1
p−1

u(x, τ ), t =
p

p− 1
ln

( T ∗

T ∗ − τ

)
,

where T ∗ is the extinction time, the equation (3) becomes

∂

∂t
vp = Δv + vp in Ω× (0,∞),

v = 0 on ∂Ω× (0,∞).
(5)

Berryman-Holland [5] proved that the solution of (5) converges to a stationary
solution v∞ in H1

0 (Ω) along a sequence of times. Feireisl-Simondon [26] proved the
full convergence in the C0(Ω) topology. Bonforte-Grillo-Vazquez [8] proved that
the relative error v(·, t)/v∞ converges to 1 in L∞(Ω). Recently, Bonforte-Figalli [7]
proved the sharp exponential convergence of the relative error for generic domains
Ω, which means that the domains Ω satisfy

For every nonnegative H1
0 solution v of −Δv − vp = 0 in Ω, the linearized

operator at v, that is Lv := −Δ− pvp−1, has a trivial kernel in H1
0 (Ω).

(6)

See Akagi [1] for another proof. The set of smooth domains satisfying (6) has
generic properties, see Saut-Temam [35].

The main advantage of the subcritical regime is the upper bound of solutions u
to (3) proved in DiBenedetto-Kwong-Vespri [23]

(7) u(x, t) ≤ Cd(x)(T ∗ − t)
1

p−1 for t < T ∗,

where d(x) = dist(x, ∂Ω). The estimate (7) implies that the function v defined
by (4), which satisfies (5), is uniformly bounded as t → ∞, and consequently, has
uniform regularity estimates up to the boundary ∂Ω by the work of [15, 23, 29].

However, this uniform bound in general does not hold for (5) if p = n+2
n−2 . For

instance, it is the case if Ω is star-shaped, since there is no stationary solution of
(5) due to the Pohozaev identity. In this paper, we will show that the uniform
boundedness still holds for the equation (1) assuming b > 0 and n ≥ 4. The role
of the positivity of b when n ≥ 4 was first discovered in the seminal paper Brézis-
Nirenberg [12], and is similar to the role that the non-vanishing Weyl tensor and the
positive mass theorem play in the resolution of the Yamabe problem on compact
manifolds by Aubin [2] and Schoen [36].

Under the scaling

(8) v(x, t) =

(
n+ 2

4(T ∗ − τ )

)n−2
4

u(x, τ ), t =
n+ 2

4
ln

(
T ∗

T ∗ − τ

)
,
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the equation (1) becomes

∂

∂t
v

n+2
n−2 = Δv + bv + v

n+2
n−2 in Ω× (0,∞),

v = 0 on ∂Ω× (0,∞).
(9)

We will show that every solution of (9) converges to a stationary solution, that is
a solution of

(10) Δv + bv + v
n+2
n−2 = 0 in Ω, v = 0 on ∂Ω,

with at least polynomial rates. Moreover, the convergence rate will be exponential
if the domain Ω satisfies the following condition:

For every nonnegative H1
0 solution v of −Δv − bv − v

n+2
n−2 = 0 in Ω,

the linearized operator at v, that is Lv := −Δ− b− n+ 2

n− 2
v

4
n−2 ,

has a trivial kernel in H1
0 (Ω).

(11)

The set of smooth domains satisfying (11) also has generic properties, see Saut-
Temam [35].

Theorem 1.1. Let n ≥ 4, and b > 0 satisfy (2). Let u be a classical nonnegative
solution of (1) with extinction time T ∗ > 0. Let v be defined by (8). Then there is
a nonzero stationary solution v∞ of (9), and two positive constants θ and C such
that ∥∥∥∥v(·, t)v∞

− 1

∥∥∥∥
C2(Ω)

≤ Ct−θ for all t ≥ 1.

If Ω satisfies (11), then there exist two positive constants γ and C such that∥∥∥∥v(·, t)v∞
− 1

∥∥∥∥
C2(Ω)

≤ Ce−γt for all t ≥ 1.

All the constants θ, γ and C depend only on n, b,Ω and u0.

When n = 3, it was shown in Brézis-Nirenberg [12] that the situation for the
stationary equation (10) changes drastically from dimensions n ≥ 4. The positivity
of b is not sufficient to give a minimal energy solution of (10). Druet [24] showed
that the necessary and sufficient condition is the positivity of the regular part of the
Green’s function of −Δ − b at a diagonal point. There should be similar changes
for the parabolic equation (9) as well.

When b = 0, Sire-Wei-Zheng [38] recently proved the existence of some initial
data such that the solution of (9) blows up at finitely many points with an explicit
blow up rate as t → ∞, using the gluing method for parabolic equations in the spirit
of Cortázar-del Pino-Musso [18] and Dávila-del Pino-Wei [20]. This generalizes
and provides rigorous proof of a result of Galaktionov-King [27] for the radially
symmetric case, where the solution blows up at one point. A class of type II ancient
solutions to the Yamabe flow, which are rotationally symmetric and converge to
a tower of spheres as t → −∞, was constructed by Daskalopoulos-del Pino-Sesum
[19]. Bubble tower solutions for the energy critical heat equation were constructed
in del Pino-Musso-Wei [21]. It is conjectured in Sire-Wei-Zheng [38] that bubble
tower solutions to (9) with b = 0 also exist. Nevertheless, if it is the global case (Ω
replaced by R

n), then it has been proved by del Pino-Sáez [22] that the solution
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of (9) for b = 0 with fast decay initial data will converge to a nontrivial stationary
solution, which is in fact a standard bubble.

To prove Theorem 1.1, we will adapt the blow up analysis of Struwe [39], Bahri-
Coron [3], Schwetlick-Struwe [37] and Brendle [9]. See also Chen-Xu [16] and Mayer
[32] for similar analysis of scalar curvature flows. Here, we define a curvature type
quantityR, and derive its equation along the parabolic equation (9). Due to the lack
of information of R on the boundary ∂Ω, extra work is needed to obtain estimates
for R. Here the optimal boundary regularity proved in our previous paper [29] is
crucial. Part of the blow up analysis in this paper remains valid when b = 0 or
n = 3. The condition n ≥ 4 and b > 0 is used in the final step (i.e., Corollaries 4.6
and 4.17) to rule out bubbles, which is in the same spirit of Brézis-Nirenberg [12]
in obtaining compactness of minimizing sequences.

Our proof of the polynomial decay rates in Theorem 1.1 can be applied to prove
the polynomial rate of the convergence of the relative error for the Sobolev subcriti-
cal fast diffusion equation (5) in all smooth domains. We also provide an alternative
proof the exponential convergence result of Bonforte-Figalli [7] for Ω satisfying (6).

Theorem 1.2. Suppose p ∈ (1, n+2
n−2 ) if n ≥ 3, and p ∈ (1,∞) if n = 1, 2. Let u be

a classical nonnegative solution of (3) with extinction time T ∗ > 0. Let v be defined
by (4). Then there is a stationary solution v∞ of (5), and two positive constants θ
and C such that ∥∥∥∥v(·, t)v∞

− 1

∥∥∥∥
C2(Ω)

≤ Ct−θ for all t ≥ 1.

If Ω satisfies (6), then there exist two positive constants γ and C such that

∥∥∥∥v(·, t)v∞
− 1

∥∥∥∥
C2(Ω)

≤ Ce−γt for all t ≥ 1.

All the constants θ, γ and C depend only on n, p,Ω and u0.

All the rates θ and γ in both Theorem 1.1 and Theorem 1.2 are not explicit. As
mentioned earlier, the sharp exponential convergence rate of the relative error for
(5) under the condition (6) was obtained by Bonforte-Figalli [7] (see also Akagi [1]
for a different method). We do not pursuit the sharpness of γ in this paper.

We know from the work of Carlotto-Chodosh-Rubinstein [14] that there exists
a Yamabe flow on S

1(1/
√
n− 2) × S

n−1(1) such that it converges exactly at a
polynomial rate. Recently, Choi-McCann-Seis [17] proved that for the solutions of
the fast diffusion equation (5), the relative error either decays exponentially with
the sharp rate or else decays algebraically at a rate 1/t or slower.

This paper is organized as follows. Sections 2–5 deal with the critical equation
(9). We first obtain certain integral bounds for solutions of this critical equation
in Section 2. Sections 3 is for the possible concentration phenomenon for its solu-
tions. In Section 4, we use blow up analysis to rule out such possible concentration
phenomenon. Section 5 is devoted to the proof of the uniform boundedness and con-
vergence results in Theorem 1.1. In Section 6, we consider the subcritical equation
(5) and prove Theorem 1.2.
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2. Integral bounds

For an open set Ω, let H1
0 (Ω) be the closure of C∞

c (Ω) under the norm

‖u‖H1
0 (Ω) :=

(∫
Ω

|∇u|2 dx
)1/2

.

For convenience, we define

(12) ‖u‖ :=

(∫
Ω

(|∇u|2 − bu2) dx

)1/2

and

(13) 〈u, v〉 =
∫
Ω

(∇u∇v − buv) dx

be the associated inner product. Since(
1− b

λ1

) ∫
Ω

|∇u|2 dx ≤
∫
Ω

(|∇u|2 − bu2) dx

and we assumed b < λ1, by the Sobolev inequality, there exists a constant Kb > 0
such that

(14) ‖u‖
L

2n
n−2 (Ω)

≤ K
1/2
b ‖u‖ for any u ∈ H1

0 (Ω).

Recall that from [29], we know that the solution u(x, t) of (1) is smooth in

t ∈ (0, T ∗) for every x ∈ Ω, and ∂l
tu(·, t) ∈ C

3n−2
n−2 (Ω) for all l ≥ 0 and all t ∈ (0, T ∗).

Lemma 2.1. Let u be a solution of (1), and T ∗ be the extinction time of u. Then
for every 0 < t < T ∗,

1

C
(T ∗ − t)

n
2 ≤

∫
Ω

u(x, t)
2n

n−2 dx ≤ C(T ∗ − t)
n
2 ,

where C is a positive constant depending only on n, b,Ω and u0.

Proof. If b = 0, the lemma was proved by [5] (noting that by our regularity result
in [29], the regularity assumptions in [5] are satisfied, and thus the calculations in
[4] are justified). The same proof applies if b ∈ (0, λ1) by using (14). We sketch it
in the below for reader’s convenience.

Let

ξ(t) =

(∫
Ω

u(x, t)
2n

n−2 dx

) 2
n

and S(t) =
‖u(·, t)‖2

‖u(·, t)‖2
L

2n
n−2 (Ω)

.

Then
d

dt
ξ(t) = − 4

n+ 2
S(t) ≤ − 4

n+ 2
K−1

b ,

where we used (14) in the last inequality. Then the first inequality of this lemma
follows by integrating the above inequality from t to T ∗.

Making use of the equation (1) and the same arguments in [5], we have

d

dt
‖u(·, t)‖2 ≤ 0 and

d

dt
S(t) ≤ 0.

Hence, both ‖u(·, t)‖ and S(t) are non-increasing in t. Since

d

dt

∫
Ω

u(x, t)
2n

n−2 dx = − 2n

n+ 2
‖u(·, t)‖2,



1292 TIANLING JIN AND JINGANG XIONG

then by integrating the above inequality from t to T ∗ and using the monotonicity
of ‖u(·, t)‖ and S(t), we have∫

Ω

u(x, t)
2n

n−2 dx ≤ 2n

n+ 2
(T ∗ − t)‖u(·, t)‖2 ≤ 2n

n+ 2
(T ∗ − t)S(0)‖u(·, t)‖2

L
2n

n−2 (Ω)
.

This leads to the second inequality of this lemma. �

Let v be as in (8). By Lemma 2.1, we have

(15)
1

C
≤

∫
Ω

v(x, t)
2n

n−2 dx ≤ C

for all t > 0, where C is a positive constant depending only on n, b,Ω and u0. Define

(16) F (v(t)) =

∫
Ω

(
|∇v(x, t)|2 − bv(x, t)2 − n− 2

n
v(x, t)

2n
n−2

)
dx.

It follows that F (v(t)) is bounded from below for all t > 0. By the equation of v
and integrating by parts,

(17)
d

dt
F (v(t)) = −2

∫
Ω

(Δv+bv+v
n+2
n−2 )∂tv dx = −2(n+ 2)

n− 2

∫
Ω

v
4

n−2 |∂tv|2 dx ≤ 0.

Hence, F (v(t)) is non-increasing in t. Together with (15), we have ‖v(·, t)‖H1
0 (Ω) is

uniformly bounded. Moreover, there exists some constant F∞ such that

(18) lim
t→∞

F (v(t)) = F∞.

Define

(19) R = v−
n+2
n−2 (−Δv − bv)

and

(20) Mq(t) =

∫
Ω

|R − 1|qv 2n
n−2 dx, q ≥ 1.

In [29], we proved that R = 1− n+2
n−2

∂tv
v is C2 up to the boundary ∂Ω. However, all

the estimates there for solutions of (9) are only locally uniform in t ∈ (0,∞). We
shall prove some uniform estimates for all t ∈ [1,∞) and Mq(t) → 0 as t → ∞.

To do this, we will first use Moser’s iteration to obtain a uniform lower bound of
R as an intermediate step. So we need the following evolution equation of R and
integration by parts formula.

Lemma 2.2. Let g = v
4

n−2 gflat. Then

(i)

(21) ∂tv
2n

n−2 = − 2n

n+ 2
(R− 1)v

2n
n−2 .

(ii)

(22) ∂t(R− 1) =
n− 2

n+ 2
Δg(R− 1) +

4

n+ 2
(R− 1)2 +

4

n+ 2
(R− 1),

where Δg is the Laplace-Beltrami operator of g.
(iii) For any f ∈ H2(Ω) and h ∈ H1(Ω),

(23)

∫
Ω

hΔgf dvolg = −
∫
Ω

〈∇gf,∇gh〉g dvolg.
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Proof. The equation (21) follows immediately from (9) and (19). We also have
∂tv = n−2

n+2v(1−R).
By the definition of R, we have

∂t(R− 1) =
n+ 2

n− 2
v−

2n
n−2 ∂tv(Δ + b)v − v−

n+2
n−2 (Δ + b)∂tv

= v−
n+2
n−2 (1−R)(Δ + b)v − n− 2

n+ 2
v−

n+2
n−2 (Δ + b)(v(1−R))

= (R− 1)R− n− 2

n+ 2
v−

n+2
n−2 (Δ + b)(v(1−R)).

Let Lg = Δg− n−2
4(n−1)Rg be the conformal Laplacian of g, where Δg is the Laplace–

Beltrami operator of the metric g and Rg is the the scalar curvature of g. By the
conformal transformation law

Lg(v
−1ϕ) = v−

n+2
n−2Δϕ, ∀ϕ ∈ C2(Ω),

we have
n− 2

4(n− 1)
Rg = −Lg(1) = −v−

n+2
n−2Δv = R+ bv−

4
n−2

and

v−
n+2
n−2 (Δ + b)(v(1−R)) = Lg(1−R) + bv−

4
n−2 (1−R)

= Δg(1−R)− n− 2

4(n− 1)
Rg(1−R) + bv−

4
n−2 (1−R)

= Δg(1−R)−R(1−R).

Then, (22) follows.
Finally,∫
Ω

hΔgf dvolg =

∫
Ω

hv−
2n

n−2 ∂i(v
2n

n−2 v−
4

n−2 ∂if)v
2n

n−2 dx

=

∫
Ω

h∂i(v
2∂if) dx = −

∫
Ω

v2∂if∂ih dx = −
∫
Ω

〈∇gf,∇gh〉g dvolg,

where we used v = 0 on ∂Ω in the third equality. �

We have the following Sobolev inequality regarding the metric g = v
4

n−2 gflat:

Lemma 2.3. There holds(∫
Ω

|f | 2n
n−2 dvolg

)n−2
n

≤ Kb

∫
Ω

(|∇gf |2g +Rf2) dvolg

for any f ∈ H1(Ω), where Kb is the constant in (14).

