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GENERAL LAW OF ITERATED LOGARITHM FOR MARKOV

PROCESSES: LIMINF LAWS

SOOBIN CHO, PANKI KIM, AND JAEHUN LEE

Abstract. Continuing from Cho, Kim, and Lee [General Law of iterated log-
arithm for Markov processes: Limsup law, arXiv:2102,01917v3], in this pa-
per, we discuss general criteria and forms of liminf laws of iterated logarithm
(LIL) for continuous-time Markov processes. Under some minimal assump-

tions, which are weaker than those in Cho et al., we establish liminf LIL at
zero (at infinity, respectively) in general metric measure spaces. In particular,
our assumptions for liminf law of LIL at zero and the form of liminf LIL are
truly local so that we can cover highly space-inhomogenous cases. Our results
cover all examples in Cho et al. including random conductance models with
long range jumps. Moreover, we show that the general form of liminf law of
LIL at zero holds for a large class of jump processes whose jumping measures
have logarithmic tails and Feller processes with symbols of varying order which
are not covered before.

1. Introduction and general result

Let Y := (Yt)t≥0 be a strictly β-stable process on R
d with 0 < β ≤ 2, in the sense

of [31, Definition 13.1]. Assume that none of the one-dimensional projections of Y
is a subordinator, and Y has no drift when β = 1 (namely, τ = 0 in [31, (14.16)]).
Then Y satisfies the following Chung-type liminf LIL: There exists a constants
C ∈ (0,∞) such that

lim inf
t→0 (resp. t→∞)

sup0<s≤t |Ys|
(t/ log | log t|)1/β = C a.s.(1)

See, e.g. [31, Sections 47-48].
The liminf LIL (1) was established for random walks on Z by Chung [14] un-

der the assumption that their i.i.d. increments have a finite third moment and
expectation zero. The liminf LIL in [14] was improved to a finite second moment
assumption by Jain and Pruitt [23]. For some related results, we refer to [17,24,35].
Chung also showed the large time result of (1) for a Brownian motion in R. The
liminf LIL has been extended to non-Cauchy β-stable processes on Rd with β < d
by Taylor [33], increasing random walks and subordinators by Fristedt and Pruitt
[18], and symmetric Lévy processes in R by Dupuis [16]. Then Wee [34] succeeded
in obtaining liminf LILs for numerous non-symmetric Lévy processes in R. See also
[1, 5] and the references therein. Recently, Knopova and Schilling [27] extended

Received by the editors August 3, 2022, and, in revised form, March 18, 2023.
2020 Mathematics Subject Classification. Primary 60J25, 60F15, 60J35, 60J76, 60F20.
Key words and phrases. Liminf law, jump processes, law of the iterated logarithm, sample

path.
This work was supported by the National Research Foundation of Korea(NRF) grant funded

by the Korea government(MSIP) (No. NRF-2021R1A4A1027378).

©2023 by the author(s) under Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 License (CC BY NC ND 4.0)

1411

https://www.ams.org/btran/
https://www.ams.org/btran/
https://doi.org/10.1090/btran/162


1412 SOOBIN CHO, PANKI KIM, AND JAEHUN LEE

liminf LIL at zero to non-symmetric Lévy-type processes in R. Also, very recently,
the second named author, jointly with Kumagai and Wang [25], extended liminf
LIL to symmetric mixed stable-like Feller processes on metric measure spaces.

The purpose of this paper is to understand asymptotic behaviors of a given
Markov process by establishing liminf law of iterated logarithms for both near zero
and near infinity under some minimal assumptions. In particular, we introduce
a new but general version of it. See Theorem 1.2. Our assumptions are weak
enough so that our results cover a lot of Markov processes including jump processes
with diffusion part, jump processes with small jumps of slowly varying intensity,
some non-symmetric processes, processes with singular jumping kernels and random
conductance models with long range jumps. See the examples in Sections 2–4, and
the references therein. In particular, the class of Markov processes considered in
this paper extends the results of [25]. Moreover, metric measure spaces in this paper
can be random, disconnected and highly space-inhomogeneous (see Definition 1.5).

Throughout this section, Section 5 and Appendix 6, we assume that (M,d, μ)
is a locally compact separable metric measure space where μ is a positive Radon
measure onM with full support. We add a cemetery point ∂ toM and denoteM∂ =
M ∪ {∂}. We consider a Borel standard Markov process X = (Ω,Ft, Xt, θt, t ≥
0;Px, x ∈ M∂) on M∂ with the lifetime ζ := inf{t > 0 : Xt = ∂}. Here (θt)t≥0 is
the shift operator with respect to X which is defined as Xs(θt ω) = Xs+t(ω) for all
t, s ≥ 0. Since X is a Borel standard process, X has a Lévy system in the sense of
[3, Theorem 1.1]. In this paper, we always assume that X admits a Lévy system of
the form (J(x, ·), ds) so that for any z ∈ M , t > 0 and nonnegative Borel function
F on M ×M∂ vanishing on the diagonal,

E
z

[∑
s≤t

F (Xs−, Xs)

]
= E

z

[∫ t

0

∫
M∂

F (Xs, y)J(Xs, dy)ds

]
.

The measure J(x, dy) on M∂ is called the Lévy measure of the process X. Here we
emphasize that the killing term J(x, ∂) is included in the Lévy measure.

For x ∈ M and r ∈ (0,∞], set B(x, r) := {y ∈ M : d(x, y) < r} and V (x, r) :=
μ(B(x, r)) with the convention B(x,∞) = M . For a subset U ⊂ M , we denote by
δU (x) the distance between x and M \ U , namely,

δU (x) = inf{d(x, y) : y ∈ M \ U}, x ∈ M.

We fix a base point o ∈ M and define

d(x) = d(x, o) + 1, x ∈ M.

Since d(x) ≥ 1, the map υ �→ d(x)υ is nondecreasing on (0,∞).
For a Borel set D ⊂ M , we denote

τD := inf{t > 0 : Xt ∈ M∂ \D}

for the first exit time of X from D.
We are now ready to introduce our assumptions. Our assumptions are given

in terms of mean exit times, tails of Lévy measures and survival probabilities on
balls. Our assumptions are weaker than those in [12], see Lemmas 6.4 and 6.5 in
Appendix 6.

Here are our assumptions for liminf LIL at zero. Let U ⊂ M be an open subset
of M .
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There exist constants R0 > 0, C0 ∈ (0, 1), C1, C2 > 1, Ci > 0, 3 ≤ i ≤ 7 such
that for every x ∈ U and 0 < r < R0 ∧ (C0δU (x)),

C−1
1 E

y[τB(y,r)] ≤ E
x[τB(x,r)] ≤ C1E

y[τB(y,r)] for all y ∈ B(x, r),(A1)

lim
r→0

E
x[τB(x,r)] = 0, E

x[τB(x,r)] ≤ C2E
x[τB(x,r/2)],(A2)

J(x,M∂ \B(x, r)) ≤ C3

Ex[τB(x,r)]
,(A3)

C4e
−C5n ≤ P

x
(
τB(x,r) ≥ nEx[τB(x,r)]

)
≤ C6e

−C7n for all n ≥ 1.(A4)

Next, we give assumptions for liminf LIL at infinity.
There exist constants R∞ ≥ 1, υ ∈ (0, 1), 	 > 1, C1 > 1, C2 > 1, Ci > 0,

3 ≤ i ≤ 7 such that for every x ∈ M and r > R∞d(x)υ,

C−1
1 E

o[τB(o,r)] ≤ E
x[τB(x,r)] ≤ C1E

o[τB(o,r)],(B1)

2Eo[τB(o,s/�)] ≤ E
o[τB(o,s)] ≤ C2E

o[τB(o,s/2)] for all s > R∞,(B2)

J(x,M∂ \B(x, r)) ≤ C3

Ex[τB(x,r)]
,(B3)

C4e
−C5n ≤ P

x
(
τB(x,r) ≥ nEx[τB(x,r)]

)
≤ C6e

−C7n for all n ≥ 1.(B4)

We recall the following figure from [12, Figure 1] which shows the ranges of r in
our conditions.

Figure 1. Range of r in local conditions

Remark 1.1.

(i) Note that, like [12], we impose conditions at infinity (B1), (B3) and (B4) only
for r > R∞d(x)υ (resp. (B2) only for s > R∞ = R∞d(o)υ). By considering such
weak assumptions at infinity, our LILs cover some random conductance models.
See Section 3.

(ii) The assumptions (A3) and (B3) are quite mild and natural. Let x ∈ U .
Suppose (A2) holds for U and for 0 < r < R0 ∧ (C0δU (x)),

J(y,M∂ \B(x, r)) ≥ cJ(x,M∂ \B(x, r)) for all y ∈ B(x, r/2).
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Then, by the Lévy system, we have that for 0 < r < R0 ∧ (C0δU (x)),

1 ≥ P
x(XτB(x,r/2)

∈ M∂ \B(x, r)) = E
x

[∫ τB(x,r/2)

0

∫
M∂\B(x,r)

J(Xs, dy)ds

]
≥ cEx[τB(x,r/2)]J(x,M∂ \B(x, r)) ≥ cC−1

2 E
x[τB(x,r)]J(x,M∂ \B(x, r)).

(iii) The exact constant 2 in (B2) is unimportant. One can replace it with any
constant C > 1. Indeed, suppose that there exist constants R′

∞ ≥ 1, 	′ > 1 and
C ∈ (1, 2) such that

(B2’) CE
o[τB(o,s/�′)] ≤ E

o[τB(o,s)] for all x ∈ M, s > R′
∞.

Set k := min{n ≥ 2 : Cn ≥ 2}, 	 := 	′k and R∞ := R′
∞	′k−1. Then, using (B2’)

k-times, we get that for every x ∈ M and s > R∞,

2Eo[τB(o,s/�)] ≤ Ck
E
o[τB(o,s/�′k)]

≤ Ck−1
E
o[τB(o,s/�′k−1)] ≤ · · · ≤ CE

o[τB(o,s/�′)] ≤ E
o[τB(o,s)].

Thus, (B2) holds constants R∞ ≥ 1 and 	 > 1.
(iv) The first inequality in (B2) implies that limr→∞ Eo[τB(o,r)] = ∞. Hence,

under (B1) and (B2), we have limr→∞ E
x[τB(x,r)] = ∞ for all x ∈ M .

From now on, whenever conditions (A1)–(A3) are assumed with R0 > 0 for an
open set U , we let φ(x, r) be a function defined on U×(0, R0) satisfying the following
properties: r �→ φ(x, r) is increasing for all x ∈ U and there is a constant C ≥ 1
such that
(2)
C−1

E
x[τB(x,r)] ≤ φ(x, r) ≤ CE

x[τB(x,r)] for all x ∈ U, 0 < r < R0 ∧ (C0δU (x)).

Also, whenever conditions (B1)–(B3) are assumed with R∞ ≥ 1 and υ ∈ (0, 1),
we let φ(r) be any function on M × (0,∞) satisfying (2) for all x ∈ M and r >
R∞d(x)υ, with φ(r) instead of φ(x, r).

Then by condition (A2), we see that there exist constants β2 > 0 and CU ≥ 1
such that

(3)
φ(x, r)

φ(x, s)
≤ CU

(
r

s

)β2

for all x ∈ U, 0 < s ≤ r < R0 ∧ (C0δU (x)),

and by (B2), there exist constants β1, β2 > 0 and CU ≥ 1 ≥ CL > 0 such that

(4) CL

(
r

s

)β1

≤ φ(r)

φ(s)
≤ CU

(
r

s

)β2

for all r ≥ s > R∞d(x)υ.

Now, we give our results in full generality. Our first result is the liminf law of
LIL at zero. Note that we do not put any extra assumptions on our metric measure
space such as volume doubling property.

Theorem 1.2. Suppose that (A1)–(A4) hold for an open subset U ⊂ M . Then,
there are constants a2 ≥ a1 > 0 such that for all x ∈ U , there exists a constant
ax ∈ [a1, a2] satisfying

(5) lim inf
t→0

φ
(
x, sup0<s≤t d(x,Xs)

)
t/ log | log t| = ax, P

x-a.s.
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Note that in Theorem 1.2, r �→ φ(x, r) for x ∈ U can be slowly varying at zero so
that we can cover jump processes whose jumping measures have logarithmic tails.
When φ(x, r) is a mixed polynomial type near zero (i.e., both (3) and (6) hold), we
recover the classical form of the liminf LIL at zero.

We denote φ−1(x, t) := sup{r > 0 : φ(x, r) ≤ t} for the right continuous inverse
of φ(x, ·).

Corollary 1.3. Suppose that (A1)–(A4) hold for an open subset U ⊂ M and there
exist constants β1, CL > 0 such that

(6)
φ(x, r)

φ(x, s)
≥ CL

(
r

s

)β1

for all x ∈ U, 0 < s ≤ r < R0 ∧ (C0δU (x)).

Then, there are constants ã2 ≥ ã1 > 0 such that for all x ∈ U , there exists a
constant ãx ∈ [ã1, ã2] satisfying

(7) lim inf
t→0

sup0<s≤t d(x,Xs)

φ−1(x, t/ log | log t|) = ãx, P
x-a.s.

Our second result is the liminf law of LIL at infinity.

Theorem 1.4. Suppose that (B1)–(B4) hold. Then, there are constants b2 ≥ b1 > 0
such that

(8) lim inf
t→∞

sup0<s≤t d(x,Xs)

φ−1(t/ log log t)
∈ [b1, b2], P

y-a.s. ∀x, y ∈ M.

The lim inf in (8) may not be deterministic. In [12], we have obtained a zero-one
law for shift-invariant events under volume doubling assumptions and near diagonal
lower heat kernel estimates (see Proposition 5.4). Using the same zero-one law, in
this paper we also establish the deterministic limit in liminf law.

We recall the following versions of volume doubling property from our previous
paper [12].

Definition 1.5.

(i) For an open set U ⊂ M and R′
0 ∈ (0,∞], we say that the interior volume

doubling and reverse doubling property VRDR′
0
(U) holds if there exist constants

CV ∈ (0, 1), d2 ≥ d1 > 0 and Cμ ≥ cμ > 0 such that for all x ∈ U and 0 < s ≤ r <
R′

0 ∧ (CV δU (x)),

(9) cμ

(r
s

)d1

≤ V (x, r)

V (x, s)
≤ Cμ

(r
s

)d2

.

(ii) For R′
∞ ≥ 1 and υ ∈ (0, 1), we say that a weak volume doubling and reverse

doubling property at infinity VRDR′
∞(υ) holds if there exist constants d2 ≥ d1 > 0

and Cμ ≥ cμ > 0 such that (9) holds for all x ∈ M and r ≥ s > R′
∞d(x)υ.

For an open set D ⊂ M , let XD be the part process of X defined as XD
t :=

Xt 1{τD>t}+∂ 1{τD≤t}. Then Xt is a Borel standard process on D. See, e.g. [8, Sec-

tion 3.3]. Let (PD
t )t≥0 be the semigroup associated with XD, namely, PD

t f(x) :=
Ex[f(XD

t )]. We call a Borel measurable function pD : (0,∞)×D×D → [0,∞] the
heat kernel (transition density) of (PD

t )t≥0 (or XD) if the followings hold:

(i) PD
t f(x) =

∫
D
pD(t, x, y)f(y)μ(dy) for all t > 0, x ∈ D and f ∈ L∞(D;μ).

