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AUSLANDER–REITEN THEORY IN EXTRIANGULATED

CATEGORIES

OSAMU IYAMA, HIROYUKI NAKAOKA, AND YANN PALU

Abstract. The notion of an extriangulated category gives a unification of
existing theories in exact or abelian categories and in triangulated categories.
In this article, we develop Auslander–Reiten theory for extriangulated cate-

gories. This unifies Auslander–Reiten theories developed in exact categories
and triangulated categories independently. We give two different sets of suf-
ficient conditions on the extriangulated category so that existence of almost
split extensions becomes equivalent to that of an Auslander–Reiten–Serre du-
ality. We also show that existence of almost split extensions is preserved under
taking relative extriangulated categories, ideal quotients, and extension-closed
subcategories. Moreover, we prove that the stable category C of an extriangu-
lated category C is a τ -category (see O. Iyama [Algebr. Represent. Theory 8
(2005), pp. 297–321]) if C has enough projectives, almost split extensions and
source morphisms. This gives various consequences on C , including Igusa–
Todorov’s Radical Layers Theorem (see K. Igusa and G. Todorov [J. Algebra
89 (1984), pp. 105–147]), Auslander–Reiten Combinatorics on dimensions of
Hom-spaces, and Reconstruction Theorem of the associated completely graded
category of C via the complete mesh category of the Auslander–Reiten species
of C . Finally we prove that any locally finite symmetrizable τ -quiver (=val-
ued translation quiver) is an Auslander–Reiten quiver of some extriangulated
category with sink morphisms and source morphisms.
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Introduction

Auslander–Reiten theory, initiated in [AR1,AR2], is a key tool to study the lo-
cal structure of additive categories. Its generalizations have been studied by many
authors, and many of them can be divided into two classes of additive categories.
The first one is the class of Quillen’s exact categories [GR], including finitely gen-
erated modules over finite dimensional algebras [ARS, ASS], their subcategories
[ASm,Kl, Rin] and Cohen–Macaulay modules over orders and commutative rings
[A3,RS,Y,LW]. The second one is the class of Grothendieck–Verdier’s triangulated
categories [Ha1,RV2,Kr], including the derived categories of finite dimensional al-
gebras [Ha2], differential graded categories (e.g. [Jo1, Sc]), and commutative and
non-commutative schemes (e.g. [AR4, GL1, RV2]). Also there are many refer-
ences studying Auslander–Reiten theory in more general additive categories (e.g.
[I1,Li,Ru2,Sh]).

Recently, the class of extriangulated categories was introduced in [NP] as a
simultaneous generalization of exact categories and triangulated categories. The
aim of this paper is to develop a fundamental part of Auslander–Reiten theory for
extriangulated categories. More explicitly, we introduce the notion of almost split
extensions (Definition 2.1), the (co)stable categories C and C of extriangulated
categories (Definition 1.21) and Auslander–Reiten–Serre duality for extriangulated
categories (Definition 3.4), and give explicit connections between these notions and
also with the classical notion of dualizing k-varieties. Our main results can be
summarized as follows.

Theorem 0.1 (Theorems 3.6 and 4.4). Let C be a k-linear, Ext-finite, extriangu-
lated category.

(1) Assume that C is Krull–Schmidt. Then C has almost split extensions if
and only if it has an Auslander–Reiten–Serre duality.

(2) Assume that C has enough projectives and enough injectives. Then C has
an Auslander–Reiten–Serre duality if and only if C (resp. C ) is a dualizing
k-variety.

This generalizes and strengthens the corresponding results mentioned above as
well as recent results in [LNP,Jia,E] (exact categories), [Jo2] (subcategories of trian-
gulated categories) and [ZZ] (extriangulated categories). We also refer to [Niu,LNi]
for recent results on subcategories of triangulated categories that do not assume
Ext-finiteness.

We also study the stability of the existence of an Auslander–Reiten theory under
various constructions: relative extriangulated categories (Proposition 5.10), ideal
quotients (Proposition 5.11) and extension-closed subcategories (Theorem 5.14).
They can be regarded as generalizations of previous works by Auslander–Solberg
[ASo], Auslander–Smalø [ASm], and so on.

Auslander–Reiten theory clarifies a common categorical feature of various cate-
gories C in terms of the functor category of C . We denote by SX = topC (−, X)
and SX = topC (X,−) the simple C - and C op-modules corresponding to an inde-
composable object X ∈ C respectively. If C has almost split extensions, then each
indecomposable non-projective object C ∈ C (resp. non-injective object A ∈ C )
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has an almost split sequence A
x−→ B

y−→ C, which is a conflation such that

C (−, A)
x◦−−−−→ C (−, B)

y◦−−−→ C (−, C) → SC → 0,

C (C,−)
−◦y−−→ C (B,−)

−◦x−−−→ C (A,−) → SA → 0

are exact. In particular, if X is non-projective (resp. non-injective), the first three
terms of the minimal projective resolution of SX (resp. SX) have a remarkable
symmetry.

On the other hand, the characteristics of the category C appear more strongly in
the minimal projective resolutions of SX (resp. SX) for indecomposable projective
(resp. injective) objects X ∈ C . In Section 6, we study them in terms of sink
sequences (resp. source sequences) (see Definition 6.1), and we prove the following
general result.

Theorem 0.2 (Theorem 6.4). Let C be a Krull–Schmidt extriangulated category
with enough projectives and injectives. If B → A → P is a sink sequence of an
indecomposable projective object P , then B is injective. Dually, if I → A → B is a
source sequence of an indecomposable injective object I, then B is projective.

The most basic example of exact categories which has almost split extensions is
given by the category of finitely generated modules over a finite dimensional algebra
over a field. This example has the following two natural generalizations, where it is
well-known that both classes of exact categories also have almost split extensions.

(Ad) the category ⊥U for a cotilting Λ-module U of injective dimension d over a
finite dimensional algebra Λ over a field,

(Bd) the category CMΛ for an R-order Λ which is an isolated singularity over a
complete local Cohen–Macaulay ring R of dimension d.

In these exact categories, Theorem 0.2 can be improved by using Auslander–
Buchweitz approximation theory [AB,AR5] (see Propositions 6.6 and 6.8). This
is also closely related to the Auslander correspondence given in Theorem 4.2.4 in
[I6] for the case n = 1.

One of important consequences of classical Auslander–Reiten theory is that the
Auslander–Reiten quiver contains a lot of important information about the category
C . For example, the following result was first proved for the category of finitely
generated modules over a finite dimensional algebra over a field [Rie1,BG, IT1].

• (Reconstruction Theorem) [I1, Theorem 9.2] Let C be a category in (Ad)
with d ≤ 1 or (Bd) with d ≤ 2. Then the associated completely graded
category of C with respect to the radical filtration is equivalent to the
complete mesh category of the Auslander–Reiten species of C .

The validity of this result is closely related to the basic fact that, in such a
category C , the object B in Theorem 0.2 is always zero. In [I1, I2, I3], an addi-
tive category enjoying this property is called a τ -category (see Definition 7.1) and
studied in depth to give a characterization of the Auslander–Reiten quiver of the
category in (B1). The notion of τ -categories can be regarded as a categorical coun-
terpart of the notion of τ -quivers (=valued translation quivers, Definition 3.14), see
Example 7.2(3). Another source of τ -categories is given by a triangulated category
with almost split triangles, see Example 7.2(2). On the other hand, the categories
in (Ad) with d ≥ 2 or (Bd) with d ≥ 3 are not τ -categories since the sink (resp.
source) sequences of these categories are not as nice as almost split sequences, see
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Propositions 6.6 and 6.8. This observation is one of the motivations to study cluster
tilting subcategories in higher dimensional Auslander–Reiten theory [I5].

The aim of Sections 7 and 8 is to apply the theory of τ -categories to study
extriangulated categories. In Section 7, we prove the following result, which was
surprising to us since it asserts that the additive structure of the stable category
C and the costable category C of an extriangulated category C is much nicer than
that of C .

Theorem 0.3 (Theorem 7.15). Let C be a Krull–Schmidt extriangulated cate-
gory with enough projectives and injectives, sink morphisms and source morphisms.
Then C and C are τ -categories.

As an application of Theorem 0.3, we show that some important results in repre-
sentation theory still hold in C and C for a large class of extriangulated categories
C . In fact, we prove

• Radical Layers Theorem (Corollary 7.20) originally due to Igusa-Todorov
[IT1], which gives exact sequences associated with almost split sequences,

• Auslander–Reiten Combinatorics (Corollary 7.21) originally due to Gabriel

[G], which gives dimensions of Hom-spaces of C (resp. C ),
• Reconstruction Theorem (Corollary 7.23) originally due to Bongartz–Gabriel
[BG], which gives an equivalence between the associated completely graded

category of C (resp. C ) with respect to the radical filtration and the com-
plete mesh category of its Auslander–Reiten species.

One of the important applications of Auslander–Reiten Combinatorics is beauti-
ful characterizations of τ -quivers which are realized as the Auslander–Reiten quivers
of a relevant class of categories. It was given for the class of categories in (B0) in
[I4, Ru1, IT2, B, Rie2], in (B1) in [I3, Ru3,W, Lu], in (B2) in [RV1], and for the
category of Cohen–Macaulay dg modules over certain differential graded algebras
in [Jin].

It is natural to ask the following Inverse Problem (see Problem 8.1 for details):
Can arbitrary τ -quiver be realized as the Auslander–Reiten quiver of a Krull–
Schmidt extriangulated category? In Section 8, we give the following positive
answer.

Theorem 0.4 (Theorem 8.2). Let Q be a locally finite symmetrizable τ -quiver.
Then there exists a Krull–Schmidt extriangulated category with sink morphisms
and source morphisms whose Auslander–Reiten quiver is Q.

A key ingredient of our proof is Enomoto’s classification of exact structure on
additive categories [E, Theorem 2.7].

There are many important extriangulated categories which are neither exact nor
triangulated. One of such class is given by τ -tilting theory, introduced by Adachi–
Iyama–Reiten in [AIR]. This is an increasingly studied part of representation theory
(see the introductory [IR2] and references therein). Indeed, it is at the same time
combinatorially better-behaved than classical tilting theory and much more gen-
eral than cluster-tilting theory. When A is a 2-Calabi–Yau tilted algebra (resp.
cluster-tilted algebra), then the isoclasses of support τ -tilting modules over A are
in bijection with the isoclasses of cluster-tilting objects in a corresponding triangu-
lated category (resp. cluster category). For more general finite dimensional algebras
A, there is a bijection between the isoclasses of support τ -tilting modules over A
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and 2-term silting complexes in Kb(projA). A naive approach consists in thinking
of the full subcategory A ∗ A[1] of Kb(projA) as a replacement for a non-existing
cluster category over A. Since A ∗A[1] is extension-closed in Kb(projA), it inherits
some structure from the triangulated structure of Kb(projA): It is extriangulated.
It is thus possible to apply the results in this paper in order to show that A ∗A[1]
has almost split extensions (Example 5.19).

We propose a slightly different approach to τ -tilting theory for some specific al-
gebra A, by giving another construction of some replacement for a cluster category.
We construct an exact category E whose quotient E /B by the ideal generated by
projective-injective objects might serve as a “categorification” of support τ -tilting
modules over A (see Section 9 for more details). The isoclasses of indecomposable
objects in E /B are in bijection with the isoclasses of indecomposable objects in
A ∗A[1]. Since E is not Frobenius, E /B is not triangulated and we check that it is
not exact either. However, by [NP, Proposition 3.30], it is extriangulated so that
it comes equipped with enough structure for applying our main results. In partic-
ular, it has Auslander–Reiten extriangles and an Auslander–Reiten–Serre duality.
Notably, τ -tilting mutation is given by approximation extriangles in the category
E /B.

Section 2 deals with the definitions and properties of almost split extensions. In
Sections 3 and 4, assuming Ext-finiteness, we show that the existence of almost
split extensions can be given by Auslander–Reiten–Serre duality. In Section 5, we
study the stability of the existence of an Auslander–Reiten theory under various
constructions. In Section 6, we study sink sequences of projective objects and source
sequences of injective objects. Section 7 is devoted to the proof of Theorem 0.3, and
to drawing some of its consequences. Section 8 is devoted to the proof of Theorem
0.4. Finally, we give an example in Section 9.

1. Preliminaries

All categories are assumed (locally small and) essentially small with respect to
a fixed Grothendieck universe.

1.1. Extriangulated categories. Let us briefly recall the definition and basic
properties of extriangulated categories from [NP]. Throughout this paper, let C be
an additive category, and Ab denotes the category of abelian groups.

Definition 1.1. Suppose C is equipped with a biadditive functor E : C op×C → Ab.
For any pair of objects A,C ∈ C , an element δ ∈ E(C,A) is called an E-extension.

The following notions will be used in the proceeding sections.

Definition 1.2. Let C be an additive category, and let E : C op × C → Ab be a
biadditive functor.

(1) Proj
E
C denotes the full subcategory of C consisting of objects X satisfying

E(X,C ) = 0.
(2) Inj

E
C denotes the full subcategory of C consisting of objects X satisfying

E(C , X) = 0.

We call an object in Proj
E
C an E-projective object, or just a projective object if no

confusion may arise. Similarly an object in Inj
E
C is called an E-injective object,

or just an injective object.
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Definition 1.3. Let C be a category, and let E : C op × C → Ab be a biadditive
functor.

(1) A functor F : C op × C → Set is called a subfunctor of E if it satisfies the
following conditions.

• F(C,A) is a subset of E(C,A), for any A,C ∈ C .
• F(c, a) = E(c, a)|F(C,A) holds, for any a ∈ C (A,A′) and c ∈ C (C ′, C).

In this case, we write F ⊆ E.
(2) A subfunctor F ⊆ E is said to be additive if F(C,A) ⊆ E(C,A) is a subgroup

for any A,C ∈ C . In this case, F : C op×C → Ab itself becomes a biadditive
functor.

Remark 1.4. For any additive subfunctor F ⊆ E, we have Proj
F
C ⊇ Proj

E
C and

Inj
F
C ⊇ Inj

E
C .