Proof. Note that

|∇(fv)|2 = v2|∇f |2 + f2|∇v|2 + 2vf∇v · ∇f,∫
Ω

(f2|∇v|2 + 2v∇vf∇f) dx =

∫
Ω

(f2|∇v|2 + v∇v∇f2) dx

= −
∫
Ω

vf2Δv dx

=

∫
Ω

(Rf2v
2n

n−2 + bv2f2) dx.
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Hence,∫
Ω

(|∇gf |2g +Rf2) dvolg =

∫
Ω

(v2|∇f |2 +Rf2v
2n

n−2 ) dx =

∫
Ω

(|∇(fv)|2 − b(fv)2) dx.

Therefore, the lemma follows from (14). �

For any t0 ≥ 0 and T > 0, let

V 1(Ω× (t0, t0 + T )) = C0((t0, t0 + T );L2(Ω)) ∩ L2((t0, t0 + T );H1(Ω)),

equipped with the norm

‖f‖2V 1(Ω×(t0,t0+T )) = sup
t0<t<t0+T

∫
Ω

f(x, t)2 dvolg+

∫ t0+T

t0

∫
Ω

(|∇gf |2g+Rf2) dvolgdt.

We have the following parabolic version of Sobolev inequality.

Lemma 2.4. For any f ∈ V 1(Ω× (t0, t0 + T )), we have(∫ t0+T

t0

∫
Ω

|f |
2(n+2)

n dvolgdt

) n
n+2

≤ K
n

n+2

b ‖f‖2V 1(Ω×(t0,t0+T )).

Proof. By Hölder’s inequality and Lemma 2.3, we have∫
Ω

|f |
2(n+2)

n dvolg =

∫
Ω

|f |2|f | 4
n dvolg

≤
( ∫

Ω

|f | 2n
n−2 dvolg

)n−2
n

( ∫
Ω

|f |2 dvolg
) 2

n

≤ Kb

∫
Ω

(|∇gf |2g +Rf2) dvolg

( ∫
Ω

|f |2 dvolg
) 2

n

.

Hence, by Young’s inequality(∫ t0+T

t0

∫
Ω

|f |
2(n+2)

n dvolgdt

) n
n+2

≤ K
n

n+2

b

(∫
Ω

(|∇gf |2g +Rf2) dvolg

) n
n+2

(
sup

t0<t<t0+T

∫
Ω

f(x, t)2 dvolg

) 2
n+2

≤ K
n

n+2

b ‖f‖2V 1(Ω×(t0,t0+T )).

Therefore, the proof is completed. �

With the Sobolev inequality in Lemma 2.4, we will apply Moser’s iterations to
the equation (22) to obtain a uniform lower bound of R.

Lemma 2.5. For t ≥ 1, we have

R− 1 ≥ −C,

where C is a constant depending only on Ω, n, b and v0.

Proof. Let T > 2, 1
2 ≤ T2 < T1 ≤ 1, η(t) be a smooth cut-off function so that

η(t) = 0 for all t < T2, 0 ≤ η(t) ≤ 1 for t ∈ [T2, T1], η(t) = 1 for all t > T1, and
|η′(t)| ≤ 2

T1−T2
. Denote φ = (1−R)+. By (22), we have

∂t(1−R) =
n− 2

n+ 2
Δg(1−R)− 4

n+ 2
(1−R)2 +

4

n+ 2
(1−R).
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Let k ≥ n
2 −1 be a real number. Multiplying both sides of the inequality by η2φ1+k

and integrating by parts, we see that, for any 0 < s < T ,

1

2 + k

∫ s

0

∫
Ω

η2∂tφ
2+k dvolgdt+

4(n− 2)(k + 1)

(n+ 2)(k + 2)2

∫ s

0

∫
Ω

η2|∇gφ
k+2
2 |2g dvolgdt

≤ − 4

n+ 2

∫ s

0

∫
Ω

φ3+kη2 dvolgdt+
4

n+ 2

∫ s

0

∫
Ω

φ2+kη2 dvolgdt.

Note that using (21), we have

1

2 + k

∫ s

0

∫
Ω

η2∂tφ
2+k dvolgdt

=
1

2 + k

∫
Ω

φ2+kη2 dvolg

∣∣∣
t=s

− 1

2 + k

∫ s

0

∫
Ω

φ2+k

(
2η∂tη +

2n

n+ 2
(1−R)η2

)
dvolgdt

=
1

2 + k

∫
Ω

φ2+kη2 dvolg

∣∣∣
t=s

− 1

2 + k

∫ s

0

∫
Ω

(
2φ2+kη∂tη +

2n

n+ 2
φ3+kη2

)
dvolgdt.

Note that the term 2n
n+2 (1 − R)η2 in the above comes from the derivative of the

volume form dvolg in t. Since k ≥ n
2 − 1, 1

2+k
2n
n+2 < 4

n+2 . Furthermore,∫
Ω

Rφ2+kη2 dvolg = −
∫
Ω

(1−R)φ2+kη2 dvolg+

∫
Ω

φ2+kη2 dvolg ≤
∫
Ω

φ2+kη2 dvolg.

It follows that

‖ηφ
2+k
2 ‖2V 1(Ω×(0,T )) ≤ C(2 + k)

∫ T

0

∫
Ω

φ2+k(η2 + |∂tη|η) dvolgdt,

where C > 0 depends only on n. Making use of Lemma 2.4, we have for all
γ := k + 2 ≥ n+2

2 that(∫ T

T1

∫
Ω

φ
γ(n+2)

n dvolgdt

) n
γ(n+2)

≤
(

Cγ

T1 − T2

) 1
γ

(∫ T

T2

∫
Ω

φγ dvolgdt

) 1
γ

.

By the standard Moser’s iteration argument, we have

sup
Ω×[1,T ]

φ ≤ C(n,Kb)
(∫ T

1/2

∫
Ω

φ
n+2
2 dvolgdt

) 2
n+2

,

where C(n,Kb) > 0 depending only on n and Kb. Thus,

sup
Ω×[1,T ]

φ ≤ C(n,Kb)
( ∫ 1

1/2

∫
Ω

φ
n+2
2 dvolgdt

) 2
n+2

+ C(n,Kb)
(∫ T

1

∫
Ω

φ
n+2
2 dvolgdt

) 2
n+2

≤ C(n,Kb)‖R − 1‖L∞(Ω×(1/2,1)) + C(n,Kb)
(∫ T

1

∫
Ω

φ
n+2
2 dvolgdt

) 2
n+2

.
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By Young’s inequality, we have( ∫ T

1

∫
Ω

φ
n+2
2 dvolgdt

) 2
n+2 ≤ ( sup

Ω×[1,T ]

φ)
n−2
n+2

( ∫ T

1

∫
Ω

φ2 dvolgdt
) 2

n+2

≤ ε sup
Ω×[1,T ]

φ+ C(ε)
(∫ T

1

∫
Ω

φ2 dvolgdt
) 1

2

,

for any small constant ε. Therefore, by choosing a small ε, we have

(24) sup
Ω×[1,T ]

φ ≤ C(n,Kb)

{
‖R − 1‖L∞(Ω×(1/2,1)) +

(∫ T

1

M2 dt
) 1

2

}
.

By (17) and the definition of R, we have

d

dt
F (v(t)) = −2(n− 2)

n+ 2
M2(t).

It follows that

(25)

∫ ∞

0

M2(t) dt ≤
n+ 2

2(n− 2)
(F (v(0))− F∞) < ∞.

Moreover, it was proved in [29] that ‖R− 1‖L∞(Ω×(1/2,1)) ≤ C. Sending T → ∞ in
(24), we have

sup
Ω×[1,∞)

(1−R)+ ≤ C.

Therefore, the proof is completed. �

Using this uniform lower bound of R, we can derive some useful differential
inequalities for Mq defined in (20).

For q > 1, using Lemma 2.2, we have

dMq

dt
=

∫
Ω

q|R − 1|q−2(R− 1)
∂

∂t
(R− 1) dvolg −

∫
Ω

(R− 1)q
∂

∂t
v

2n
n−2 dx

= q
n− 2

n+ 2

∫
Ω

|R − 1|q−2(R− 1)Δg(R− 1) dvolg

+
4q

n+ 2

∫
Ω

|R − 1|q dvolg +
4

n+ 2
(q − n

2
)

∫
Ω

|R − 1|q(R− 1) dvolg.

Using Lemma 2.5, we have for t ≥ 1 that∣∣∣∣∫
Ω

|R − 1|q(R− 1) dvolg −
∫
Ω

|R − 1|q+1 dvolg

∣∣∣∣ = 2

∫
Ω

|R − 1|q(R− 1)− dvolg

≤ CMq.

Using Lemma 2.2, we have∫
Ω

|R − 1|q−2(R− 1)Δg(R− 1) dvolg = −4(q − 1)

q2

∫
Ω

|∇g|R − 1|
q
2 |2g dvolg ≤ 0.

Therefore, for q ≤ n
2 we have,

(26)
dMq

dt
+

4

n+ 2

(n

2
− q

)
Mq+1 ≤ CMq for t ≥ 1,

where C > 0 is a constant depending on q.
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For q ≥ n
2 , we first obtain from Lemma 2.3 that∫
Ω

|R − 1|q−2(R− 1)Δg(R− 1) dvolg

= −4(q − 1)

q2

∫
Ω

|∇g|R − 1|
q
2 |2g dvolg

≤ −βM
n−2
n

qn
n−2

+
4(q − 1)

q2

∫
Ω

R|R − 1|q dvolg

≤ −βM
n−2
n

qn
n−2

+
4(q − 1)

q2

∫
Ω

(R− 1)|R − 1|q dvolg +
4(q − 1)

q2
Mq,

where β > 0 is a constant depending on Kb and q. Then, we have

dMq

dt
+ βM

n−2
n

qn
n−2

≤ 4

n+ 2

(
q − n

2
+

(n− 2)(q − 1)

q

)
Mq+1 + CMq.

By the interpolation inequality and Young’s inequality we have

Mq+1 ≤ M
n−2
2q
qn

n−2
M

2(q+1)−n
2q

q ≤ εM
n−2
n

q(p+1)/2 + C(ε)M
2(q+1)−n

2q−n
q .

By choosing a small ε, we obtain

d

dt
Mq(t) + βM qn

n−2
(t)

n−2
n ≤ C

(
Mq(t) +Mq(t)

1+ 2
2q−n

)
for t ≥ 1(27)

for q > n
2 , where β and C are positive constants depending on q.

The differential inequalities (26) and (27) will be used recursively to prove the
decay of Mq for all q ≥ 1.

Proposition 2.6. For every 1 ≤ q < ∞, we have

lim
t→∞

Mq(t) = 0.

Proof. By Hölder’s inequality and (15), we only need to consider q ≥ 2.
The idea of the proof will go recursively as follows. Note that if the right hand

sides of (26) and (27) are integrable in [1,∞), then by integrating both sides, and

noticing that 4
n+2

(
n
2 − q

)
Mq+1 with q ≤ n/2 and βM qn

n−2
(t)

n−2
n are nonnegative

and thus can be dropped, we will have Mq(t) → 0 as t → ∞. Integrating again
including these two nonnegative terms will in return show that they are integrable.
This iteration shows the integrability and the limit of Mq+1 or M qn

n−2
from Mq. The

starting point of this iteration is q = 2, because of (25). This gives us a desired
sequence {qk} for which the proposition holds. The conclusion for all q is then
followed by Hölder’s inequality and (15). The details of the proof are given in the
below.

Let us assume n ≥ 4 first.

Case 1. 2 ≤ q ≤ n
2 .

Since M2 ∈ L1(0,∞), we can pick tj → ∞ such that M2(tj) → 0 as j → ∞. By
(26) we have

d

dt
M2(t) ≤ CM2(t).

Integrating the above inequality we have

M2(t) ≤ M2(tj) + C

∫ ∞

tj

M2(s) ds for t ≥ tj .
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Hence, limt→∞ M2(t) = 0. If 2 < q ≤ n
2 , (26) we have∫ ∞

1

M3(t) dt ≤ C
(∫ ∞

1

M2(t) dt+M2(1)
)
< ∞.

For any 2 < q ≤ min{3, n2 }, we have Mq(t) ≤ M2(t)+M3(t). Hence,
∫ ∞
1

Mq(t) dt <
∞. We can repeat the argument forM2 to show thatMq(t) → 0 as t → ∞. If 3 < n

2 ,

we can show that
∫ ∞
1

M4 < ∞ and Mq(t) → 0 as t → ∞ for all 3 < q ≤ min{4, n
2 }.

Repeating this argument in finite times, and using Hölder’s inequality with (15),
we then have Mq ∈ L1(1,∞) and Mq(t) → 0 as t → ∞ for all 2 ≤ q ≤ n

2 .

Case 2. q > max{2, n
2 }.

By (26) with q = n/2, we have

(28)

∫ ∞

1

M n2

2(n−2)

(t)
n−2
n dt < ∞.

Using (27) to have

d

dt
Mq(t) ≤ CMq(t)

n−2
n

(
Mq(t)

2
n +Mq(t)

2
n+ 2

2q−n

)
for t ≥ 1.

Hence,

H(Mq(t)) ≤ H(Mq(T )) + C

∫ ∞

T

M
n−2
n

q dt for 1 ≤ T < t < ∞

where

H(ρ) =

∫ ρ

0

1

s
2
n + s

2
n+ 2

2q−n

ds.

Let

q0 =
n2

2(n− 2)
, qk =

n

n− 2
qk−1, k = 1, 2, · · · .

Note that 2
n + 2

2q0−n = 1 and 2
n + 2

2qk−n < 1 for all k ≥ 1. Hence, starting with

(28) that

∫ ∞

1

Mq0(t)
n−2
n dt < ∞, using similar arguments to those in Case 1, we

can recursively prove in the order of k = 0, 1, 2, · · · that Mqk(t) → 0 as t → ∞,∫ ∞

1

(
Mqk(t)+Mqk(t)

1+ 2
2q−n

)
< ∞,

∫ ∞

1

Mqk+1
(t)

n−2
n dt < ∞, andMqk+1

(t) → 0 as

t → ∞. Hence, using Hölder’s inequality with (15), Mq(t) → 0 for any q ≥ n2

2(n−2) .

Finally, let us consider n = 3. By (27), we have

d

dt
M2(t) ≤ CM2(t)(1 +M2(t)

2).

Using (25), we can pick ti → ∞ such that M2(ti) → 0. Hence,

arctanM2(t) ≤ arctanM2(ti) + C

∫ ∞

ti

M2(t) dt.

It follows that limt→∞ arctanM2(t) = 0 and thus limt→∞ M2(t) = 0. Hence,∫ ∞

1

M6(t)
1
3 dt < ∞. Since 6 > q0 when n = 3, we can use the argument of

those in Case 2 to show that Mq(t) → 0 for all q ≥ 6. By Hölder inequality, we
conclude that Mq(t) → 0 for all q ≥ 1. �
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Corollary 2.7. We have

lim
t→∞

‖R − 1‖L∞(Ω) = 0.

Proof. Consider the equation of 1−R as in the proof of Lemma 2.5:

∂t(1−R) =
n− 2

n+ 2
Δg(1−R) + c(x, t)(1−R) +

4

n+ 2
(1−R),

where c(x, t) = − 4
n+2 (1 − R). This is a linear equation of 1 − R. We know from

the proof of Proposition 2.6 that there exists a sufficiently large q > 1 such that∫ ∞

1

Mq(t) dt < ∞.