(ii) pD(t+ s, x, y) =
∫
D
pD(t, x, z)pD(s, z, y)μ(dz) for all t, s > 0 and x, y ∈ D.
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We simply write Pt for P
M
t and p(t, x, y) for pM (t, x, y).

We now consider the following near diagonal lower heat kernel estimates:

There exist constants R′
∞ ≥ 1, υ, η ∈ (0, 1), c∗ > 0 such that for all x ∈ M and

r > R′
∞d(x)υ, the heat kernel pB(x,r)(t, x, y) of XB(x,r) exists and

(B4+) pB(x,r)(φ(ηr), y, z) ≥ c∗
V (x, r)

for all y, z ∈ B(x, η2r).

Under (B1) and VRDR′
∞(υ), the above condition (B4+) is stronger than (B4).

See Proposition 1.9.

Remark 1.6. The standard version of near diagonal lower estimates on heat kernels
(without the restriction r > R∞d(x)υ) has been studied a lot. In particular, in
[10] and [11], it is shown that, for a large class of symmetric Hunt processes, the
standard version of near diagonal lower heat kernel estimates can be obtained under
(B2) and a Hölder-type regularity of the corresponding harmonic functions. See
[10, Proposition 4.9] and its proof.

Corollary 1.7. Suppose that VRDR′
∞(υ) holds. If (B1), (B2), (B3) and (B4+)

hold, then there exists a constant b∞ ∈ (0,∞) such that

(10) lim inf
t→∞

sup0<s≤t d(x,Xs)

φ−1(t/ log log t)
= b∞, P

y-a.s. ∀x, y ∈ M.

Remark 1.8.

(1) Once we prove that the liminf LILs (5) and (7) hold true with φ(x, r) =
Ex[τB(x,r)], by Blumenthal’s zero-one law, they hold true with general φ satisfying

(2) after redefining constants a1, a2, ã1, ã2 by C−1a1, Ca2, C
−1ã1, C ã2, respectively,

with the constant C ≥ 1 in (2). Similarly, thanks to the zero-one law given in
Proposition 5.4, it suffices to prove Theorem 1.4 and Corollary 1.7 with a particular
function φ(r) := Eo[τB(o,r)].

(2) Using the zero-one law in Proposition 5.4 again, we see that the liminf LIL
(10) remains true even if the function φ, which comes from condition (B4+), is

replaced by any function φ̃ comparable to φ.

Let us also consider the following counterpart of (B4+):

For a given open set U ⊂ M , there exist constants R′
0>0, C ′

0, η ∈ (0, 1) and c∗>0

such that for all x ∈ U and 0< r < R′
0 ∧ (C ′

0δU (x)), the heat kernel pB(x,r)(t, x, y)

of XB(x,r) exists and

(A4+) pB(x,r)(φ(x, ηr), y, z) ≥ c∗
V (x, r)

for all y, z ∈ B(x, η2r).

Proposition 1.9.

(i) Suppose that VRDR′
0
(U) holds. If (A2) and (A4+) hold, then (A4) holds with

some R0 > 0 and C0 ∈ (0, 1).

(ii) Suppose that VRDR′
∞(υ) holds. If (B2) and (B4+) hold, then (B4) holds

with some R∞ ≥ 1.
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Proof. (i) By following the proof of [12, Proposition 4.3(i)] and using φ(x, r) instead
of φ(r) therein, we can deduce that there exist constants R1, c2, c3 > 0, c1 > 1 and
C0 ∈ (0, 1) such that for all x ∈ U , 0 < c1r < R1 ∧ (C0δU (x)) and n ≥ 1,

e−c2n ≤ P
x
(
τB(x,r) ≥ nEx[τB(x,c1r)](x, c1r)

)
≤ e−c3n.

By taking R1 small enough if needed, we may assume that (A2) holds with R0 = R1.
Using (3), it follows that for all x ∈ U , 0 < r < R1 ∧ (C0δU (x)) and n ≥ 1,

e−c2n ≤ P
x
(
τB(x,r) ≥ nφ(x, c1r)

)
≤ P

x
(
τB(x,r) ≥ nφ(x, r)

)
≤ P

x
(
τB(x,r) ≥ c−β2

1 C−1
U nφ(x, c1r)

)
≤ e−c3(c

−β2
1 C−1

U n−1).

(ii) Analogously, we can deduce the result by following the proof of [12, Proposition
4.3(ii)]. �

The rest of the paper is organized as follows. In Sections 2–4, we show that the
conditions (A1)–(A4), (B1)–(B4) and (B4+) can be checked for important classes
of Markov jump processes, which may be non-symmetric and space-inhomogeneous.
Thus we can apply our main theorems to get explicit liminf LILs for them.

More precisely, in Section 2, we consider general (non-symmetric) Feller processes
on Rd with C∞

c (Rd) contained in their domain of generators and introduce some
local assumptions (see (O1)–(O4)). Under these assumptions, we establish liminf
LIL at zero for Feller processes on Rd. Then, combining results in this paper and
[12], we present concrete examples of non-symmetric Feller processes and Feller
processes with singular Lévy measures for which both liminf LILs and limsup LILs
hold. In the remainder of Section 2, we give another assumption (see (S)), which
can be checked directly from the symbols of Feller processes. As a consequence,
we show that liminf LILs at zero holds for Feller processes with symbols of varying
order.

Section 3 revisits [12, Section 3] and discusses liminf LILs for the random con-
ductance model with long range jumps studied in [6, 7]. Our conditions at infinity
are motivated by the random conductance model therein.

In Section 4, we deal with subordinate processes and symmetric Hunt processes
whose tail of the Lévy measure decays in (mixed) polynomial order. We assume
that there is a Hunt process Z enjoying sub-Gaussian heat kernel estimates. Then
we show that general liminf LIL holds true for every subordinate process of Z if
the corresponding subordinator is not a compound Poisson process. In particular,
we get liminf LILs for jump processes with low intensity of small jumps such as
geometric stable processes. Using local stability theorems obtained in [12], we also
get liminf LIL for symmetric Hunt processes associated with a regular Dirichlet
form.

Section 5 is devoted to the proofs of our main theorems. We follow the well-
known arguments in [16, Chapter 3], [27, Theorem 2] and [25, Theorem 3.7]. But
non-trivial modifications are required since we allow our processes and state spaces
to be highly space-inhomogeneous. The paper ends with Appendix 6 which contains
some comparisons between conditions of the current paper and [12] and a simple
lemma about lower heat kernel estimates for Dirichlet heat kernel.

Notations. Values of capital letters with subscripts Ci, i = 0, 1, 2, . . . are fixed
throughout the paper both at zero and at infinity. Lower case letters with subscripts
ai, ci, i = 0, 1, 2, . . . denote positive real constants and are fixed in each statement
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and proof, and the labeling of these constants starts anew in each proof. We use
the symbol “:=” to denote a definition, which is read as “is defined to be.” Recall
that a ∧ b := min{a, b} and a ∨ b := max{a, b}. We denote by A the closure
of A. We extend a function f defined on M to M∂ by setting f(∂) = 0. The
notation f(x)  g(x) means that there exist constants c2 ≥ c1 > 0 such that
c1g(x) ≤ f(x) ≤ c2g(x) for specified range of x. For D ⊂ M , denote by Cc(D) the
space of all continuous functions with compact support in D.

2. LIL for Feller processes on R
d

Throughout this section, we assume that X is a Feller process on Rd with gen-
erator (L,D(L)) such that C∞

c (Rd) ⊂ D(L). It is well known that the generator
L restricted to C∞

c (Rd) is a pseudo-differential operator, which has the following
representation (see [15]):

Lu(x) = −(2π)−d

∫
Rd

ei〈x,ξ〉q(x, ξ)

∫
Rd

e−i〈y,ξ〉u(y)dydξ, u ∈ C∞
c (Rd),

where the function q : Rd ×Rd → C, which is called the symbol of X (or L), enjoys
the following Lévy-Khinchine formula

q(x, ξ) = c(x)− i〈b(x), ξ〉+ 〈ξ, a(x)ξ〉+
∫
Rd\{0}

(1− ei〈z,ξ〉+ i〈z, ξ〉1{|z|≤1})ν(x, dz).

Here (c(x),b(x), a(x), ν(x, dz))x∈Rd is a family of the Lévy characteristics, that is,
c : Rd → [0,∞) and b : Rd → R

d are measurable functions, a : Rd → R
d×d is a

nonnegative definite matrix-valued function, and ν(x, dz) is a nonnegative, σ-finite
kernel on Rd×B(Rd \{0}) such that

∫
Rd\{0}(1∧|z|2)ν(x, dz) < ∞ for every x ∈ Rd.

Throughout this section, we always assume that c(x) is identically zero so that X
has no killing inside.

Define for x ∈ Rd and r > 0,

(11) Φ(x, r) =

(
sup

|ξ|≤1/r

Re q(x, ξ)

)−1

.

For example, if functions α : Rd → (0, 2) and γ : Rd → (−2,∞) satisfy γ(x) ≥
−α(x) for all x ∈ Rd, then the function q(x, ξ) := |ξ|α(x)(log(1 + |ξ|))γ(x) is a
symbol (see Lemma 2.2) and we obtain Φ(x, r) = rα(x)(log(1 + 1/r))−γ(x).

Here are our assumptions on the Feller process X. Let U ⊂ Rd be an open
subset.

There exist constants R0, ε0 > 0, κ > 1, Ci ∈ (0, 1), 8 ≤ i ≤ 11 such that for
every x ∈ U and ξ ∈ R

d with 1/|ξ| < R0 ∧ (C8δU (x)), the following hold

lim
r→0

Φ(x, r) = 0 (or, equivalently, either a(x) �= 0 or ν(x,Rd) = ∞),(O1)

sup
|ξ′|≤|ξ|

Re q(x, ξ′) ≥ C9| Im q(x, ξ)|,(O2)

inf
|x−y|≤1/|ξ|

Re q(y, ξ) ≥ C10 sup
|x−y|≤1/|ξ|

Re q(y, ξ),(O3)

P
x
(
κ〈Xt − x, z〉 ≤ −|Xt − x|

)
≥ C11 for all |z| = 1(O4)

and 0 < t < ε0Φ
(
x,R0 ∧ (C8δU (x))

)
.

Under (O1), the probability that the process X starting from x ∈ U stays at
x for a positive amount time is zero. (O2) is not only a local formulation of the



GENERAL LAW OF ITERATED LOGARITHM: LIMINF LAWS 1419

sector condition but also a weaker version of it since we take the supremum in the
left-hand side. (O3) and (O4) give a weak spatial homogeneity of the process in U .
Similar conditions have appeared in [27] (see (A2)–(A3) therein) where small time
Chung-type LILs for one-dimensional Lévy-type processes were studied.

Remark 2.1. When d = 1, (O4) is equivalent to Px(Xt −x ≥ 0) ∈ [C11, 1−C11] for
all x ∈ U and t ≤ Φ

(
x,R0 ∧ (C8δU (x))

)
. Thus, if d = 1 and X is symmetric, then

(O4) holds with C11 = 1/2.

Following [30], we set for x ∈ Rd and r > 0,

h(x, r) =
1

r2
‖a(x)‖+

∫
Rd

(
|z|2
r2

∧ 1

)
ν(x, dz),

where ‖a(x)‖ := supξ∈Rd, |ξ|≤1 〈ξ, a(x)ξ〉. The function h frequently appears in

maximal inequalities for Lévy-type processes. See, e.g. [16, 27].
The following result is well-known. We give a full proof for the reader’s conve-

nience.

Lemma 2.2. There exists a constant C12 > 1 depending only on the dimension d
such that

sup
|ξ|≤1/r

Re q(x, ξ) ≤ 2h(x, r) ≤ C12 sup
1/(2r)≤|ξ|≤1/r

Re q(x, ξ) for all x ∈ R
d, r > 0.

In particular, it holds that

(12)
1

2h(x, r)
≤ Φ(x, r) ≤ C12

2h(x, r)
for all x ∈ R

d, r > 0.

Proof. Using the inequality 1− cos y ≤ y2 ∧ 2 for y ∈ R, we get that for all x ∈ Rd

and r > 0,

sup
|ξ|≤1/r

Re q(x, ξ) ≤ 1

r2
‖a(x)‖+ sup

|ξ|≤1/r

∫
Rd

(1− cos 〈z, ξ〉)ν(x, dz) ≤ 2h(x, r).

Next, it is clear that sup1/(2r)≤|ξ|≤1/r Re q(x, ξ) ≥ r−2‖a(x)‖. Moreover, using

Tonelli’s theorem and the inequality 1 − cos y ≥ y2/4 for |y| ≤ 1, we get that for
all x ∈ Rd and r > 0,

sup
1/(2r)≤|ξ|≤1/r

Re q(x, ξ) ≥ c1

∫
1/2≤|ρ|≤1

Re q(x, ρ/r)dρ

≥ c1

∫
Rd

∫
1/2≤|ρ|≤1

(1− cos 〈z, ρ/r〉)dρ ν(x, dz)

≥ c1

(∫
|z|≤r

|z|2
r2

∫
1/2≤|ρ|≤1

〈z/|z|, ρ〉2

4
dρν(x, dz)+

∫
|z|>r

∫
1/2≤|ρ|≤1

(1−cos 〈z/r, ρ〉)dρ ν(x, dz)
)

≥ c1

∫
Rd

( |z|2
r2

∧ 1

)
ν(x, dz) inf

y∈Rd, |y|=1

(∫
1/2≤|ρ|≤1

〈y, ρ〉2

4
dρ ∧

∫
1/2≤|ρ|≤1

(1− cos 〈y, ρ〉)dρ
)

.

Let e1 := (1, 0, . . . , 0) ∈ Rd. By symmetry, we see that for all y ∈ Rd with |y| = 1,∫
1/2≤|ρ|≤1

〈y, ρ〉2dρ≥
∫
1/2≤|ρ|≤1, 〈e1,ρ〉≥|ρ|/2

〈e1, ρ〉2dρ≥
1

16

∫
1/2≤|ρ|≤1, 〈e1,ρ〉≥|ρ|/2

dρ

= c2
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and∫
1/2≤|ρ|≤1

(1− cos 〈y, ρ〉)dρ = inf
a>1

∫
1/2≤|ρ|≤1

(1− cos a〈e1, ρ〉)dρ

≥ 2 inf
a>1

∫ 1/2

0

∫
ρ̃∈Rd−1,|ρ̃|≤1/2

(1− cos aρ1)dρ̃dρ1 ≥ c3 inf
a>1

∫ 1/2

0

(1− cos aρ1)dρ1.

Since lima→∞
∫ 1/2

0
(1−cos aρ1)dρ1 = 1/2, it holds that infa>1

∫ 1/2

0
(1−cos aρ1)dρ1 >

0. Therefore, using the inequality a ∨ b ≥ (a + b)/2 for a, b ∈ R, we get that
sup1/(2r)≤|ξ|≤1/r Re q(x, ξ) ≥ c4h(x, r) and finish the proof. �

Recall that Φ is defined in (11). It is clear that s2h(x, s) ≤ r2h(x, r) for all
x ∈ Rd and 0 < s ≤ r. Thus, by (12), there exists a constant C ′

U > 0 depending
only on d such that

(13)
Φ(x, r)

Φ(x, s)
≤ C ′

U

(
r

s

)2

for all x ∈ R
d, 0 < s ≤ r.