Remark 1.5. Let δ ∈ E(C,A) be any E-extension. By the functoriality of E, for
any a ∈ C (A,A′) and c ∈ C (C ′, C), we have E-extensions

E(C, a)(δ) ∈ E(C,A′) and E(c, A)(δ) ∈ E(C ′, A).

We abbreviately denote them by a ◦ δ and δ ◦ c, or just by aδ and δc. In this
terminology, we have

E(c, a)(δ) = (aδ)c = a(δc)

which we simply denote by aδc, in E(C ′, A′).

Definition 1.6. Let δ ∈ E(C,A), δ′ ∈ E(C ′, A′) be any pair of E-extensions. A
morphism (a, c) : δ → δ′ of E-extensions is a pair of morphisms a ∈ C (A,A′) and
c ∈ C (C,C ′) in C , satisfying the equality aδ = δ′c.

Definition 1.7. For any A,C ∈ C , the zero element 0 ∈ E(C,A) is called the split
E-extension.

Definition 1.8. Let δ = (A, δ, C), δ′ = (A′, δ′, C ′) be any pair of E-extensions. Let

C
ιC−→ C ⊕ C ′ ιC′←−− C ′ and A

pA←−− A⊕A′ pA′−−→ A′

be coproduct and product in C , respectively. We remark that, by the additivity of
E, we have a natural isomorphism

E(C ⊕ C ′, A⊕ A′) � E(C,A)⊕ E(C,A′)⊕ E(C ′, A)⊕ E(C ′, A′).

Let δ⊕δ′ ∈ E(C⊕C ′, A⊕A′) be the element corresponding to (δ, 0, 0, δ′) through
this isomorphism. In other words, δ ⊕ δ′ is the unique element which satisfies

E(ιC , pA)(δ ⊕ δ′) = δ, E(ιC , pA′)(δ ⊕ δ′) = 0,

E(ιC′ , pA)(δ ⊕ δ′) = 0, E(ιC′ , pA′)(δ ⊕ δ′) = δ′.

Definition 1.9. Let A,C ∈ C be any pair of objects. Two sequences of morphisms
in C

A
x−→ B

y−→ C and A
x′
−→ B′ y′

−→ C

are said to be equivalent if there exists an isomorphism b ∈ C (B,B′) which makes
the following diagram commutative.

A

B

B′

C

x
����������

y

����
���

���

x′ ����
���

��

y′

���������

b�

��
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We denote the equivalence class of A
x−→ B

y−→ C by [A
x−→ B

y−→ C].

Definition 1.10.

(1) For any A,C ∈ C , we denote as

0 = [A

[
1

0

]
−−→ A⊕ C

[0 1]−−−→ C].

(2) For any [A
x−→ B

y−→ C] and [A′ x′
−→ B′ y′

−→ C ′], we denote as

[A
x−→ B

y−→ C]⊕ [A′ x′
−→ B′ y′

−→ C ′] = [A⊕A′ x⊕x′
−−−→ B ⊕B′ y⊕y′

−−−→ C ⊕ C ′].

Definition 1.11. Let s be a correspondence which associates an equivalence class

s(δ) = [A
x−→ B

y−→ C] to any E-extension δ ∈ E(C,A). This s is called a realization
of E if it satisfies the following condition (∗).

(∗) Let δ ∈ E(C,A) and δ′ ∈ E(C ′, A′) be any pair of E-extensions, with

s(δ) = [A
x−→ B

y−→ C] and s(δ′) = [A′ x′
−→ B′ y′

−→ C ′].

Then, for any morphism (a, c) : δ → δ′, there exists b ∈ C (B,B′) which
makes the following diagram commutative.

(1.1)

A B C

A′ B′ C ′

x �� y ��

a

��
b
��

c

��

x′
��

y′
��

We say that the sequence A
x−→ B

y−→ C realizes δ whenever it satisfies s(δ) = [A
x−→

B
y−→ C]. Also in (∗), we say that the triplet (a, b, c) realizes (a, c).

Definition 1.12. Let C ,E be as above. A realization s of E is said to be additive
if it satisfies the following conditions.

(i) For any A,C ∈ C , the split E-extension 0 ∈ E(C,A) satisfies

s(0) = 0.

(ii) For any pair of E-extensions δ ∈ E(C,A) and δ′ ∈ E(C ′, A′), we have:

s(δ ⊕ δ′) = s(δ)⊕ s(δ′).

Definition 1.13 ([NP, Definition 2.12]). A triplet (C ,E, s) is called an extriangu-
lated category if it satisfies the following conditions.

(ET1) E : C op × C → Ab is a biadditive functor.
(ET2) s is an additive realization of E.
(ET3) Let δ ∈ E(C,A) and δ′ ∈ E(C ′, A′) be any pair of E-extensions, realized as

s(δ) = [A
x−→ B

y−→ C], s(δ′) = [A′ x′
−→ B′ y′

−→ C ′].

For any commutative square

(1.2)

A B C

A′ B′ C ′

x �� y ��

a
��

b
��

x′
��

y′
��

in C , there exists a morphism (a, c) : δ → δ′ satisfying cy = y′b.
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(ET3)op Dual of (ET3).
(ET4) Let δ ∈ E(D,A) and δ′ ∈ E(F,B) be E-extensions realized by

A
f−→ B

f ′

−→ D and B
g−→ C

g′

−→ F,

respectively. Then there exist an object E ∈ C , a commutative diagram

(1.3)

A B D

A C E

F F

f �� f ′
��

g

��
d

��

h
��

h′
��

g′

��
e

��

in C , and an E-extension δ′′ ∈ E(E,A) realized by A
h−→ C

h′
−→ E, which

satisfy the following compatibilities.

(i) D
d−→ E

e−→ F realizes f ′δ′,
(ii) δ′′d = δ,
(iii) fδ′′ = δ′e.

(ET4)op Dual of (ET4).

Example 1.14. Exact categories and triangulated categories are extriangulated
categories. See [NP, Example 2.13] for more detail.

We use the following terminology.

Definition 1.15. Let (C ,E, s) be a triplet satisfying (ET1) and (ET2).

(1) A sequence A
x−→ B

y−→ C is called an s-conflation if it realizes some E-
extension in E(C,A).

(2) A morphism f ∈ C (A,B) is called an s-inflation if there is some s-conflation

A
f−→ B → C.

(3) A morphism f ∈ C (A,B) is called an s-deflation if there is some s-

conflation K → A
f−→ B.

Definition 1.16. Let (C ,E, s) be a triplet satisfying (ET1) and (ET2).

(1) If an s-conflation A
x−→ B

y−→ C realizes δ ∈ E(C,A), we call the pair

(A
x−→ B

y−→ C, δ) an s-triangle, and write it in the following way.

(1.4) A
x−→ B

y−→ C
δ��� .

(2) Let A
x−→ B

y−→ C
δ��� and A′ x′

−→ B′ y′

−→ C ′ δ′��� be any pair of s-triangles.
If a triplet (a, b, c) realizes (a, c) : δ → δ′ as in (1.1), then we write it as

A B C

A′ B′ C ′

x �� y �� δ �����

a

��
b
��

c

��

x′
��

y′
��

δ′
�����

and call (a, b, c) a morphism of s-triangles.



256 OSAMU IYAMA, HIROYUKI NAKAOKA, AND YANN PALU

Definition 1.17. Assume C and E satisfy (ET1). By Yoneda’s lemma, any E-
extension δ ∈ E(C,A) induces natural transformations

δ ◦ − : C (−, C) → E(−, A) and − ◦δ : C (A,−) → E(C,−).

For any X ∈ C , they are given as follows.

(1) δ ◦ − : C (X,C) → E(X,A) ; f 
→ δf .
(2) − ◦ δ : C (A,X) → E(C,X) ; g 
→ gδ.

Remark 1.18. By [NP, Corollary 3.8], for any s-triangle A
x−→ B

y−→ C
δ��� and any

δ′ ∈ E(C,A), the following are equivalent.

(1) s(δ) = s(δ′).
(2) There are automorphisms a ∈ C (A,A), c ∈ C (C,C) satisfying xa = x,

cy = y and δ′ = aδc.

Definition 1.19. Let (C ,E, s) be a triplet satisfying (ET1) and (ET2). Let D ⊆ C
be an additive full subcategory. We say that D is extension-closed if it satisfies the
following condition.

• If an s-conflation A → B → C satisfies A,C ∈ D , then B ∈ D .

The following has been shown in [NP, Propositions 3.3, 3.11].

Fact 1.20. Assume that (C ,E, s) satisfies (ET1), (ET2), (ET3), (ET3)op, and let

A
x−→ B

y−→ C
δ��� be any s-triangle.

(1) The following sequences of natural transformations are exact.

C (C,−)
−◦y−−→ C (B,−)

−◦x−−−→ C (A,−)
−◦δ−−→ E(C,−)

−◦y−−→ E(B,−),

C (−, A)
x◦−−−−→ C (−, B)

y◦−−−→ C (−, C)
δ◦−−−→ E(−, A)

x◦−−−−→ E(−, B).

In particular, x is a section if and only if δ = 0 if and only if y is a retraction.
(2) If (C ,E, s) moreover satisfies (ET4), then the following sequence is exact.

E(C,−)
−◦y−−→ E(B,−)

−◦x−−−→ E(A,−).

(3) Dually, if (C ,E, s) satisfies (ET4)op, then the following sequence is exact.

E(−, A)
x◦−−−−→ E(−, B)

y◦−−−→ E(−, C).

1.2. Stable categories of extriangulated categories. We introduce the stable
(resp. costable) categories of arbitrary extriangulated categories.

Definition 1.21. Let (C ,E, s) be an extriangulated category. We denote by P
(resp. I) the ideal of C consisting of all morphisms f satisfying E(f,−) = 0 (resp.
E(−, f) = 0). The stable category (resp. costable category) of C is defined as the
ideal quotient

C := C /P (resp. C := C /I).

Remark 1.22 shows that our stable category coincides with the classical one if
C has enough projectives. Recall that, for an additive category C and an additive
full subcategory D of C , let [D ] be the ideal of C defined by

[D ](X,Y ) = {f ∈ C (X,Y ) | f factors through some D ∈ D}.
Then we have an additive category C /D := C /[D ] called the ideal quotient.
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Remark 1.22.

(1) If C has enough projectives P := Proj
E
C (namely, any object X ∈ C

admits an s-deflation P → X from some P ∈ P [LNa, Definition 1.13], [NP,
Definition 3.25]), then C coincides with the ideal quotient C /P. Otherwise
they are different in general.

(2) If C has enough injectives I := Inj
E
C (namely, any object X ∈ C admits

an s-inflation X → I to some I ∈ I ), then C coincides with the ideal
quotient C /I . Otherwise they are different in general.

The following properties are immediate from definition.

Proposition 1.23.

(1) The functor E : C op × C → Ab induces a functor E : C op × C → Ab.
(2) An object A ∈ C is projective if and only if C (A,−) = 0, if and only if

A � 0 in C .
(3) An object B ∈ C is injective if and only if C (−, B) = 0, if and only if

B � 0 in C .

Now we introduce the (co)syzygy functors and the long exact sequences associ-
ated with s-triangles. The following has been shown in [HLN2] and [LNa].

Definition-Proposition 1.24. Let (C ,E, s) be an extriangulated category with
enough projectives. For each C ∈ C , choose an object ΩC ∈ C and an extension
ωC ∈ E(C,ΩC) such that s(ωC) = [ΩC → P → C] satisfies that P is projective.

(1) The following gives an additive endofunctor Ω: C → C .
- To each C ∈ C , associate ΩC ∈ C chosen as above.
- For any c ∈ C (C,C ′), put Ωc = d, where d ∈ C (ΩC,ΩC ′) is a mor-
phism satisfying dωC = ωC′c. Such d is uniquely given.

The functor Ω is uniquely determined up to natural isomorphism, indepen-
dently of the choices of those ΩC and ωC .

(2) For any pair of objects A,C ∈ C , the homomorphismw = wC,A : E(C,A) →
C (ΩC,A) which sends each δ ∈ E(C,A) to w(δ) = w where w ∈ C (ΩC,A)
is any morphism satisfying δ = wωC is well-defined. Moreover, this w is
natural in A,C ∈ C . By definition, for any morphism c ∈ C (C,C ′) we
have Ωc = w(ωC′c).

(3) Put s(ωC) = [ΩC
p−→ P

q−→ C]. Let A
x−→ B

y−→ C
δ��� be any s-triangle. If

w(δ) = w for w ∈ C (ΩC,A), then there is b ∈ C (P,B) such that

ΩC

[−w
p

]
−−−−→ A⊕ P

[x b]−−−→ B
ωCy���

becomes an s-triangle.

Similarly, if (C ,E, s) has enough injectives, we obtain an endofunctor Σ: C → C

and homomorphisms E(C,A) → C (C,ΣA) with the dual properties.

Proof. (1) has been shown in [LNa, Proposition 4.3] and [HLN2, Proposition 3.4].
(2) is the dual of [HLN2, Remark 3.5, Proposition 3.9]. (3) follows from [LNa,
Proposition 1.20]. �

The following important observation is an analogue of a result in [AR3, p. 346].

Theorem 1.25. Let C be an extriangulated category, and let A
x−→ B

y−→ C
δ��� be

any s-triangle.
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(1) If C has enough projectives, then

· · · → C (−,Ωi+1C)
(Ωiw)◦−−−−−−−→ C (−,ΩiA)

(Ωix)◦−−−−−−→ C (−,ΩiB)
(Ωiy)◦−
−−−−−→C (−,ΩiC) → · · ·

· · · w◦−−−−→C (−, A)
x◦−−−−→C (−, B)

y◦−
−−−→ C (−, C)

δ◦−−−→ E(−, A)
x◦−−−−→ E(−, B)

y◦−
−−−→ E(−, C)

is exact for w = w(δ), where Ω and w are those obtained in Definition-
Proposition 1.24.

(2) Dually, if C has enough injectives, then we obtain an exact sequence

· · · →C (Σi+1A,−) −→ C (ΣiC,−)
−◦(Σiy)−−−−−→C (ΣiB,−)

−◦(Σix)−−−−−→C (ΣiA,−) → · · ·

· · · →C (C,−)
−◦y−−→C (B,−)

−◦x−−−→C (A,−)
−◦δ−−→E(C,−)

−◦y−−→E(B,−)
−◦x−−−→E(A,−).