This means that c(x, t) has very high integrability against dvolg in space-time.
Then we can apply the Moser’s iteration as in the proof of Lemma 2.5 to obtain

‖R − 1‖L∞(Ω×(T,∞)) ≤ C

(∫ ∞

T−1

Mq(t) dt

) 1
q

for all large T . Hence, the corollary follows. �

3. Concentration compactness

The solution of (9) may blow up as t → ∞ because of the critical exponent n+2
n−2 .

Nevertheless, we also know how the solutions may blow up.

Proposition 3.1. Let v be a solution of (9). For any tν → ∞, ν → ∞, vν =
v(·, tν) is a Palais-Smale sequence of the functional F given by (16) in H1

0 (Ω).

Proof. We have already proved that vν is bounded in H1
0 (Ω) and F (vν) → F∞ as

ν → ∞. It remains to show the derivative of F at vν tends to zero. Indeed, for any
ϕ ∈ H1

0 (Ω), we have

〈dF (vν), ϕ〉 = 2

∫
Ω

(−Δvν − bvν − v
n+2
n−2
ν )ϕ dx

= 2

∫
Ω

(R− 1)v
n+2
n−2
ν ϕ dx

≤ 2

(∫
Ω

|R − 1| 2n
n+2 v

2n
n−2
ν dx

)n+2
2n

(∫
Ω

|ϕ| 2n
n−2 dx

)n−2
2n

≤ C(n)M 2n
n+2

(tν)
n+2
2n ‖ϕ‖H1

0 (Ω),

where we used Hölder’s inequality and the Sobolev inequality. It follows from
Proposition 2.6 that dF (vν) strongly converges to 0 in H−1(Ω).

Therefore, the proof is completed. �

Proposition 3.2 shows that the blow up points, if exist, will stay uniformly away
from the boundary ∂Ω.

Proposition 3.2. There exist two positive constants δ0 and C, depending on v(·, 1),
such that for all x ∈ Ω with d(x) := dist(x, ∂Ω) < δ0 and t ≥ 1,

v(x, t) ≤ Cd(x).
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Proof. We are going to use the moving plane method as Han [28] did for the elliptic
case. By the Hopf Lemma, there exist ρ0 > 0 and α0 > 0 such that v(z − ρe, 1) is
nondecreasing for 0 < ρ < ρ0, where z ∈ ∂Ω, e ∈ R

n with |e| = 1, and (e, ν(z)) ≥ α0

with ν(z) the unit out normal to ∂Ω at z. If Ω is strictly convex, using the moving
plane method we can conclude that v(z − ρe, t) is nondecreasing for 0 < ρ < ρ0,
and for all t ≥ 1. Therefore, we can find γ > 0 and δ > 0 such that for any fixed
t ≥ 1, and any x ∈ Ω satisfying 0 < d(x) < δ, there exists a measurable set Γx

with (i) meas(Γx) ≥ γ, (ii) Γx ⊂ {z : d(z) ≥ δ/2}, and (iii) v(y, t) ≥ v(x, t) for any
y ∈ Γx. Actually, Γx can be taken to a piece of cone with vertex at x. It follows
that for any x ∈ {z : 0 < d(z) < δ}, we have

v(x, t) ≤ 1

meas(Γx)

∫
Γx

v(y, t) dy ≤ C

γ
,

where we used (15) and Hölder’s inequality. Namely, v(x, t) ≤ C for (x, t) ∈ {z :
0 < d(z) < δ}×[1,∞). By the proof of Theorem 4.1 in [23], we have v(x, t) ≤ Cd(x)
for (x, t) ∈ {z : 0 < d(z) < δ} × [1,∞).

For a general domain, one can first use a Kelvin transform near each boundary
point, and then apply the moving plane method. Pick any point P ∈ ∂Ω for
instance. Since we assume the boundary of the domain Ω is smooth, we may assume,
without loss of generality, that the unit ball B1 contacts P from the exterior of Ω
(i.e., B1 ⊂ Ωc and P ∈ ∂B1). Let w(x, t) be the Kelvin transform of v:

w(x, t) = |x|2−nv

(
x

|x|2 , t
)
.

Then {
∂tw

n+2
n−2 = Δw + b|x|−4w + w

n+2
n−2 in ΩP × (0,∞)

w = 0 on ∂ΩP × (0,∞),

where ΩP is the image of Ω under the Kelvin transform. Since b ≥ 0, b|x|−4 is
nondecreasing along the −P direction. Applying the moving plane method we have
that w(·, t) is nondecreasing along the −P direction in a neighborhood (uniform in

t) of P . Since the L
2n

n−2 norm is invariant under the Kelvin transform, using the
above argument in the case of strictly convex domains, we conclude that w(·, t) is
bounded in a neighborhood of P independent of t and so is v(·, t). It follows that
v(x, t) ≤ Cd(x) for (x, t) ∈ {z : 0 < d(z) < δ} × [1,∞) for some δ > 0.

Therefore, the proof is completed. �

For a ∈ R
n and λ ∈ (0,∞), let

(29) ξ̄a,λ(x) = c0

(
λ

1 + λ2|x− a|2

)n−2
2

with c0 = (n(n− 2))
n−2
4 . Then we have

−Δξ̄a,λ = ξ̄
n+2
n−2

a,λ in R
n

and ∫
Rn

ξ̄
2n

n−2

a,λ = Y (Sn)
n
2 ,
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where Sn is the standard unit sphere in Rn+1,

Y (Sn) =
n(n− 2)

4
|Sn| 2

n = inf
u∈H1(Sn)

∫
Sn

|∇u|2 + n(n−2)
4 u2dvolgSn

(
∫
Sn

|u| 2n
n−2 volgSn )

n−2
n

and |Sn| is the area of Sn. Define

(30) ξa,λ(x) = ξ̄a,λ(x)− ha,λ(x),

where Δha,λ(x) = 0 in Ω and ha,λ = ξ̄a,λ on ∂Ω. By the maximum principle,

ξa,λ > 0 in Ω and ha,λ > 0 in Ω.

Proposition 3.3. Let v be a solution of (9). For any tν → ∞, ν → ∞, after
passing to a subsequence if necessary, vν weakly converges to v∞ in H1

0 (Ω) and we
can find a nonnegative integer m and a sequence of m-tuplets (x∗

k,ν , λ
∗
k,ν)1≤k≤m,

(x∗
k,ν , λ

∗
k,ν) ∈ Ω× (0,∞), with the following properities.

(1) The function v∞ ∈ H1
0 (Ω) satisfies the equation −Δv∞ − bv∞ = v

n+2
n−2
∞ in

Ω.
(2) There hold, for all i �= j,

λ∗
i,ν

λ∗
j,ν

+
λ∗
j,ν

λ∗
i,ν

+ λ∗
i,νλ

∗
j,ν |x∗

i,ν − x∗
j,ν |2 → ∞,

and for all k, d(x∗
k,ν) ≥ δ0/2 with the constant δ0 > 0 in Proposition 3.2,

λ∗
k,νd(x

∗
k,ν) → ∞

as ν → ∞.
(3) We have ∥∥∥∥∥vν − v∞ −

m∑
k=1

ξx∗
k,ν ,λ

∗
k,ν

∥∥∥∥∥ → 0

as ν → ∞.
(4) We have

F (vν) = F (v∞) +
2m

n
Y (Sn)n/2 + o(1),

where o(1) → 0 as ν → ∞.

Proof. This proposition follows from Propositions 3.1, and the compactness result
of Brézis-Coron [10] and Struwe [39]. More precisely, the proposition except item 2
follows from Proposition 2.1 in Struwe [39]. By Proposition 3.2, d(x∗

k,ν) ≥ δ0/2 with

the same δ0/2 > 0. Namely, the energy cannot concentrate at a fixed neighborhood
of the boundary. By Theorem 2 in Brézis-Coron [10] or Proposition 4 in Bahri-
Coron [3], we have, for all i �= j,

λ∗
i,ν

λ∗
j,ν

+
λ∗
j,ν

λ∗
i,ν

+ λ∗
i,νλ

∗
j,ν |x∗

i,ν − x∗
j,ν |2 → ∞,

and for all k and λ∗
k,ν → ∞ as ν → ∞. This is item 2. �

A similar result for the harmonic map heat flow was proved by Qing-Tian [34].
The correction term ha,λ in (30) is small and can be controlled.
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Lemma 3.4. Let ξa,λ and ha,λ be defined as in (30). Suppose a ∈ Ω with d(a) >
δ > 0 and λ > 1. Then we have, for x ∈ Ω,

|ha,λ(x)|+ |∇aha,λ(x)|+ λ|∇λha,λ(x)| ≤ C(n,Ω, δ)λ−n−2
2 ,

∇aξa,λ(x) = (n− 2)ξa,λ
λ2(x− a)

1 + λ2|x− a|2 +O(λ−n−2
2 ),

and

∇λξa,λ(x) =
(n− 2)

2λ
ξa,λ

1− λ2|x− a|2
1 + λ2|x− a|2 +O(λ−n

2 ),

where |O(λ−n−2
2 )| ≤ Cλ−n−2

2 for some C depending only on n,Ω and δ.

Proof. Since Δha,λ(x) = 0 in Ω and ha,λ = ξ̄a,λ on ∂Ω, the estimate of ha,λ follows
from the Poisson formula for the Laplace equation. Then,

∇aξa,λ(x) = ∇aξ̄a,λ(x)−∇aha,λ

= (n− 2)ξ̄a,λ
λ2(x− a)

1 + λ2|x− a|2 +O(λ−n−2
2 )

= (n− 2)ξa,λ
λ2(x− a)

1 + λ2|x− a|2 +O(λ−n−2
2 ).

The estimate ∇λξa,λ(x) can be obtained similarly. �

4. Refined blow up analysis

We continue from Proposition 3.3. By the strong maximum principle, the non-
negative limit v∞ either is positive in Ω or identically equals to zero. We will treat
these two cases separably in two subsections. We will adapt the refined blow up
analysis in Brendle [9] to the equation (9).

4.1. The case v∞ ≡ 0. First, we shall project vν to anm(n+2)-dimensional surface
in H1

0 (Ω) generated by m-bubbles. For every ν, let Aν be the closed set of all m-

tuplets (xk, λk, αk)1≤k≤m satisfying (xk, λk, αk) ∈ B 1
λ∗
k,ν

(x∗
k,ν)×[

λ∗
k,ν

2 ,
3λ∗

k,ν

2 ]×[ 12 ,
3
2 ].

Choose an m-tuplet (xk,ν , λk,ν , αk,ν)1≤k≤m ∈ Aν such that

(31)

∥∥∥∥∥vν −
m∑

k=1

αk,νξxk,ν ,λk,ν

∥∥∥∥∥ = inf
(xk,λk,αk)1≤k≤m∈Aν

∥∥∥∥∥vν −
m∑

k=1

αkξxk,λk

∥∥∥∥∥ .

By Proposition 3.3, Proposition 3.2 and the definition of (xk,ν , λk,ν , αk,ν)1≤k≤m,
we have, for all i �= j,

(32)
λi,ν

λj,ν
+

λj,ν

λi,ν
+ λi,νλj,ν |xi,ν − xj,ν |2 → ∞,

and for all k

(33) λk,νd(xk,ν) → ∞
as ν → ∞. In addition, d(xk,ν) > δ0/2 with same δ0 in Proposition 3.2, and

(34)

∥∥∥∥∥vν −
m∑

k=1

αkξxk,ν ,λk,ν

∥∥∥∥∥ → 0

as ν → ∞.
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By the triangle inequality,∥∥∥∥∥
m∑

k=1

αkξxk,ν ,λk,ν
−

m∑
k=1

ξx∗
k,ν ,λ

∗
k,ν

∥∥∥∥∥
≤

∥∥∥∥∥vν −
m∑

k=1

αkξxk,ν ,λk,ν

∥∥∥∥∥ +

∥∥∥∥∥vν −
m∑

k=1

ξx∗
k,ν ,λ

∗
k,ν

∥∥∥∥∥ = o(1).

It follows that, for all 1 ≤ k ≤ m,

(35) |xk,ν − x∗
k,ν | = o(1)

1

λ∗
k,ν

,
λk,ν

λ∗
k,ν

= 1 + o(1), αk,ν = 1 + o(1).

In particular, (xk,ν , λk,ν , αk,ν)1≤k≤m is an interior point of Aν .
In the sequel, we assume

(36) λ1,ν ≥ λ2,ν ≥ · · · ≥ λm,ν .

Let

(37) Uν =

m∑
k=1

αk,νξxk,ν ,λk,ν
, wν = vν − Uν .

Next, we shall estimate the orthogonal part wν of the above projection.

Lemma 4.1. We have for 1 ≤ k ≤ m,∣∣∣ ∫
Ω

ξ
n+2
n−2

xk,ν ,λk,ν
wν dx

∣∣∣ + ∣∣∣ ∫
Ω

ξ
n+2
n−2

xk,ν ,λk,ν

1− λ2|x− xk,ν |2
1 + λ2|x− xk,ν |2

wν dx
∣∣∣

+
∣∣∣ ∫

Ω

ξ
n+2
n−2

xk,ν ,λk,ν

λ2(x− xk,ν)

1 + λ2|x− xk,ν |2
wν dx

∣∣∣ ≤ o(1)
( ∫

Ω

|wν |
2n

n−2 dx
)n−2

2n

.

Proof. By the finite dimensional variational problem (31) and (35), taking deriva-
tives in Aν , we have∫

Ω

[
∇(∇a,λξxk,ν ,λk,ν

)∇wν − b∇a,λξxk,ν ,λk,ν
wν

]
dx = 0

and ∫
Ω

[
∇ξxk,ν ,λk,ν

∇wν − bξxk,ν ,λk,ν
wν

]
dx = 0,

where ∇a,λξxk,ν ,λk,ν
= ∇a,λξa,λ

∣∣∣
(a,λ)=(xk,ν ,λk,ν)

. Integrating by parts, using the

equation of ξ̄a,λ, Hölder’s inequality and Lemma 3.4, the lemma follows. �

Note that the bubbles are non-degenerate, since we have the following well known
lemma (see (3.14) in Rey [33]).

Lemma 4.2. Let ξ̄a,λ be defined in (29). Then there exists a constant c1 > 0
depending only on n such that

(1− c1)

∫
Rn

|∇ϕ|2 ≥ n+ 2

n− 2

∫
Rn

ξ̄
4

n−2

0,1 ϕ2

for any ϕ ∈ H1
0 (R

n) satisfying∫
Rn

ξ̄
4

n−2

0,1 (∇a,λξ̄0,1)ϕ dx = 0.
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We have the following non-degeneracy estimates of the second variation of F for
wν .

Lemma 4.3. For large ν, we have

n+ 2

n− 2

∫
Ω

m∑
k=1

ξ
4

n−2

xk,ν ,λk,ν
w2

ν ≤ (1− c)

∫
Ω

(|∇wν |2 − bw2
ν) dx,

where c > 0 is independent of ν.

Proof. We assume wν is not zero, otherwise there is nothing to prove. Define
w̃ν = wν

‖wν‖ . Suppose the lemma is not true. Then we can find a subsequence of

{w̃ν} (still denoted by {w̃ν}) satisfying

(38) lim
ν→∞

n+ 2

n− 2

∫
Ω

m∑
k=1

ξ
4

n−2

xk,ν ,λk,ν
w̃2

ν ≥ 1.

By (14),

(39)

∫
Ω

|w̃ν |
2n

n−2 ≤ K
n

n−2

b ‖w̃ν‖ = K
n

n−2

b .