Lemma 2.3. Suppose that (O3) holds for an open subset U ⊂ Rd. Then there
exists a constant C13 ∈ (0, 1) such that

inf
|x−y|≤2r

Φ(y, r) ≥ C13 sup
|x−y|≤2r

Φ(y, r) for all x ∈ U, 0 < 4r < R0 ∧ (C8δU (x)).

Proof. By (13), Lemma 2.2 and (O3), we get that for all x ∈ U and 0 < 4r <
R0 ∧ (C8δU (x)),

inf
|x−y|≤2r

Φ(y, r) ≥ c1 inf
|x−y|≤2r

(
sup

1/(4r)≤|ξ|≤1/(2r)

Re q(y, ξ)

)−1

=c1 inf
1/(4r)≤|ξ|≤1/(2r)

inf
|x−y|≤2r

Re q(y, ξ)−1≥c1C10 inf
1/(4r)≤|ξ|≤1/(2r)

sup
|x−y|≤2r

Re q(y, ξ)−1

≥c2 sup
|x−y|≤2r

inf
1/(4r)≤|ξ|≤1/(2r)

Re q(y, ξ)−1≥c2C10 sup
|x−y|≤2r

Φ(x, r).

�

As an application of our Theorem 1.2, we obtain the following LIL for Feller pro-
cesses. See [27, Theorem 2] for a one-dimensional result under similar assumptions.

Theorem 2.4. Let X be a Feller process on Rd with symbol q. Suppose that (O1)–
(O4) hold for an open subset U ⊂ Rd. Then, there are constants a2 ≥ a1 > 0 such
that for all x ∈ U , there exists a constant ax ∈ [a1, a2] satisfying

(14) lim inf
t→0

Φ(x, sup0<s≤t |Xs − x|)
t/ log | log t| = ax, P

x-a.s.

Moreover, if there exist constants β′
1, C

′
L > 0 such that

(15)
Φ(x, r)

Φ(x, s)
≥ C ′

L

(
r

s

)β′
1

for all x ∈ U, 0 < s ≤ r < R0 ∧ (C8δU (x)),

then there are constants ã2 ≥ ã1 > 0 such that for all x ∈ U , there exists a constant
ãx ∈ [ã1, ã2] satisfying

(16) lim inf
t→0

sup0<s≤t d(x,Xs)

Φ−1(x, t/ log | log t|) = ãx, P
x-a.s.
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Remark 2.5. Let Φ̃ be any function on U × (0, 1) such that Φ̃(x, r)  Φ(x, r) for
x ∈ U and r ∈ (0, 1). Thanks to Blumenthal’s zero-one law, the liminf LILs (14)

and (16) hold true with Φ̃ instead of Φ. Cf. Remark 1.8.

To prove Theorem 2.4, we need the following two lemmas.
The first one is a consequence of [4, Section 5]. Since we only put assumptions

on the symbol q locally, we carefully check the ranges of variables in the proof of
Lemma 2.6.

Lemma 2.6. Suppose that (O1), (O2) and (O3) hold for an open subset U ⊂ Rd.
Then there exist constants C14, C15 > 0 and C16 > 1 such that for all x ∈ U ,
0 < 8C12

C9
r < R0 ∧ (C8δU (x)), w ∈ B(x, r) and t > 0,

(17) P
w(τB(w,r) ≤ t) ≤ C14t

Φ(x, r)
,

(18) P
w(τB(w,r) ≥ t) ≤ exp

(
− C15t

Φ(x, r)
+ 1

)
,

and

(19) C−1
16 Φ(x, r) ≤ E

w[τB(w,r)] ≤ C16Φ(x, r),

where C9, C10 and C12 are constants in (O2), (O3) and Lemma 2.2 respectively.

Proof. Fix x ∈ U . Let r0 := R0 ∧ (C8δU (x)) and k := 2C12/C9 > 2. Note that for
all 0 < 4kr < r0 and w ∈ B(x, 2r), by the triangle inequality,

C8δU (w) ≥ C8(δU (x)− r) > r0 − 2r > 3kr.

Hence, by Lemma 2.2 and (O2), it holds that for all 0 < 4kr < r0 and w ∈ B(x, r),
(20)

sup
1/(4kr)≤|ξ|≤1/(2kr)

sup
|y−w|≤r

Re q(y, ξ)

|ξ||Im q(y, ξ)| ≥
2kr

C12

sup|ξ|≤1/(kr)Re q(w, ξ)

sup|ξ|≤1/(kr) |Im q(w, ξ)| ≥
2C9kr

C12
=4r.

Using (O3), Lemma 2.2 and the monotone property of Φ, we get that for all
0 < 4kr < r0 and w ∈ B(x, r),

(21)

sup
1/(4kr)≤|ξ|≤1/(2kr)

inf
|y−w|≤3r

Re q(y, ξ)

≥ sup
1/(4kr)≤|ξ|≤1/(2kr)

inf
|y−x|<4r

Re q(y, ξ)≥C10 sup
1/(4kr)≤|ξ|≤1/(2kr)

Re q(x, ξ)≥ C10

C12
Φ(x, r).

On the other hand, by Lemma 2.2 and (O3), we also get that for all 0 < 4r < r0
and w ∈ B(x, r),

sup
|y−w|≤r

sup
|ξ|≤1/r

Re q(y, ξ) ≤ C12 sup
1/(2r)≤|ξ|≤1/r

sup
|y−w|≤r

Re q(y, ξ) ≤ C12

C10
Φ(x, r)−1.

Moreover, we get from Lemma 2.3 and (O2) that for all 0 < 4kr < r0 and w ∈
B(x, r),

sup
|y−w|≤r

sup
4/r0<|ξ|≤1/r

|Im q(y, ξ)| ≤ 1

C9
sup

|y−x|<2r

sup
|ξ|≤1/r

|Re q(y, ξ)| ≤ C13

C9
Φ(x, r)−1.
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Using the triangle inequality several times, (O2) in the second inequality, the in-
equality |a− sin a| ≤ |a|2 for a ∈ R in the third, Lemma 2.2 in the fourth, and the
monotone property of Φ and Lemma 2.3 in the last, we get that for all y, ξ ∈ R

d

such that |y − x| < 2r and |ξ| ≤ 4/r0,

| Im q(y, ξ)|

≤ r0|ξ|
4

∣∣ Im q(y,
4

r0|ξ|
ξ)

∣∣+ ∣∣∣∣ ∫
Rd

(
r0|ξ|
4

sin 〈z, 4

r0|ξ|
ξ〉 − sin 〈z, ξ〉

)
ν(y, dz)

∣∣∣∣
≤ r0|ξ|

4C9
Φ(y, 4/r0)

−1 +
r0|ξ|
4

∫
|z|<r0/4

∣∣∣∣〈z, 4

r0|ξ|
ξ〉 − sin 〈z, 4

r0|ξ|
ξ〉

∣∣∣∣ ν(y, dz)
+

∫
|z|<r0/4

∣∣〈z, ξ〉 − sin 〈z, ξ〉
∣∣ν(y, dz) + (

r0|ξ|
4

+ 1

)∫
|z|≥r0/4

ν(y, dz)

≤ 1

C9
Φ(y, 4/r0)

−1 +

(
16

r20
+

16

r20

)∫
|z|<r0/4

|z|2ν(y, dz) + 2ν
(
y,Rd \B(0, r0/4)

)
≤ c1Φ(y, 4/r0)

−1 ≤ c2Φ(x, r)
−1.

Therefore, we deduce that for all 0 < 4kr < r0 and w ∈ B(x, r),

sup
|y−w|≤r

sup
|ξ|≤1/r

|q(y, ξ)| ≤ sup
|y−w|≤r

(
sup

|ξ|≤1/r

Req(y, ξ) + sup
4/r0<|ξ|≤1/r

|Im q(y, ξ)|

+ sup
|ξ|≤4/r0

|Im q(y, ξ)|
)
≤ c3Φ(x, r)

−1.(22)

Finally, by (20), (21) and (22), we obtain the results from [4, Theorem 5.1,
Corollary 5.3 and Theorem 5.9]. �

Lemma 2.7. Suppose that (O1)–(O4) hold for an open subset U ⊂ Rd. Then (A4)
holds for U .

Proof. To prove the lemma, we mainly follow the strategy of [19, Proposition 5.2].
Choose any x ∈ U and set r0 := R0 ∧ (C8δU (x)). For all w ∈ B(x, r0/8), since

δU (w) ≥ δU (x)− r0/8 > δU (x)/5, we get from Lemma 2.3 and (13) that

(23) Φ
(
w,R0 ∧ (C8δU (w))

)
≥ Φ(w, r0/5) ≥ C13Φ(x, r0/5) ≥ c1Φ(x, r0),

where the constant c1 > 0 is independent of x.
Let r > 0 be such that (8C12/C9)r < r0. By (17), (19) and (13), there is a

constant ε1 ∈ (0, c1ε0/C16) independent of x and r such that for all w ∈ B(x, r/2),

(24) P
w(τB(w,r/κ) ≤ ε1E

x[τB(x,r)]) ≤ C11/2,

where ε0, κ, C11 and C16 are the constants in (O4) and (19). Set t0 := ε1E
x[τB(x,r)]

and for k ≥ 0,

Sk

:=

{
sup

kt0≤u≤(k+1)t0

|Xu −Xkt0 |<
r

2κ
, κ〈X(k+1)t0−Xkt0 , Xkt0〉≤−|X(k+1)t0−Xkt0 ||Xkt0 |

}
.
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Note that a2 − ab+ b2 < 1 for 0 ≤ a, b < 1. Using this inequality, we get that for
any y, z ∈ Rd satisfying |y| < r/2, |z| < r/(2κ) and κ〈y, z〉 ≤ −|y||z|,

|y + z|2 = |y|2 + |z|2 + 2〈y, z〉 ≤ |y|2 + |z|2 − 2

κ
|y||z|

=

(
1− 4

κ2

)
|y|2 + r2

κ2

[(
2|y|
r

)2

+

(
κ|z|
r

)2

−
(
2|y|
r

)(
κ|z|
r

)]

<

(
1− 4

κ2

)(
r

2

)2

+
r2

κ2
=

(
r

2

)2

.

Hence, for any n ≥ 1, on the event ∩n−1
k=0Sk, we have Xkt0 ∈ B(X0, r/2) for all

0 ≤ k ≤ n. By the Markov property, it follows that for all n ≥ 1,

P
x(τB(x,r)≥nt0)≥P

x
(
∩n−1
k=0 Sk

)
= P

x
E

[
∩n−1
k=0 Sk

∣∣F(n−1)t0

]
=P

x
(
P
X(n−1)t0 (S0)

)
P
x
(
∩n−2
k=0 Sk

)
≥ inf

w∈B(x,r/2)
P
w(S0) · Px

(
∩n−2
k=0 Sk

)
≥ · · · ≥

(
inf

w∈B(x,r/2)
P
w(S0)

)n

.

For any w ∈ B(x, r/2), since ε0Φ
(
w,R0 ∧ (C8δU (w))

)
> c1ε0C

−1
16 Ex[τB(x,r)] > t0

by (23) and (19), using (O4) and (24), we get that

P
w(S0) ≥ 1− P

w(κ〈Xt0 − w,w〉 > −|Xt0 − w||w|)− P
w(τB(w,r/κ) ≤ t0) ≥ C11/2.

It follows that for all n ≥ 1,

P
x(τB(x,r) ≥ nEx[τB(x,r)]) = P

x(τB(x,r) ≥ nε−1
1 t0) ≥ (C11/2)

−n/ε1+1.

On the other hand, by (18) and (19), we get that for all n ≥ 1,

P
x(τB(x,r) ≥ nEx[τB(x,r)]) ≤ e(C15/C16)n+1.

The proof is complete. �

Proof of Theorem 2.4. With a redefined R0, in view of (19), we get (A1) from
Lemma 2.3, (A2) from (O1) and (13), (A3) from Lemma 2.2, and (A4) from Lemma
2.7. Then by the proof of Theorem 1.2, one can see that (67) holds for all x ∈ U
with Φ(x, ·) instead of φ(x, ·). Hence, by Blumenthal’s zero-one law, we deduce (14).
Moreover, if (15) also holds true, then we arrive at (16) by a similar argument to
that in the proof of Corollary 1.3. We omit details here. �

We now give concrete examples of Feller processes which satisfy both liminf LIL
at zero and limsup LIL at zero with help from the paper [12]. In the following two
examples, we use conditions Tail, E and NDL introduced in [12]. See Definitions
6.1–6.2 in Appendix for their definitions.

Example 2.8 (Non-symmetric Feller processes). Let ν be a nonincreasing non-
negative function on (0,∞) satisfying

∫∞
0

(rd−1 ∧ rd+1)ν(r)dr < ∞. Define for
r > 0,

G(r) = 1

/∫
|z|≥r

ν(|z|)dz and H(r) = 1

/∫
Rd

(
|z|2
r2

∧ 1

)
ν(|z|)dz.
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Then H ≤ G, H is increasing and H(r)/H(s) ≤ (r/s)2 for all 0 < s ≤ r. We assume
that there exist constants 0 < β1 ≤ β2 ≤ 2 and c1, c2 > 0 such that

(25) c1

(
r

s

)β1

≤ H(r)

H(s)
≤ c2

(
r

s

)β2

for all 0 < s ≤ r ≤ 1.

Let J(z) be a nonnegative function on R
d comparable to ν(|z|) and κ(x, z) be a

Borel function on Rd×Rd such that for some constants a1, a2, a3 > 0 and β ∈ (0, 1),

(26) a1 ≤ κ(x, z) ≤ a2 and |κ(x, z)−κ(y, z)| ≤ a3|x−y|β for all x, y, z ∈ R
d.

In this example, we always suppose that one of the following assumptions holds
true:

(P1) (25) holds with β1 > 1,
(P2) (25) holds with β2 < 1,
(P3) J(z) = J(−z) and κ(x, z) = κ(x,−z) for all x, z ∈ Rd.

In each case when (P1), (P2) and (P3) holds, respectively, we consider the operator

Lκf(x) :=

⎧⎪⎨⎪⎩
∫
Rd

(
f(x+ z)−f(x)−1|z|≤1〈z,∇f(x)〉

)
κ(x, z)J(|z|)dz, if (P1) holds;∫

Rd

(
f(x+ z)−f(x)

)
κ(x, z)J(|z|)dz, if (P2) holds;

1
2

∫
Rd

(
f(x+ z)+f(x− z)−2f(x)

)
κ(x, z)J(|z|)dz if (P3) holds.

According to [20, Theorem 1.3 and Remark 1.5], if (26) and one of (P1)–(P3)
hold, then there exists a Feller process X on R

d whose infinitesimal generator is
an extension of (Lκ, C2

c (R
d)). Indeed, the process X is the unique solution to

the martingale problem for (Lκ, C∞
c (Rd)). By Lemma 2.2 and (26), since J(z) is

comparable to ν(|z|), the symbol q of X satisfies that

(27) sup
|ξ|≤1/r

Re q(x, ξ)  1/H(r) for x ∈ R
d, r > 0.