To prove this, we need a preparation.

Lemma 1.26 (e.g. [I2, 1.3(4)]). Let C be an additive category and D an additive

full subcategory. For a complex A
x−→ B

y−→ C in C , we assume that

C (−, A)
x◦−−−−→ C (−, B)

y◦−−−→ C (−, C) → F → 0

is an exact sequence such that F (D) = 0. Then the following sequence is also exact.

(C /D)(−, A)
x◦−−−−→ (C /D)(−, B)

y◦−−−→ (C /D)(−, C) → F → 0.

Proof of Theorem 1.25. We only show (1). By [NP, Corollary 3.12], we have an
exact sequence

C (−, A) → C (−, B) → C (−, C) → E(−, A) → E(−, B) → E(−, C).

Thus the exactness of
(1.5)

C (−, A)
x◦−−−−→ C (−, B)

y◦−
−−→ C (−, C)

δ◦−−−→ E(−, A)
x◦−−−−→ E(−, B)

y◦−
−−→ E(−, C)

follows from Lemma 1.26.
Applying Definition-Proposition 1.24 iteratively, we obtain s-triangles of the fol-

lowing form,

ΩC
[−w

∗ ]
−−−−→ A⊕ P

[x b]−−−→ B
ωCy���,

ΩB

[
−w′

∗
]

−−−−→ (ΩC)⊕ P ′ [−w ∗
∗ ∗ ]−−−−−→ A⊕ P

ωB [x b]
��� ,

Ω(A⊕ P )

[
−w′′

∗
]

−−−−−→ (ΩB)⊕ P ′′

[
−w′ ∗
∗ ∗

]
−−−−−−→ (ΩC)⊕ P ′ ���,

where P, P ′, P ′′ are projective, and

w = w(δ), w′ = w(ωCy) = Ωy, w′′ = w(ωB[x b]) = Ω[x b].

By the left half of the exact sequences (1.5) obtained from these s-triangles,

C (−,ΩA)
Ωx◦−−−−−→ C (−,ΩB)

Ωy◦−
−−−−→ C (−,ΩC)

w◦−−−−→ C (−, A)
x◦−−−−→ C (−, B)
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becomes exact, since

ΩA ΩB

Ω(A⊕ P ) ΩB

Ωx ��

Ω[ 10 ] ∼=
��

Ω[x b]
��

�

is commutative. Repeating this, we obtain the desired exact sequence. �

2. Almost split extensions

2.1. Almost split extension. In this subsection, let C be an additive category.
In the rest of this subsection, we fix a biadditive functor E : C op × C → Ab.

Definition 2.1. A non-split (i.e. non-zero) E-extension δ ∈ E(C,A) is said to be
almost split if it satisfies the following conditions.

(AS1) aδ = 0 for any non-section a ∈ C (A,A′).
(AS2) δc = 0 for any non-retraction c ∈ C (C ′, C).

Thus δ is a ‘universally minimal element’ of E(−, A) and E(C,−) in the sense of
[A2, p. 292].

Remark 2.2. If aδ = 0 holds for a section a ∈ C (A,A′), then we have δ = 0.
Thus (AS1) is the best possible vanishing condition with respect to a ◦ − where
a ∈ C (A,X), for a non-split δ. Similarly for (AS2).

Remark 2.3. For any δ ∈ E(C,A), the property of being almost split does not
depend on a biadditive subfunctor F ⊆ E containing δ. Indeed, if δ ∈ F(C,A) holds
for some biadditive subfunctor F ⊆ E, then δ is almost split as an E-extension if
and only if it is almost split as an F-extension.

In the following, we call an almost split E-extension simply an almost split ex-
tension if there is no confusion.

Definition 2.4. A non-zero object A ∈ C is said to be endo-local if EndC (A) is
local.

We refer to [AF, Proposition 15.15] for characterizations of local rings.

Proposition 2.5. For any non-split E-extension δ ∈ E(C,A), the following hold.

(1) If δ satisfies (AS1), then A is endo-local.
(2) If δ satisfies (AS2), then C is endo-local.

Proof. (1) It suffices to show that I := {a ∈ EndC (A) | a is not a section} is
closed under addition. The condition (AS1) implies that I is the kernel of the
homomorphism C (A,A) → E(C,A), a 
→ aδ. Thus the assertion follows. (2) is
dual to (1). �

Recall that an additive category C is called Krull–Schmidt if any object is iso-
morphic to a finite direct sum of endo-local objects. We denote by indC the set
of isoclasses of indecomposable objects in C . For example, for an arbitrary Krull–
Schmidt extriangulated category C , the stable category C and the costable cat-
egory C are Krull–Schmidt with indC = {X ∈ indC | X is non-projective} and
indC = {X ∈ indC | X is non-injective}.
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2.2. Realization by almost split sequences. In the rest, let (C ,E, s) be an
extriangulated category.1 Then we have the following uniqueness of almost split
extensions.

Proposition 2.6. Let A,A′, C, C ′ ∈ C .

(1) If ρ ∈ E(C,A) and ρ′ ∈ E(C,A′) satisfy (AS1), then there is an isomor-
phism a ∈ C (A,A′) such that aρ = ρ′.

(2) If δ ∈ E(C,A) and δ′ ∈ E(C ′, A) satisfy (AS2), then there is an isomor-
phism c ∈ C (C ′, C) such that δc = δ′

(3) Let δ ∈ E(C,A) be an almost split extension. Then EndA (A)δ = δEndC (C)
is an (EndC (A),EndC (C))-bimodule which is simple on both sides, and
consists of 0 and all almost split extensions in E(C,A). Thus we have an
isomorphism f : EndC (C)/radEndC (C) � EndC (A)/radEndC (A) of rings
satisfying δc = f(c)δ for each c ∈ EndC (C).

Proof. (2) Let s(δ) = [A
x−→ B

y−→ C] and s(δ′) = [A
x′
−→ B′ y′

−→ C ′]. Then x and
x′ are non-sections. By (AS1), we have xδ′ = 0 and x′δ = 0. By Fact 1.20(1),
there are c ∈ C (C ′, C) and c′ ∈ C (C,C ′) satisfying δ′ = δc and δ = δ′c′. Thus
δ(1 − cc′) = 0 and δ′(1 − c′c) = 0 hold, and hence 1 − cc′ and 1 − c′c are not
isomorphisms. Since C and C ′ are endo-local by Proposition 2.5(2), c′c and cc′ are
isomorphisms. Thus c is an isomorphism. (1) is dual to (2).

(3) By (AS2), we have δEndC (C) � EndC (C)/radEndC (C), which is sim-
ple over EndC (C). If c ∈ EndC (C) is an automorphism, then δc is an almost
split extension. Thus (2) implies that δEndC (C) consists of 0 and all almost
split extensions in E(C,A). The dual argument shows that EndC (A)δ is sim-
ple over EndC (A), and consists of 0 and all almost split extensions in E(C,A).
Thus EndC (A)δ = δEndC (C) holds. The last assertion follows from bijections
EndC (C)/radEndC (C) � δEndC (C) = EndC (A)δ � EndC (A)/radEndC (A). �

Now we introduce the following central notion.

Definition 2.7. A sequence of morphisms A
x−→ B

y−→ C in C is called an almost
split sequence if it realizes some almost split extension δ ∈ E(C,A).

The following class of morphisms is basic to study the structure of additive
categories.

Definition 2.8. Let C be an additive category and A an object in C . A morphism
a : A → B which is not a section is called left almost split if any morphism A → B′

which is not a section factors through a. Dually, a morphism a : B → A which is
not a retraction is called right almost split if any morphism B′ → A which is not a
retraction factors through a.

A morphism a : A → B is called left minimal if each morphism b : B → B
satisfying ba = a is an automorphism. Dually, a morphism a : B → A is called
right minimal if each morphism b : B → B satisfying ab = a is an automorphism.

A right minimal right almost split morphism is called a sink morphism. Dually,
a left minimal left almost split morphism is called a source morphism.

We prove the following characterizations of almost split extensions, which is
analogue of a standard result in classical Auslander–Reiten theory.

1In fact, it only needs to satisfy (ET1), (ET2), (ET3), (ET3)op, until the end of this section.
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Theorem 2.9. Let δ ∈ E(C,A) be a non-zero element with s(δ) = [A
x−→ B

y−→ C].
Then the following conditions are equivalent.

(1) δ is an almost split extension.
(2) (AS1) holds and C is endo-local.
(3) x is left almost split and C is endo-local.
(4) x is a source morphism.
(5) (AS2) holds and A is endo-local.
(6) y is right almost split and A is endo-local.
(7) y is a sink morphism.

In particular, our almost split sequence is nothing but an Auslander–Reiten
E-triangle in the sense of [ZZ, Definition 4.1] defined for a Krull–Schmidt extrian-
gulated category.

We prepare the following.

Proposition 2.10. For any 0 �= δ ∈ E(C,A) with s(δ) = [A
x−→ B

y−→ C], the
following hold.

(1) δ satisfies (AS1) if and only if x is a left almost split morphism.
(2) δ satisfies (AS2) if and only if y is a right almost split morphism.

Proof. (1) follows from the exactness of C (B,−)
x◦−−−−→ C (A,−)

δ◦−−−→ E(C,−).

Dually, (2) follows from the exactness of C (−, B)
−◦y−−→ C (−, C)

−◦δ−−→ E(−, A). �

Proposition 2.11. For any 0 �= δ ∈ E(C,A) with s(δ) = [A
x−→ B

y−→ C], the
following hold.

(1) If A is endo-local, then y is right minimal.
(2) If C is endo-local, then x is left minimal.

Proof. (1) Let b ∈ C (B,B) be any morphism satisfying yb = y. By (ET3)op, there
is some a ∈ C (A,A) which gives the following morphism of s-triangles.

A B C

A B C

x �� y �� δ �����

a

��
b
��

x
��

y
��

δ
�����

Since aδ = δ, then 1 − a is not an isomorphism. Since A is endo-local, a is an
isomorphism. Thus b becomes an isomorphism as in [NP, Corollary 3.6]. (2) is
dual to (1). �

Proposition 2.12. For any 0 �= δ ∈ E(C,A) with s(δ) = [A
x−→ B

y−→ C], the
following hold.

(1) If x is a source morphism, then (AS2) holds.
(2) If y is a sink morphism, then (AS1) holds.

Proof. (2) Let a ∈ C (A,A′) be a non-section. As in the diagram (1.1) in Definition
1.11, we have the following morphism of s-triangles.

A B C

A′ B′ C

x �� y �� δ �����

a

��
b
��

x′
��

y′
��

aδ
�����
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Assume aδ �= 0. Then y′ is a non-retraction. Since y is right almost split, there
exists b′ ∈ C (B′, B) such that y′ = yb′. By (ET3)op, there is some a′ ∈ C (A′, A)
which gives the following morphism of s-triangles.

A′ B′ C

A B C

x′
�� y′

�� aδ �����

a′

��
b′

��
x

��
y

��
δ

�����

Since y = yb′b and y is right minimal, b′b is an isomorphism. Thus a′a is an
isomorphism by [NP, Corollary 3.6], a contradiction to our choice of a. Thus aδ = 0
holds. (1) is dual to (2). �

Proof of Theorem 2.9. (2)⇒(3) follows from Proposition 2.10, and (3)⇒(4) follows
from Proposition 2.11. (4)⇒(5) holds since (AS2) holds by Proposition 2.12, and A
is endo-local by Propositions 2.10 and 2.5. Dually, (5)⇒(6)⇒(7)⇒(2) holds. Thus
all conditions (2)–(7) are equivalent. Therefore (1) is also equivalent. �

The following observation will play a crucial role.

Lemma 2.13. Let 0 �= δ ∈ E(C,A) be any E-extension.

(1) If δ satisfies (AS1), then the following hold for any X ∈ C .
(a) For any 0 �= α ∈ E(X,A), there exists c ∈ C (C,X) such that δ = αc.

(b) For any 0 �= a ∈ C (X,A), there exists γ ∈ E(C,X) such that δ = aγ.
(2) If δ satisfies (AS2), then the following hold for any X ∈ C .

(c) For any 0 �= γ ∈ E(C,X), there exists a ∈ C (X,A) such that δ = aγ.
(d) For any 0 �= c ∈ C (C,X), there exists α ∈ E(X,A) such that δ = αc.

Proof. (1)(a) Realize δ and α as

s(δ) = [A
x−→ B

y−→ C], s(α) = [A
f−→ Y

g−→ X].

Since α �= 0, the morphism f is not a section. Thus there is some b ∈ C (B, Y )
satisfying bx = f by Proposition 2.10(1). By (ET3), there exists c ∈ C (C,X) which
gives the following morphism of s-triangles.

A B C

A Y X

x �� y �� δ �����

b
��

c

��

f
��

g
��

α
�����

In particular it satisfies δ = αc.
(b) Suppose that a ∈ C (X,A) does not belong to I. By definition of I, there

exists Y ∈ C such that the map a ◦ − : E(Y,X) → E(Y,A) is non-zero. Take
ζ ∈ E(Y,X) such that aζ �= 0. By (a), there exists c ∈ C (C, Y ) such that δ = (aζ)c.
Thus γ = ζc ∈ E(C,X) satisfies the desired condition.

(2) is dual to (1). �

We give another characterization of almost split extensions.

Proposition 2.14. For a non-zero element δ ∈ E(C,A), the following are equiva-
lent.

(1) δ is an almost split extension.
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(2) δ satisfies the following conditions.
(a) A,C are endo-local.
(b) For any X ∈ C and any non-split θ ∈ E(X,A), there exists c ∈

C (C,X) such that θc = δ. Dually, For any Y ∈ C and any non-split
μ ∈ E(C, Y ), there exists a ∈ C (Y,A) such that aμ = δ.

Proof. (1)⇒(2) Immediate from Proposition 2.5 and Lemma 2.13.
(2)⇒(1) By Theorem 2.9 it is enough to show (AS1). Assume that a ∈ C (A,A′)

satisfies aδ �= 0. Then by (b), there is some f ∈ C (A′, A) satisfying δ = faδ. Since
(1− fa)δ = 0 and A is endo-local, fa is an isomorphism. Thus a is a section. �

Later we need the following easy observation.