By (32) and (36), we can find Rν → ∞, Rνλ
−1
j,ν → 0 for all 1 ≤ j ≤ m, and

(40)
λi,ν

Rν
(λ−1

j,ν + |xi,ν − xj,ν |) → ∞

for all i < j. Set

Ωj,ν = BRνλ
−1
j,ν

(xj,ν) \
j−1⋃
i=1

BRνλ
−1
i,ν
(xi,ν).

By (38) and ‖w̃ν‖ = 1, we can find 1 ≤ j ≤ m such that

lim
ν→∞

∫
Ω

ξ
4

n−2

xj,ν ,λj,ν
w̃2

ν > 0

and

lim
ν→∞

∫
Ωj,ν

(|∇w̃ν |2 − bw̃2
ν) ≤ lim

ν→∞

n+ 2

n− 2

∫
Ω

ξ
4

n−2

xj,ν ,λj,ν
w̃2

ν .

Let ŵν(x) = λ
−n−2

2
j,ν w̃ν(xj,ν + λ−1

j,νx). Under this scaling, by using (40), we know

that either BRνλ
−1
j,ν

(xj,ν) will be disjoint with
⋃j−1

i=1 BRνλ
−1
i,ν
(xi,ν) or BRνλ

−1
i,ν
(xi,ν)

will shrink to a point for every 1 ≤ i ≤ j − 1. By passing to a weak limit in
H1

loc(R
n), and using the above two inequalities and Lemma 4.1, we then obtain a

contradiction to Lemma 4.2.
Therefore, Lemma 4.3 is proved. �

Corollary 4.4. For large ν, we have

n+ 2

n− 2

∫
Ω

U
4

n−2
ν w2

ν ≤ (1− c)

∫
Ω

(|∇wν |2 − bw2
ν) dx,

where c > 0 is independent of ν.
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Proof. It follows from Lemma 4.3, Hölder’s inequality, the Sobolev inequality (14)
and the fact that ∫

Ω

∣∣∣U 4
n−2
ν −

m∑
k=1

ξ
4

n−2

xk,ν ,λk,ν

∣∣∣n
2

= o(1).

�

Now we can have an expansion of the Hamitonian F defined in (16).

Proposition 4.5. When n ≥ 4 and ν is sufficiently large, we have

F (Uν) ≤
m∑

k=1

F (ξxk,ν ,λk,ν
) + o(1)

m∑
k=1

∫
Ω

ξ2xk,ν ,λk,ν
+ C

m∑
k=1

λ2−n
k,ν .

Proof. We shall need the following inequality

(41)

(
m∑

k=1

ak

) 2n
n−2

≥
m∑

k=1

a
2n

n−2

k +
2n

n− 2

∑
k<l

a
n+2
n−2

k al+ cn,m
∑
k<l

(ak ∨al)
4

n−2 (ak ∧al)
2

for any a1, . . . , am ≥ 0, where cn,m > 0 is a constant, and ak ∨ al = max(ak, al)
and ak ∧ al = min(ak, al). This inequality can be proved using Lemma A.1 and
induction.

Using the inequality (41), we have∫
Ω

(|∇Uν |2 − bU2
ν )−

n− 2

n

∫
Ω

U
2n

n−2
ν

≤
∑
k

α2
k,ν

∫
Ω

(|∇ξxk,ν ,λk,ν
|2 − bξ2xk,ν ,λk,ν

)−
∑
k

α
2n

n−2

k,ν

n− 2

n

∫
Ω

ξ
2n

n−2

xk,ν ,λk,ν

+ 2
∑
i<j

αj,ν

[
αi,ν

∫
Ω

(∇ξxi,ν ,λi,ν
∇ξxj,ν ,λj,ν

− bξxi,ν ,λi,ν
ξxj,ν ,λj,ν

)(42)

− α
n+2
n−2

i,ν

∫
Ω

ξ
n+2
n−2

xi,ν ,λi,ν
ξxj,ν ,λj,ν

]
− cn,m

∑
i<j

∫
Ω

(ξxi,ν ,λi,ν
∨ ξxj,ν ,λj,ν

)
4

n−2 (ξxi,ν ,λi,ν
∧ ξxj,ν ,λj,ν

)2.

By the equation of ξ̄xk,ν ,λk,ν
and the definition of ξxk,ν ,λk,ν

, we have

α2
k,ν

∫
Ω

(|∇ξxk,ν ,λk,ν
|2 − bξ2xk,ν ,λk,ν

)− α
2n

n−2

k,ν

n− 2

n

∫
Ω

ξ
2n

n−2

xk,ν ,λk,ν

≤ α2
k,ν

∫
Rn

|∇ξ̄xk,ν ,λk,ν
|2 − α

2n
n−2

k,ν

n− 2

n

∫
Rn

ξ̄
2n

n−2

xk,ν ,λk,ν
− bα2

k,ν

∫
Ω

ξ2xk,ν ,λk,ν
+ Cλ2−n

k,ν

≤
∫
Rn

|∇ξ̄xk,ν ,λk,ν
|2 − n− 2

n

∫
Rn

ξ̄
2n

n−2

xk,ν ,λk,ν
− 4

n− 2
(αk,ν − 1)2Y (Sn)

n
2

− bα2
k,ν

∫
Ω

ξ2xk,ν ,λk,ν
+ Cλ2−n

k,ν

≤ F (ξxk,ν ,λk,ν
)− 4

n− 2
(αk,ν − 1)2Y (Sn)

n
2 + o(1)

∫
Ω

ξ2xk,ν ,λk,ν
+ Cλ2−n

k,ν ,

(43)
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where we used αk,ν = 1 + o(1), α2
k,ν − n−2

n α
2n

n−2

k,ν ≤ 2
n − 4

n−2 (αk,ν − 1)2 and∫
Rn

|∇ξ̄xk,ν ,λk,ν
|2 =

∫
Rn

ξ̄
2n

n−2

xk,ν ,λk,ν
= Y (Sn)

n
2 .

In addition,

αi,ν

∫
Ω

(∇ξxi,ν ,λi,ν
∇ξxj,ν ,λj,ν

− bξxi,ν ,λi,ν
ξxj,ν ,λj,ν

)− α
n+2
n−2

i,ν

∫
Ω

ξ
n+2
n−2

xi,ν ,λi,ν
ξxj,ν ,λj,ν

= αi,ν

∫
Ω

(−Δξxi,ν ,λi,ν
− bξxi,ν ,λi,ν

− α
4

n−2

i,ν ξ
n+2
n−2

xi,ν ,λi,ν
)ξxj,ν ,λj,ν

≤ C|αi,ν − 1|
∫
Ω

ξ
n+2
n−2

xi,ν ,λi,ν
ξxj,ν ,λj,ν

+

∫
Ω

(
ξ̄

n+2
n−2

xi,ν ,λi,ν
− ξ

n+2
n−2

xi,ν ,λi,ν

)
ξxj,ν ,λj,ν

≤ C|αi,ν − 1|
∫
Ω

ξ
n+2
n−2

xi,ν ,λi,ν
ξxj,ν ,λj,ν

+O(λ2−n
i,ν + λ2−n

j,ν )

≤ 2

n− 2
(αk,ν − 1)2Y (Sn)

n
2 + C

( ∫
Ω

ξ
n+2
n−2

xi,ν ,λi,ν
ξxj,ν ,λj,ν

)2

+O(λ2−n
i,ν + λ2−n

j,ν ),

(44)

where C > 0 is independent of ν, and in the second inequality we used∫
Ω

(
ξ̄

n+2
n−2

xi,ν ,λi,ν
− ξ

n+2
n−2

xi,ν ,λi,ν

)
ξxj,ν ,λj,ν

≤ C

∫
Ω

ξ̄
4

n−2

xi,ν ,λi,ν
|hxi,ν ,λi,ν

|ξ̄xj,ν ,λj,ν

≤ Cλ
2−n
2

i,ν

(∫
Ω

ξ̄
n+2
n−2

xi,ν ,λi,ν

) 4
n+2

(∫
Ω

ξ̄
n+2
n−2

xj,ν ,λj,ν

)n−2
n+2

≤ Cλ
2−n
2

i,ν λ
2−n
2

4
n+2

i,ν λ
2−n
2

n−2
n+2

j,ν

≤ Cλ
2−n
2

i,ν (λ
2−n
2

i,ν + λ
2−n
2

j,ν )

≤ C(λ2−n
i,ν + λ2−n

j,ν ).

Combining (42), (43) and (44), we have

F (Uν) ≤
m∑

k=1

F (ξxk,ν ,λk,ν
) + o(1)

m∑
k=1

∫
Ω

ξ2xk,ν ,λk,ν
+ C

m∑
k=1

λ2−n
k,ν

+
∑
i<j

[
C

(∫
Ω

ξ
n+2
n−2

xi,ν ,λi,ν
ξxj,ν ,λj,ν

)2

− cn,m

∫
Ω

(ξxi,ν ,λi,ν
∨ ξxj,ν ,λj,ν

)
4

n−2 (ξxi,ν ,λi,ν
∧ ξxj,ν ,λj,ν

)2
]
.

Meanwhile, we have

C
(∫

Ω

ξ
n+2
n−2

xi,ν ,λi,ν
ξxj,ν ,λj,ν

)2

− cn,m

∫
Ω

(ξxi,ν ,λi,ν
∨ ξxj,ν ,λj,ν

)
4

n−2 (ξxi,ν ,λi,ν
∧ ξxj,ν ,λj,ν

)2

≤ C
( ∫

Rn

ξ̄
n+2
n−2

xi,ν ,λi,ν
ξ̄xj,ν ,λj,ν

)2

− cn,m

∫
Rn

(ξ̄xi,ν ,λi,ν
∨ ξ̄xj,ν ,λj,ν

)
4

n−2 (ξ̄xi,ν ,λi,ν
∧ ξ̄xj,ν ,λj,ν

)2

+ C(λ2−n
i,ν + λ2−n

j,ν )

≤ C(λ2−n
i,ν + λ2−n

j,ν ) for all large ν,
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where we used (78) in the last inequality.
Therefore, the proof is completed. �

Corollary 4.6. If n ≥ 4 and b > 0 satisfying (2), we have, for large ν,

F (Uν) ≤
2m

n
Y (Sn)

n
2 .

Proof. By Proposition 3.2 and Lemma 3.4,

F (ξxk,ν ,λk,ν
) =

∫
Ω

(
|∇ξxk,ν ,λk,ν

|2 − n− 2

n
ξ

2n
n−2

xk,ν ,λk,ν

)
dx− b

∫
Ω

ξ2xk,ν ,λk,ν
dx

≤ 2

n
Y (Sn)

n
2 + Cλ2−n

k,ν − b

∫
Ω

ξ2xk,ν ,λk,ν
dx,

where C > 0 is independent of ν. Note that∫
Ω

ξ2xj,ν ,λj,ν
≥

{
1
Cλ

− 4
n−2

j,ν , if n �= 4,
1
Cλ−2

j,ν lnλj,ν , if n = 4.

Hence, if n ≥ 4 and b > 0, for any large constant N we can find jN > 0 such that for
all j ≥ jN there holds b

∫
Ω
ξ2xj,ν ,λj,ν

≥ Nλ2−n
j,ν . The corollary follows immediately

from Proposition 4.5. �

4.2. The case v∞ > 0. In this case, we shall also project vν to a finite-dimensional
surface in H1

0 (Ω) generated by v∞ and m-bubbles. In order to understand the
new contribution from v∞, we need to perform spectral analysis of the linearized
operator at v∞ as Brendle [9] did for the Yamabe flow on compact manifolds. Our
current H1

0 (Ω) setting is more close to that in Section 2.1 of Bonforte-Figalli [7].
Indeed, the analysis of [7] applies here with little change and the election of L below
is the same as kp in [7].

Let L2(Ω) :=
{
f :

∫
Ω
f2v

4
n−2
∞ < ∞

}
be the Hilbert space with the inner product

〈f, g〉 =
∫
Ω
fgv

4
n−2
∞ dx. Then the operator

f �−→
[
v
− 4

n−2
∞ (−Δ− b)

]−1

f

is a bounded linear compact symmetric operator mapping L2(Ω) into itself. Using
the spectral theorem, there exists a sequence of H1

0 (Ω) functions {φl : l ∈ N} and a
sequence of positive real numbers {μl : l ∈ N} such that 0 < μ1 < μ2 ≤ μ3 ≤ · · · →
∞,

−Δφl − bφl = μlv
4

n−2
∞ φl in Ω, φl = 0 on ∂Ω,

and {φl : l ∈ N} forms an orthonormal basis of L2(Ω). In particular,∫
Ω

v
4

n−2
∞ φiφj =

{
1 for i = j,

0 for i �= j.

By the regularity theory of linear elliptic equations, φl ∈ C2+ 4
n−2 (Ω̄) ∩ C∞(Ω) for

every l. By the equation of v∞ and the positivity of v∞, we know that μ1 = 1 and

φ1 = v∞(
∫
Ω
v

2n
n−2
∞ )−1/2. It is easy to check that { 1√

μl
φl} is also an orthonormal

basis of H1
0 (Ω) with respect to the inner product (13).
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Let L be the largest number such that

μl ≤
n+ 2

n− 2
for all l ≤ L.

For f ∈ Lp(Ω), p ≥ 1, we denote by Π the projection operator

Πf = f −
L∑

i=1

(∫
Ω

fφi dx

)
v

4
n−2
∞ φi.

It is clear that Π(Lp(Ω)) = {f ∈ Lp(Rn) :
∫
Ω
fφi = 0, i = 1, 2, · · · , L}. Hence,

Π(Lp(Ω)) is a closed subspace of Lp(Ω), and thus, is a Banach space with the
inherited Lp norm.

We have several estimates regarding this projection.

Lemma 4.7. For every 1 ≤ p < ∞, we can find a constant C depending only on
n, b,Ω, p and v∞ such that

‖f‖Lp(Ω) ≤ C
∥∥∥Δf + bf +

n+ 2

n− 2
v

4
n−2
∞ f

∥∥∥
Lp(Ω)

+ C sup
1≤l≤L

∣∣∣ ∫
Ω

v
4

n−2
∞ φlf

∣∣∣
for all f ∈ W 2,p(Ω) ∩W 1,p

0 (Ω).

Proof. Suppose that this is not true. Then there exists a sequence of functions
fk ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) such that ‖fk‖Lp(Ω) = 1 for all k, and

lim
k→∞

∥∥∥Δfk + bfk +
n+ 2

n− 2
v

4
n−2
∞ fk

∥∥∥
Lp(Ω)

+ lim
k→∞

sup
1≤l≤L

∣∣∣ ∫
Ω

v
4

n−2
∞ φlfk

∣∣∣ = 0.

If p > 1, then by the W 2,p estimates, we have ‖fk‖W 2,p(Ω) ≤ C. If p = 1, by the
estimates of Brézis-Strauss [13], ‖fk‖W 1,q(Ω) ≤ C for some q > 1. Therefore, by

the compactness, we obtain an f such that ‖f‖Lp(Ω) = 1,
∫
Ω
v

4
n−2
∞ φlfk = 0 for all

1 ≤ l ≤ L, and

Δf + bf +
n+ 2

n− 2
v

4
n−2
∞ f = 0

in the distribution sense. Multiplying φl and integrating by parts, we have(
μl −

n+ 2

n− 2

) ∫
Ω

v
4

n−2
∞ φlfk = 0.