Below, we check that X satisfies conditions (O1)–(O4) for U = Rd.
First, we note that, by (25) and (26),

∫
Rd κ(x, z)J(z)dz ≥ c

∫
Rd ν(|z|)dz =

c limr→0 1/H(r) = ∞ for all x ∈ R
d. Hence, (O1) holds for U = R

d.
When (P3) holds, the symbol q(x, ξ) is a real number for all x, ξ so that (O2)

for U = Rd immediately follows. We now check (O2) for the cases (P2) and (P3)
separately.

Suppose (P1) holds. Using the triangle inequality, Taylor expansion for the sine
function and (25), since κ is bounded above, J(z) is comparable to ν(|z|). Since
ν(|z|)dz is a Lévy measure on Rd and β1 > 1, we get that for all x ∈ Rd and ξ ∈ Rd
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with |ξ| ≥ 1,

|Im q(x, ξ)| =
∣∣∣∣ ∫

Rd\{0}

(
〈z, ξ〉1{|z|≤1} − sin〈z, ξ〉

)
κ(x, z)J(z)dz

∣∣∣∣
≤

∣∣∣∣ ∫
|z|≤1

(
〈z, ξ〉 − sin〈z, ξ〉

)
κ(x, z)J(z)dz

∣∣∣∣
+

∣∣∣∣ ∫
|z|>1

sin〈z, ξ〉κ(x, z)J(z)dz
∣∣∣∣

≤ c2

∫
|z|≤1

(
(|z||ξ|)3 ∧ (|z||ξ|)

)
ν(|z|)dz + c2

∫
|z|>1

ν(|z|)dz

≤ c2

∫
|z|≤1/|ξ|

(|z||ξ|)2ν(|z|)dz + c2|ξ|
∫
1/|ξ|<|z|≤1

|z|2ν(|z|)dz + c3

≤ c4
H(1/|ξ|) +

c4|ξ|+ c3H(1)

H(1)
≤ c4

H(1/|ξ|) +
(c4 + c3H(1))|ξ|
c1|ξ|β1H(1/|ξ|)

≤ c5
H(1/|ξ|) .

Suppose (P2) holds. Using (25), since κ is bounded above, J(z) is comparable to
ν(|z|). Using this fact and β2 < 1, we see that for all x ∈ R

d and ξ ∈ R
d with

|ξ| ≥ 1,

|Im q(x, ξ)| =
∣∣∣∣ ∫

Rd\{0}
sin〈z, ξ〉κ(x, z)J(z)dz

∣∣∣∣
≤ c6|ξ|

∫
|z|<1/|ξ|

|z|ν(|z|)dz + c6

∫
|z|≥1/|ξ|

ν(|z|)dz

≤ c6
∑
n≥1

∫
2−n/|ξ|≤|z|<2−n+1/|ξ|

2−n+1ν(|z|)dz + c6
H(1/|ξ|)

≤ c6
∑
n≥1

2−n+1

H(2−n/|ξ|) +
c6

H(1/|ξ|) ≤ c2c6
H(1/|ξ|)

∑
n≥1

2−n+1+nβ2 +
c6

H(1/|ξ|)

=
c7

H(1/|ξ|) .

Therefore, by (27), we deduce that (O2) always holds true for U = Rd.
(O3) immediately follows from the fact that κ(x, z) is bounded above and below

by positive constants. For (O4), we see from [20, (84)] that the heat kernel p(t, x, y)
of X satisfies that for all t ≤ 1 and x, y ∈ Rd with |x− y| ≤ H−1(t),

p(t, x, y) ≥ c8H−1(t)−d.

It follows that for all t ≤ 1, x ∈ R
d and z ∈ R

d with |z| = 1,

P
x
(
2〈Xt − x, z〉 ≤ −|Xt − x|

)
≥

∫
B(x,H−1(t))∩{y:2〈y−x,z〉≤−|y−x|}

p(t, x, y)dy

≥ c8H−1(t)−d

∫
B(x,H−1(t))∩{y:2〈y−x,z〉≤−|y−x|}

dy

= c8

∫
B(0,1)∩{y:2〈y,z〉≤−|y|}

dy = c9.

Therefore, (O4) holds true for U = Rd and κ = 2.
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Now, using (25) and (27), we conclude from Theorem 2.4 and Remark 2.5 that
the liminf LIL at zero (16) holds true with U = Rd and Φ−1(x, t/ log | log t|) replaced
by H−1(t/ log | log t|).

To obtain a limsup LIL at zero for the Feller process X, we also assume that
Ur1(G, γ, c) (in Definition 6.3) holds for some γ > 0 and r1, c ∈ (0, 1). Here,
we emphasize that γ may not be smaller than 2. By (26), Tail∞(G,Rd) and
Tail∞(H,Rd,≤) (in Definition 6.2(i)) hold. Moreover, by [20, Theorem 1.2(4) and
Lemma 4.11] and our Lemma 6.5, NDLR′

0
(H,Rd) (in Definition 6.2(iii)) holds for

some R′
0 > 0. Therefore, using (25), we deduce that for all x ∈ R

d, the limsup LIL
at zero given in [12, Theorem 1.11(i-ii)] holds true for X with functions φ = H and
ψ = G. �

In Example 2.9, we directly check that conditions (A1)–(A4), (B1)–(B3) and
(B4+) hold.

Example 2.9 (Singular Lévy measure). Let α ∈ (0, 2), d ≥ 2 and

Ri := {(x1, . . . , xd) ∈ R
d : xj = 0 if j �= i}

for 1 ≤ i ≤ d. Denote by ei, 1 ≤ i ≤ d the standard unit vectors in Rd. Define a
kernel J(x, y) on Rd × Rd by

(28) J(x, y) =

{
b(x, y)|x− y|−1−α, if y − x ∈ ∪d

i=1Ri \ {0},
0, otherwise,

where b(x, y) is a symmetric function on R
d × R

d that is bounded between two
positive constants. Using this kernel, define a symmetric form (E ,F) on L2(Rd; dx)
as

E(u, v) =
∫
Rd

( d∑
i=1

∫
R

(u(x+ eiτ )− u(x))(v(x+ eiτ )− v(x))J(x, x+ eiτ )dτ
)
dx,

F = {u ∈ L2(Rd; dx) | E(u, u) < ∞}.

According to [36, Theorem 3.9 and Corollary 4.15], the above form (E ,F) is a
regular Dirichlet form and the associated Hunt process X is a strong Feller process
in Rd. Below, we get liminf and limsup LILs for X, both at zero and at infinity.

From the definition (28), we see that Tail∞(rα,Rd) holds true. Indeed, for all x ∈
R

d and r > 0,
∫
B(x,r)c

J(x, dy) =
∑d

i=1

∫
|τ |≥r

J(x, x + τei)dτ  d
∫
|τ |≥r

τ−1−αdτ

= cr−α. By [36, Proposition 4.4 and the proof of Theorem 4.6], there exist c1, c2 > 0
such that for all x ∈ R

d, r, t > 0 and n ∈ N,

(29) P
x(τB(x,r) < t) ≤ c1tr

−α and P
x(τB(x,r) ≥ c2nr

α) ≤ 2−n.

By [36, Proposition 4.18], there exist c3, c4 > 0 such that

(30) p(t, x, y) ≥ c3t
−d/α for all t > 0, x, y ∈ R

d with |x− y| ≤ c4t
1/α.

It follows that for all x ∈ Rd \ {0} and t > 0,
(31)

P
x
(
2〈Xt−x, x〉≤−|Xt−x||x|

)
≥c3t

−d/α

∫
2〈y−x,x〉≤−|y−x||x|, |y−x|≤c4t1/α

dy≥c3c5(d),

for a constant c5(d) > 0 which only depends on the dimension d.
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Now, by using the first inequality in (29) and (31), one can repeat the proof of
Lemma 2.7 and deduce that for all x ∈ Rd, r > 0 and n ∈ N,

(32) P
x(τB(x,r) ≥ c6nr

α) ≥ c7e
−c8n

with some c6, c7, c8 > 0. From the latter inequality in (29) and (32), we get that
E
x[τB(x,r)]  rα for x ∈ R

d and r > 0, and conditions (A4) with U = R
d and (B4)

hold true. Consequently, all conditions (A1)–(A3) (with U = Rd) and (B1)–(B3)
are satisfied since we already checked that Tail∞(rα,Rd) holds true. Moreover,
using Hölder continuity of the heat kernel given in [36, Corollary 4.19] and (30),
one can repeat the proof of [12, Proposition 4.15] and deduce that the zero-one law
for shift-invariant events stated in Proposition 5.4 holds true.

Eventually, from Corollaries 1.3 and 1.7, and Remark 1.8, we conclude that for
all x, y ∈ Rd, both liminf LILs (7) and (10) hold with φ(x, r) = φ(r) = rα. Also, we
conclude from [12, Theorems 1.11-1.12] that the limsup LILs [12, (1.12) and (1.15)]
hold with φ(r) = rα. �

Using the local symmetrization introduced in [32], we obtain a sufficient condition
for (O4) in terms of the symbol q(·, ξ). We introduce the following condition:

(S) C∞
c (Rd) is an operator core for (L,D(L)), i.e. L|C∞

c (Rd) = L, and there exist

constants R0, A0 ∈ (0, 1), K0 ≥ 1 and cL, cU > 0 such that the following conditions
hold for every x ∈ U :

(i) There exists an increasing function g(x, ·) and constants 0 < α(x) ≤ β(x)
such that

(33) sup
z∈U

(
1

α(z)
− 1

β(z)

)
<

1

d2 + d
,

(34) cL

(
r

s

)α(x)

≤ g(x, r)

g(x, s)
≤ cU

(
r

s

)β(x)

for all r ≥ s > 1/(R0 ∧ (A0δU (x)))

and
(35)

K−1
0 g(x, |ξ|) ≤ Re q(x, ξ) ≤ K0g(x, |ξ|) for all ξ ∈ R

d, |ξ| > 1/(R0 ∧ (A0δU (x))).

(ii) For every 0 < r < R0 ∧ (A0δU (x)), there exists a Feller process Y = Y x,r

with symbol qY (·, ξ) such that

(a) q(y, ξ) = 2Re qY (y, ξ/2) for all y ∈ B(x, r) and ξ ∈ R
d,(36)

(b) K−1
0 inf

|z−x|≤r
Re qY (z, ξ) ≤ Re qY (y, ξ) ≤ K0 sup

|z−x|≤r

Re qY (z, ξ)

for all y ∈ R
d \B(x, r) and ξ ∈ R

d, |ξ| > 1/(R0 ∧ (A0δU (x))).(37)

The condition (S) looks complicated but it is quite straightforward to check
when some concrete form of q(x, ξ) is given. See Examples 2.13 and 2.14.

Remark 2.10. The assumption that C∞
c (Rd) is an operator core for (L,D(L)) is

equivalent to the well-posedness of the martingale problem for (−q(·, D), C∞
c (Rd)).

See [32, Proposition 4.6].

Lemma 2.11. Suppose that (35) holds. Then there exists a constant K1 > 1 such
that

K−1
1

Φ(x, r)
≤ g(x, 1/r) ≤ K1

Φ(x, r)
for all x ∈ U and 0 < 2r < R0 ∧ (A0δU (x)).
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Proof. Using (35), Lemma 2.2 and the monotonicity of g, we get that for all x ∈ U
and 0 < 2r < R0 ∧ (A0δU (x)),

1

Φ(x, r)
≥ sup

|ξ|=1/r

Re q(x, ξ) ≥ K−1
0 g(x, 1/r)

and
1

Φ(x, r)
≤ C12 sup

1/(2r)≤|ξ|≤1/r

Re q(x, ξ) ≤ C12K0g(x, 1/r).

�

Proposition 2.12. Suppose that (O3) and (S) hold. Then (O1), (O2) and (O4)
hold.

Proof. The first inequality in (34) implies that limr→∞ g(x, r) = ∞ for all x ∈ U .
Hence, we get (O1) from Lemma 2.11. (O2) is obvious because q(x, ξ) is real for
all x ∈ U and ξ ∈ R

d by (36). Thus it remains to prove (O4).
Fix x0 ∈ U and set r0 := 8−1(R0 ∧ (A0δU (x0)). Let η0 ∈ (0, 1) be a constant

which will be chosen later. Pick any 0 < t1 < η0Φ(x0, r0) and then define r1 =
Φ−1(x0, η

−1
0 t1) ∈ (0, r0). Let Y = Y x0,2r1 be a Feller process on Rd satisfying (36)

and (37) with x = x0 and r = 2r1. Denote by Y ′ an independent copy of Y and set
Y S
t := 1

2 (Yt+2Y ′
0 −Y ′

t ). Then according to [32, Lemma 2.8], Y S is a Feller process

with symbol 2Re qY (·, ξ/2) and its characteristic function λt(y, ξ) := E
y[ei〈Y

S
t −y,ξ〉]

is nonnegative for every t ≥ 0 and y, ξ ∈ Rd.
Since the martingale problem for (−q(·, D), C∞

c (Rd)) is well-posed (Remark
2.10), by [22, Theorem 5.1], the stopped martingale problem for (−q(·, D), C∞

c (Rd))
and B(x0, 2r1) is also well-posed. Therefore, by constructing X and Y S in the same
probability space, we may assume that Xs and Y S

s have the same distribution for
0 ≤ s < τB(x0,r1) under Px0 . Then using (17), we get that for all z ∈ Rd with
|z| = 1,

P
x0

(
2〈Xt1 − x0, z〉 ≤ −|Xt1 − x0|

)
(38)

≥ P
x0

(
2〈Y S

t1 − x0, z〉 ≤ −|Y S
t1 − x0|, t1 < τB(x0,r1)

)
≥ P

x0
(
2〈Y S

t1 − x0, z〉 ≤ −|Y S
t1 − x0|

)
− P

x0
(
τB(x0,r1) ≤ t1

)
≥ P

x0
(
2〈Y S

t1 − x0, z〉 ≤ −|Y S
t1 − x0|

)
− C14η0.

For simplicity, we denote α for α(x0) and β for β(x0). Using (37), (35), (36),
(34), and Lemmas 2.11 and 2.3, we get that for all u < 2r1,

inf
z∈Rd

inf
|ξ|=1/u

Re qY (z, ξ) ≥
1

K0
inf

z∈B(x0,2r1)
inf

|ξ|=1/u
Re qY (z, ξ)

(39)

≥ 1

2K2
0

inf
z∈B(x0,2r1)

g(z, 2/u)

≥ cL
2K2

0

(
2r1
u

)α

inf
z∈B(x0,2r1)

g(z, 1/r1) ≥
cL

2K2
0K1

(
2r1
u

)α

inf
z∈B(x0,2r1)

1

Φ(z, r1)

≥ cLC13

2K2
0K1

(
2r1
u

)α
1

Φ(x0, r1)
=

cLC13

2K2
0K1

(
2r1
u

)α
η0
t1
.
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In particular, we have

lim
|ξ|→∞

infz∈Rd Re qY (z, ξ)

log(1 + |ξ|) ≥ c1 lim
u→0

u−α

log(1 + 1/u)
= ∞.

Thus, by [32, Theorem 1.2] and the Fourier inversion theorem, Y S has a transition
density function pS(t, x, y) which is given by

pS(t, x, y) = (2π)−d

∫
Rd

e−i〈ξ,y−x〉λt(x, ξ)dξ, t > 0, x, y ∈ R
d.