Lemma 2.15. Suppose that C is Krull–Schmidt, and let δ ∈ E(C,A) be a non-split
E-extension satisfying (AS2). For a direct sum decomposition A = A1⊕· · ·⊕An into
indecomposables Ai ∈ C (1 ≤ i ≤ n), we take i such that piδ �= 0, where pi : A → Ai

denotes the projection. Then piδ ∈ E(C,Ai) is an almost split extension.

Proof. Clearly piδ satisfies (AS2). Thus the assertion is immediate from Theo-
rem 2.9(5)⇒(1). �

3. Auslander–Reiten–Serre duality

3.1. Definitions and results. As usual, for an additive category C , we denote by
radC its Jacobson radical. Throughout this section, let (C ,E, s) be an extriangu-
lated category. Our aim in this section is to characterize when C has almost split
extensions in the following sense.

Definition 3.1. We say that C has right almost split extensions if for any endo-
local non-projective object A ∈ C , there exists an almost split extension δ ∈
E(A,B) for some B ∈ C . Dually, we say that C has left almost split extensions if
for any endo-local non-injective object B ∈ C , there exists an almost split extension
δ ∈ E(A,B) for some A ∈ C . We say that C has almost split extensions if it has
right and left almost split extensions.

We say that C has sink morphisms if any endo-local object A has a sink mor-
phism x ∈ C (B,A). Dually, we define the condition that C has source morphisms.

There is the following obvious implication between these notions.

Lemma 3.2. Assume that C is Krull–Schmidt. If C has sink (resp. source) mor-
phisms, then it has right (resp. left) almost split extensions.

Proof. Let C ∈ C be any endo-local (or equivalently, indecomposable) non-pro-
jective object, and u ∈ C (U,C) be a sink morphism. By Proposition 2.10(2) and
Lemma 2.15, it suffices to show the existence of a deflation to C which is right
almost split.

Since C is non-projective, there exists a non-split s-conflation A
x−→ B

y−→ C. By
the dual of [NP, Corollary 3.16], we can find an s-triangle

D → B ⊕ U
[y u]−−−→ C

θ���
for someD ∈ C and θ ∈ E(C,D). We remark that y, u ∈ radC implies [y u] ∈ radC ,
which means θ �= 0. Then [y u] is right almost split, since u factors through it. �
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In this section, we fix a base field k, and we denote by D the k-dual. We say that
an extriangulated category (C ,E, s) is k-linear if C (A,B) and E(A,B) are k-vector
spaces such that the following compositions are k-linear for any A,B,C,D ∈ C .

C (A,B)× C (B,C) → C (A,C),

C (A,B)× E(B,C)× C (C,D) → E(A,D).

Moreover we call (C ,E, s) Ext-finite if dimk E(A,B) < ∞ holds for any A,B ∈ C .
We start with the following observation.

Proposition 3.3. Let C be a k-linear Ext-finite extriangulated category. For a non-
projective endo-local object A and a non-injective endo-local object B, the following
conditions are equivalent.

(1) There exists an almost split extension in E(A,B).
(2) There exists an isomorphism C (A,−) � DE(−, B) of functors on C .

(3) There exists an isomorphism E(A,−) � DC (−, B) of functors on C .

Proof. (1)⇒(2) Let δ ∈ E(A,B) be an almost split extension. Take any linear form
η : E(A,B) → k satisfying η(δ) �= 0. It follows from Lemma 2.13 that for each
X ∈ C , the composition

C (A,X)× E(X,B) → E(A,B)
η−→ k ; (a, γ) 
→ η(γa)

is a non-degenerate bilinear form in the sense that the induced maps C (A,X) →
DE(X,B), a 
→ η(− ◦ a) and E(X,B) → DC (A,X), γ 
→ η(γ ◦ −) are injective.
Since C is Ext-finite, these maps are isomorphisms. Since they are functorial on
X, we obtain (2).

(2)⇒(1) We have an isomorphism EndC (A) � DE(A,B) of left EndC (A)-mod-
ules. Since A is endo-local, TA := EndC (A)/radEndC (A) is a simple EndC (A)-
module. Then SA := D(TA) is a simple EndC (A)-submodule of E(A,B). We
show that any non-zero element in SA is an almost split extension. By Theo-
rem 2.9(5)⇒(1), it suffices to show that (SA)a = 0 holds for any a ∈ C (A′, A)
which is not a retraction. Our isomorphism ι : E(−, B) � DC (A,−) of functors on
C gives a commutative diagram

SA
�� E(A,B)

ιA
��

−◦a �� E(A′, B)

ιA′
��

D(TA) �� DC (A,A)
D(a◦−) �� DC (A,A′).

Since a is not a retraction, the composition C (A,A′)
a◦−−−→ C (A,A) → TA is zero.

Therefore the composition D(TA) → DC (A,A)
D(a◦−)−−−−−→ DC (A,A′) is zero. By

commutativity, we have (SA)a = 0 as desired.
(1)⇒(3) is shown similarly to (1)⇒(2) by using the bilinear form

E(A,X)× C (X,B) → E(A,B)
η−→ k ; (γ, b) 
→ η(bγ).

(3)⇒(1) is shown similarly to (2)⇒(1). �

Now we discuss global existence of almost split extensions in C .

Definition 3.4. Let (C ,E, s) be a k-linear extriangulated category.
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(1) A right Auslander–Reiten–Serre (ARS) duality is a pair (τ, η) of an additive

functor τ : C → C and a binatural isomorphism

ηA,B : C (A,B) � DE(B, τA) for any A,B ∈ C .

(2) If moreover τ is an equivalence, we say that (τ, η) is an Auslander–Reiten–
Serre (ARS) duality.

Remark 3.5. Let (τ, η) be a right Auslander–Reiten–Serre duality. Then τ : C → C
is fully faithful. In fact, for each A,B ∈ C , the inverse map of τA,B : C (A,B) →
C (τA, τB) is given as follows: Each f ∈ C (τA, τB) gives a morphism f ◦ − :
E(−, τA) → E(−, τB) of functors on C . Applying D and using η, we obtain a
morphism C (B,−) → C (A,−) of functors on C . By Yoneda’s Lemma, this can be
written as −◦g by a unique morphism g ∈ C (A,B). Then the desired map is given

by f 
→ g.
In particular, if moreover C is Krull–Schmidt, then τ gives an injective map τ :

indC ={X∈ indC | X is non-projective}→ indC ={X∈ indC | X is non-injective}.

Our aim in this section is to prove the following:

Theorem 3.6. Let C be a k-linear Ext-finite Krull–Schmidt extriangulated cate-
gory. Then the following conditions are equivalent.

(1) C has almost split extensions.
(2) C has an Auslander–Reiten–Serre duality.

This follows from the following more general result.

Proposition 3.7. Let C be a k-linear Ext-finite Krull–Schmidt extriangulated cat-
egory. Then the following conditions are equivalent.

(1) C has right almost split extensions.
(2) C has a right Auslander–Reiten–Serre duality (τ, η).

3.2. Proofs of Proposition 3.7 and Theorem 3.6. It is convenient to start
with the following general setting.

Definition 3.8. Let (C , E,D) be a triple consisting of k-linear additive categories
C and D and a k-bilinear functor E : C op × D → mod k. A right ARS duality
for (C , E,D) is a pair (F, η) of a k-linear functor F : C → D and a binatural
isomorphism

ηA,B : C (A,B) � DE(B,FA) for any A,B ∈ C .

If moreover F is an equivalence, we say that (F, η) is an ARS duality for (C , E,D).
Dually we define a left ARS duality for (C , E,D).

The following is clear.

Lemma 3.9. If (F, η) is an ARS duality for (C , E,D), then (G, ζ) is a left ARS
duality for (C , E,D), where G is a quasi-inverse of F and ζA,B is a composition

D(A,B)
G−→ C (GA,GB)

ηGA,GB−−−−−→ DE(GB,FGA) � DE(GB,A)

for any A,B ∈ D .

The following is an analogue of [GR, 9.4] and [RV, I.1.4].
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Lemma 3.10. Let (C , E,D) be a triple consisting of k-linear additive categories
C and D , and a k-bilinear functor E : C op×D → mod k. Assume that we have the
following.

• A correspondence F from objects in C to objects in D .
• A k-linear map ηA : E(A,FA) → k for any A ∈ C such that the composi-
tions

C (A,B)× E(B,FA) → E(A,FA)
ηA−−→ k,(3.1)

E(B,FA)× D(FA,FB) → E(B,FB)
ηB−−→ k(3.2)

are non-degenerate bilinear forms for any A,B ∈ C .

Then we can extend F to a fully faithful functor F : C → D such that the pair
(F, η) is a right ARS duality for (C , E,D), where ηA,B(f)(δ) = ηA(δf).

Proof. Similarly as for E, we use the notation E(c, d)(γ) = dγc for any γ ∈ E(C,D),
c ∈ C (C ′, C) and d ∈ D(D,D′). Fix A,B ∈ C . Since (3.2) is non-degenerate and
dimk E(B,FA) < ∞, the induced map D(FA,FB) → DE(B,FA), a 
→ ηB(a◦−) is
an isomorphism. Thus for any a ∈ C (A,B), there exists a unique a′ ∈ D(FA,FB)
such that

(3.3) ηA(γa) = ηB(a
′γ) for any γ ∈ E(B,FA).

Writing F (a) := a′, we have a map

F : C (A,B) → D(FA,FB).

This is clearly a morphism of abelian groups. It is clear from definition that F (1A) =
1FA holds.

To prove that F is a functor, fix a ∈ C (A,B) and b ∈ C (B,C). For any
γ ∈ E(C,FA), using (3.3) three times, we have

ηC(F (ba)γ) = ηA(γ(ba)) = ηB(F (a)γb) = ηC((F (b)F (a))γ).

Since (3.2) is non-degenerate and E(B,FA) is finite dimensional over k, this implies
F (ba) = F (b)F (a). Thus F is a functor.

Moreover, for any a′ ∈ D(FA,FB), there exists unique a ∈ C (A,B) satisfying
(3.3). Thus the functor F : C → D is fully faithful.

The non-degenerate bilinear form (3.1) gives an isomorphism

ηA,B : C (A,B) → DE(B,FA)

for any A,B ∈ C . To show that η is binatural, fix a ∈ C (A′, A) and b ∈ C (B,B′),
and consider the diagram

C (A,B)
ηA,B ��

b◦−◦a
��

DE(B,FA)

DE(b,F (a))

��
C (A′, B′)

ηA′,B′ �� DE(B′, FA′).

This is commutative since, for any f ∈ C (A,B) and γ ∈ E(B′, FA′), we have(
DE(b, F (a))ηA,B

)
(f)(γ) = ηA,B(f)(F (a)γb) = ηA((F (a)γb)f)

= ηA′(((γb)f)a) = ηA′,B′(bfa)(γ).

Thus η is binatural. �
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Now we are ready to prove Proposition 3.7.

Proof of Proposition 3.7. (2)⇒(1) is immediate from Proposition 3.3.
(1)⇒(2) For an indecomposable non-projective object A, by appealing to Propo-

sition 3.3, we fix some object FA such that C (A,−) � DE(−, FA) and we denote by
δA ∈ E(A,FA) an almost split extension. Take any linear form ηA : E(A,FA) → k
satisfying ηA(δA) �= 0. It follows from Lemma 2.13 that the bilinear forms

C (A,−)× E(−, FA) → E(A,FA)
ηA−−→ k,

E(A,−)× C (−, FA) → E(A,FA)
ηA−−→ k

are non-degenerate. By the Krull–Schmidt property, we can extend this to any
object in C . Applying Lemma 3.10 to (C , E,D) := (C ,E,C ), we have a right ARS

duality (F, η) such that F : C → C is fully faithful. �

Finally we prove Theorem 3.6.

Proof of Theorem 3.6. (2)⇒(1) Assume that C has an ARS duality (τ, η). Since
this is a right ARS duality, C has right almost split extensions by Proposition 3.7.
By Lemma 3.9, C has a left ARS duality. Therefore it has left almost split exten-
sions by the dual of Proposition 3.7.

(1)⇒(2) By Proposition 3.7, C has a right ARS duality (τ, η) and τ : C → C is
fully faithful. It remains to show that τ is dense. This follows from our assumption
that C has left almost split extensions since τ sends C to A for each almost split
extension δ ∈ E(C,A) �

3.3. Auslander–Reiten quivers. As in the classical cases, we introduce the Aus-
lander–Reiten quivers of extriangulated categories. For a Krull–Schmidt category
C , we use the notation

(radiC /radi+1C )(A,B) :=
radiC (A,B)

radi+1C (A,B)
.

Definition 3.11.

(1) A valued quiver is a triple Q = (Q0, d, d
′) consisting of a set Q0 and maps

d, d′ : Q0 × Q0 → Z≥0 � {∞}. It is called locally finite if
∑

Y ∈Q0

dY X < ∞

and
∑

Y ∈Q0

d′XY < ∞ hold for each X ∈ Q0. It is called symmetrizable if

there exists a map c : Q0 → Z>0 such that cXdXY = d′XY cY holds for each
X,Y ∈ Q0. In this case, c is called a symmetrizer.

We often visualizeQ by regarding elements ofQ0 as vertices, and drawing

a valued arrow X
(dXY ,d′

XY )−−−−−−−→ Y for each (X,Y ) ∈ Q0 × Q0 satisfying
dXY + d′XY �= 0.

(2) Let C be a Krull–Schmidt category. For X,Y ∈ indC , let

DX := (C /radC )(X,X), Irr(X,Y ) := (radC /rad2C )(X,Y ),

dXY = dim Irr(X,Y )DX
, d′XY = dimDY

Irr(X,Y ).

The valued quiver (indC , d, d′) is called theAuslander–Reiten quiver AR(C )
of C .

It is classical that AR(C ) describes the terms of the sink and source morphisms.
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Proposition 3.12. Let C be a Krull–Schmidt category, and X ∈ indC .

(1) If a ∈ C (Y,X) is a sink morphism, then it gives an isomorphism a ◦
− : (C /radC )(−, Y ) � (radC /rad2C )(−, X). Thus Y �

⊕
W∈indC W⊕dWX

holds, and dWX < ∞ for all W ∈ indC .
(2) If b ∈ C (X,Z) is a source morphism, then it gives an isomorphism − ◦

b : (C /radC )(Z,−) � (radC /rad2C )(X,−). Thus Z �
⊕

W∈indC W⊕d′
XW

holds, and d′XW < ∞ for all W ∈ indC .