Hence,
∫
Ω
v

4
n−2
∞ φlfk = 0 for all l > L. Meanwhile, from the elliptic regularity, we

know that f ∈ L∞(Ω). Hence, f ∈ L2(Ω), and thus, f ≡ 0, which is a contradiction.
�

Lemma 4.8. There exists a constant C depending only on n, b,Ω, p and v∞ such
that

(i)

‖f‖
L

n+2
n−2 (Ω)

≤ C
∥∥∥Π(Δf + bf +

n+ 2

n− 2
v

4
n−2
∞ f)

∥∥∥
L

n(n+2)

n2+4 (Ω)
+ C sup

1≤l≤L

∣∣∣ ∫
Ω

v
4

n−2
∞ φlf

∣∣∣
for all f ∈ W

2,n(n+2)

n2+4 (Ω) ∩W
1,

n(n+2)

n2+4

0 (Ω).
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(ii)

‖f‖L1(Ω) ≤ C
∥∥∥Π(Δf + bf +

n+ 2

n− 2
v

4
n−2
∞ f)

∥∥∥
L1(Ω)

+ C sup
1≤l≤L

∣∣∣ ∫
Ω

v
4

n−2
∞ φlf

∣∣∣
for all f ∈ W 2,1(Ω) ∩W 1,1

0 (Ω).

Proof. Given Lemma 4.7, the proof is the same as that of Lemma 6.3 in [9]. We
include it for reader’s convenience. By the definition of Π, we have for f ∈ W 2,p(Ω)∩
W 1,p

0 (Ω) that

Δf + bf +
n+ 2

n− 2
v

4
n−2
∞ f

= Π(Δf + bf +
n+ 2

n− 2
v

4
n−2
∞ f) +

L∑
i=1

(
n+ 2

n− 2
− μi

) (∫
Ω

fφiv
4

n−2
∞ dx

)
v

4
n−2
∞ φi.

Hence,

‖Δf + bf +
n+ 2

n− 2
v

4
n−2
∞ f‖Lp(Ω)

≤ ‖Π(Δf + bf +
n+ 2

n− 2
v

4
n−2
∞ f)‖Lp(Ω) + C sup

1≤l≤L

∣∣∣ ∫
Ω

v
4

n−2
∞ φlf

∣∣∣.
The assertion (ii) follows from the above inequality with p = 1 and Lemma 4.7.

For the assertion (i), by choosing p = n(n+2)
n2+4 in the above inequality and using

Lemma 4.7, we have

‖Δf + bf +
n+ 2

n− 2
v

4
n−2
∞ f‖

L
n(n+2)

n2+4 (Ω)

≤ ‖Π(Δf + bf +
n+ 2

n− 2
v

4
n−2
∞ f)‖

L
n(n+2)

n2+4 (Ω)
+ C sup

1≤l≤L

∣∣∣ ∫
Ω

v
4

n−2
∞ φlf

∣∣∣
and

‖f‖
L

n(n+2)

n2+4 (Ω)
≤ C

∥∥∥Δf + bf +
n+ 2

n− 2
v

4
n−2
∞ f

∥∥∥
L

n(n+2)

n2+4 (Ω)
+ C sup

1≤l≤L

∣∣∣ ∫
Ω

v
4

n−2
∞ φlf

∣∣∣.
By the W 2,p regularity theory for the Laplace equation and the Sobolev embedding

W
2,n(n+2)

n2+4 ↪→ L
n+2
n−2 , we have

‖f‖
L

n+2
n−2 (Ω)

≤ C‖f‖
W

2,
n(n+2)

n2+4 (Ω)

≤ C
∥∥∥Δf + bf +

n+ 2

n− 2
v

4
n−2
∞ f

∥∥∥
L

n(n+2)

n2+4 (Ω)
+ C

∥∥∥f∥∥∥
L

n(n+2)

n2+4 (Ω)
.

Then the assertion (i) is followed by combining these three inequalities. �

Lemma 4.9. There exists δ1 > 0 such that for every z = (z1, . . . , zL) ∈ RL with

|z| ≤ δ1, there exists ξz ∈ C
3n−2
n−2

0 (Ω) satisfying 1/2 ≤ ξz/v∞ ≤ 2 in Ω,∫
Ω

v
4

n−2
∞ (ξz − v∞)φl dx = zl, l = 1, . . . , L,

and

(45) Π(Δξz + bξz + ξ
n+2
n−2
z ) = 0.
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Furthermore, the map z �→ ξz is real analytic and ∂
∂z1

ξz(0) = v∞, ∂
∂zl

ξz(0) = φl for
2 ≤ l ≤ L.

Proof. Let ξz = (1 + z1)v∞ +
∑L

l=2 zlφl + h, where

h ∈ H := span{φ1, . . . , φL}⊥

and the “⊥” is with respect to the inner product (13). By a direct computation,

Π(Δξz + bξz + ξ
n+2
n−2
z )

= (Δ + b)ξz −
L∑

l=1

( ∫
Ω

(Δ + b)ξzφl

)
v

4
n−2
∞ φl + ξ

n+2
n−2
z −

L∑
l=1

( ∫
Ω

ξ
n+2
n−2
z φl

)
v

4
n−2
∞ φl

= (Δ+ b)h+ ξ
n+2
n−2
z −

L∑
l=1

( ∫
Ω

ξ
n+2
n−2
z φl

)
v

4
n−2
∞ φl =: G(z, h).

For any p > n, we claim that there exists a small constant δ > 0 such that

G : {|z| < δ} × {‖h‖W 2,p(Ω)∩W 1,p
0 (Ω) < δ} → Π(Lp(Ω))

is analytic. Indeed, let Φ(z, h) = ξz, Lu = Δu + bu + u
n+2
n−2 . Then we have

G = Π ◦ L ◦ Φ. Obviously, the linear maps Φ and Π are analytic. By Lemma 5.3
of Feireisl-Simondon [26], L is also analytic in some small neighborhood of v∞ in

W 2,p(Ω) ∩W 1,p
0 (Ω).

Note that G(0, 0) = 0 and

Gh(0, 0)ϕ = (Δ+ b)ϕ+
n+ 2

n− 2

(
v

4
n−2
∞ ϕ−

L∑
l=1

( ∫
Ω

v
4

n−2
∞ ϕφl

)
v

4
n−2
∞ φl

)
.

Since Gh(0, 0) is coercive on H1
0 (Ω)∩H, then Gh(0, 0) : W

2,p(Ω)∩W 1,p
0 (Ω)∩H →

Π(Lp(Ω)) is invertible, and both Gh(0, 0) and (Gh(0, 0))
−1 are continuous. By the

Implicit Function Theorem we can find h(z) ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) ∩ H such that

G(z, h(z)) = 0 and h is analytic in z, see, e.g., Section 3.3B of Berger [4]. The
regularity of h(z)(·) follows from elliptic regularity theory for the linear elliptic
equation G(z, h) = 0 in Ω and h = 0 on ∂Ω. Since h(0) = 0, and 0 = Gz(0, 0) +
Gh(0, 0)∂zh(0) = Gh(0, 0)∂zh(0), we have ∂zh(0) = 0. It follows that ∂

∂z1
ξz(0) =

v∞ and ∂
∂zl

ξz(0) = φl for 2 ≤ l ≤ L. Therefore, the proof is completed. �

The difference of the energy at ξz and v∞ can be controlled as follows.

Lemma 4.10. There exists a real number γ ∈ (0, 1) depending only on n, b,Ω and
v∞ such that

F (ξz)− F (v∞) ≤ 2 sup
1≤l≤L

∣∣∣ ∫
Ω

(Δξz + bξz + ξ
n+2
n−2
z )φl dx

∣∣∣1+γ

if z is sufficiently small.

Proof. Since z �→ ξz is real analytic by Lemma 4.9, and F (·) is also real analytic
by Lemma 5.3 of [26], then the function z �→ F (ξz) is real analytic. Using the
	Lojasiewicz inequality (see Théorème 4 of [30] or Proposition 1 of [31] on page 92),
we have

|F (ξz)− F (v∞)| ≤ sup
l

∣∣∣ ∂

∂zl
F (ξz)

∣∣∣1+γ
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if z is sufficiently small, where γ ∈ (0, 1) depends only on n, b,Ω and v∞, but is not
explicit. By a direct computation, we have

∂

∂zl
F (ξz) = −2

∫
Ω

(Δξz + bξz + ξ
n+2
n−2
z )

∂ξz
∂zl

dx = −2

∫
Ω

(Δξz + bξz + ξ
n+2
n−2
z )φl dx.

Therefore, the proof is completed. �

For every ν, as in the beginning of Section 4.1, let Aν be the closed set of all m-

tuplets (xk, λk, αk)1≤k≤m satisfying (xk, λk, αk) ∈ B 1
λ∗
k,ν

(x∗
k,ν)×[

λ∗
k,ν

2 ,
3λ∗

k,ν

2 ]×[ 12 ,
3
2 ].

Let δ1 > 0 be the constant in Lemma 4.9 and B
L

δ1 is the open ball in RL centered at

origin with radius δ1. Choose an element (zν , (xk,ν , λk,ν , αk,ν)1≤k≤m) ∈ B
L

δ1 × Aν

such that ∥∥∥∥∥vν − ξzν −
m∑

k=0

αk,νξxk,ν ,λk,ν

∥∥∥∥∥
= inf

(z,(xk,λk,αk)1≤k≤m)∈B
L
δ1

×Aν

∥∥∥∥∥vν − ξz −
m∑

k=0

αkξxk,λk

∥∥∥∥∥ .

(46)

Similar to (32)–(34), we have

(47)
λi,ν

λj,ν
+

λj,ν

λi,ν
+ λi,νλj,ν |xi,ν − xj,ν |2 → ∞,

and for all k

(48) λk,νd(xk,ν) → ∞
as ν → ∞. In addition, d(xk,ν) > δ/2, and

(49)

∥∥∥∥∥vν − ξzν −
m∑

k=1

αkξxk,ν ,λk,ν

∥∥∥∥∥ → 0

as ν → ∞.
By the triangle inequality,∥∥∥∥∥ξzν − v∞ +

m∑
k=1

αkξxk,ν ,λk,ν
−

m∑
k=1

ξx∗
k,ν ,λ

∗
k,ν

∥∥∥∥∥
≤

∥∥∥∥∥vν − ξzν −
m∑

k=1

αkξxk,ν ,λk,ν

∥∥∥∥∥ +

∥∥∥∥∥vν − v∞ −
m∑

k=1

ξx∗
k,ν ,λ

∗
k,ν

∥∥∥∥∥ = o(1).

It follows that, for all 1 ≤ k ≤ m,

(50) |zν | = o(1), |xk,ν − x∗
k,ν | = o(1)

1

λ∗
k,ν

,
λk,ν

λ∗
k,ν

= 1 + o(1), αk,ν = 1 + o(1).

In particular, (zν , (xk,ν , λk,ν , αk,ν)1≤k≤m) ∈ B
L

δ1 ×Aν is an interior point.
In the sequel, we assume

(51) λ1,ν ≥ λ2,ν ≥ · · · ≥ λm,ν .

Let

(52) Uν = ξzν +
m∑

k=1

αk,νξxk,ν ,λk,ν
, wν = vν − Uν .
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Lemma 4.11. We have for 1 ≤ l ≤ L,

(53)
∣∣∣ ∫

Ω

v
4

n−2
∞ φlwν dx

∣∣∣ ≤ o(1)

∫
Ω

|wν | dx,

and for 1 ≤ k ≤ m,∣∣∣ ∫
Ω

ξ
n+2
n−2

(xk,ν ,λk,ν)
wν dx

∣∣∣ + ∣∣∣ ∫
Ω

ξ
n+2
n−2

(xk,ν ,λk,ν)

1− λ2|x− xk,ν |2
1 + λ2|x− xk,ν |2

wν dx
∣∣∣

+
∣∣∣ ∫

Ω

ξ
n+2
n−2

(xk,ν ,λk,ν)

λ2(x− xk,ν)

1 + λ2|x− xk,ν |2
wν dx

∣∣∣ ≤ o(1)
(∫

Ω

|wν |
2n

n−2 dx
)n−2

2n

.

(54)

Proof. Let φ̃l =
∂
∂zl

ξz. By (50), we have ‖φ̃1−v∞‖C2(Ω) = o(1) and ‖φ̃l−φl‖C2(Ω) =

o(1) for l = 2, . . . , L. By the definition of (zν , (xk,ν , λk,ν , αk,ν)1≤k≤m), we have∫
∇φ̃l∇wν − bφ̃lwν = 0.

Hence,

μl

∫
Ω

v
4

n−2
∞ φlwν dx =

∫
Ω

(
−Δφl − bφl

)
wν dx

=

∫
Ω

(
Δ(φ̃l − φl) + b(φ̃l − φl)

)
wν dx.

Since μl > 0, then we can conclude (53). The proof of (54) is the same as that of
Lemma 4.1. �

Now we can show the non-degeneracy estimates of the second variation of F for
wν .

Lemma 4.12. For large ν, we have

n+ 2

n− 2

∫
Ω

(
v

4
n−2
∞ +

m∑
k=1

ξ
4

n−2

xk,ν ,λk,ν

)
w2

ν ≤ (1− c)

∫
Ω

(|∇wν |2 − bw2
ν) dx,

where c > 0 is independent of ν.

Proof. We assume wν is not zero, otherwise there is nothing to prove. Define
w̃ν = wν

‖wν‖ . Suppose the lemma is not true. Then we can find a subsequence of

{w̃ν} (still denoted by {w̃ν}) satisfying

(55) lim
ν→∞

n+ 2

n− 2

∫
Ω

(
v

4
n−2
∞ +

m∑
k=1

ξ
4

n−2

xk,ν ,λk,ν

)
w̃2

ν ≥ 1.

By (14),

(56)

∫
Ω

|w̃ν |
2n

n−2 ≤ K
n

n−2

b ‖w̃ν‖ = K
n

n−2

b .

By (47) and (51), we can find Rν → ∞, Rνλ
−1
j,ν → 0 for all 1 ≤ j ≤ m, and

(57)
λi,ν

Rν
(λ−1

j,ν + |xi,ν − xj,ν |) → ∞

for all i < j. Set

Ωj,ν = BRνλ
−1
j,ν

(xj,ν) \
j−1⋃
i=1

BRνλ
−1
i,ν
(xi,ν).
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By (55) and ‖w̃ν‖ = 1, there are two cases:

(i) We can find 1 ≤ j ≤ m such that

lim
ν→∞

∫
Ω

ξ
4

n−2

xj,ν ,λj,ν
w̃2

ν > 0

and

lim
ν→∞

∫
Ωj,ν

(|∇w̃ν |2 − bw̃2
ν) ≤

n+ 2

n− 2

∫
Ω

ξ
4

n−2

xj,ν ,λj,ν
w̃2

ν .

(ii)

lim
ν→∞

∫
Ω

v
4

n−2
∞ w̃2

ν > 0

and

lim
ν→∞

∫
Ω\∪jΩj,ν

(|∇w̃ν |2 − bw̃2
ν) ≤

n+ 2

n− 2

∫
Ω

v
4

n−2
∞ w̃2

ν .

In the first case, we can obtain a contradiction similar to that in the proof of
Lemma 4.3.

In the latter case, after passing to subsequence we suppose w̃ν ⇀ w̃ in H1
0 as

ν → ∞. It follows that

(58)

∫
Ω

v
4

n−2
∞ w̃2 > 0

and

(59)

∫
Ω

(|∇w̃|2 − bw̃2) ≤ n+ 2

n− 2

∫
Ω

v
4

n−2
∞ w̃2.

By (53), we further have

(60)

∫
Ω

v
4

n−2
∞ w̃φl = 0 for l = 1, . . . , L.

Combining (59) and (60), w̃ has to be identically zero, which contradicts (58).
Therefore, Lemma 4.12 is proved. �

Corollary 4.13. For large ν, we have

n+ 2

n− 2

∫
Ω

U
4

n−2
ν w2

ν ≤ (1− c)

∫
Ω

(|∇wν |2 − bw2
ν) dx,

where c > 0 is independent of ν.