By [32, Theorem 2.7] and (39), we see that for all y ∈ Rd,

|pS(t1, x0, x0)− pS(t1, x0, x0 + y)|

≤(2π)−d

∫
Rd

|1− e−i〈ξ,y〉|λt1(x0, ξ)dξ ≤ (2π)−d|y|
∫
Rd

|ξ|λt1(x0, ξ)dξ

≤(2π)−d|y|
∫
Rd

|ξ| exp
(
− t1

8
inf
z∈Rd

Re qY (z, ξ)

)
dξ

≤(2π)−d|y|
(∫

|ξ|≤η
−1/α
0 r−1

1

|ξ|dξ+
∫
|ξ|>η

−1/α
0 r−1

1

|ξ| exp
(
− t1

8
inf
z∈Rd

Re qY (z, ξ)

)
dξ

)
≤c2|y|

(
η
−(d+1)/α
0 r

−(d+1)
1 +

∫ ∞

η
−1/α
0 r−1

1

sd exp
(
− c3η0r

α
1 s

α
)
ds

)
.

Using the inequality e−s ≤ rrs−r for all s, r > 0, we obtain∫ ∞

η
−1/α
0 r−1

1

sd exp
(
− c3η0r

α
1 s

α
)
ds ≤ c4η

−(d+2)/α
0 r

−(d+2)
1

∫ ∞

η
−1/α
0 r−1

1

s−2ds

= c5η
−(d+1)/α
0 r

−(d+1)
1 .

Therefore, we deduce that

(40) |pS(t1, x0, x0)− pS(t1, x0, x0 + y)| ≤ c6|y|η−(d+1)/α
0 r

−(d+1)
1 for all y ∈ R

d.

On the other hand, similar to (39), using (37), (35), (36), (34) and Lemmas 2.11
and 2.3, we get that for all u < 2r1,

sup
z∈Rd

sup
|ξ|=1/u

2Re qY (z, ξ/2) ≤ K2
0 sup
z∈B(x0,2r1)

g(z, 1/u)

≤ cUK
2
0

(
r1
u

)β

sup
z∈B(x0,2r1)

g(z, 1/r1)

≤ cUK
2
0K1

(
r1
u

)β

sup
z∈B(x0,2r1)

1

Φ(z, r1)

≤ cUK
2
0K1

C13

(
r1
u

)β
1

Φ(x0, r1)
=

cUK
2
0K1

C13

(
r1
u

)β
η0
t1
.

Put c7 := cUK
2
0K1/C13 > 1. By taking η0 small enough, we may assume 4c7η0 < 1.

Then by the second display in [32, p.3265], it holds that for all 2−1r−1
1 < |ξ| <

(4c7η0)
−1/βr−1

1 ,

Reλt1(x0, ξ) ≥ 1− 2t1 sup
z∈Rd

2Re qY (z, ξ/2) ≥ 1− 2c7η0r
β
1 |ξ|β ≥ 2−1.
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Since λt1(x0, ξ) ≥ 0 for every ξ ∈ Rd, it follows that

pS(t1, x0, x0) ≥ (2π)−d

∫
2−1r−1

1 <|ξ|<(4c7η0)−1/βr−1
1

2−1dξ ≥ c8η
−d/β
0 r−d

1 .

Combining with (40), we obtain that for all y∈Rd with |y|≤2−1c−1
6 c8η

−d/β+(d+1)/α
0 r1,

pS(t1, x0, x0 + y) ≥ c8η
−d/β
0 r−d

1 − 2−1c8η
−d/β
0 r−d

1 = 2−1c8η
−d/β
0 r−d

1 .

Therefore, it holds that for every z ∈ Rd with |z| = 1,

P
x0

(
2〈Y S

t1 −x0, z〉≤−|Y S
t1 − x0|

)
≥

∫
2〈y,z〉≤−|y|, |y|≤2−1c−1

6 c8η
−d/β+(d+1)/α
0 r1

pS(t1, x0, x0 + y)dy

≥2−1c8η
−d/β
0 r−d

1

∫
2〈y,z〉≤−|y|, |y|≤2−1c−1

6 c8η
−d/β+(d+1)/α
0 r1

dy

=2−1c8η
−d/β
0 r−d

1

(
2−1c−1

6 c8η
−d/β+(d+1)/α
0 r1

)d ∫
2〈y,z〉≤−|y|, |y|≤1

dy

=c9η
(d2+d)(1/α−1/β)
0

and hence by (38),

P
x0

(
2〈Xt1 − x0, z〉 ≤ −|Xt1 − x0|

)
≥ η0

(
c9η

−1+(d2+d)(1/α−1/β)
0 − C14

)
.

Note that the above constants c9 and C14 are independent of x0 and t1. By (33),
1 − (d2 + d)(1/α − 1/β) > c10 for some c10 > 0 independent of x0 and t1. Taking
η0 smaller than (2−1c9/C14)

1/c10 , we arrive at the result. �

Below, we give two concrete examples. In the following examples, we assume
that U ⊂ R

d, d ≥ 1, is an open set and C∞
c (Rd) is an operator core for the generator

of the Feller process X.

Example 2.13 (Symbols of varying order). Suppose that there are Hölder con-
tinuous functions α : U → (0, 2) and γ : U → (−1, 1) such that infx∈U α(x) > 0,
α(x)/2 + γ(x) ∈ [0, 1] for all x ∈ U , and that

q(x, ξ) = |ξ|α(x)(log(1 + |ξ|))γ(x) for all x ∈ U, ξ ∈ R
d.

By Hölder continuities of α(x) and γ(x), there exist constants c1 > 0 and θ ∈
(0, 1] such that |α(x) − α(y)| + |γ(x) − γ(y)| ≤ c1|x − y|θ for all x, y ∈ U . Since

limr→0 r
c1r

θ

= limr→0(log(1+ 1/r))−c1r
θ

= 1, we see that for all x ∈ U and ξ ∈ Rd

with r := 1/|ξ| < 1 ∧ δU (x),

inf
|x−y|≤r

Re q(y, ξ)≥r−α(x)(log(1 + 1/r))γ(x) inf
|x−y|≤r

rα(x)−α(y)(log(1 + 1/r))γ(y)−γ(x)

≥r−α(x)(log(1 + 1/r))γ(x)rc1r
θ

(log(1 + 1/r))−c1r
θ

≥c2r
−α(x)(log(1 + 1/r))γ(x)

and

sup
|x−y|≤r

Re q(y, ξ) ≤ r−α(x)(log(1 + 1/r))γ(x)r−c1r
θ

(log(1 + 1/r))c1r
θ

≤ c3r
−α(x)(log(1 + 1/r))γ(x).
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Hence, (O3) holds.
Now, we check that (S) is fulfilled. Define g(x, r) = rα(x)(log(1 + r))γ(x) for

x ∈ U , r > 0. Since for any ε > 0, there is a constant c4 = c4(ε) > 0 such that

log(1 + r)

log(1 + s)
≤ c4

(
r

s

)ε

for all r ≥ s ≥ 1,

one can see that g(x, ·) satisfies (S)(i).
Next, fix any x0 ∈ U and 0 < 2r < 1 ∧ δU (x0). Let α̃ : Rd → (0, 2] and

γ̃ : Rd → (−1, 1) be Hölder continuous functions such that (i) for every x ∈ B(x0, r),

α̃(x) = α(x) and γ̃(x) = γ(x) and (ii) for every x ∈ Rd \B(x0, r), α̃(x)/2 + γ̃(x) ∈
[0, 1] and for all u > 16,

1

2
inf

|y−x0|≤r
uα(y)(log(1+u))γ(y)≤uα(x)(log(1+u))γ(x)≤2 sup

|y−x0|≤r

uα(y)(log(1+u))γ(y).

According to [28, Theorem 3.3 and Extension 3.13], there exists a Feller process Y
on Rd having the symbol qY (x, ξ) = 2α̃(x)−1|ξ|α̃(x)(log(1 + 2|ξ|))γ̃(x). Hence (S)(ii)
holds.

Note that Φ(x, r) = rα(x)(log(1 + 1/r))−γ(x) for x ∈ U and r > 0 in this case.
Hence,

(41) lim
t→0

Φ−1(x, t/ log | log t|)
t1/α(x)| log t|γ(x)/α(x)(log | log t|)−1/α(x)

= α(x)γ(x) for all x ∈ U.

Finally, since infy∈U α(y) ∧ 2−1 ≤ α(x)γ(x) ≤ 2 for all x ∈ U , using Proposition
2.12, Theorem 2.4 and (41), we conclude that there are constants a2 ≥ a1 > 0 such
that for all x ∈ U , there exists a constant ax ∈ [a1, a2] such that

(42) lim inf
t→0

sup0<s≤t |Xs − x|
t1/α(x)| log t|γ(x)/α(x)(log | log t|)−1/α(x)

= ax, P
x-a.s.

Let Sd−1 := {y ∈ Rd : |y| = 1} and ei = ei(d), 1 ≤ i ≤ d denote the standard
basis of Rd.

Example 2.14 (Cylindrical stable-like processes). Suppose that d ≥ 2 and there
exists a Hölder continuous function α : U → (0, 2) with infx∈U α(x) > 0 such that

q(x, ξ) =

d∑
i=1

|ξi|α(x) for all x ∈ U and ξ = (ξ1, . . . , ξd) ∈ R
d.

Note that for every x ∈ U , the Lévy measure ν(x, dz) is a stable kernel of the form

ν(x,A) =
α(x)2α(x)−1Γ((1 + α(x))/2)

π1/2Γ(1− α(x)/2)

∫ ∞

0

∫
Sd−1

1A(rθ)r
−1−α(x)

d∑
i=1

δ{ei}(θ)dr,

where Γ(z) :=
∫ ∞
0

uz−1e−udu is the gamma function and δ{ei} is a Dirac measure

on {ei}. Since |ξ|α(x) ≤ q(x, ξ) ≤ d|ξ|α(x) for all x ∈ U and ξ ∈ Rd, using the Hölder
continuity of α, one can see that (O3) holds as in Example 2.13. Clearly, (S)(i)
holds with g(x, r) = rα(x). Choose any x0 ∈ U and 0 < 2r < 1 ∧ δU (x0), and let

α̃ : Rd → (0, 2) be a Hölder continuous function such that for every x ∈ B(x0, r),

α̃(x) = α(x) and for every x ∈ Rd \B(x0, r),

1

2
inf

|y−x0|≤r
uα(y) ≤ uα(x) ≤ 2 sup

|y−x0|≤r

uα(y) for all u > 16.
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According to [26, Theorem 3.1], since the measure
∑d

i=1 δ{ei} on Sd−1 is nondegen-

erate in the sense of [26, (M1)], there exists a Feller process Y on Rd having the

symbol qY (x, ξ) = 2α̃(x)−1
∑d

i=1 |ξi|α̃(x). Thus, (S)(ii) is satisfied.
Finally , using Proposition 2.12 and Theorem 2.4 again, we get a similar equation

to (41) and we can deduce that for all x ∈ U , the LIL (42) holds with γ = 0.

3. Liminf LILs at infinity for random conductance model with long

range jumps

In [12, Section 3], we have obtained limsup LILs at infinity for random con-
ductance models with long range jumps using results in [6, 7]. In this section, we
give liminf LILs at infinity for such models. We repeat the setting of the random
conductance models in [12, Section 3] here for the readers’ convenience.

Let G = (L, EL) be a locally finite connected infinite undirected graph, where L

is the set of vertices, and EL the set of edges. For x, y ∈ L, we denote by d(x, y)
the graph distance, namely, the length of the shortest path joining x and y. Let μc

be the counting measure on L. We assume that for some constant d > 0,

(43) μc(B(x, r))  rd for x ∈ L, r > 10.

A random conductance η = (ηxy : x, y ∈ L) on L is a family of nonnegative
random variables defined on some probability space (Ω,F,P) such that ηxx = 0
and ηxy = ηyx for all x, y ∈ L. We set νx :=

∑
y∈L

ηxy for x ∈ L and denote by
E the expectation with respect to P. For each ω ∈ Ω, the variable speed random
walk (VSRW) Xω = (Xω

t , t ≥ 0;Px
ω, x ∈ L) (associated with η) is defined as the

symmetric Markov process on L with L2(L, μc)-generator

Lω
V f(x) =

∑
y∈L

ηxy(ω)(f(y)− f(x)), x ∈ L,

and the constant speed random walk (CSRW) Y ω = (Y ω
t , t ≥ 0;Px

ω, x ∈ L) (associ-
ated with η) is the symmetric Markov process on L with L2(L, ν)-generator

Lω
Cf(x) = ν−1

x (ω)
∑
y∈L

ηxy(ω)(f(y)− f(x)), x ∈ L.

Let α ∈ (0, 2) and η be a random conductance on L. With the constant d > 0 in
(43), we write wxy := ηxy|x− y|d+α for x, y ∈ L so that

ηxx = wxx = 0 and ηxy(ω) =
wxy(ω)

|x− y|d+α
, x �= y, x, y ∈ L.

Suppose that d > 4− 2α,

sup
x,y∈L,x�=y

P(wxy = 0) = sup
x,y∈L,x�=y

P(ηxy = 0) < 1/2,

and

sup
x,y∈L,x�=y

(
E[wp

xy] +E[w−q
xy 1{wxy>0}]

)
< ∞

with some constants

p >
d+ 2

d
∨ d+ 1

4− 2α
and q >

d+ 2

d
.
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When we consider the CSRW Y ω, we also assume that there exist constants m2 ≥
m1 > 0 such that for P-a.s. ω,

ηxy(ω) > 0 for all x, y ∈ L, x �= y and m1 ≤
∑

y∈L,y �=x

ηxy(ω) ≤ m2 for all x ∈ L.

According to the proof of [12, Theorem 3.1], for P-a.s. ω, there are constants υ ∈
(0, 1) independent of ω and r1(ω), r2(ω) ≥ 1 such that conditions Tailr1(ω)(rα, υ)

and NDLr2(ω)(rα, υ) (in Definitions 6.2) hold for both Xω and Y ω. Then, since
VRD10(υ) holds by (43), using Lemma 6.4(ii), we conclude from Corollary 1.7
that there exist constants 0 < a1 ≤ a2 < ∞ such that for P-a.s. ω, there exist
a3(ω), a4(ω) ∈ [a1, a2] so that for all x, y ∈ L,

lim inf
t→∞

sup0<s≤t d(x,X
ω
s )

t1/α(log log t)−1/α
= a3(ω), lim inf

t→∞

sup0<s≤t d(x, Y
ω
s )

t1/α(log log t)−1/α
= a4(ω), P

y
ω-a.s.

Moreover, when α ∈ (0, 1), the above LILs still hold true for d > 2 − 2α, if p >
max{(d + 2)/d, (d + 1)/(2 − 2α)} and q > (d + 2)/d, by the proof for the second
part of [12, Theorem 3.1].

4. Liminf LILs for subordinate processes and symmetric Hunt

processes

In this section, we give liminf LILs for subordinate processes and symmetric
Hunt processes. See [12, Section 2] for detailed descriptions and limsup LILs for
such processes.