Proof. Although this is well-known, we include a complete proof of (1) for conve-
nience of the reader. We start with proving the first statement. Since a is right
almost split, a ◦− : C (−, Y ) → radC (−, X) is an epimorphism. Thus it induces an
epimorphism a ◦ − : (C /radC )(−, Y ) → (radC /rad2C )(−, X). To prove that this

is a monomorphism, assume that f ∈ C (Z, Y ) satisfies af ∈ rad2C (Z,X). Write
af = hg for g ∈ radC (Z,W ) and h ∈ radC (W,X). Take h′ ∈ C (W,Y ) such that
h = ah′. Since a(f − h′g) = af − hg = 0 holds and a is right minimal, f − h′g
belongs to radC . Thus f = (f − h′g) + h′g also belongs to radC , as desired.

By the first statement, for any W ∈ indC , we have

dim(C /radC )(W,Y )DW
= dim(radC /rad2C )(W,X)DW

= dWX .

Thus the multiplicity of W in Y is dWX , as desired. �

We immediately obtain the following basic properties of AR(C ).

Lemma 3.13. Let C be a Krull–Schmidt category.

(1) AR(C ) is locally finite if C has sink morphisms and source morphisms.
(2) AR(C ) is symmetrizable if C is k-linear over a field k and C /radC is

Hom-finite. A symmetrizer is given by cX := dimk DX for each X ∈ indC .

Proof. (1) is immediate from Proposition 3.12. (2) follows from

cXdXY = dimk DX · dim Irr(X,Y )DX
= dimk Irr(X,Y )

= dimDY
Irr(X,Y ) · dimk DY = d′XY cY . �

The Auslander–Reiten quivers of extriangulated categories have the following
structure.
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Definition 3.14.

(1) A τ -quiver (=valued translation quiver) is a quadruple Q = (Q0, d, d
′, τ )

consisting of the following data.
• (Q0, d, d

′) is a valued quiver.
• τ : Q0 \ Qp

0 → Q0 \ Qi
0 is a bijection for some subsets Qp

0 and Qi
0 of

Q0. We visualize τ by drawing a dashed arrow X ����� τX for each
X ∈ Q0 \Qp

0.
• For X ∈ Q0 \Qp

0 and Y ∈ Q0, dY X = d′τX,Y holds.

It is called locally finite if (Q, d, d′) is locally finite. It is called symmetrizable
if (Q, d, d′) is symmetrizable and has a symmetrizer c : Q0 → Z>0 satisfying
cX = cτX for each X ∈ Q0 \Qp

0. It is called stable if Qp
0 = ∅ = Qi

0.
(2) Let C be a Krull–Schmidt extriangulated category with almost split exten-

sions (Definition 3.1). TheAuslander–Reiten quiver ARET(C )=(Q0, d, d
′, τ )

of C is defined as follows.
• (Q0, d, d

′) := AR(C ) (Definition 3.11).
• Qp

0 := indProj
E
C , Qi

0 := ind Inj
E
C .

• τC := A if there exists an almost split extension in E(C,A) with
A,C ∈ Q0.

Then ARET(C ) is a τ -quiver by the following observation.

Proposition 3.15. Let C be a Krull–Schmidt extriangulated category with almost
split extensions.

(1) ARET(C ) is a τ -quiver.
(2) ARET(C ) is locally finite if C has sink morphisms and source morphisms.
(3) ARET(C ) is symmetrizable if C is k-linear over a field k and C /radC is

Hom-finite. A symmetrizer is given by cX := dimk DX for each X ∈ indC .

Proof. (1) τ is a well-defined bijection Q0 \Qp
0 → Q0 \Qi

0 by Proposition 2.6 and
our assumption that C has almost split extensions. Let δ ∈ E(C,A) be an almost

split extension with s(δ) = [A
x−→ B

y−→ C]. Then x is a source morphism and y is
a sink morphism by Theorem 2.9. Thus for each Y ∈ Q0, both dY C and d′AY give
the multiplicity of Y in B by Proposition 3.12, and hence dY C = d′AY holds.

(2), (3) Immediate from Lemma 3.13 and an isomorphism DX � DτX of k-
algebras given in Proposition 2.6(3). �

4. Stable module theory for extriangulated categories

4.1. Definitions and results. We develop the stable module theory for extrian-
gulated categories following a series of works [AR3] by Auslander–Reiten.

Throughout, let (C ,E, s) be an extriangulated category. We denote by C the

stable category and by C the costable category (see Definition 1.21). Notice that
we do not assume that C is Krull–Schmidt and/or k-linear for some field k.

We recall basic notions for functor categories. For an additive category D , a
D-module is a contravariant additive functor from D to Ab. A morphism between
D-modules is a natural transformation. We denote by ModD the category of D-
modules, which forms an abelian category. A D-module F is finitely presented if
there exists an exact sequence

D(−, B) → D(−, A) → F → 0
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for some A,B ∈ D . We denote by modD the category of finitely presented D-
modules. It is well-known (see [A1]) that the following conditions are equivalent.

• modD forms an abelian category.
• modD is closed under kernels.
• D has weak kernels.

In this case, we denote by projD (resp. injD) the full subcategory of modD of
projective (resp. injective) objects.

The following fundamental result generalizes the classical result due to
Auslander–Reiten [AR3] for the case C = modD where D is a dualizing k-variety,
as defined below. We call an additive functor F : C → D an equivalence up to
direct summands if it is fully faithful, and for each D ∈ D , there exists C ∈ C such
that D is a direct summand of FC.

Theorem 4.1. Let C be an extriangulated category with enough projectives and
injectives.

(1) modC is an abelian category with enough projectives projC = add{C (−, A) |
A ∈ C } and enough injectives injC = add{E(−, A) | A ∈ C }. We have
equivalences C → projC given by A 
→ C (−, A) and C → injC given by
A 
→ E(−, A) up to direct summands.

(2) modC
op

is an abelian category with enough projectives projC
op

=

add{C (A,−) | A ∈ C } and enough injectives injC
op

= add{E(A,−) |
A ∈ C }. We have equivalences C

op → projC
op

given by A 
→ C (A,−) and

C op → injC
op

given by A 
→ E(A,−) up to direct summands.

The following is an immediate consequence.

Proposition 4.2. Let C be a k-linear extriangulated category with enough projec-
tives and injectives. Then C is Ext-finite if and only if C is Hom-finite if and only
if C is Hom-finite.

Proof. We only prove the first equivalence. For any A ∈ C , there is an epimorphism
C (−, B) → E(−, A) and a monomorphism C (−, A) → E(−, C) for some B,C ∈ C
by Theorem 4.1(1). Thus C is Ext-finite if and only if C is Hom-finite. �

Let D be a k-linear additive category. Then any D-module F can be regarded
as a contravariant k-linear functor F : D → Modk. We define a Dop-module DF as

the composition D
F−→ Modk

D−→ Modk.

Definition 4.3 ([AR3]). We call D a dualizing k-variety if the following conditions
hold.

• D is k-linear, Hom-finite and Krull–Schmidt.
• For any F ∈ modD , we have DF ∈ modDop.
• For any G ∈ modDop, we have DG ∈ modD .

In this case, we have an equivalence D : modD � modDop.

Now we have the following main result in Auslander–Reiten theory for extrian-
gulated categories.

Theorem 4.4. Let C be an Ext-finite extriangulated category with enough projec-
tives and enough injectives such that C and C are idempotent complete. Then the
following conditions are equivalent.
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(1) C has an Auslander–Reiten–Serre duality.

(2) C is a dualizing k-variety.
(3) C is a dualizing k-variety.

As an immediate consequence, we obtain the following result.

Corollary 4.5. Let C be an Ext-finite, Krull–Schmidt, extriangulated category with
enough projectives and injectives. Then the following conditions are equivalent.

(1) C has almost split extensions.
(2) C has an Auslander–Reiten–Serre duality.

(3) C is a dualizing k-variety.
(4) C is a dualizing k-variety.

4.2. Proof of Theorems 4.1 and 4.4. We frequently use the following observa-
tion.

Lemma 4.6. Let C be an extriangulated category with enough projectives. For any
morphism f : A → B in C , there exist an s-deflation f ′ : A′ → B in C and an
isomorphism h : A � A′ in C satisfying f = f ′h.

Proof. Take an s-deflation g : P → B with a projective object P ∈ C . Then
f ′ := [f g] : A ⊕ P → B is an s-deflation by the dual of [NP, Corollary 3.16], and
satisfies the desired property. �

Next we show the following property, which is not necessarily true for C itself.

Proposition 4.7. Let C be an extriangulated category.

(1) If C has enough projectives, then C has weak kernels and modC forms an
abelian category.

(2) If C has enough injectives, then C has weak cokernels and modC
op

forms
an abelian category.

Proof. We only prove (1). By Lemma 4.6, any morphism in C can be represented by
an s-deflation. Then the assertion follows from the long exact sequence associated
with s-conflations (Theorem 1.25). �

Now, for a given F ∈ modC , we construct certain exact sequences. Since F is
finitely presented, there exists an exact sequence

C (−, B)
a◦−−−→ C (−, A) → F → 0.

Without loss of generality, we can assume that there exists an s-conflation C →
B

a−→ A by Lemma 4.6. By Theorem 1.25, we have exact sequences

C (−, C) → C (−, B) → C (−, A) → F → 0,(4.1)

0 → F → E(−, C) → E(−, B) → E(−, A).(4.2)

The first sequence is the first three terms of a projective resolution of F . By the
next observation, the second one is the first three terms of an injective resolution
of F .

Proposition 4.8. Let C be an extriangulated category with enough projectives and
injectives.

(1) For any X ∈ C , the C -module E(−, X) is finitely presented and injective
in modC .
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(2) For any X,Y ∈ C , we have C (X,Y ) � (modC )(E(−, X),E(−, Y )) given
by a 
→ (a ◦ −).

(3) For any X ∈ C , the C
op
-module E(X,−) is finitely presented and injective

in modC
op
.

(4) For any X,Y ∈ C , we have C (X,Y ) � (modC
op
)(E(Y,−),E(X,−)) given

by a 
→ (− ◦ a).

Proof. We only prove (1) and (2) since (3) and (4) are the dual statements.
Let X → I → X ′ be an s-conflation with an injective object I ∈ C . By

Theorem 1.25, we have an exact sequence

C (−, I) → C (−, X ′) → E(−, X) → E(−, I) = 0.

Thus E(−, X) is a finitely presented C -module. Put M = modC . Applying
M (−,E(−, Y )) and using Yoneda’s Lemma, we have a commutative diagram of
exact sequences

0 M (E(−, X),E(−, Y )) M (C (−, X ′),E(−, Y )) M (C (−, I),E(−, Y ))

0 = C (I, Y ) C (X,Y ) E(X ′, Y ) E(I, Y )

�� �� ��
��

�� �� ��

where the lower sequence is exact by Theorem 1.25. Thus the assertion (2) follows.
For any F ∈ M , consider the sequence (4.1). Applying M (−,E(−, X)) and

using Yoneda’s Lemma, we have a commutative diagram

M (C (−, A),E(−, X)) �� M (C (−, B),E(−, X)) �� M (C (−, C),E(−, X))

E(A,X) �� E(B,X) �� E(C,X)

where the homology of the upper sequence is Ext1M (F,E(−, X)). This is zero since
the lower sequence is exact by Fact 1.20(2). �

We are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We only prove (1) since (2) is dual.
The assertions for projectives follow from Yoneda’s Lemma. The assertions for

injectives follow from Proposition 4.8 and the exact sequence (4.2). �

Now we are ready to prove Theorem 4.4.

Proof of Theorem 4.4. (1)⇒(3): Let (τ, η) be an ARS duality. Since τ gives an
equivalence C � C , both modC and modC op are closed under kernels by Propo-
sition 4.7.

For F ∈ modC , take an exact sequence (4.1). Applying D, we have the following
commutative diagram of exact sequences.

0 �� DF �� DC (−, A) ��

�
��

DC (−, B)

�
��

E(A, τ−) �� E(B, τ−).
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Since the C
op
-modules E(A,−) and E(B,−) are finitely presented by Theorem 4.1,

the C op-modules E(A, τ−) and E(B, τ−) are finitely presented. Since modC op is
closed under kernels as remarked above, the C op-module DF is finitely presented.

For any G ∈ modC op, one can show DG ∈ modC by a dual argument. Thus C
is a dualizing k-variety.

(3)⇒(1): Since C is idempotent complete, we have an equivalence

(4.3) C � (projC op)op given by A 
→ C (A,−).

Since C is a dualizing k-variety, we have an equivalence

(4.4) (projC op)op � injC given by F 
→ DF.

Since C is idempotent complete, by Theorem 4.1, we have an equivalence

(4.5) C � injC given by A 
→ E(−, A).

Composing (4.3), (4.4) and a quasi-inverse of (4.5), we define an equivalence τ : C �
C . By construction, we have an isomorphism

DC (A,−) � E(−, τA)

of functors for any A ∈ C . Thus we have an ARS duality.
(1)⇔(2): The proof is dual to (1)⇔(3). �

5. Induced almost split extensions

In this section, we discuss the following three general methods to construct a new
extriangulated category from a given one (C ,E, s), where the first and the third
were initiated in fundamental works [ASo] and [ASm] respectively.

• Replace E by some additive subfunctor (Proposition 5.5).
• Replace C by its ideal quotient by projective-injective objects (Corollary
5.9).

• Replace C by some extension-closed subcategory (Definition 5.12).

We will show that the existence of almost split extensions in (C ,E, s) is inherited
by these new extriangulated categories, see Proposition 5.10 for the first, Proposi-
tion 5.11 for the second, and Theorem 5.14 for the third.

5.1. Induced extriangulated structures. Let us recall the definitions and re-
sults from [HLN1]. We do not assume that C is k-linear, nor Krull–Schmidt until
Remark 5.16. Additive subfunctors F ⊆ E for extriangulated categories (C ,E, s)
have been considered in [ZH].