Proof. It follows from Lemma 4.12, Hölder’s inequality, the Sobolev inequality (14)
and the fact that ∫

Ω

∣∣∣U 4
n−2
ν − v

4
n−2
∞ −

m∑
k=1

ξ
4

n−2

xk,ν ,λk,ν

∣∣∣n
2

= o(1).

�
The following two lemmas are estimates of vν − ξzν in L

n+2
n−2 (Ω) and L1(Ω),

respectively.

Lemma 4.14. For large ν, we have

‖vν − ξzν‖
n+2
n−2

L
n+2
n−2 (Ω)

≤ C‖v
n+2
n−2
ν (R(tν)− 1)‖

n+2
n−2

L
2n

n+2 (Ω)
+ C

m∑
k=1

λ
2−n
2

k,ν ,

where C > 0 is independent of ν.
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Proof. From (19), we have

Δvν + bvν + v
n+2
n−2
ν = (1−R(tν))v

n+2
n−2
ν .

Combining with (45), we obtain

Π
(
Δ(vν − ξzν ) + b(vν − ξzν ) +

n+ 2

n− 2
v

4
n−2
∞ (vν − ξzν )

)
= Π

(
(1−R(tν))v

n+2
n−2
ν − n+ 2

n− 2
(ξ

4
n−2
zν − v

4
n−2
∞ )(vν − ξzν )

+ ξ
n+2
n−2
zν +

n+ 2

n− 2
ξ

4
n−2
zν (vν − ξzν )− v

n+2
n−2
ν

)
.

(61)

Apply (i) of Lemma 4.8 to vν − ξzν , we obtain

‖vν − ξzν‖
L

n+2
n−2 (Ω)

≤ C

∥∥∥∥(1−R(tν))v
n+2
n−2
ν

∥∥∥∥
L

n(n+2)

n2+4 (Ω)

+ C

∥∥∥∥(ξ 4
n−2
zν − v

4
n−2
∞ )(vν − ξzν )

∥∥∥∥
L

n(n+2)

n2+4 (Ω)

+ C

∥∥∥∥ξ n+2
n−2
zν +

n+ 2

n− 2
ξ

4
n−2
zν (vν − ξzν )− v

n+2
n−2
ν

∥∥∥∥
L

n(n+2)

n2+4 (Ω)

+ C sup
1≤l≤L

∣∣∣∣∫
Ω

v
4

n−2
∞ φl(vν − ξzν )

∣∣∣∣ .
Using the estimates for all a, b ≥ 0 that
(62)∣∣∣∣a n+2

n−2 +
n+ 2

n− 2
a

4
n−2 (b− a)− b

n+2
n−2

∣∣∣∣ ≤ Camax(0, 4
n−2−1)|b−a|min( n+2

n−2 ,2)+C|b−a|
n+2
n−2 ,

we obtain∥∥∥∥ξ n+2
n−2
zν +

n+ 2

n− 2
ξ

4
n−2
zν (vν − ξzν )− v

n+2
n−2
ν

∥∥∥∥
L

n(n+2)

n2+4 (Ω)

≤ C
∥∥∥|vν − ξzν |min( n+2

n−2 ,2) + |vν − ξzν |
n+2
n−2

∥∥∥
L

n(n+2)

n2+4 (Ω)

≤ C
∥∥∥|vν − ξzν |min( n+2

n−2 ,2) + |vν − ξzν |
n+2
n−2

∥∥∥
L

n(n+2)

n2+4 (∪m
k=1BN/λk,ν

(xk,ν))

+ C
∥∥∥|vν − ξzν |min( n+2

n−2 ,2) + |vν − ξzν |
n+2
n−2

∥∥∥
L

n(n+2)

n2+4 (Ω\∪m
k=1BN/λk,ν

(xk,ν))
,

where N is a large real number to be chosen later. Using Hölder’s inequality, we
have ∥∥∥|vν − ξzν |min( n+2

n−2 ,2) + |vν − ξzν |
n+2
n−2

∥∥∥
L

n(n+2)

n2+4 (∪m
k=1BN/λk,ν

(xk,ν))

≤ C

m∑
k=1

(N/λk,ν)
(n−2)2

2(n+2)

∥∥∥|vν − ξzν |min( n+2
n−2 ,2) + |vν − ξzν |

n+2
n−2

∥∥∥
L

2n
n+2 (Ω)

≤ C

m∑
k=1

(N/λk,ν)
(n−2)2

2(n+2)



FAST DIFFUSION EQUATIONS IN BOUNDED DOMAINS 1315

and ∥∥∥|vν − ξzν |min( n+2
n−2 ,2) + |vν − ξzν |

n+2
n−2

∥∥∥
L

n(n+2)

n2+4 (Ω\∪m
k=1BN/λk,ν

(xk,ν))

≤
∥∥∥|vν − ξzν |min( 4

n−2 ,1) + |vν − ξzν |
4

n−2

∥∥∥
L

n
2 (Ω\∪m

k=1BN/λk,ν
(xk,ν))

· ‖vν − ξzν‖
L

n+2
n−2 (Ω)

.

Since

‖vν − ξzν‖L 2n
n−2 (Ω\∪m

k=1BN/λk,ν
(xk,ν))

=

∥∥∥∥∥
m∑

k=1

αk,νξxk,ν ,λk,ν
+ wν

∥∥∥∥∥
L

2n
n−2 (Ω\∪m

k=1BN/λk,ν
(xk,ν))

≤
m∑

k=1

αk,ν

∥∥ξxk,ν ,λk,ν

∥∥
L

2n
n−2 (Ω\BN/λk,ν

(xk,ν))
+ ‖wν‖

L
2n

n−2 (Ω)

≤ CN−n−2
2 + o(1),

we have∥∥∥∥ξ n+2
n−2
zν +

n+ 2

n− 2
ξ

4
n−2
zν (vν − ξzν )− v

n+2
n−2
ν

∥∥∥∥
L

n(n+2)

n2+4 (Ω)

≤ C
m∑

k=1

(N/λk,ν)
(n−2)2

2(n+2) + C(N−n−2
2 +N−2 + o(1)) ‖vν − ξzν‖

L
n+2
n−2 (Ω)

.

Also,

sup
1≤l≤L

∣∣∣∣∫
Ω

v
4

n−2
∞ φl(vν − ξzν )

∣∣∣∣(63)

= sup
1≤l≤L

∣∣∣∣∣
∫
Ω

v
4

n−2
∞ φl

( m∑
k=1

αk,νξxk,ν ,λk,ν
+ wν

)∣∣∣∣∣
≤ C

m∑
k=1

λ
2−n
2

k,ν + o(1)‖wν‖L1(Ω)

≤ C

m∑
k=1

λ
2−n
2

k,ν + o(1)

∥∥∥∥∥vν − ξzν −
m∑

k=1

αk,νξxk,ν ,λk,ν

∥∥∥∥∥
L1(Ω)

≤ C

m∑
k=1

λ
2−n
2

k,ν + o(1) ‖vν − ξzν‖L1(Ω) .(64)

Putting these facts together, we have

‖vν − ξzν‖
L

n+2
n−2 (Ω)

≤ C

∥∥∥∥(1−R(tν))v
n+2
n−2
ν

∥∥∥∥
L

2n
n+2 (Ω)

+ C

m∑
k=1

(N/λk,ν)
(n−2)2

2(n+2)

+ C(N−n−2
2 +N−2 + o(1)) ‖vν − ξzν‖

L
n+2
n−2 (Ω)

+ C

m∑
k=1

λ
2−n
2

k,ν .
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By choosing N sufficiently large, we obtain

‖vν − ξzν‖
L

n+2
n−2 (Ω)

≤ C

∥∥∥∥(1−R(tν))v
n+2
n−2
ν

∥∥∥∥
L

2n
n+2 (Ω)

+ C
m∑

k=1

λ
− (n−2)2

2(n+2)

k,ν ,

from which the conclusion follows. �

Lemma 4.15. For large ν, we have

‖vν − ξzν‖L1(Ω) ≤ C‖v
n+2
n−2
ν (R(tν)− 1)‖

n+2
n−2

L
2n

n+2 (Ω)
+ C

m∑
k=1

λ
2−n
2

k,ν ,

where C > 0 is independent of ν.

Proof. Using (61), and applying (ii) of Lemma 4.8 to vν − ξzν , we obtain

‖vν − ξzν‖L1(Ω)

≤ C

∥∥∥∥(1−R(tν))v
n+2
n−2
ν

∥∥∥∥
L1(Ω)

+ C

∥∥∥∥(ξ 4
n−2
zν − v

4
n−2
∞ )(vν − ξzν )

∥∥∥∥
L1(Ω)

+ C

∥∥∥∥ξ n+2
n−2
zν +

n+ 2

n− 2
ξ

4
n−2
zν (vν − ξzν )− v

n+2
n−2
ν

∥∥∥∥
L1(Ω)

+ C sup
1≤l≤L

∣∣∣∣∫
Ω

v
4

n−2
∞ φl(vν − ξzν )

∣∣∣∣ .
It follows from (62) that∥∥∥∥ξ n+2

n−2
zν +

n+ 2

n− 2
ξ

4
n−2
zν (vν − ξzν )− v

n+2
n−2
ν

∥∥∥∥
L1(Ω)

≤ C
∥∥∥|vν − ξzν |min( n+2

n−2 ,2) + |vν − ξzν |
n+2
n−2

∥∥∥
L1(Ω)

≤ C ‖vν − ξzν‖
max(0,1−n−2

4 )

L1(Ω)

∥∥∥|vν − ξzν |
n+2
n−2

∥∥∥min(1,n−2
4 )

L1(Ω)
+ C ‖vν − ξzν‖

n+2
n−2

L
n+2
n−2 (Ω)

≤ C ‖vν − ξzν‖
max(0,1−n−2

4 )

L1(Ω) ‖vν − ξzν‖
n+2
n−2 min(1,n−2

4 )

L
n+2
n−2 (Ω)

+ C ‖vν − ξzν‖
n+2
n−2

L
n+2
n−2 (Ω)

≤ 1

2C
‖vν − ξzν‖L1(Ω) + C ‖vν − ξzν‖

n+2
n−2

L
n+2
n−2 (Ω)

,

where we used Hölder’s inequality in the second inequality and the Young inequality
in the last inequality. Combining (64), we have

‖vν − ξzν‖L1(Ω)

≤ C

∥∥∥∥(1−R(tν))v
n+2
n−2
ν

∥∥∥∥
L1(Ω)

+ o(1) ‖vν − ξzν‖L1(Ω)

+
1

2
‖vν − ξzν‖L1(Ω) + C ‖vν − ξzν‖

n+2
n−2

L
n+2
n−2 (Ω)

+ C
m∑

k=1

λ
2−n
2

k,ν .

Then the conclusion follows from Lemma 4.14. �
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Using the above two lemmas, we can continue to estimate F (ξzν )−F (v∞) from
Lemma 4.10.

Proposition 4.16. For all large ν, we have

F (ξzν )− F (v∞) ≤ C

(∫
Ω

|R(tν)− 1| 2n
n+2 v

2n
n−2
ν

)n+2
2n (1+γ)

+ C

m∑
k=1

λ
2−n
2 (1+γ)

k,ν ,

where γ ∈ (0, 1) is the one in Lemma 4.10.

Proof. It follows from integration by parts that∫
Ω

(Δξzν + bξzν + ξ
n+2
n−2
zν )φl dx

=

∫
Ω

(Δvν + bvν + v
n+2
n−2
ν )φl dx+ μl

∫
Ω

v
4

n−2
∞ φl(vν − ξzν ) dx

−
∫
Ω

φl(v
n+2
n−2
ν − ξ

n+2
n−2
zν ) dx

=

∫
Ω

(1−R(tν))v
n+2
n−2
ν φl dx+ μl

∫
Ω

v
4

n−2
∞ φl(vν − ξzν ) dx−

∫
Ω

φl(v
n+2
n−2
ν − ξ

n+2
n−2
zν ) dx.

Using the pointwise estimate

|v
n+2
n−2
ν − ξ

n+2
n−2
zν | ≤ Cξ

4
n−2
zν |vν − ξzν |+ C|vν − ξzν |

n+2
n−2 ,

we have

sup
1≤l≤L

∣∣∣ ∫
Ω

(Δξz + bξz + ξ
n+2
n−2
z )φl dx

∣∣∣
≤ C

∥∥∥∥(1−R(tν))v
n+2
n−2
ν

∥∥∥∥
L

2n
n+2 (Ω)

+ C ‖vν − ξzν‖L1(Ω) + C ‖vν − ξzν‖
n+2
n−2

L
n+2
n−2 (Ω)

≤ C

∥∥∥∥(1−R(tν))v
n+2
n−2
ν

∥∥∥∥
L

2n
n+2 (Ω)

+ C

∥∥∥∥v n+2
n−2
ν (R(tν)− 1)

∥∥∥∥
n+2
n−2

L
2n

n+2 (Ω)

+ C
m∑

k=1

λ
2−n
2

k,ν

≤ C

∥∥∥∥(1−R(tν))v
n+2
n−2
ν

∥∥∥∥
L

2n
n+2 (Ω)

+ C
m∑

k=1

λ
2−n
2

k,ν ,

where we used Lemma 4.14 and Lemma 4.15 in the second inequality, and Propo-
sition 2.6 in the last inequality.

Then the conclusion follows from Lemma 4.10. �
Corollary 4.17. If n ≥ 4 and b > 0 satisfying (2), we have

F (Uν) ≤ F (v∞) +
2m

n
Y (Sn)n/2 + C

(∫
Ω

|R(tν)− 1| 2n
n+2 v

2n
n−2
ν

)n+2
2n (1+γ)

.

Proof. Let Ũν =
∑m

k=1 αkξxk,ν ,λk,ν
.

F (Uν) =

∫
Ω

|∇(ξzν + Ũν)|2 − b(ξzν + Ũν)
2 − n− 2

n

∫
Ω

(ξzν + Ũν)
2n

n−2

= F (ξzν ) + F (Ũν) + 2

∫
Ω

(∇ξzν∇Ũν − bξzν Ũν − ξ
n+2
n−2
zν Ũν)

− n− 2

n

∫
Ω

(
(ξzν + Ũν)

2n
n−2 − 2n

n− 2
ξ

n+2
n−2
zν Ũν − ξ

2n
n−2
zν − Ũ

2n
n−2

)
.
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We have ∣∣∣∣∫
Ω

(∇ξzν∇Ũν − bξzν Ũν − ξ
n+2
n−2
zν Ũν)

∣∣∣∣
=

∣∣∣∣∫
Ω

(
Δ(ξzν − v∞) + b(ξzν − v∞) + ξ

n+2
n−2
zν − v

n+2
n−2
∞

)
Ũν)

∣∣∣∣
≤ o(1)

m∑
k=1

λ
2−n
2

k .

By Lemma A.1, there exists c > 0, depending only on n such that

(ξzν + Ũν)
2n

n−2 − 2n

n− 2
ξ

n+2
n−2
zν Ũν − ξ

2n
n−2
zν − Ũ

2n
n−2 ≥

{
cξ

4
n−2
zν (Ũν)

2, if ξzν ≥ U ′
ν ,

cξzν (Ũν)
n+2
n−2 , if ξzν < U ′

ν .