Recall that (M,d, μ) is a locally compact separable metric space with a positive
Radon measure μ on M with full support. Let R̄ := supy,z∈M d(y, z) and F be an
increasing and continuous function on (0,∞) such that for some constants γ2 ≥
γ1 > 1 and cL, cU > 0,

(44) cL

(
R

r

)γ1

≤ F (R)

F (r)
≤ cU

(
R

r

)γ2

for all 0 < r ≤ R < R̄.

We assume that VRDR̄(M) and the chain condition ChR̄(M) (see [12, Definition
1.2]) hold. We also assume that there exists a conservative Hunt process Z =
(Zt, t ≥ 0;Px, x ∈ M) on M whose heat kernel q(t, x, y) (with respect to μ) exists
and satisfies the following estimates: There are constants R1 ≤ R̄ and c1, c2, c3 > 0
such that for all t ∈ (0, F (R1)) and x, y ∈ M ,
(45)

c1
V (x, F−1(t))

1{F (d(x,y))≤t} ≤ q(t, x, y) ≤ c2
V (x, F−1(t))

exp
(
− c3F1(d(x, y), t)

)
,

where the function F1 is defined by F1(r, t) := sup
s>0

(r
s
− t

F (s)

)
.

Let S = (St)t≥0 be a subordinator independent of Z. We denote by φ1 the
Laplace exponent of S. Then it is well known that there exist a constant b ≥ 0 and
a Borel measure ν on (0,∞) satisfying

∫∞
0

(1 ∧ u)ν(du) < ∞ such that

φ1(λ) := − logE[e−λS1 ] = bλ+

∫
(0,∞)

(1− e−λu)ν(du), λ > 0.

We assume either b �= 0 or ν((0,∞)) = ∞.
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Let X = (Xt)t≥0 be the subordinate process defined by Xt := ZSt
. Define

Φ(r) =
1

φ1(1/F (r))
and Π(r) =

2e

ν((F (r),∞))
for r > 0.

Then Φ and Π are nondecreasing and Φ(r) ≤ Π(r) for all r > 0. Moreover, since
we have assumed that either b �= 0 or ν((0,∞)) = ∞, by (44), we have that
limr→0 Φ(r) = 0 and that

(46)
Φ(r)

Φ(s)
≤ cU

(
r

s

)γ2

for all 0 < r ≤ R < R̄.

See [12, Subsection 2.1].
By (46) and [12, Lemmas A.2 and A.3(i)], using Lemma 6.4(i), we see that

conditions (A1)–(A4) hold for U = M and that the function φ(x, r) := Φ(r) satisfies
(2) for 0 < r ≤ 1. Therefore, we get from Theorem 1.2 and Corollary 1.3 that

Theorem 4.1. There are constants a2 ≥ a1 > 0 such that for all x ∈ M , there
exists a constant ax ∈ [a1, a2] satisfying

(47) lim inf
t→0

Φ
(
sup0<s≤t d(x,Xs)

)
t/ log | log t| = ax, P

x-a.s.

Moreover, if φ1 satisfies lower scaling property L1(φ1, β1, c1) (see Definition 6.3 in
Appendix) for some β1, c1 > 0, then there are constants ã2 ≥ ã1 > 0 such that for
all x ∈ M , there exists a constant ãx ∈ [ã1, ã2] satisfying

(48) lim inf
t→0

sup0<s≤t d(x,Xs)

Φ−1(t/ log | log t|) = ãx, P
x-a.s.

Here, we point out that our liminf LIL (47) covers the cases when φ1 is slowly
varying at infinity. Therefore, the general liminf LIL (47) can be applicable to
some jump processes with low intensity of small jumps such as geometric 2α-stable
processes on Rd (0 < α ≤ 1), namely, a Lévy process on Rd with the characteristic
exponent log(1 + |ξ|2α).

To get liminf LILs at infinity, we also assume that constants R̄ = R1 = ∞
in (44) and (45), and L1(φ1, β1, c1) (see Definition 6.3 in Appendix 6) hold for
some β1, c1 > 0. Then by [12, Lemma A.4(ii)] and Lemma 6.4(ii), the function
φ(x, r) := Φ(r) satisfies (2) for r ≥ 1 and (B4+) holds true. Since conditions
(B1)–(B3) hold by [12, Lemmas A.2 and A.3(i)], we deduce from Corollary 1.7 that

Theorem 4.2. Suppose that (44) and (45) hold true with R̄ = R1 = ∞, and φ1

satisfies the lower scaling property L1(φ1, β1, c1) for some β1, c1 > 0, i.e.,

φ1(r)

φ1(s)
≥ c1

(r
s

)β1

for all s ≤ r < 1.

Then, there exists a constant b∞ such that for all x, y ∈ M ,

(49) lim inf
t→∞

sup0<s≤t d(x,Xs)

Φ−1(t/ log log t)
= b∞, P

y-a.s.

Similar results hold for symmetric Hunt processes considered in [12, Subsection
2.2]. More precisely, let X be a Hunt process on M associated with a regular
Dirichlet form (EX ,FX) of the form [12, (2.21)] satisfying [12, Assumption L]. With
the function Φ1 defined in [12, (2.22)] and open subset U of M in [12, Assumption
L], using [12, (B.7), Propositions B.1 and B.13 and Lemma B.8] and our Lemma
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6.4, we can deduce that the function φ(x, r) := Φ1(r) satisfies (2) for 0 < r ≤ 1, and
conditions (A1)–(A3) and (A4+) hold for U = U . Moreover, when the constants
R̄ = R1 = ∞ in (44) and (45), the function φ(x, r) := Φ1(r) satisfies (2) for r ≥ 1,
and conditions (B1)–(B3) and (B4+) hold. Therefore, we conclude from Corollaries
1.3 and 1.7 that the liminf LIL at zero (48) holds for x ∈ U with the function Φ1

instead of Φ, and if we also assume R̄ = R1 = ∞ in (44) and (45), then the liminf
LIL at infinity (49) holds with the function Φ1 instead of Φ.

5. Proof of Main theorems

Recall that we always assume that φ(x, r) (and φ(r)) satisfies (2).
Proposition 5.1(ii) follows from [12, Proposition 4.9(ii) and Corollary 4.10].

Moreover, when r �→ φ(x, r) is comparable with a strictly increasing continuous
function on (0,∞) independent of x ∈ U , the inequality (50) of Proposition 5.1(i)
is obtained in [12, Proposition 4.9(i)] with θ = 1. But since we allow φ(x, r) to
depend on the space variable x here, we need some significant modifications in the
proof for the next proposition.

Proposition 5.1.

(i) Suppose that (A1), (A2) and (A3) hold. Then there exist constants θ ∈ (0, 1]
and c > 0 such that for all x ∈ U , 0 < r < 3−1(R0 ∧ (C0δU (x))) and t > 0,

(50) P
x(τB(x,r) ≤ t) ≤ c

(
t

φ(x, r)

)θ

.

(ii) Suppose that (B1), (B2) and (B3) hold. Let υ1 ∈ (υ, 1). Then there exist
constants c > 0 and R1 ≥ R∞ such that (50) holds with θ = 1 and φ(r) instead of
φ(x, r) for all x ∈ M , r > R1d(x)

υ1 and t ≥ φ(2rυ/υ1). Moreover, X is conserva-
tive, that is, Px(ζ = ∞) = 1 for all x ∈ M .

Before giving the proof of Proposition 5.1, we present some lemmas which will
be used in the proof of Proposition 5.1(i).

For ρ > 0, let X(ρ) be a Borel standard Markov process on M obtained from X
by suppressing all jumps with jump size bigger than ρ so that the Lévy measure
J (ρ)(x, dy) ofX(ρ) is J (ρ)(x,A) = J(x,A∩B(x, ρ)) for every measurable set A ⊂ M .
Then the original process X can be constructed from X(ρ) by Meyer’s construction.
See [29] and [2, Section 3] for details.

Denote τ
(ρ)
D := inf{t > 0 : X

(ρ)
t ∈ M∂ \ D} for the first exit time of X(ρ) from

D. We first generalize [12, Lemma 4.7(i)].

Lemma 5.2. Suppose that (A1), (A2) and (A3) hold. Then, there exist constants
δ ∈ (0, 1) and K1 > 0 such that for all x ∈ U and 0 < ρ < 3−1

(
R0 ∧ (C0δU (x))

)
,

E
x

[
exp

(
− K1

Ex[τB(x,r)]
τ
(ρ)
B(x,ρ)

)]
≤ 1− δ.

Proof. Let x ∈ U and 0 < ρ < 3−1
(
R0 ∧ (C0δU (x))

)
, and denote ψ(x, r) =

Ex[τB(x,r)]. We follow the proof of [12, Lemma 4.7(i)]. By (A1) and (A2), we
have

sup
z∈B(x,ρ)

E
zτB(x,ρ) ≤ sup

z∈B(x,ρ)

E
zτB(z,2ρ) ≤ c1 sup

z∈B(x,ρ)

E
zτB(z,ρ) ≤ c2ψ(x, ρ).
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Thus, by the same argument as that of [12, (4.17)], there exist constants c3, c4 > 0
such that

(51) P
x(τB(x,ρ) > t) ≥ c3 −

c4t

ψ(x, ρ)
, t > 0.

Moreover, by following the proof for [12, (4.18)], using (A1), one can deduce that

(52)
∣∣∣Px(τB(x,ρ) > t)− P

x(τ
(ρ)
B(x,ρ) > t)

∣∣∣ ≤ c5t

ψ(x, ρ)
, t > 0.

Let δ = c3/3, K1 = (c4 + c5)δ
−1 log(δ−1) and tρ = δψ(x, ρ)/(c4 + c5). Then by

(51) and (52),

P
x(τ

(ρ)
B(x,ρ) ≤ tρ) = 1− P

x(τB(x,ρ) > tρ) + P
x(τB(x,ρ) > tρ)− P

x(τ
(ρ)
B(x,ρ) > tρ)

≤ 1− 3δ +
(c4 + c5)tρ
ψ(x, ρ)

= 1− 2δ.

Hence, by the choice of K1, we get that

E
x

[
exp

(
− K1

ψ(x, ρ)
τ
(ρ)
B(x,ρ)

)]
≤ E

x

[
exp

(
− K1

ψ(x, ρ)
τ
(ρ)
B(x,ρ)

)
: τ

(ρ)
B(x,ρ) ≤ tρ

]
+ exp

(
− K1tρ

ψ(x, ρ)

)
≤ P

x(τ
(ρ)
B(x,ρ) ≤ tρ) + exp

(
− δK1

c4 + c5

)
≤ 1− 2δ + δ = 1− δ.

�

Unlike [12, Lemma 4.8(i)], we only get some polynomial bounds in the next
lemma. But it is enough to prove Proposition 5.1.

Lemma 5.3. Suppose that (A1), (A2) and (A3) hold. Then, there exist constants
a1, θ1 > 0 such that for all x ∈ U and 0 < ρ ≤ r < 3−1

(
R0 ∧ (C0δU (x))

)
,

(53) E
x

[
exp

(
− C1K1

Ex[τB(x,ρ)]
τ
(ρ)
B(x,r)

)]
≤ a1

(
ρ

r

)θ1

,

where C1 > 0 and K1 > 0 are constants in (A1) and Lemma 5.2 respectively.

Proof. By taking a1 larger than 6θ1 in (53), we may assume that 6ρ ≤ r without loss
of generality. Fix x ∈ U and 0 < 6ρ ≤ r < 3−1

(
R0 ∧ (C0δU (x))

)
, and let ψ(x, s) =

Ex[τB(x,s)] for s > 0. Let λ = C1K1/ψ(x, ρ), τ0 = τ
(ρ)
B(x,r), u(z) = Ez[e−λτ0 ] and

Bk = B(x, (2k − 1)ρ) and bk = sup
y∈Bk

u(y), k ≥ 1.

Fix any δ′ ∈ (0, δ) where δ ∈ (0, 1) is the constant in Lemma 5.2. For each k ≥ 1,

let zk ∈ Bk be a point such that u(zk) ≥ (1− δ′)bk and τk := τ
(ρ)

B(zk,(2k−1)ρ)
. Since

jump sizes of X(ρ) are at most ρ, it holds that either X
(ρ)
τk ∈ B(zk, 2

kρ) ⊂ Bk+1 or

X
(ρ)
τk = ∂. Therefore by the strong Markov property, we have that for all k ≥ 1,

(1− δ′)bk ≤ u(zk) = E
zk [e−λτ0 ; τ0 < ζ] = E

zk [e−λτke−λ(τ0−τk) ; τk ≤ τ0 < ζ]

= E
zk [e−λτk E

X(ρ)
τk [e−λτ0 ] ; τk ≤ τ0 < ζ] ≤ bk+1E

zk [e−λτk ].(54)
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Let n0 ∈ N be such that (2n0−1)ρ ≤ r/3 < (2n0+1−1)ρ. Using the monotonicity
of s �→ ψ(x, s), (A1) and Lemma 5.2, since zk ∈ Bk, we get that for k ≤ n0,

E
zk [e−λτk ] ≤ E

zk

[
exp

(
− C1K1

ψ(x, (2k − 1)ρ)
τ
(ρ)

B(zk,(2k−1)ρ)

)]
≤ E

zk

[
exp

(
− K1

ψ(zk, (2k − 1)ρ)
τ
(ρ)

B(zk,(2k−1)ρ)

)]
≤ 1− δ.

Combining with (54), we conclude that

u(x) ≤ b1 ≤ 1− δ

1− δ′
b2 ≤ · · · ≤

(
1− δ

1− δ′

)n0

bn0+1 ≤
(
1− δ

1− δ′

)n0

≤ 1− δ′

1− δ

(
3ρ

r

)log 1−δ′
1−δ / log 2

.

�

Proof of Proposition 5.1. (i) It suffices to prove the case when φ(x, r) = Ex[τB(x,r)]
in view of (2). We follow the proof of [12, Proposition 4.9(i)], but with non-trivial
modifications.

Choose any x ∈ U , 0 < r < 3−1
(
R0 ∧ (C0δU (x))

)
and t > 0. Let β2 and CU

be the constants from (3). If t ≥ C−1
U 4−2β2φ(x, r), then by taking c larger than

CU4
2β2 , (50) holds true. Thus, we assume that t < C−1

U 4−2β2φ(x, r).

Set ρ := r(CU t/φ(x, r))
1/(2β2). Then ρ ∈ [φ−1(x, t), r/4). Indeed, since we have

assumed t < C−1
U 4−2β2φ(x, r), by (3), it holds that

r/4 > ρ ≥ r
(
φ−1(x, t)/r

)1/2
= r1/2φ−1(x, t)1/2 ≥ φ−1(x, t).

Using (3) and (A1), we see that for every z ∈ B(x, 2r),

(55)
1

φ(z, ρ)
≤ CU2

β2

φ(z, 2r)

(
r

ρ

)β2

≤ C1CU2
β2

φ(x, 2r)

(
r

ρ

)β2

≤ C1CU2
β2

φ(x, r)

(
r

ρ

)β2

.

Define J1(x, dy) = J(x, dy)1{ρ≤d(x,y)<r/4} and J2(x, dy) = J(x, dy)1{d(x,y)≥r/4}.
Then we get from (A3) and (55) that

(56) sup
z∈B(x,r)

J1(z,M∂) ≤ sup
z∈B(x,r)

C3

φ(z, ρ)
≤ c1

φ(x, r)

(
r

ρ

)β2

.