Definition 5.1. Let F ⊆ E be an additive subfunctor. Define s|F to be the restric-
tion of s to F. Namely, it is defined by s|F(δ) = s(δ) for any F-extension δ.

Claim 5.2 (cf. [HLN1, Claim 3.9 for n = 1]). For any additive subfunctor F ⊆ E,
the triplet (C ,F, s|F) satisfies (ET1), (ET2), (ET3), (ET3)op.

Proof. This immediately follows from the definitions of these conditions. �

Thus we may speak of s|F-conflations (resp. s|F-inflations, s|F-deflations) and s|F-
triangles. The following condition on F gives a necessary and sufficient condition
for (C ,F, s|F) to be an extriangulated category (Proposition 5.5).

Definition 5.3 (cf. [DRSSK,ASo]). Let F ⊆ E be an additive subfunctor.
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(1) F ⊆ E is closed on the right if F(−, A)
x◦−−−−→ F(−, B)

y◦−−−→ F(−, C) is exact

for any s|F-conflation A
x−→ B

y−→ C.

(2) F ⊆ E is closed on the left if F(C,−)
−◦y−−→ F(B,−)

−◦x−−−→ F(A,−) is exact

for any s|F-conflation A
x−→ B

y−→ C.

The following has been shown in [HLN1] more generally for any n-exangulated
category, which recovers the notion of extriangulated category when n = 1.

Lemma 5.4 ([HLN1, Lemma 3.15 for n = 1]). For any additive subfunctor F ⊆ E,
the following are equivalent.

(1) F is closed on the right.
(2) F is closed on the left.

Thus in the following argument, we simply say F ⊆ E is closed if one of them is
satisfied.

Proposition 5.5 ([HLN1, Proposition 3.16 for n = 1]). For any additive subfunctor
F ⊆ E, the following are equivalent.

(1) s|F-inflations are closed under composition.
(2) s|F-deflations are closed under composition.
(3) F ⊆ E is closed.
(4) (C ,F, s|F) satisfies (ET4).
(5) (C ,F, s|F) satisfies (ET4)op.
(6) (C ,F, s|F) is extriangulated.

Recall that, for an additive category C and a full subcategory D , we call a
morphism f : D → C a right D-approximation of C ∈ C if D ∈ D and f ◦ − :
C (D′, D) → C (D′, C) is surjective for each D′ ∈ D . We call D contravariantly
finite in C if each object in C has a right D-approximation. Dually we define a left
D-approximation and a covariantly finite subcategory. We call D functorially finite
if it is contravariantly and covariantly finite.

A basic construction of closed additive subfunctors is the following.

Definition-Proposition 5.6 ([HLN1, Definition 3.18, Proposition 3.19 for n = 1]).
Let D ⊆ C be a full subcategory. Define subfunctors ED and E

D of E by

ED(C,A) = {δ ∈ E(C,A) | C (D,C)
δ◦−−−→ E(D,A) is zero for any D ∈ D},

E
D(C,A) = {δ ∈ E(C,A) | C (A,D)

−◦δ−−→ E(C,D) is zero for any D ∈ D}.

Then these are closed additive subfunctors of E.

Remark 5.7. Let D ⊆ C be as above. An s-conflation

(5.1) A
x−→ D

y−→ C (D ∈ D)

is an s|ED -conflation if and only if x is a left D-approximation. Dually, (5.1) is an
s|ED -conflation if and only if y is a right D-approximation.

The following has been shown in [NP, Proposition 3.30].

Fact 5.8. Let D ⊆ C be an additive full subcategory. If D satisfies D ⊆ Proj
E
C ∩

Inj
E
C , then the extriangulated structure of C induces an extriangulated structure
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(C /D ,E/D , s/D) on the ideal quotient C /D , where the functor E/D : (C /D)op ×
(C /D) → Ab makes the following diagram commutative,

(C /D)op × (C /D)
E/D �� Ab

C op × C

��

E �� Ab

and the realization (s/D)(δ) of δ ∈ (E/D)(C,A) = E(C,A) is the image of s(δ) in
C /D .

Definition-Proposition 5.6 and Fact 5.8 give the following observation.

Corollary 5.9. Let D ⊆ C be an additive full subcategory. If we put F = ED ∩ED ,
then F ⊆ E is closed and thus (C ,F, s|F) is an extriangulated category by Proposi-
tion 5.5. Moreover, since D ⊆ Proj

F
C ∩ Inj

F
C holds, we obtain an extriangulated

category (C /D ,F/D , (s|F)/D).

5.2. Induced almost split sequences. First let us consider almost split exten-
sions in relative extriangulated categories.

Proposition 5.10. Let F ⊆ E be any closed subfunctor. If (C ,E, s) has (resp. left,
or right) almost split extensions, then so does (C ,F, s|F).
Proof. Suppose that (C ,E, s) has right almost split extensions. If C ∈ C is non-
projective in (C ,F, s|F), then there is some X ∈ C and some non-zero θ ∈ F(C,X).
Since it is non-projective in (C ,E, s) by Remark 1.4, there is an almost split E-
extension δ ∈ E(C,A). Then by Lemma 2.13, there is some a ∈ C (X,A) satisfying
aθ = δ. This implies δ ∈ F(C,A). By Remark 2.3 δ is an almost split F-extension.
This shows that (C ,F, s|F) has right almost split extensions. Similarly for left
almost split extensions. �

Secondly, let us consider almost split extensions in ideal quotients.

Proposition 5.11. Let D ⊆ C be an additive full subcategory satisfying D ⊆
Proj

E
C ∩ Inj

E
C . Let δ ∈ E(C,A) be any almost split extension. Then δ gives an

almost split extension δ ∈ Ẽ(C,A) in (C̃ , Ẽ, s̃) = (C /D ,E/D , s/D).

Proof. We remark that (C̃ , Ẽ, s̃) is an extriangulated category by Fact 5.8. Since A
is endo-local and non-injective, it satisfies [D ](A,A) ⊆ radEndC (A). Similarly for
[D ](C,C) ⊆ radEndC (C). Thus we have

radEndC/D(A) = (radEndC (A))/[D ](A,A),(5.2)

radEndC/D(C) = (radEndC (C))/[D ](C,C).

It suffices to show that δ satisfies conditions (a), (b) of Proposition 2.14 in (C̃ , Ẽ, s̃).

By (5.2), condition (a) for δ ∈ Ẽ(C,A) also holds in (C̃ , Ẽ, s̃). Condition (b) in

(C̃ , Ẽ, s̃) follows immediately from that in (C ,E, s). �
Thirdly, let us consider almost split extensions in extension-closed subcategories.

Definition 5.12. Let (C ,E, s) be an extriangulated category, and let D ⊆ C be
an extension-closed full subcategory. If we define E

′ to be the restriction of E onto
Dop × D , and define s′ by restricting s, then (D ,E′, s′) becomes an extriangulated
category. By definition, it satisfies E′(D1, D2) = E(D1, D2) for any D1, D2 ∈ D .
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Remark 5.13. It is obvious from Definition 5.12 that if δ ∈ E(C,A) is an almost
split extension in (C ,E, s) with A,C ∈ D , then it is an almost split extension in
(D ,E′, s′).

We will prove the following result, which generalizes [ASm, Theorem 2.4(b)].

Theorem 5.14. Let (C ,E, s) be a Krull–Schmidt extriangulated category, and let
D ⊆ C be an extension-closed full subcategory which is closed by direct summands
and contravariantly (resp. covariantly) finite in C . If C has right (resp. left) almost
split extensions, then so does D .

We need the following variation of the famous Wakamatsu’s Lemma [AR5,
Lemma 1.3].

Lemma 5.15 (Wakamatsu’s Lemma). Let (C ,E, s) be an extriangulated category.
Let D ⊆ C be an extension-closed full subcategory. Let A ∈ C be any object. If
d ∈ C (DA, A) is a minimal right D-approximation with DA ∈ D , then

d ◦ − : E(D,DA) → E(D,A)

is monomorphic for any D ∈ D .

Proof. Let θ ∈ E(D,DA) be any element, with s(θ) = [DA x−→ X
y−→ D]. By the

extension-closedness of D ⊆ C , we have X ∈ D . Suppose dθ = 0. Then there
exists f ∈ C (X,A) satisfying fx = d. Since d is a right D-approximation, we
obtain g ∈ D(X,DA) which makes

DA

X

DA

A

x ������
g
���

��
�

d ����
���

f

�� d		���
��

commutative. By the minimality of d, it follows that gx is an automorphism. In
particular x is a section, which means θ = 0. �
Remark 5.16. If in addition d is a deflation, Lemma 5.15 is nothing but [CZZ,
Lemma 2.3].

The following is an extriangulated analogue of [Kl, Theorem 2.3] and [Jo2, The-
orem 3.1].

Proposition 5.17. Let (C ,E, s) be a Krull–Schmidt extriangulated category and let
D ⊆ C be an extension-closed full subcategory which is closed by direct summands.
Suppose that C ∈ D is non-projective with respect to the restriction E′ of E to D .
If there is an almost split extension δ ∈ E(C,A) in C and if there is a minimal

right D-approximation DA d−→ A with DA ∈ D , then there is a direct summand D0

of DA and an almost split extension μ ∈ E′(C,D0) in D .

Proof. Since C is non-projective with respect to E
′, there exist Y ∈ D and a non-

split θ ∈ E′(C, Y ). By Lemma 2.13(c), there is a ∈ C (Y,A) such that aθ = δ. Since
d is a right D-approximation, there is e ∈ C (Y,DA) which satisfies de = a. Since
d(eθ) = δ �= 0, we have eθ �= 0. By Lemma 2.15, it suffices to show that eθ satisfies
(AS2). Let h ∈ D(D,C) be any non-retraction. Since δ is almost split, the element
(eθ)h ∈ E′(D,DA) satisfies

d(eθh) = δh = 0.
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By Lemma 5.15, it follows that eθh = 0. �

We are ready to prove Theorem 5.14.

Proof of Theorem 5.14. If D is contravariantly finite in C , then any object in C
admits a minimal right D-approximation, as in [KS, Corollary 1.4]. Thus Proposi-
tion 5.17 shows that D has right almost split extensions. Dually for the case where
D is covariantly finite in C . �

5.3. Extension-closed subcategories of derived categories. Throughout this
subsection, let A be a finite dimensional algebra over a field k. The following follows
from our previous results.

Proposition 5.18. Let C be an extension-closed full subcategory of Kb(projA). If
C is functorially finite, then C has almost split extensions.

Proof. It is well-known (e.g. [Ke1, Section 10.4], [IR1, Theorem 3.7]) that the
Nakayama functor ν : Kb(projA) � Kb(injA) gives a relative Auslander–Reiten–
Serre duality

HomDb(modA)(X,Y ) � DHomDb(modA)(Y, νX)

for X ∈ Kb(projA) and Y ∈ Db(modA).
Let X ∈ Kb(projA) be an indecomposable object which is non-projective in C .

Then there is an almost split extension δ ∈ Ext1Db(modA)(X, νX[−1]) in Db(modA)

by Proposition 3.3. Applying Proposition 5.17 to (D ,C ) := (C ,Db(modA)), X has
an almost split extension in C . Thus C has right almost split extensions.

On the other hand, since ν(C ) is a functorially finite extension-closed subcate-
gory of Kb(injA), the dual argument shows that C has left almost split extensions.
Thus the assertion holds. �

Example 5.19. Let A be a finite dimensional k-algebra, and n a non-negative
integer. An object P = (P i, di) is called n-term if P i = 0 holds for all i > 0 and
all i ≤ −n. Then the full subcategory C of Kb(projA) consisting of all n-term
complexes is extension-closed and functorially finite in Kb(projA). Therefore C is
an extriangulated category with almost split extensions.

Proof. Clearly C is extension-closed. Since C can be written as (projA)∗(projA)[1]∗
· · · ∗ (projA)[n − 1] and each (projA)[i] is functorially finite in Kb(projA), so is C
(e.g. [C, Theorem 1.3]). �

In the rest, we give examples to explain results in this section. Let k be a field,
and let Db(kA3) be the bounded derived category of the path algebra of the quiver

A3 : 1 ←− 2 ←− 3.

We know that ARET(D
b(kA3)) is as follows [Ha1, 5.6].

· · · 3[−1]
3
2
1

1[1] 2[1] 3[1] · · ·

· · · 2
1

3
2

2
1 [1]

3
2 [1] · · ·

· · · 1 2 3
3
2
1
[1] 1[2] · · ·
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Let (t≤0, t≥0) be the standard t-structure on Db(kA3), and put C = t≤0 ∩ t≥−1.
Since C ⊆ Db(kA3) is extension-closed, it has an induced extriangulated structure,
which we denote by (C ,E, s). The indecomposables which belong to C are

(i) E-projectives: 1, 2
1 ,

3
2
1
,

(ii) E-injectives:
3
2
1
[1], 3

2 [1], 3[1],

(iii) the rest: 2, 3
2 , 1[1], 3,

2
1 [1], 2[1].

As in Remark 5.13, we see that almost split sequences in Db(kA3) starting from
objects in (i), (ii) are also split sequences in C . Similarly for almost split sequences
ending at objects in (ii), (iii). Thus ARET(C ,E, s) is as follows. The E-projective
(resp. E-injective) objects are highlighted by a vertical line to their left (resp. to
their right).

3
2
1

1[1] 2[1] 3[1]

2
1

3
2

2
1 [1]

3
2 [1]

1 2 3
3
2
1
[1]

Put D = add
3
2
1
[1] and let (F, t) = (ED , s|ED ) be the induced relative extriangu-

lated structure in (C ,E, s). Then together with the objects in (i), the object
3
2
1
[1]

becomes F-projective. We have F(X, 3) = 0 for any indecomposable X ∈ C , and
thus 3 becomes F-injective, together with objects in (ii). We see that the almost
split extension δ ∈ E( 32 [1],

2
1 [1]) belongs to F( 32 [1],

2
1 [1]), and thus the almost split

sequence in (C ,E, s) ending at 3
2 [1] is also an almost split sequence in (C ,F, t).

Similarly for the other almost split extensions in E(C,A) with A,C /∈ D . Thus
ARET(C ,F, t) is as follows.