Since v∞/2 ≤ ξzν ≤ 2v∞, and∫
|x|<

√
λ−1

(
λ

1 + λ2|x|2

)n+2
2

≥ λ−n−2
2

∫
|y|<1

(
1

1 + |y|2

)n+2
2

≥ cλ−n−2
2 ,

we have∫
Ω

(
(ξzν + Ũν)

2n
n−2 − 2n

n− 2
ξ

n+2
n−2
zν Ũν − ξ

2n
n−2
zν − Ũ

2n
n−2

)
≥ c

m∑
k=1

λ
2−n
2

k .

Then, the conclusion follows from Proposition 4.16 and Corollary 4.6. �

5. Convergence

Using the estimates in Corollaries 4.4 and 4.13, we have the following estimate
of F (vν)− F∞ for any sequence of times {tν : ν ∈ N}.

Proposition 5.1. Let n ≥ 4, and b > 0 satisfy (2). Let {tν : ν ∈ N} be a sequence
of times such that tν → ∞ as ν → ∞. Then, we can find a real number γ ∈ (0, 1)
and a constant C > 0 such that, after passing to a subsequence, we have

F (vν)− F∞ ≤ C

(∫
Ω

|R(tν)− 1| 2n
n+2 v

2n
n−2
ν

)n+2
2n (1+γ)

for all integers ν in that subsequence, where F∞ is the one defined in (18). Note
that γ and C may depend on the sequence {tν : ν ∈ N}.

Proof. It follows from (18) that F (v∞) = F∞. Recall that Uν = vν −wν . We have

F (vν)− F (Uν)

=
n− 2

n

∫
Ω

(U
2n

n−2
ν − v

2n
n−2
ν ) + 2

∫
Ω

(∇vν∇wν − bvνwν)−
∫
Ω

(|∇wν |2 − bw2
ν)

=
n− 2

n

∫
Ω

(U
2n

n−2
ν − v

2n
n−2
ν ) + 2

∫
Ω

Rv
n+2
n−2
ν wν −

∫
Ω

(|∇wν |2 − bw2
ν)

=
n− 2

n

∫
Ω

(
U

2n
n−2
ν − v

2n
n−2
ν +

2n

n− 2
v

n+2
n−2
ν wν − n(n+ 2)

(n− 2)2
U

4
n−2
ν w2

ν

)
+ 2

∫
Ω

(R− 1)v
n+2
n−2
ν wν −

∫
Ω

(
|∇wν |2 − bw2

ν − n+ 2

n− 2
U

4
n−2
ν w2

ν

)
.
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Using the pointwise estimate∣∣∣∣U 2n
n−2
ν − v

2n
n−2
ν +

2n

n− 2
v

n+2
n−2
ν wν − n(n+ 2)

(n− 2)2
U

4
n−2
ν w2

ν

∣∣∣∣
=

∣∣∣∣U 2n
n−2
ν − (wν + Uν)

2n
n−2 +

2n

n− 2
(wν + Uν)

n+2
n−2wν − n(n+ 2)

(n− 2)2
U

4
n−2
ν w2

ν

∣∣∣∣
≤ CU

max{0, 4
N−2−1}

ν |wν |min{ 2N
N−2 ,3} + C|wν |

2N
N−2 ,

it follows that∫
Ω

∣∣∣∣U 2n
n−2
ν − v

2n
n−2
ν +

2n

n− 2
v

n+2
n−2
ν wν − n(n+ 2)

(n− 2)2
U

4
n−2
ν w2

ν

∣∣∣∣
≤ C

∫
Ω

U
max{0, 4

n−2−1}
ν |wν |min{ 2n

n−2 ,3} + C

∫
Ω

|wν |
2n

n−2

≤ C

(∫
Ω

|wν |
2n

n−2

)n−2
n min{ n

n−2 ,
3
2}

.

By Hölder inequality and Cauchy inequality, we have∣∣∣∣∫
Ω

(R− 1)v
n+2
n−2
ν wν

∣∣∣∣ ≤ C

(∫
Ω

|R − 1| 2n
n+2 v

2n
n−2
ν

)n+2
2n

(∫
Ω

|wν |
2n

n−2

)n−2
2n

≤ ε

(∫
Ω

|wν |
2n

n−2

)n−2
n

+ C(ε)

(∫
Ω

|R − 1| 2n
n+2 v

2n
n−2
ν

)n+2
n

.

Finally, by Corollaries 4.4 and 4.13, we have∫
Ω

|∇wν |2 − bw2
ν − n+ 2

n− 2
U

4
n−2
ν w2

ν ≥ 1

C

(∫
Ω

|wν |
2n

n−2

)n−2
n

.

Since

∫
Ω

|wν |
2n

n−2 → 0, we have, by choosing ε being small, that

F (vν)− F (Uν) ≤ C

(∫
|wν |

2n
n−2

)n−2
n min{ n

n−2 ,
3
2}

+ C

(∫
|R − 1| 2n

n+2 v
2n

n−2
ν

)n+2
n

− 1

2C

(∫
|wν |

2n
n−2

)n−2
n

≤ C

(∫
|R − 1| 2n

n+2 v
2n

n−2
ν

)n+2
n

.

By Corollary 4.17, the proof is completed. �

Then we can show the estimate for all large time.

Corollary 5.2. There exist real numbers γ ∈ (0, 1) and t0 > 0 such that

F (v(t))− F∞ ≤
(∫

Ω

|R − 1| 2n
n+2 v(x, t)

2n
n−2 dx

)n+2
2n (1+γ)

for all t ≥ t0.
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Proof. Suppose this is not true. Then, there exists a sequence of times {tν : ν ∈ N}
such that tν > ν and

F (v(tν))− F∞ ≥
(∫

Ω

|R(tν)− 1| 2n
n+2 v(x, tν)

2n
n−2 dx

)n+2
2n (1+ 1

ν )

for all ν ∈ N. By applying Proposition 5.1 to this sequence {tν : ν ∈ N}, there
exists an infinite subset I ⊂ N, a real number α ∈ (0, 1) and C > 0 such that

F (v(tν))− F∞ ≤ C

(∫
Ω

|R(tν)− 1| 2n
n+2 v(x, tν)

2n
n−2 dx

)n+2
2n (1+α)

for all ν ∈ I. Thus, we have

1 ≤ C

(∫
Ω

|R(tν)− 1| 2n
n+2 v(x, tν)

2n
n−2 dx

)n+2
2n (α− 1

ν )

for all ν ∈ I. However, from Proposition 2.6, we have

lim
ν→∞

(∫
Ω

|R(tν)− 1| 2n
n+2 v(x, tν)

2n
n−2 dx

)n+2
2n (α− 1

ν )

= 0.

We have reached a contradiction. �

Now we can use a differential inequality of F to obtain a decay estimate.

Proposition 5.3. There exist θ > 0 and C > 0 such that for all T > 1, there holds∫ ∞

T

M2(t)
1/2 dt ≤ CT−θ,

where M2 is defined in (20).

Proof. It follows from Corollary 5.2, Hölder’s inequality, and (15) that

0 ≤ F (v(t))− F∞ ≤
(∫

Ω

|R − 1| 2n
n+2 v(x, t)

2n
n−2 dx

)n+2
2n (1+γ)

≤ CM2(t)
1+γ
2 .

It follows that

d

dt
(F (v(t))− F∞) = −2(n− 2)

n+ 2
M2(t) ≤ −C(F (v(t))− F∞)

2
1+γ .

Hence,
d

dt
(F (v(t))− F∞)

γ−1
γ+1 ≥ C

1− γ

1 + γ
> 0.

It follows that
F (v(t))− F∞ ≤ Ct−

1+γ
1−γ

for sufficiently large t. Then we have(∫ 2T

T

M2(s)
1/2 ds

)2

≤ T

∫ 2T

T

M2(s) ds

≤ n+ 2

n− 2
T (F (v(T ))− F (v(2T )))

≤ n+ 2

n− 2
T (F (v(T ))− F∞)

≤ CT− 2γ
1−γ ,
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where we used the monotonicity of F . It follows that
(65)∫ ∞

T

M2(t)
1/2 dt =

∞∑
k=0

∫ 2k+1T

2kT

M2(t)
1/2 dt ≤ CT− γ

1−γ

∞∑
k=1

2−
γ

1−γ k ≤ CT− γ
1−γ .

This finishes the proof. �

We are ready to show the uniform boundedness, and uniform higher order esti-
mates.

Proposition 5.4. For any ε > 0, there exists T0 > 0 such that

(66) ‖v(·, t)− v(·, T0)‖
L

2n
n−2 (Ω)

< ε for all t > T0.

Consequently, there exists C > 0 depending only n, b,Ω and u0 such that

(67) v(x, t) ≤ C in Ω for all t > 1.

Proof. For b > a > 1, using the pointwise estimate

|v(x, b)− v(x, a)| n
n−2 ≤ |v(x, b) n

n−2 − v(x, a)
n

n−2 |,
we have(∫

Ω

|v(x, b)− v(x, a)| 2n
n−2 dx

)1/2

≤
(∫

Ω

|v(x, b) n
n−2 − v(x, a)

n
n−2 |2 dx

)1/2

≤
(∫

Ω

( ∫ b

a

|∂t(v(x, t)
n

n−2 )| dt
)2

dx

)1/2

≤
∫ b

a

(∫
Ω

|∂t(v(x, t)
n

n−2 )|2 dx
)1/2

dt

≤ C

∫ ∞

a

M2(t)
1/2 dt

≤ Ca−θ,

(68)

where we used Minkowski’s integral inequality in the third inequality, and Propo-
sition 5.3 in the last inequality. Hence, for any ε > 0, there exists T0 > 0 such that
(66) holds.

To show the L∞ bound in (67), we need to use the following Brézis-Kato [11]
estimate (see also Lemma B.3 in Appendix B of Struwe [40]): there exists δ > 0
depending only on n and Ω such that if v ∈ H1

0 (Ω) is a weak solution of

−Δv = c1v + c2v in Ω,

where ‖c1‖Ln
2 (Ω)

≤ δ and c2 ∈ Lp(Ω) for some p > n
2 , then there exist C > 0 and

q > 2n
n−2 depending only on n, δ, p,Ω and ‖c2‖Lp(Ω) such that

‖v‖Lq(Ω) ≤ C‖v‖L2(Ω).

Let T0 > 0 be the one in (66) with some ε < δ/2 that (2ε)
4

n−2 ≤ δ/2. By
Proposition 2.6, there exists T1 > 0 such that M(t)n

2
< δ/2 for all t > T1. Let

T2 = max(T0, T1),

U = {x ∈ Ω : |v(x, t)− v(x, T2)| > max
Ω

v(·, T2)}
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and χU be the characteristic function of U . Then for t > T2, we have

‖v 4
n−2χU‖Ln

2 (Ω)
= (‖v‖

L
2n

n−2 (U)
)

4
n−2

≤ (‖v(·, T2)‖
L

2n
n−2 (U)

+ ‖v(·, t)− v(·, T2)‖
L

2n
n−2 (U)

)
4

n−2

≤ (max
Ω

|v(·, T2)| · |U |n−2
2n + ‖v(·, t)− v(·, T2)‖

L
2n

n−2 (U)
)

4
n−2

≤ (‖v(·, t)− v(·, T2)‖
L

2n
n−2 (U)

+ ‖v(·, t)− v(·, T2)‖
L

2n
n−2 (U)

)
4

n−2

≤ (2ε)
4

n−2

≤ δ/2,

where we used Chebyshev’s inequality in the third inequality, and (68) in the fourth
inequality. From the definition of R in (19), we have

(69) −Δv = bv +Rv
n+2
n−2 =: V1v + V2v in Ω, v = 0 on ∂Ω,

where V1 = (R− 1)v
4

n−2 + v
4

n−2χU and V2 = (1− χU )v
4

n−2 + b. Then V2 ∈ L∞(Ω)
and

‖V1‖Ln
2 (Ω)

≤ M(t)n
2
+ ‖v 4

n−2χU‖Ln
2 (Ω)

≤ δ/2 + δ/2 = δ

for all t > T2. Then by the Brézis-Kato estimate, there exist q > 2n
n−2 and C > 0

such that

‖v‖Lq(Ω) ≤ C‖v‖L2(Ω) ≤ C,

where we used Hölder’s inequality and (15) in the last inequality. Now V1 belongs
to Lp for some p > n

2 , and then the standard Moser’s iteration will lead to (67). �

Theorem 5.5. There exists C > 0 depending only n, b,Ω and u0 such that

(70) ‖v(·, t)‖
C

2+ n+2
n−2 (Ω)

≤ C for all t > 1.

Proof. By using (67), it follows from Proposition 6.2 in [23] (more precisely, its
proof) that

1

C
d(x) ≤ v(·, t) ≤ Cd(x) for all x ∈ Ω, t > 1,

where d(x) := dist(x, ∂Ω). Then (70) follows from Theorem 5.1 in [29]. �

Let us conclude this section with the proof of Theorem 1.1.

Proof of Theorem 1.1. It follows from Proposition 5.4, Theorem 5.5 and (15) that
there exists a nonzero stationary solution v∞ of (9) such that

lim
t→∞

‖v(·, t)− v∞‖C3(Ω) = 0.

From (68), we know that there exist C > 0 and θ > 0 such that

‖v(·, t)− v∞‖
L

2n
n−2 (Ω)

≤ Ct−θ for all t > 1.

Using (70) and Gagliardo interpolation inequalities (see, e.g., (12)–(13) in Blanchet-
Bonforte-Dolbeault-Grillo-Vázquez [6]), we have

‖v(·, t)− v∞‖C1(Ω) ≤ Ct−θ for all t > 1
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with a possibly different θ. Since v(·, t) ≡ v∞ ≡ 0 on ∂Ω, we have for all x ∈ Ω that∣∣∣∣v(x, t)− v∞(x)

v∞(x)

∣∣∣∣ ≤ ‖v(·, t)− v∞‖C1(Ω) d(x)

d(x)/C
≤ C‖v(·, t)− v∞‖C1(Ω) ≤ Ct−θ

for all t > 1. That is,∥∥∥∥v(·, t)v∞
− 1

∥∥∥∥
L∞(Ω)

≤ Ct−θ for all t ≥ 1.

Using (70) again, we have∥∥∥∥v(·, t)v∞

∥∥∥∥
C

1+ n+2
n−2 (Ω)

≤ C for all t > 1.

Then by interpolation inequalities, we have

(71)

∥∥∥∥v(·, t)v∞
− 1

∥∥∥∥
C2(Ω)

≤ Ct−θ for all t ≥ 1.

Now let us assume that Ω satisfies the condition (11). Then there exists C > 0
such that for all ϕ ∈ H1

0 satisfying

−Δϕ− bϕ− n+ 2

n− 2
v

4
n−2
∞ ϕ = f in Ω,

there holds

(72) ‖ϕ‖H1
0 (Ω) ≤ C‖f‖L2(Ω).

Here, the C depends only on n, b,Ω and v∞. This estimate can be proved as follows.
First, it follows Theorem 6 in Section 6.2.3 of Evans [25] that there exists C > 0
such that ‖ϕ‖L2(Ω) ≤ C‖f‖L2(Ω). Secondly, multiplying ϕ to its equation and
integrating by part, it leads to (72).