We also get from (A3), (3) and (A1) that

(57) sup
z∈B(x,r)

J2(z,M∂) ≤ sup
z∈B(x,r)

C3

φ(z, r/4)
≤ sup

z∈B(x,r)

C3CU4
β2

φ(z, r)
≤ c2

φ(x, r)
.

As in [12], we let Y 1 := X(ρ), Y 2 be a Markov process obtained from Y 1 by
attaching jumps coming from J1(x, dy), and Y 3 be a Markov process obtained
from Y 2 by attaching jumps coming from J2(x, dy). For n ≥ 1, denote by T 1

n and
T 2
n the time at which n-th extra jump attached to Y 1 and Y 2, respectively. Let

τ̃B(x,r) := inf{u > 0 : Y 3
u ∈ M∂ \ B(x, r)}. By Meyer’s construction, the law of
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(Y 3
s : s < τB) is the same as that of (Xs : s < τB). Therefore, it holds that

P
x(τB(x,r) ≤ t) = P

x(τ̃B(x,r) ≤ t)

= P
x(T 1

2 ≤ τ̃B(x,r) ≤ t, τ̃B(x,r) < T 2
1 ) + P

x(T 2
1 ≤ τ̃B(x,r) ≤ t)

+ P
x(τ̃B(x,r) ≤ t, τ̃B(x,r) < T 1

2 ∧ T 2
1 ) =: I1 + I2 + I3.(58)

Let Z1, Z2 and Z3 be i.i.d. exponential random variables with rate parameter 1.
From Meyer’s construction, using (56) and (57), respectively, we get that

I1 ≤ P
( c1t

φ(x, r)

(
r

ρ

)β2

≥ Z1 + Z2

)
≤ c21 t

2

φ(x, r)2

(
r

ρ

)2β2

and

I2 ≤ P
( c2t

φ(x, r)
≥ Z3

)
≤ c2t

φ(x, r)
.

On the event {τ̃B(x,r) ≤ t, τ̃B(x,r) < T 1
2 ∧ T 2

1 }, using the triangle inequality, we see
that

r ≤ d(x, Y 3
τ̃B(x,r)

) ≤ d(x, Y 3
τ̃B(x,r)∧T 1

1 −) + d(Y 3
τ̃B(x,r)∧T 1

1 −
, Y 3

τ̃B(x,r)∧T 1
1
)(59)

+ d(Y 3
τ̃B(x,r)∧T 1

1
, Y 3

τ̃B(x,r)
)

≤ d(x, Y 3
τ̃B(x,r)∧T 1

1 −) + d(Y 3
τ̃B(x,r)∧T 1

1
, Y 3

τ̃B(x,r)
) +

r

4
.

In the last inequality above, we used the fact that the jump size of Y 3 at time T 1
1

is at most r/4. Denote by θY
3

the shift operator with respect to Y 3. In view of
Meyer’s construction, using the strong Markov property, we obtain from (59) that

I3 ≤ P
x
(
d(x, Y 3

τ̃B(x,r)∧T 1
1 −) > r/3, τ̃B(x,r) ≤ t, τ̃B(x,r) < T 1

2 ∧ T 2
1

)
+ P

x
(
d(Y 3

τ̃B(x,r)∧T 1
1
, Y 3

τ̃B(x,r)
) > r/3, τ̃B(x,r) ≤ t, τ̃B(x,r) < T 1

2 ∧ T 2
1

)
≤ P

x
(
τ
(ρ)
B(x,r/3) ≤ τ̃B(x,r) ≤ t, τ̃B(x,r) < T 1

2 ∧ T 2
1

)
+ P

x
(
τ
(ρ)

B(Y 3

τ̃B(x,r)∧T1
1

,r/3)
◦ θY 3

τ̃B(x,r)∧T 1
1
≤ τ̃B(x,r) ≤ t, τ̃B(x,r) < T 1

2 ∧ T 2
1

)
≤ 2 sup

z∈B(x,5r/4)

P
z
(
τ
(ρ)
B(z,r/3) ≤ t

)
.

In the second inequality above, we used the fact that Y 3
τ̃B(x,r)∧T 1

1
∈ B(x, r + r/4).

Therefore, we obtain from Markov inequality, (55) and Lemma 5.3 that

I3 ≤ 2 sup
z∈B(x,5r/4)

E
z

[
exp

(
C1K1t

φ(z, ρ)
− C1K1

φ(z, ρ)
τ
(ρ)
B(z,r/3)

)]

≤ 2 exp

(
c3t

φ(x, r)

(
r

ρ

)β2
)

sup
z∈B(x,5r/4)

E
z

[
exp

(
− C1K1

φ(z, ρ)
τ
(ρ)
B(z,r/3)

)]

≤ c4

(
ρ

r

)θ1

exp

(
c3t

φ(x, r)

(
r

ρ

)β2
)
,
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where θ1, C1,K1 > 0 are the constants in (53). Finally, since t < C−1
U φ(x, r), we

deduce from the definition of ρ and (58) that

P
x(τB(x,r) ≤ t) ≤ c21 t

2

φ(x, r)2
φ(x, r)

CU t

+
c2t

φ(x, r)
+ c4

(
CU t

φ(x, r)

)θ1/(2β2)

exp

(
c3t

φ(x, r)

(
φ(x, r)

CU t

)1/2 )
≤ (c21C

−1
U + c2)t

φ(x, r)
+ ec3c4

(
CU t

φ(x, r)

)θ1/(2β2)

≤ c5

(
t

φ(x, r)

)((2β2)∧θ1)/(2β2)

.

(ii) The result follows from [12, Proposition 4.9(ii) and Corollary 4.10]. �

An event G is called shift-invariant if G is a tail event (i.e. ∩∞
t>0σ(Xs : s > t)-

measurable), and Py(G) = Py(G ◦ θt) for all y ∈ M and t > 0.
The following zero-one law for shift-invariant events is established in [12, Propo-

sition 4.15].

Proposition 5.4. Suppose that VRDR′
∞(υ) holds. If (B1), (B2), (B3) and (B4+)

hold, then for every shift-invariant G, it holds either Pz(G) = 0 for all z ∈ M or
else P

z(G) = 1 for all z ∈ M .

Now, we are ready to prove our main results in Section 1.

Proof of Theorem 1.2. In view of Remark 1.8, it suffices to prove the case when
φ(x, r) = Ex[τB(x,r)]. We claim that there exist constants q2 ≥ q1 > 0 such that for
all x ∈ U ,

(60) lim sup
r→0

τB(x,r)

φ(x, r) log | log φ(x, r)| ∈ [q1, q2], P
x-a.s.

We follow the main idea of the proof in [25, Theorem 3.7] and will prove upper
and lower bound of the limsup behavior in (60) separately.

Pick x ∈ U . Let C7 > 0 be the constant in (A4). We set

ln :=φ−1(x, e−n) and An :=
{

sup
ln+1≤r≤ln

τB(x,r)

φ(x, r) log | log φ(x, r)| ≥
2e

C7

}
, n ≥ 3.

Since limr→0 φ(x, r) = 0 by (A2), we have limn→∞ ln = 0. Then using (A4), we get
that for all n large enough,

P
x(An) ≤ P

x

(
τB(x,ln) ≥

2e

C7
φ(x, ln+1) log | log φ(x, ln+1)|

)
≤ P

x

(
τB(x,ln)

φ(x, ln)
≥ 2 logn

C7

)
≤ C6e

C7n−2.

Thus,
∑∞

n=3 P
x(An) < ∞. Then by the Borel-Cantelli lemma, the upper bound in

(60) holds with q2 = 2e/C7.
Now, we prove the lower bound in (60). Let C1, C5 be the constants in (A1) and

(A4), and set

rn := φ−1(x, e−n2

) and un :=
φ(x, rn) log | log φ(x, rn)|

8C1C5
, n ≥ 3.
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We also define for n ≥ 3,

En :=
{

sup
0<s≤un+1

d(x,Xs) ≥ rn
}
, Fn :=

{
sup

un+1<s≤un

d(Xun+1
, Xs) ≥ rn

}
,

Gn :=
{

sup
0<s≤un

d(x,Xs) ≥ 2rn
}
, Hn := ∩2n

k=nGk =
{

sup
n≤k≤2n

τB(x,2rk)

uk
≤ 1

}
.

Note that Gn ⊂ En ∪ Fn for all n ≥ 3 by the triangle inequality. Thus, we have

(61) Hn ⊂ ∩2n
k=n

(
Ek ∪ (Fk \Ek)

)
⊂

(
∪2n
k=n Ek

)
∪

(
∩2n
k=n (Fk \ Ek)

)
.

By Proposition 5.1(i), we have that for all large enough k,

P
x(Ek) = P

x(τB(x,rk) ≤ uk+1) ≤ c1

(
uk+1

φ(x, rk)

)θ

= c2e
−2θk(log(k + 1))θ.(62)

Next, by (A1) and (A4), we have that for all k large enough and z ∈ B(x, rk),

P
z(τB(z,rk) ≥ uk) ≥ P

z

(
τB(z,rk) ≥

φ(z, rk) log k

4C5

)
≥ C4e

−C5k−1/4(63)

≥ 1− exp
(
− C4e

−C5k−1/4
)

and hence
(64)

P
z
(

sup
0<s≤uk−uk+1

d(z,Xs) ≥ rk
)
≤ 1− P

z(τB(z,rk) ≥ uk) ≤ exp
(
− C4e

−C5k−1/4
)
.

Thus, using the Markov property, we get that for all n large enough,

P
x
(
∩2n
k=n (Fk \ Ek)

)
≤ E

x
P
x
(
∩2n
k=n Fk, Xuj+1 ∈ B(x, rj), n ≤ j ≤ 2n | Fun+1

)
≤ P

x
(
∩2n
k=n+1 Fk, Xuj+1 ∈B(x, rj), n+1 ≤ j ≤ 2n

)
sup

z∈B(x,rn)
P
z
(

sup
0<s≤un−un+1

d(z,Xs) ≥ rn
)

≤ exp
(
− C4e

−C5n−1/4
)
E
x
P
x
(
∩2n
k=n+1 Fk, Xuj+1 ∈ B(x, rj), n+ 1 ≤ j ≤ 2n | Fun+2

)

≤ · · · ≤
2n∏

k=n

exp
(
− C4e

−C5k−1/4
)
≤

2n∏
k=n

(
− C4e

−C5 (2n)−1/4
)
≤ exp(−c3n

3/4).

(65)

Therefore, by combining the above with (61) and (62), we get that for all n large
enough,

P
x(Hn) ≤

2n∑
k=n

P
x(Ek) + P

x
(
∩2n
k=n(Fk \ Ek)

)
≤ c2e

−2θn(n+ 1)(log(2n+ 1))θ + exp(−c3n
3/4),

which yields
∑∞

n=3 P
x(Hn) < ∞. By the Borel-Cantelli lemma, it follows that

(66) P
x
(
lim sup
k→∞

τB(x,2rk)

uk
≥ 1

)
= 1.

Since limk→∞ rk = 0 and

uk ≥ φ(x, 2rk) log | log φ(x, 2rk)|
23+β2C1C5CU

for all k large enough by (3), we conclude from (66) that the lower bound in (60)
holds.
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Now, we claim that for all x ∈ U , it holds that

(67) lim inf
t→0

φ
(
x, sup0<s≤t d(x,Xs)

)
t/ log | log t| ∈ [e−1q−1

2 , q−1
1 ], P

x-a.s.

Note that once we prove (67), the proof is finished thanks to Blumenthal’s zero-one
law. Also, since q1 and q2 in (67) can be chosen by C and the constants q1 and q2
with respect to Ex[τB(x,r)], Remark 1.8 is also verified.

Here, we show (67). Recall that ln :=φ−1(x, e−n). Set tn :=φ(x, ln) log | log φ(x, ln)|
= e−n log n. Choose any δ > 0. By (60), for Px-a.s. ω, there exists N = N(ω) such
that τB(x,ln) ≤ (q2 + δ)tn for all n ≥ N . Thus, by (3), it holds that for Px-a.s. ω,

lim inf
t→0

φ
(
x, sup0<s≤t d(x,Xs)

)
t/ log | log t| ≥ lim inf

n→∞
inf

t∈[(q2+δ)tn,(q2+δ)tn−1]

φ
(
x, sup0<s≤t d(x,Xs)

)
t/ log | log t|

≥ lim inf
n→∞

φ
(
x, sup0<s≤(q2+δ)tn d(x,Xs)

)
(q2 + δ)tn−1/ log | log(q2 + δ)tn−1|

≥ lim inf
n→∞

φ(x, ln)

(q2 + δ)e−(n−1) log(n− 1)/ logn

=
1

e(q2 + δ)
.

On the other hand, we also get from (60) that for Px-a.s. ω, there exists a decreasing
sequence (r̃n)n≥1 = (r̃n(ω))n≥1 converging to zero such that

τB(x,r̃n)(ω) ≥ (q1 − δ)φ(x, r̃n) log | log φ(x, r̃n)| =: t̃δ,n for all n ≥ 1.

It follows that Px-a.s.,

lim inf
t→0

φ
(
x, sup0<s≤t d(x,Xs)

)
t/ log | log t| ≤ lim inf

n→∞

φ
(
x, sup0<s≤˜tδ,n

d(x,Xs)
)

t̃δ,n/ log | log t̃δ,n|

≤ lim inf
n→∞

φ(x, r̃n)

t̃δ,n/ log | log t̃δ,n|

=lim inf
n→∞

φ(x, r̃n)

(q1−δ)φ(x, r̃n)

log | log t̃δ,n|
log | log φ(x, r̃n)|

=
1

q1 − δ
.

Since δ can be arbitrarily small, we obtain (67). The proof is complete. �

Proof of Corollary 1.3. Using (3) and (6), we can see from (67) that there exist
constants c2 ≥ c1 > 0 such that for all x ∈ U ,

lim inf
t→0

sup
0<s≤t

d(x,Xs)/φ
−1(x, t/ log | log t|) ∈ [c1, c2],P

x-a.s.

Then using Blumenthal’s zero-one law again, we obtain the result. �

Proof of Theorem 1.4. By (2), it suffices to prove the theorem with φ(r)
:= Eo[τB(o,r)]. We follow the proof of Theorem 1.2 with some modifications. To
obtain the desired result, by repeating the arguments for obtaining (67) and using
(4), it is enough to show that there exist constants q4 ≥ q3 > 0 such that for all
x, y ∈ M ,

(68) lim sup
r→∞

τB(x,r)

φ(r) log log φ(r)
∈ [q3, q4], P

y-a.s.
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By (4) and the monotone property of φ(r), we have that, for all x, y ∈ M , since
d(x, y) < ∞,

lim sup
r→∞

τB(x,r)

φ(r) log log φ(r)
≤ lim sup

r→∞

τB(y,r+d(x,y))

φ(r) log log φ(r)

≤ 2β2CU lim sup
r→∞

τB(y,2r)

φ(2r) log log φ(2r)

and

lim sup
r→∞

τB(x,r)

φ(r) log log φ(r)
≥ lim sup

r→∞

τB(y,r−d(x,y))

φ(r) log log φ(r)

≥ 2−β2C−1
U lim sup

r→∞

τB(y,r/2)

φ(r/2) log log φ(r/2)
.