3
2
1

1[1] 2[1] 3[1]

2
1

3
2

2
1 [1]

3
2 [1]

1 2 3
3
2
1
[1]

Since
3
2
1
[1] is both F-projective and F-injective, we obtain the quotient extriangu-

lated category (C /D ,F/D , t/D). The ideal [D ] satisfies [D ](C,C) = 0 for any inde-
composable object C ∈ C which is not in D . Thus by Proposition 5.11, each almost
split extension in (C ,F, t), which corresponds to a dashed arrow in the above quiver,
gives an almost split extension in (C /D ,F/D , t/D). Hence ARET(C /D ,F/D , t/D)
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becomes as follows.

3
2
1

1[1] 2[1] 3[1]

2
1

3
2

2
1 [1]

3
2 [1]

1 2 3

We remark that the almost split sequence

2
1 [1]

x−→ 2[1]⊕ 3
2
1
[1]

y−→ 3
2 [1]

δ���

in (C ,F, t) induces an almost split sequence

2
1 [1]

x̃−→ 2[1]
ỹ−→ 3

2 [1]
δ���

in (C /D ,F/D , t/D).

6. Sink and source sequences in extriangulated categories

The following notion is basic to study the additive structure of an extriangulated
category.

Definition 6.1. Let C be a Krull–Schmidt category. For an indecomposable object
X in C , we call a complex

(6.1) A	
f�−→ · · · f3−→ A2

f2−→ A1
f1−→ X

with 
 ∈ Z≥1 ∪ {∞} a sink sequence if each fi is right minimal and the following
sequence is exact.
(6.2)

C (−, A	)
f�◦−−−−→ · · · f3◦−−−−→ C (−, A2)

f2◦−−−−→ C (−, A1)
f1◦−−−−→ (radC )(−, X) → 0.

It is called a sink resolution if either A	 = 0 or 
 = ∞ holds. In this case, the
sequence (6.2) gives a minimal projective resolution in ModC . Dually, we define a
source sequence (source resolution) of an indecomposable object.

Almost split sequences give sink sequences of indecomposable non-projective
objects and source sequences of indecomposable non-injective objects at once.

Proposition 6.2. Let C be a Krull–Schmidt extriangulated category. If A → B →
C is an almost split sequence in C , then this is a sink sequence of C and a source
sequence of A.

Proof. The assertion is immediate from Fact 1.20(1) and Proposition 2.10. �

Remark 6.3. In Proposition 6.2, it is difficult in general to describe sink (resp.
source) resolutions of C (resp. A) except for the following special cases.

(1) If C is an exact category, then 0 → A → B → C is a sink resolution of C,
and A → B → C → 0 is a source resolution of A.

(2) If C is a triangulated category with suspension functor [1], then · · · →
C[−2] → A[−1] → B[−1] → C[−1] → A → B → C is a sink resolution
of C, and A → B → C → A[1] → B[1] → C[1] → A[2] → · · · is a source
resolution of A.
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Now we study sink (resp. source) sequences of projective (resp. injective) objects.

Theorem 6.4. Let C be a Krull–Schmidt extriangulated category.

(1) Assume that C has enough injectives. If B
g−→ A

f−→ P is a sink sequence
of an indecomposable projective object P , then B is injective.

(2) Assume that C has enough projectives. If I → A → B is a source sequence
of an indecomposable injective object I, then B is projective.

Proof. (1) Take an s-conflation B
i−→ I

j−→ X with I injective. By [LNa, Proposition

1.20], we have the following commutative diagram such that B

[
i

−g

]
−−−−→ I⊕A

[h x′]−−−→ Z
is an s-conflation.

B
i ��

g

��

I
j ��

h
��

X

A
x′

�� Z
y′

�� X

Since fg = 0, there exists b ∈ C (Z, P ) such that b[h x′] = [0 f ].
If b is a retraction, then [0 f ] = b[h x′] ∈ C (I ⊕ A,P ) is a deflation, and hence

a retraction since P is projective. This is a contradiction since f belongs to radC .
Therefore b is not a retraction. Since f is a sink morphism, there is c ∈ C (Z,A)
satisfying b = fc. Since f = bx′ = fcx′ holds and f is right minimal, cx′ is an
isomorphism in C . Since g is a weak kernel of f and f(cx′)−1ch = fch = bh = 0
holds, there is d ∈ C (I, B) such that (cx′)−1ch = gd.

B
i ��

g
��

I
d ��

h��

B
g
��

A
x′

��

f��

Z
c ��

b��

A

f��

(cx′)−1

�� A
f��

P P P P

Since g = gdi holds and g is right minimal, di is an isomorphism in C . Thus i is a
section and B is injective. (2) is dual to (1). �

Remark 6.5. In contrast to Theorem 6.4, the terms Ai with i ≥ 3 in the sink
sequence (6.1) of an indecomposable projective object are not necessarily injective.
For example, consider the extriangulated category (C ,F, t) in Section 5.3. Then

the projective object
3
2
1
[1] has the following sink resolution

0 → 2
1 → 3

2
1
→ 3 → 2

1 [1] →
3
2
1
[1],

where 2
1 and

3
2
1
are non-injective.

In Theorem 6.4, it is difficult in general to describe sink (resp. source) resolution
of P (resp. I), as pointed out in Remark 6.5. In the rest of this subsection, we study
two special cases where we can describe sink (resp. source) resolutions of projective
(resp. injective) objects.

The first case is given by cotilting modules. Let Λ be a finite dimensional k-
algebra, and let U ∈ modΛ be a cotilting Λ-module with inj. dimU = n (that is,
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DU is a tilting Λop-module with proj. dimDU = n). The classical results given in
[AR5, Section 5] imply that the full subcategory

⊥U := {X ∈ modΛ | ExtiΛ(X,U) = 0 for all i > 0}
of modΛ is an exact category with enough projectives addΛ, enough injectives addU
and almost split extensions. The following result is an application of Auslander–
Buchweitz theory [AB].

Proposition 6.6. Under the above setting, the following assertions hold.

(1) Each indecomposable projective object P ∈ ⊥U has a sink resolution

0 → In → · · · → I2 → A1 → P

in ⊥U such that each Ii is injective in ⊥U , where the sequence is 0 → A1 →
P if n ≤ 1.

(2) Each indecomposable injective object I ∈ ⊥U has a source resolution

I → A1 → P 2 → · · · → Pn → 0

in ⊥U such that each P i is projective in ⊥U , where the sequence is I →
A1 → 0 if n ≤ 1.

Proof. (1) If n ≤ 1, then the assertion is clear. In the rest, we assume n ≥ 2.

Let (⊥U)⊥ := {X ∈ modΛ | ExtiΛ(
⊥U,X) = 0 for all i > 0}. The follow-

ing results are basic in Auslander–Buchweitz theory [AB], see [AR5, Theorem 5.5,
Proposition 3.3].

• Any C ∈ modΛ admits an exact sequence 0 → YC
b−→ XC

a−→ C → 0 in
modΛ such that XC ∈ ⊥U , YC ∈ (⊥U)⊥ and a is right minimal.

• (⊥U)⊥ consists of Y ∈ modΛ that admits an exact sequence 0 → U	
c�−→

· · · c1−→ U0
c0−→ Y → 0 such that Ui ∈ addU , ci is right minimal and


 = max{i ≥ 1 | ExtiΛ(Y, U) �= 0}.
Applying above results to C := radP and Y := YradP , we obtain exact sequences

0 → YradP
b−→ XradP

a−→ radP → 0 and 0 → U	
c�−→ · · · c1−→ U0

c0−→ YradP → 0.

It is straightforward to check that these sequences are exact after applying
HomΛ(

⊥U,−). Since ExtiΛ(radP,U) = Exti+1
Λ (P/radP,U) = 0 holds for all i ≥ n,

we have ExtiΛ(YradP , U) = Exti+1
Λ (radP,U) = 0 holds for all i ≥ n − 1. Thus

we can assume 
 = n − 2. By combining the above sequences and the inclusion
ι : radP → P , we obtain a sink resolution

0 → Un−2
cn−2−−−→ · · · c1−→ U0

bc0−−→ XradP
ιa−→ P.

Setting Ii+2 := Ui, we obtain a desired sequence.
(2) Let Γ := EndΛ(U). Then we have a duality RHomΓ(−, U) : Db(modΓ) �

Db(modΛ) (e.g. [M, Corollary 2.11]), which restricts to a duality HomΓ(−, U) : ⊥
ΓU

� ⊥
ΛU of exact categories which restricts to dualities addΓΓ � addΛU and addΓU �

addΛΛ. Since it sends sink resolutions to source resolutions, the assertion follows
from (1). �

Example 6.7. For n ≥ 3, let An be the following quiver

An : 1 2

 3

 · · ·

 n− 1

 n
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and Λ the quotient of kAn modulo the longest path. Then Pn−1 = I1 and Pn = I2
holds. Fix 1 ≤ 
 ≤ n− 1, and let

U := (

n⊕
i=	

Pi)⊕ (

	+1⊕
i=3

Ii).

This is a cotilting Λ-module with inj. dimU ≤ 2, and we have

⊥U = add(U,modΓ) for Γ := Λ/(

n∑
i=	+1

ei)

by an explicit calculation. The almost split sequences in ⊥U are those in modΓ
and

IΓi → IΓi+1 ⊕ Ii → Ii+1 for 2 ≤ i ≤ 
,

where IΓi is the injective hull of Si inmodΓ. The sink resolutions for indecomposable
projectives in ⊥U are

0 → P1, 0 → Pi−1 → Pi for 2 ≤ i ≤ n− 1, and 0 → P	 → Pn−1 ⊕ (P	/S1) → Pn,

and the source resolutions for indecomposable injectives in ⊥U are

P	 → P	+1 ⊕ (P	/S1) → Pn → 0, Pi → Pi+1 → 0 for 
+ 1 ≤ i ≤ n− 2,

Ii → Ii+1 → 0 for 1 ≤ i ≤ 
, and I	+1 → 0.

For example, ARET(
⊥U) for n = 7 and 
 = 4 is the following.
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The second case is given by Cohen–Macaulay representations.
Let R be a complete local Cohen–Macaulay ring with canonical module ωR. Let

Λ be an R-order (that is, an R-algebra which is maximal Cohen–Macaulay as an
R-module), and let

CMΛ := {X ∈ modΛ | X is maximal Cohen–Macaulay as an R-module}.
be the category of Cohen–Macaulay Λ-modules. This is an exact category with
enough projectives addΛ and enough injectives addωΛ for ωΛ := HomR(Λ, ωR).
There is an equivalence

ν := ωΛ ⊗Λ − : addΛ � addωΛ

called the Nakayama functor. The category CMΛ has almost split extensions if and
only if Λ is an isolated singularity (that is, Λ⊗RRp has global dimension dimRp for
any non-maximal prime ideal p of R) [A3,Y,LW]. As in the case of Proposition 6.6,
we have the following observation.

Proposition 6.8. Let R be a complete local Cohen–Macaulay ring of dimR = d ≥
2, and Λ an R-order.
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(1) Each indecomposable projective object P ∈ CMΛ has a sink resolution

0 → Id → · · · → I2 → A1 → P

such that each Ii is injective in CMΛ and Id = ν(P ).
(2) Each indecomposable injective object I ∈ CMΛ has a source resolution

I → A1 → P 2 → · · · → P d → 0

such that each P i is projective in CMΛ and P d = ν−1(I).

Proof. This is the case n = 1 in [I5, Theorem 3.4.3]. Although the proof there is
written in a slightly more special setting, it works without substantial changes. �

Example 6.9. Let R = k[[x, y, u, v]]/(xy − uv) be a simple singularity of type A1

of dimension three. Then CMR has 3 indecomposable objects up to isomorphisms:
R, and ideals (x, u) and (x, v) [Y,LW], and ARET(CMR) is the following.
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The almost split sequences are

0→ (x, u)
[ ab ]−−→ R⊕2 [ c −d ]−−−−→ (x, v) → 0 and 0 → (x, v)

[ ef ]−−→ R⊕2 [ g −h ]−−−−→ (x, u)→ 0.

The sink resolution of R is

0 → R

[ x
y
u
v

]
−−−→ R⊕4

⎡⎢⎣ 0 −h 0 g
−g 0 h 0
0 d −c 0
c 0 0 −d

⎤⎥⎦
−−−−−−−−−−−→ (x, u)⊕2 ⊕ (x, v)⊕2 [ a b e f ]−−−−−−→ R,

and the source resolution of R is

0 → R

⎡⎣ d
c
h
g

⎤⎦
−−−→ (x, v)⊕2 ⊕ (x, u)⊕2

⎡⎢⎣ 0 −f 0 b
−e 0 a 0
0 e −b 0
f 0 0 −a

⎤⎥⎦
−−−−−−−−−−−→ R⊕4 [x y u v ]−−−−−−→ R.

The category CMR is presented by the Auslander–Reiten quiver with mesh relations

ca = db and ge = hf

and non-mesh relations from R to R

ec = bh, fc = bg, ed = ah and fd = ag.

7. Stable categories of extriangulated categories

In this section, we study the structure of (co)stable categories of extriangulated
categories C as additive categories. Our approach is based on results on τ -categories
which we recall in the next subsection.
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7.1. Reminders on τ -categories. We start with recalling the notion of τ -catego-
ries introduced in [I1, 2.1].

Definition 7.1 ([I1, 2.1]). Let D be a Krull–Schmidt additive category. A right
τ -sequence of C is a sink sequence (Definition 6.1)

(7.1) A
x−→ B

y−→ C

of C such that − ◦ x : C (B,−) → radC (A,−) is surjective. We call D a right
τ -category if each indecomposable object in D has a right τ -sequence. Dually we
define a left τ -sequence and a left τ -category.

We call D a τ -category if it is a left and right τ -category. In this case, each right
τ -sequence (7.1) is either a left τ -sequence or satisfies A = 0 [I1, Theorem 2.3]. We
call (7.1) a τ -sequence in the former case, and call C τ -projective in the latter case.
Dually we define a τ -injective object. We call a τ -category D strict if, for each
τ -sequence (7.1) in D , x is a monomorphism and y is an epimorphism.

The Auslander–Reiten quiver ARτ (D) = (Q0, d, d
′, τ ) of a τ -category D is a

τ -quiver defined as follows (cf. Proposition 3.15).