On one hand, using the equation of v∞, we have

F (v(t))− F∞

=

∫
Ω

(
|∇v(·, t)|2 − bv(·, t)2 − n− 2

n
v(·, t) 2n

n−2

)
dx

−
∫
Ω

(
|∇v∞|2 − bv2∞ − n− 2

n
v

2n
n−2
∞

)
dx

− 2

∫
Ω

(
∇v∞∇(v(·, t)− v∞)− bv∞(v(·, t)− v∞)− v

n+2
n−2
∞ (v(·, t)− v∞)

)
dx

=

∫
Ω

|∇(v(·, t)− v∞)|2 − b(v(·, t)− v∞)2 dx

− n− 2

n

∫
Ω

(
v(·, t) 2n

n−2 − v
2n

n−2
∞ − 2n

n− 2
(v(·, t)− v∞)

)
dx

≤ C‖v(·, t)− v∞‖2H1
0 (Ω).
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On the other hand, using the equation of v∞, we have

‖Δv(·, t) + bv(·, t) + v(·, t)
n+2
n−2 ‖L2(Ω)

= ‖Δ(v(·, t)− v∞) + b(v(·, t)− v∞) + v(·, t)
n+2
n−2 − v

n+2
n−2
∞ ‖L2(Ω)

≥
∥∥∥∥Δ(v(·, t)− v∞) + b(v(·, t)− v∞) +

n+ 2

n− 2
v

4
n−2
∞ (v(·, t)− v∞)

∥∥∥∥
L2(Ω)

−
∥∥∥∥v(·, t) n+2

n−2 − v
n+2
n−2
∞ − n+ 2

n− 2
v

4
n−2
∞ (v(·, t)− v∞)

∥∥∥∥
L2(Ω)

≥ 1

C
‖v(·, t)− v∞‖H1

0 (Ω) − C

∥∥∥∥vmax(0, 4
n−2−1)

∞ |v(·, t)− v∞|min(2,n+2
n−2 )

∥∥∥∥
L2(Ω)

≥ 1

C
‖v(·, t)− v∞‖H1

0 (Ω) − o(1)‖v(·, t)− v∞‖H1
0 (Ω) for large t

≥ 1

C
‖v(·, t)− v∞‖H1

0 (Ω) for large t,

where we used (72) in the second inequality. The constant C depends only on
n, b,Ω and u0. Combining these two inequalities together, we have

F (v(t))− F∞ ≤ ‖Δv(·, t) + bv(·, t) + v(·, t)
n+2
n−2 ‖2L2(Ω) = CM2(t).

It follows that

d

dt
(F (v(t))− F∞) = −2(n− 2)

n+ 2
M2(t) ≤ −C(F (v(t))− F∞),

and thus,
F (v(t))− F∞ ≤ Ce−γt

for some C > 0, γ > 0. Hence, the proof of (65) will give∫ ∞

T

M2(t)
1/2 dt ≤ Ce−γt.

From (68), we obtain that

‖v(·, t)− v∞‖
L

2n
n−2 (Ω)

≤ Ce−γt.

Then the proof of (71) gives

(73)

∥∥∥∥v(·, t)v∞
− 1

∥∥∥∥
C2(Ω)

≤ Ce−γt for all t ≥ 1.

This finishes the proof of Theorem 1.1. �

6. Subcritical case

In this last section, we consider the Sobolev subcritical case (5), and prove The-
orem 1.2. The proof is similar to that of Theorem 1.1.

Proof of Theorem 1.2. First, we know from Proposition 6.2 in [23] that

1

C
d(x) ≤ v(·, t) ≤ Cd(x) for all x ∈ Ω, t > 1.

Secondly, it follows from Theorem 1.1 in [26] and Theorem 5.1 in [29] that there
exists a nonzero stationary solution v∞ of (5) such that

lim
t→∞

‖v(·, t)− v∞‖C3(Ω) = 0.
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Let

F (v(t)) =

∫
Ω

(
|∇v(x, t)|2 − 2

p+ 1
v(x, t)p+1

)
dx,

R = −v−pΔv = 1− p∂tv

v
,

Mq(t) =

∫
Ω

|R − 1|qvp+1 dx,

where q ≥ 1. Note that

d

dt
F (v(t)) = −2

∫
Ω

(Δv + vp)∂tv = −2p

∫
Ω

|∂tv|2vp−1 = −2

p
M2(t).

Hence F (v(·, t)) deceases to F (v∞) as t → ∞. Furthermore,

dF (v) = −2Δv − 2vp = 2(R− 1)vp.

Hence,

‖dF (v(·, t))‖L2(Ω) ≤ CM2(t)
1/2.

Then it follows from Proposition 6.1 in [26] that there exist C > 0, T0 > 0, γ > 0
such that for all t > T0, we have

F (v(t))− F (v∞) ≤ C‖dF (v(·, t))‖1+γ
L2(Ω) ≤ CM2(t)

1+γ
2 .

Therefore, similar to the proof of Proposition 5.3, there exist θ ∈ (0, 1) and C > 0
such that for all T > 1, there holds∫ ∞

T

M2(t)
1/2 dt ≤ CT−θ.

Then it follows from the proof of (68) that

(74) ‖v(·, t)− v∞‖Lp+1(Ω) ≤ C

∫ ∞

t

M2(s)
1/2 ds ≤ Ct−θ.

Using Theorem 5.1 in [29] (which is the regularity estimate) and interpolation
inequalities, we have

‖v(·, t)− v∞‖C1(Ω) ≤ Ct−θ for all t > 1.

Since v(·, t) ≡ v∞ ≡ 0 on ∂Ω, we have for all x ∈ Ω that∣∣∣∣v(x, t)− v∞(x)

v∞(x)

∣∣∣∣ ≤ C‖v(·, t)− v∞‖C1(Ω) ≤ Ct−θ for all t > 1.

That is, ∥∥∥∥v(·, t)v∞
− 1

∥∥∥∥
L∞(Ω)

≤ Ct−θ for all t ≥ 1.

Using Theorem 5.1 in [29] again, we have∥∥∥∥v(·, t)v∞

∥∥∥∥
C1+p(Ω)

≤ C for all t > 1.

Then by interpolation inequalities, we have

(75)

∥∥∥∥v(·, t)v∞
− 1

∥∥∥∥
C2(Ω)

≤ Ct−θ for all t ≥ 1,

with a possibly different θ.
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Now let us assume that Ω satisfies the condition (6). Similar to (72), there exists
C > 0 such that for all ϕ ∈ H1

0 satisfying

−Δϕ− pvp−1
∞ ϕ = f in Ω,

there holds

(76) ‖ϕ‖H1
0 (Ω) ≤ C‖f‖L2(Ω).

As before, on one hand, using the equation of v∞, we have

F (v(t))− F∞ ≤ C‖v(·, t)− v∞‖2H1
0 (Ω).

On the other hand, using the equation of v∞, we have

‖Δv(·, t) + v(·, t)p‖L2(Ω)

≥
∥∥Δ(v(·, t)− v∞) + pvp−1

∞ (v(·, t)− v∞)
∥∥
L2(Ω)

−
∥∥v(·, t)p − vp∞ − pvp−1

∞ (v(·, t)− v∞)
∥∥
L2(Ω)

≥ 1

C
‖v(·, t)− v∞‖H1

0 (Ω) − C
∥∥∥vmax(0,p−2)

∞ |v(·, t)− v∞|min(2,p)
∥∥∥
L2(Ω)

≥ 1

C
‖v(·, t)− v∞‖H1

0 (Ω) − o(1)‖v(·, t)− v∞‖H1
0 (Ω) for large t

≥ 1

C
‖v(·, t)− v∞‖H1

0 (Ω) for large t,

where we used (76) in the second inequality. The constant C depends only on
n, p,Ω and u0. Combining these two inequalities together, we have

F (v(t))− F∞ ≤ C‖Δv(·, t) + v(·, t)p‖2L2(Ω) ≤ CM2(t).

It follows that

d

dt
(F (v(t))− F∞) = −1

p
M2(t) ≤ −C(F (v(t))− F∞),

and thus,

F (v(t))− F∞ ≤ Ce−γt

for some C > 0, γ > 0. Hence, the proof of (65) will give∫ ∞

T

M2(t)
1/2 dt ≤ Ce−γt.

From (74), we obtain that

‖v(·, t)− v∞‖Lp+1(Ω) ≤ Ce−γt.

Then the proof of (75) gives

(77)

∥∥∥∥v(·, t)v∞
− 1

∥∥∥∥
C2(Ω)

≤ Ce−γt for all t ≥ 1.

This finishes the proof of Theorem 1.2. �
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Appendix A. Bubbles interactions

In the end of our proof of Proposition 4.5, we need to calculate and compare the
following two quantities:

I1 =

∫
Rn

(
λ1,ν

1 + λ2
1,ν |x− x1,ν |2

)n+2
2

(
λ2,ν

1 + λ2
2,ν |x− x2,ν |2

)n−2
2

dx,

I2 =

∫
Rn

{( λ1,ν

1 + λ2
1,ν |x− x1,ν |2

)
∨

( λ2,ν

1 + λ2
2,ν |x− x2,ν |2

)}2

·
{( λ1,ν

1 + λ2
1,ν |x− x1,ν |2

)
∧

( λ2,ν

1 + λ2
2,ν |x− x2,ν |2

)}n−2

dx.

We want to show that under (32), there holds

(78) I1/
√
I2 = o(1) as ν → ∞.

Recall that λ1,ν ≥ λ2,ν .
If x1,ν = x2,ν , then using the change of variables: y = λ2,νx and Λ = λ1,ν/λ2,ν ,

we have

I1 =

∫
Rn

(
Λ

1 + Λ2|y|2

)n+2
2

(
1

1 + |y|2

)n−2
2

dy

=

(∫
|y|≤Λ−1

+

∫
Λ−1≤|y|≤1

+

∫
|y|≥1

) (
Λ

1 + Λ2|y|2

)n+2
2

(
1

1 + |y|2

)n−2
2

dy

≤ CΛ
2−n
2

≤ Cλ
2−n
2

1,ν λ
n−2
2

2,ν ,

and

I2 =

∫
Rn

{( Λ

1 + Λ2|y|2
)
∨

( 1

1 + |y|2
)}2 {( Λ

1 + Λ2|y|2
)
∧

( 1

1 + |y|2
)}n−2

dy

≥
∫
|y|≤1/

√
Λ

(
Λ

1 + Λ2|y|2

)2 (
1

1 + |y|2

)n−2

dy

≥ 22−nΛ2−n

∫
|z|≤

√
Λ

(
1

1 + |z|2

)2

dy

≥ cΛ2−n log Λ ( since n ≥ 4 and Λ ≥ 1)

≥ cλ2−n
1,ν λn−2

2,ν ln(λ1,ν/λ2,ν).

Since λ1,ν/λ2,ν → ∞, we have (78).
If x1,ν �= x2,ν , then we use the following change of variables:

λ̃1,ν = λ1,ν |x2,ν − x1,ν |, λ̃2,ν = λ2,ν |x2,ν − x1,ν |, eν =
x2,ν − x1,ν

|x2,ν − x1,ν |
.

Then

I1 =

∫
Rn

(
λ̃1,ν

1 + λ̃2
1,ν |x|2

)n+2
2

(
λ̃2,ν

1 + λ̃2
2,ν |x− eν |2

)n−2
2

.
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By (32), we know that

λ̃1,ν

λ̃2,ν

+
λ̃2,ν

λ̃1,ν

+ λ̃1,ν λ̃2,ν → ∞.

Recall that λ1,ν ≥ λ2,ν for all ν = 1, 2, . . . . Hence, if {λ̃1,ν} is bounded, then

λ̃2,ν → 0 and
λ̃1,ν

λ̃2,ν
→ ∞.

Case A. λ̃2,ν ≥ 1. Then λ̃1,ν → ∞, and thus

I1 =

∫
B1/4

(
λ̃1,ν

1 + λ̃2
1,ν |x|2

)n+2
2

(
λ̃2,ν

1 + λ̃2
2,ν |x− eν |2

)n−2
2

dx

+

∫
Rn\B1/4

(
λ̃1,ν

1 + λ̃2
1,ν |x|2

)n+2
2

(
λ̃2,ν

1 + λ̃2
2,ν |x− eν |2

)n−2
2

dx

≤ Cλ̃
2−n
2

1,ν λ̃
2−n
2

2,ν .

Case B. Otherwise. Then

I1 ≤ λ̃
n−2
2

2,ν

∫
Rn

(
λ̃1,ν

1 + λ̃2
1,ν |x|2

)n+2
2

dx ≤ Cλ̃
2−n
2

1,ν λ̃
n−2
2

2,ν .

For I2, we have

I2 =

∫
Rn

{( λ̃1,ν

1 + λ̃2
1,ν |x|2

)
∨

( λ̃2,ν

1 + λ̃2
2,ν |x− eν |2

)}2

·
{( λ̃1,ν

1 + λ̃2
1,ν |x|2

)
∧

( λ̃2,ν

1 + λ̃2
2,ν |x− eν |2

)}n−2

dx.

Let ε > 0 be sufficiently small. The constant c in the below will be independent
of ε.

Case A. λ̃2,ν ≥ 1. Then λ̃1,ν → ∞. We split it into two cases:

Case A1. λ̃2,ν ≥ ελ̃1,ν . Then for ν large,

I2 ≥
∫
B1/2(eν)

{
λ̃2,ν

1 + λ̃2
2,ν |x− eν |2

}2

·
{

λ̃1,ν

1 + λ̃2
1,ν |x|2

}n−2

dx

≥ cλ̃2−n
2,ν λ̃2−n

1,ν

∫
Bλ2,ν/2

{
1

1 + |x|2

}2

dx

≥ cλ̃2−n
2,ν λ̃2−n

1,ν (ln λ̃2,ν) if n ≥ 4

≥ cλ̃2−n
2,ν λ̃2−n

1,ν ln(ελ̃1,ν) if n ≥ 4.
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Case A2. 1 ≤ λ̃2,ν < ελ̃1,ν . Then for ν large,

I2 ≥
∫
B1/2\B2

√
ε

{
λ̃2,ν

1 + λ̃2
2,ν |x− eν |2

}2

·
{

λ̃1,ν

1 + λ̃2
1,ν |x|2

}n−2

dx

≥ cλ̃−2
2,ν λ̃

2−n
1,ν

∫
B1/2\B2

√
ε

|x|4−2n dx

≥ cλ̃2−n
2,ν λ̃2−n

1,ν | ln ε| if n ≥ 4.

Case B. λ̃2,ν ≤ 1. Then
λ̃1,ν

λ̃2,ν
→ ∞. We split it into two cases.

Case B1. λ̃1,ν λ̃2,ν ≥ ε−1. Then λ̃1,ν → ∞. We have

I2 ≥
∫
B1/2\B2

√
ε

{
λ̃2,ν

1 + λ̃2
2,ν |x− eν |2

}2

·
{

λ̃1,ν

1 + λ̃2
1,ν |x|2

}n−2

dx

≥ cλ̃2
2,ν λ̃

2−n
1,ν

∫
B1/2\B2

√
ε

|x|4−2n dx

≥ cλ̃n−2
2,ν λ̃2−n

1,ν | ln ε| if n ≥ 4.

Case B2. λ̃1,ν λ̃2,ν ≤ ε−1. Then for large ν,

I2 ≥ c

∫
B√

1/(2λ̃1,ν λ̃2,ν)

{
λ̃1,ν

1 + λ̃2
1,ν |x|2

}2 {
λ̃2,ν

1 + λ̃2
2,ν |x− eν |2

}n−2

dx

≥ cλ̃n−2
2,ν

∫
B√

1/(2λ̃1,ν λ̃2,ν )

{
λ̃1,ν

1 + λ̃2
1,ν |x|2

}2

dx (since λ̃2
2,ν |x− eν |2 ≤ 3)

≥ cλ̃2−n
1,ν λ̃n−2

2,ν ln(λ̃1,ν/λ̃2,ν) if n ≥ 4.

Therefore, (78) holds.

The following calculus lemma was used.

Lemma A.1. For p > 2, 0 ≤ ε ≤ 1, we have

(1 + ε)p ≥ 1 + εp + pε+ cpε
2

and

(1 + ε)p ≥ 1 + εp + pεp−1 + cpε

for some cp > 0 independent of ε.
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