Thus, to get (68), it is enough to prove that for all y ∈ M ,

(69) lim sup
r→∞

τB(y,r)

φ(r) log log φ(r)
∈ [2β2CUq3, 2

−β2C−1
U q4], P

y-a.s.

Let y ∈ M . With the constant C7 in (B4), we define

l̃n = φ−1(en) and Ãn =
{

sup
˜ln≤r≤˜ln+1

τB(y,r)

φ(r) log log φ(r)
≥ 2e

C7

}
, n ≥ 3.

Note that limn→∞ l̃n = ∞ by (B2) (see Remark 1.1(iv)). Hence, l̃n > R∞d(y)υ for
all n large enough. Then by (B4), we get that for all n large enough,

P
y(Ãn) ≤ P

y

(
τB(y,˜ln+1)

≥ 2e

C7
φ(l̃n) log log φ(l̃n)

)
= P

y

(τB(y,˜ln+1)

φ(l̃n+1)
≥ 2 log n

C7

)
≤ C6e

C7n−2.

Using the Borel-Cantelli lemma, we deduce that the upper bound in (69) holds
true.

To prove the lower bound, we set

mn := φ−1(en
2

) and sn :=
φ(mn) log log φ(mn)

8C1C5
, n ≥ 3,

where C1, C5 are the constants in (B1) and (B4). We also let

Ẽn :=
{

sup
0<s≤sn−1

d(y,Xs) ≥ mn

}
, F̃n :=

{
sup

sn−1<s≤sn

d(Xsn−1
, Xs) ≥ mn

}
,

G̃n :=
{

sup
0<s≤sn

d(y,Xs) ≥ 2mn

}
, H̃n := ∩2n

k=nG̃k =
{

sup
n≤k≤2n

τB(y,2mk)

sk
≤ 1

}
.

Then for all n, G̃n ⊂ Ẽn ∪ F̃n by the triangle inequality so that H̃n ⊂ (∪2n
k=nẼk) ∪

(∩2n
k=n(F̃k \ Ẽk)).
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First, using Proposition 5.1(ii) (with υ1 =
√
υ < 1) and (4) twice, we get that

for all n large enough,

P
y(Ẽn) ≤ P

x
(
τB(x,mn) ≤ sn−1 + φ(2m

√
υ

n )
)
≤ c1

sn−1 + φ(2m
√
υ

n )

φ(mn)

≤ c2e
−2n log n+ c2m

−(1−
√
υ)β1

n(70)

≤ c2e
−2n log n+ c3R∞

(
en

2

φ(2R∞)

)−(1−
√
υ)β1/β2

≤ c4e
−n.

Next, we note that since υ < 1 and limn→∞ mn = ∞, for all n large enough and
z ∈ B(y,mn),

R∞d(z)υ ≤ R∞d(y)υ +R∞d(y, z)υ < mn/2 +R∞mυ
n < mn.

Hence, by following the calculations (63), (64) and (65), using (B1), (B4) and the
Markov property, we get that for all n large enough,

P
y
(
∩2n
k=n (F̃k \ Ẽk)

)
≤ P

x
(
∩2n
k=n F̃k, Xsj−1

∈ B(y,mj), n ≤ j ≤ 2n
)

≤ P
y
(
∩2n−1
k=n F̃k, Xsj−1

∈ B(y,mj), n ≤ j ≤ 2n− 1
)

· sup
z∈B(y,m2n)

P
z
(

sup
0<s≤s2n−s2n−1

d(z,Xs) ≥ m2n

)
≤ · · · ≤

2n∏
k=n

exp(−C4e
−C5k−1/4) ≤ exp(−c5n

3/4).

By combining the above with (70), we get

∞∑
n=1

P
y(H̃n) ≤

∞∑
n=1

(
2n∑
k=n

P
y(Ẽk) + P

y(∩2n
k=n(F̃k \ Ẽk))) < ∞.

Hence Py(lim sup H̃n) = 0 by the Borel-Cantelli lemma. Since limk→∞ mk = ∞
and

sk ≥ φ(2mk) log log φ(2mk)

24+β2C1C5CU

for all k large enough by (4), we get the lower bound in (69). The proof is complete.
�

Proof of Corollary 1.7. By Proposition 1.9(ii) and Theorem 1.4, the liminf law (8)
holds under the current setting. Thus, by Proposition 5.4, it suffices to show that
for every x ∈ M and λ > 0,

E = E(x, λ) :=
{
lim inf
t→∞

φ
(
sup0<s≤t d(x,Xs)

)
t/ log log t

≥ λ
}

is a shift-invariant event.
Let λ, u > 0 and x, y ∈ M . Observe that by the Markov property,

E ◦ θu =
{
lim inf
t→∞

φ
(
sup0<s≤t d(x,Xs+u)

)
t/ log log t

≥ λ
}
.

Since X is conservative by Proposition 5.1(ii), for all t > 0, it holds that
sup0<s≤t d(x,Xs) < ∞, Py-a.s. Hence, since φ is positive, we see that for all
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t > 0,

φ
(

sup
0<s≤t+u

d(x,Xs)
)
= φ

(
sup

s∈(u,t+u]∪(0,u]

d(x,Xs)
)
≤ φ

(
sup

0<s≤t
d(x,Xs+u)

)
+ φ

(
sup

0<s≤u
d(x,Xs)

)
.

Therefore, we get that for Py-a.s. ω ∈ E,

lim inf
t→∞

φ
(
sup0<s≤t d(x,Xs+u)

)
t/ log log t

≥ lim inf
t→∞

φ
(
sup0<s≤t+u d(x,Xs)

)
(t+ u)/ log log(t+ u)

(t+ u)/ log log(t+ u)

t/ log log t

− lim sup
t→∞

φ
(
sup0<s≤u d(x,Xs)

)
t/ log log t

≥ λ.

On the other hand, for every ω ∈ E ◦ θu, we see that

lim inf
t→∞

φ
(
sup0<s≤t d(x,Xs)

)
t/ log log t

= lim inf
t→∞

φ
(
sup0<s≤t+u d(x,Xs)

)
(t+ u)/ log log(t+ u)

≥ lim inf
t→∞

φ
(
sup0<s≤t d(x,Xs+u)

)
t/ log log t

t/ log log t

(t+ u)/ log log(t+ u)
≥ λ.

Hence, Py(Eu) ≤ Py(E). Since E is clearly a tail event, this completes the proof. �

6. Appendix

In this section, we follow the setting in Section 1 and compare the conditions
in this paper with those in [12]. We recall the conditions Tail and NDL, and
upper and lower scaling properties for nonnegative functions which were presented
in [12, Definitions 1.5, 1.6 and 1.9]. We will give a sufficient condition for NDL too.

Throughout the appendix, we let ϕ : (0,∞) → (0,∞) be an increasing and
continuous function such that lim

r→0
ϕ(r) = 0 and lim

r→∞
ϕ(r) = ∞.

Definition 6.1. Let R0 ∈ (0,∞] be a constant and U ⊂ M be an open set.

(i) We say that TailR0
(ϕ,U) holds if there exist constants C0 ∈ (0, 1), cJ > 1

such that for all x ∈ U and 0 < r < R0 ∧ (C0δU (x)),

(71)
c−1
J

ϕ(r)
≤ J(x,M∂ \B(x, r)) ≤ cJ

ϕ(r)
.

We say that TailR0
(ϕ,U,≤) (resp. TailR0

(ϕ,U,≥)) holds (with C0) if the upper
bound (resp. lower bound) in (71) holds for all x ∈ U and 0 < r < R0 ∧ (C0δU (x)).

(ii) We say that ER0
(ϕ,U) holds if there exist constants C0 ∈ (0, 1), C1 > 0 and

cE > 1 such that for all x ∈ U and 0 < r < R0 ∧ (C0δU (x)),

(72) c−1
E ϕ(C1r) ≤ E

x[τB(x,r)] ≤ cEϕ(C1r).

(iii) We say that NDLR0
(ϕ,U) holds if there exist constants C2, η ∈ (0, 1) and

cl > 0 such that for all x ∈ U and 0 < r < R0 ∧ (C2δU (x)), the heat kernel
pB(x,r)(t, y, z) of XB(x,r) exists and

(73) pB(x,r)(ϕ(ηr), y, z) ≥ cl
V (x, r)

, y, z ∈ B(x, η2r).
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Definition 6.2. Let R∞ ≥ 1 and υ ∈ (0, 1) be constants.

(i) We say that TailR∞(ϕ, υ) holds if there exists a constant cJ > 1 such that

(71) holds for all x ∈ M and r > R∞d(x)υ. We say that TailR∞(ϕ, υ,≤) (resp.

TailR∞(ϕ, υ,≥)) holds if the upper bound (resp. lower bound) in (71) holds for all
x ∈ M and r > R∞d(x)υ.

(ii) We say that ER∞(ϕ, υ) holds if there exist constants υ ∈ (0, 1), C1 > 0 and
cE > 1 such that (72) holds for all x ∈ M and r > R∞d(x)υ.

(iii) We say that NDLR∞(ϕ, υ) holds if there exist constants η ∈ (0, 1) and cl > 0
such that for all x ∈ M and r > R∞d(x)υ, the heat kernel pB(x,r)(t, y, z) of XB(x,r)

exists and satisfies (73).

Definition 6.3. For g : (0,∞) → (0,∞) and constants a ∈ (0,∞], β1, β2 > 0,
c1, c2 > 0, we say that La(g, β1, c1) (resp. L

a(g, β1, c1)) holds if

g(r)

g(s)
≥ c1

(r
s

)β1

for all s ≤ r < a (resp. a < s ≤ r),

and we say that Ua(g, β2, c2) (resp. U
a(g, β2, c2)) holds if

g(r)

g(s)
≤ c2

(r
s

)β2

for all s ≤ r < a (resp. a < s ≤ r).

We say that L(g, β1, c1) holds if L∞(g, β1, c1) holds, and that U(g, β2, c2) holds if
U∞(g, β2, c2) holds.

We now show that the assumptions in this papers are weaker than those in [12].

Lemma 6.4.

(i) Suppose that VRDR0
(U), TailR0

(ϕ,U,≤), UR0
(ϕ, β2, CU ) and NDLR0

(ϕ,U)
hold. Then the function φ(x, r) := ϕ(r) satisfies (2) for all x ∈ U and 0 < r <
r0 ∧ (C ′

0δU (x)) with some constants r0 > 0 and C ′
0 ∈ (0, 1), and conditions (A1),

(A2), (A3) and (A4+) hold for U .

(ii) Suppose that VRDR∞(υ), TailR∞(ϕ, υ,≤), UR∞(ϕ, β2, CU ), L
R∞(ϕ, β1, CL)

and NDLR∞(ϕ, υ) hold. Then the function φ(x, r) := ϕ(r) satisfies (2) for all
x ∈ M and r > r1d(x)

υ with some constant r1 ≥ 1, and conditions (B1), (B2),
(B3) and (B4+) hold.

Proof. (i) Under the setting, by [12, Proposition 4.3(i)] and UR0
(ϕ, β2, CU ), there

exist constants r0 ∈ (0, R0), C
′
0 ∈ (0, 1) and c1 > 1 such that Ex[τB(x,r)]  ϕ(r)

for x ∈ U and 0 < r < r0 ∧ C ′
0δU (x). Hence, using UR0

(ϕ, β2, CU ) and the fact
that limr→0 ϕ(r) = 0, we see that (A1)–(A3) hold for U . Now (A4+) immediately
follows from NDLR0

(ϕ,U).
(ii) Similarly, using [12, Proposition 4.3(ii)], one can deduce the desired results.

�

Recall the notion of the heat kernel from Section 1. In the next lemma, we let
X be a strong Markov process on M having the heat kernel p(t, x, y) := pM (t, x, y)
such that p(t, x, y) < ∞ unless x = y. Then by the strong Markov property of X,
one can see that for any open set D ⊂ M , the heat kernel pD(t, x, y) of XD exists
and can be written as

(74) pD(t, x, y) = p(t, x, y)− E
x
[
E
XτD

[
p(t− τD, XτD , y); τD < t

]]
.
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Using (74), the proof of the next lemma is a simple modification of that of [9,
Proposition 2.3] and [13, Proposition 2.5]. We give a full proof for the reader’s
convenience.

Lemma 6.5. Let U ⊂ M be an open subset. Suppose that there exist constants
R0 ∈ (0,∞], C,C ′ ≥ 1 such that VRDR0

(U) holds, and for all t ∈ (0, ϕ(R0/2)),
(75)

p(t, x, y)≤ Ct

V (y, d(x, y))ϕ(d(x, y))
for all x ∈ M, y ∈ U with d(x, y)>C ′ϕ−1(t)

and

(76) p(t, x, y) ≥ C−1

V (x, ϕ−1(t))
for all x, y ∈ U with d(x, y) < C ′−1ϕ−1(t).

Then NDLR0
(ϕ,U) holds true.

Proof. Set η := (2C ′)−1(2d2+1C2Cμ/cμ)
−1/d1 ∈ (0, 1/2) where d1, d2, cμ, Cμ are

the constants from (9). Choose any x ∈ U , 0 < r < R0 ∧ (CV δU (x)) and y, z ∈
B(x, η2r).

We observe that B(x, η2r) ⊂ B(x, δU (x)) ⊂ U and d(y, z) ≤ 2η2r < C ′−1ηr.
Thus, by (76) and VRDR0

(U), since η < 1/2, it holds that

p(ϕ(ηr), y, z) ≥ C−1

V (y, ηr)
≥ C−1

V (x, ηr + d(x, y))
(77)

≥ C−1

V (x, 2ηr)

≥ C−1cμ(2η)
−d1

V (x, r)

≥ 2d2+1CCμ

V (x, r)
.

On the other hand, for every w ∈ M \ B(x, r), we see that d(w, z) ≥ d(w, x) −
d(x, z) ≥ 3r/4 > C ′ηr. Therefore, for every 0 < s ≤ ϕ(ηr) and w ∈ M \ B(x, r),
since ϕ is increasing and η < 1/2, we get from (75) and VRDR0

(U) that

p(s, w, z) ≤ Cϕ(ηr)

V (z, d(w, z))ϕ(d(w, z))
≤ Cϕ(ηr)

V (z, 3r/4)ϕ(3r/4)
≤ C

V (z, 3r/4)

≤ C

V (x, 3r/4− d(x, z))
≤ C

V (x, r/2)
≤ 2d2CCμ

V (x, r)
.(78)

Therefore, since XτB(x,r)
∈ M∂ \B(x, r), using the formula (74), we conclude from

(77) and (78) that pB(x,r)(ϕ(ηr), y, z) ≥ 2d2CCμ/V (x, r). The proof is complete.
�
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[28] Franziska Kühn, Lévy matters. VI, Lecture Notes in Mathematics, vol. 2187, Springer, Cham,
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[29] Paul A. Meyer, Renaissance, recollements, mélanges, ralentissement de processus de Markov
(French, with English summary), Ann. Inst. Fourier (Grenoble) 25 (1975), no. 3-4, xxiii,
465–497. MR415784

[30] William E. Pruitt, The growth of random walks and Lévy processes, Ann. Probab. 9 (1981),
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