• (Q0, d, d
′) := AR(D) (Definition 3.11).

• Qp
0 := {X ∈ Q0 | X is τ -projective}, Qi

0 := {X ∈ Q0 | X is τ -injective}.
• τC := A if there exists a τ -sequence A → B → C with A,C ∈ Q0.

The class of τ -categories contains various important additive categories.

Example 7.2.

(1) Let Λ be a finite dimensional algebra over a field k. Then modΛ is a strict
τ -category. In fact, almost split extensions are τ -sequences, the complex
0 → radP → P with indecomposable projective P is a right τ -sequence,
and the complex I → I/socI → 0 with indecomposable injective I is a left
τ -sequence.

(2) A triangulated category with almost split extensions is a τ -category. In
fact, almost split sequences with non-zero middle terms give τ -sequences.
On the other hand, an exact category with almost split extensions is not
necessarily a τ -category, see (4), (5) below.

(3) [I1, Proposition 8.4] The complete mesh category of a τ -species (Defini-
tion 7.9) is a τ -category (see Proposition 7.13 for details).

(4) [I4, Theorem 2.1] Let Λ be a finite dimensional k-algebra, and let U be a
cotilting Λ-module. If inj. dimU ≤ 1, then ⊥U is a strict τ -category.

(5) Let R be a complete local Cohen–Macaulay ring of dimR = d, and Λ an
R-order which is an isolated singularity. Then CMΛ is a τ -category if and
only if it is a strict τ -category if and only if d ≤ 2 (see [I1, Example 2.2(2)]
and Proposition 6.8). On the other hand, the stable and costable categories
CMΛ and CMΛ are always τ -categories [I5, Theorem 3.4.5].

Note that ARτ (D) and ARET(D) given in Definition 3.14 are related as follows.

Remark 7.3. Assume that D = (D ,E, s) is an extriangulated category which is a
τ -category. Then ARτ (D) and ARET(D) are usually the same, but not always.
Their valued quiver parts are of course the same. Also the maps τ : Q0 \ Qp

0 →
Q0 \ Qi

0 in ARτ (D) and τET : Q0 \ Qp
0,ET → Q0 \ Qi

0,ET in ARET(D) coincide

over Q0 \ (Qp
0 ∪ Qp

0,ET) since almost split sequences with non-zero middle terms
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give τ -sequences. But Qp
0 and Qp

0,ET are sometimes different, as illustrated in the
examples below.

(1) In a triangulated category D = Kb(proj k), we have Qp
0 = Q0 and Qp

0,ET =

∅.
(2) In an exact category D = CMR with R = k[[x, y]], we have Qp

0 = ∅ and
Qp

0,ET = Q0.

The key notion of ladders was introduced by Igusa–Todorov [IT1, Definition
2.14]. Here we need the following modified version [I1].

Definition 7.4 ([I1, 3.2]). Let D be a right τ -category. A commutative diagram

(7.2) Y0 Y1
f1

 Y2

f2

 Y3
f3

 · · ·f4



X0

a0

��

X1
g1



a1

��

X2
g2



a2

��

X3
g3



a3

��

· · ·g4



in D is called a right ladder of a0 ∈ D(X0, Y0) if the following condition is satisfied
for all i ≥ 0.

• There exists hi+1 ∈ D(Ui+1, Xi) such that

Xi+1 ⊕ Ui+1

[
ai+1 0
−gi+1 hi+1

]
−−−−−−−−−→ Yi+1 ⊕Xi

[fi+1 ai]−−−−−→ Yi

is a direct sum of right τ -sequences.

The existence theorem of ladders was first shown by Igusa–Todorov [IT1, The-
orem 2.15] for artin algebras under certain technical assumptions. Later it was
proved for arbitrary τ -categories by a much simpler method in the following form.

Theorem 7.5 (Existence Theorem of Ladders, [I1, Theorem 3.3(2)]). Let D be a
τ -category and A ∈ D an object.

(1) The source morphism of A has a right ladder.
(2) The zero morphism 0 ∈ D(0, A) has a right ladder.

As an application of Theorem 7.5, Igusa–Todorov’s Radical Layers Theorem
[IT1, Theorem 4.3] was proved for an arbitrary τ -category in [I1, Theorem 4.2] (cf.
Corollary 7.20).

Next we introduce certain functions θi, which are central in Auslander–Reiten
Combinatorics (cf. Corollary 7.21). Notice that the sequence (θiX)i≥0 is a modifi-
cation of an additive function stopping at X due to Gabriel [G, Section 6.5] and a
hammock due to Brenner [B,RV].

Definition 7.6. Let D be a τ -category.

(1) We denote by K0(D) the Grothendieck group of the additive category D .
Since D is Krull–Schmidt, K0(D) is the free abelian group with basis indD .
We identify the set of isomorphism classes of objects in C with the sub-
monoid K0(D)+ of K0(D) generated by indD . Any element X ∈ K0(D)
can be written uniquely as

X = X+ −X−

for some objects X+, X− ∈ K0(D)+ which do not have common non-zero
direct summands.
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(2) [I1, 7.2], [I4, 1.3.3] We denote a right τ -sequence of X ∈ indD by

(7.3) τX → θX → X.

We extend θ and τ canonically to the monoid endomorphisms of K0(D)+.
For each i ≥ 0, we define the map θi : K0(D)+ → K0(D)+ inductively as
follows: Let θ0 = id and θ1 = θ. For i ≥ 2 and X ∈ D , let

(7.4) θiX = (θ(θi−1X)− τ (θi−2X))+.

(3) Let Q = (Q0, d, d
′, τ ) be a locally finite τ -quiver (Definition 3.14), ZQ0

(resp. NQ0) the free abelian group (resp. monoid) with basis Q0. Each
element X ∈ ZQ0 can be written uniquely as X = X+ − X− for some
elements X+, X− ∈ NQ0 whose supports are disjoint.

For each X ∈ Q0, let

θX :=
⊕

W∈Q0

dWXW ∈ NQ0.

We extend θ and τ linearly to the monoid endomorphisms of NQ0. For
each i ≥ 0, we define the map θi : NQ0 → NQ0 inductively as follows: Let
θ0 = id and θ1 = θ. For i ≥ 2 and X ∈ NQ0, define θiX by the equality
(7.4).

We call Q strict if θiX = θ(θi−1X) − τ (θi−2X) holds for all i ≥ 2 and
X ∈ Q0 (in other words, one can drop (−)+ in (7.4)).

Let D be a τ -category with Q := ARτ (D) (Definition 7.1). Then K0(D)+
is identified with NQ0, and the two definitions of θi given in (2) and (3) above
clearly coincide. An important result is that the map θi is a monoid endomorphism
[I1, 7.2(1)] (cf. Corollary 7.21(2)). This is not completely obvious from the definition
because of the piecewise linear property of the map (−)+.

Example 7.7.

(1) Let Q be a connected valued quiver, and ZQ the corresponding τ -quiver.
Then ZQ is strict if and only if Q is non-Dynkin. We illustrate this by the
following two examples.

(2) Consider the τ -quiver ZE6. For example, ZE6 = ARτ (K
b(projΛ)) for the

path algebra Λ of a Dynkin quiver of type E6 (Example 7.2(2)).
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For X given in the previous picture, we have θX = Y1 ⊕ Y2, θ2X = Z1 ⊕
Z2 ⊕ Z3 and so on. The following picture shows θiX for i ≥ 0.

· · ·

· · ·

· · ·

· · ·

θ17X θ16X θ15X θ14X θ13X θ12X θ11X θ10X θ9X θ8X θ7X θ6X θ5X θ4X θ3X θ2X θX X

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

1

0

1

0

1

2

1

1

1

1

2

2

2

1

1

1

1

2

1

0

1

0

1

1

0

•

0

1

1

•

•

���
��

��

�������

�������

��

���
��

��
���

��
��

���
��

��

��

�������

�������

�������

�������

��

���
��

��
���

��
��

���
��

��
���

��
��

��

�������

�������

�������

�������

��

���
��

��
���

��
��

���
��

��
���

��
��

��

�������

�������

�������

�������

��

���
��

��
���

��
��

���
��

��
���

��
��

��

�������

�������

�������

�������

��

���
��

��
���

��
��

���
��

��
���

��
��

��

�������

�������

�������

�������

��

���
��

��
���

��
��

���
��

��
���

��
��

��

�������

�������

�������

�������

��

���
��

��
���

��
��

���
��

��
���

��
��

��

�������

�������

�������

�������

��

���
��

��
���

��
��

���
��

��
���

��
��

��

�������

�������

�������

�������

��

���
��

��
���

��
��

���
��

��

��

�������

�������

���
��

��

Thus θiX = 0 holds for all i ≥ 11. Moreover, for i ≥ 2, the equality

θ(θi−1X)− τ (θi−2X) =

{
θiX i �= 12,

−X[−1] i = 12

holds, where 12 is the Coxeter number of the root system of type E6. Thus
ZE6 is not strict. It is well-known that these observations hold for all
Dynkin quivers, e.g. [G, Section 6.5].

(3) Consider the τ -quiver ZẼ6. For example, ZẼ6 = ARτ (CM
ZR) for the cate-

gory CMZR of Z-graded Cohen–Macaulay modules over a simple singularity
R = C[x, y, z]/(x4 + y3 + z2) of type E6 with (deg x, deg y, deg z) = (3, 4, 6)
(Example 7.2(5), [GL2, Section 8]).
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For X given in the previous picture, we have θX = Y1 ⊕ Y2, θ2X = Z1 ⊕
Z2 ⊕ Z3 and so on. The following picture shows θiX for i ≥ 0.
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Thus θiX �= 0 for all i, and moreover ZẼ6 is strict. This is a consequence
of the equality

θ2i−1X + θ2iX = ciX

for each i ≥ 1, where c is the Coxeter transformation and we regard the

both sides as elements of ZQ0 for Q = Ẽ6 naturally. These observations
hold true for all non-Dynkin quivers.

In the next section, we will use the following characterizations of strictness.
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Proposition 7.8. Let D be a τ -category with
⋂

i≥0 rad
iD = 0. Then

(1) ⇔ (2) ⇔ (3) ⇐ (4)

hold for the following conditions.

(1) D is a strict τ -category.
(2) θiX = θ(θi−1X)− τ (θi−2X) holds for all i ≥ 2 and X ∈ indD .
(3) ARτ (D) is a strict τ -quiver (Definition 7.6).
(4) For each X ∈ indD , there exists a τ -projective object P ∈ indD such that

D(P,X) �= 0.

Proof. (1)⇔(2) is [I1, 7.4(1)]. (2)⇔(3) is clear. (4)⇒(1) is dual to [I1, 7.4(2)]. �
To state Reconstruction Theorem (cf. Corollary 7.23), we need the notions below

introduced in [IT2] as a ‘modulated translation quiver’ and its mesh category.

Definition 7.9 ([I1, Definition 8.3], [IT2, Definition 1.7]).

(1) A species is Q = (Q0, D(X),M(X,Y )) consisting of the following data.
• Q0 is a set.
• ForX,Y∈Q0,D(X) is a division ring, andM(X,Y ) is a (D(Y ), D(X))-
bimodule.

We call (Q0, d, d
′) the underlying valued quiver of Q, where

dXY := dimM(X,Y )D(X) and d′XY := dimD(Y) M(X,Y)

for each X,Y ∈ Q0. We call Q locally finite if its underlying valued quiver
is locally finite (Definition 3.11).

(2) A τ -species is Q = (Q0, D(X),M(X,Y ), τ, aX , bXY ) consisting of the fol-
lowing data.

• (Q0, D(X),M(X,Y )) is a locally finite species.
• τ : Q0 \Qp

0 → Q0 \Qi
0 is a bijection for subsets Qp

0 and Qi
0 of Q0.

• For X ∈ Q0 \Qp
0, aX : D(X) � D(τX) is an isomorphism of rings.

• For X ∈ Q0 \ Qp
0 and Y ∈ Q0, bXY : HomD(Y )(M(τX, Y ), D(Y )) �

M(Y,X) is an isomorphism of (D(X), D(Y ))-bimodules, where
M(τX, Y ) is regarded as a D(X)-module via aX .

We call (Q0, d, d
′, τ ) the underlying τ -quiver of Q, where (Q0, d, d

′) is the
underlying valued quiver of the species (Q0, D(X),M(X,Y )).

We need the following elementary observation, where the assumption #Q0 < ∞
in [I3, 4.2.1] was not necessary.

Lemma 7.10 ([I3, 4.2.1]). For each locally finite symmetrizable τ -quiver Q, there
exists a τ -species Q whose underlying τ -quiver is Q.

The Auslander–Reiten quiver of a τ -category gives rise to a τ -species.

Example 7.11 ([I1, Definition 9.1], [IT2, Definition 2.4]). Let D be a τ -category.
Then the Auslander–Reiten species ARsp

τ (D) of D defined as follows is a τ -species.

• Q0, Q
p
0, Q

i
0 and τ are given in Definition 7.1.

• For X,Y ∈ Q0,

D(X) := (D/radD)(X,X)

and

M(X,Y ) := (radD/rad2D)(X,Y ).
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• For X ∈ Q0 \Qp
0, take a τ -sequence τX → θX → X. Then aX : D(X) →

D(τX) is a map sending the class of f ∈ EndD(X) to the class of f ′′ ∈
EndD(τX) making the following diagram commutative.

τX ��

f ′′

��

θX ��

f ′

��

X

f

��
τX �� θX �� X

• For Y ∈ Q0, bXY is the composition

HomD(Y )(M(τX, Y ), D(Y )) � HomD(Y )((D/radD)(θX, Y ), D(Y ))

� (D/radD)(Y, θX) � M(Y,X),

where the first and the third isomorphisms are given by Proposition 3.12
and the second one is induced by the composition (D/radD)(Y, θX) ×
(D/radD)(θX, Y ) → D(Y ).

Conversely, each τ -species gives rise to a τ -category as follows.

Definition 7.12 ([I1, Definition 8.1, 8.3.1]).

(1) Let Q = (Q0, D(X),M(X,Y )) be a species. The complete path category
P(Q) of Q is a Krull–Schmidt category with ind P(Q) = Q0 defined as

follows: Fix X,Y ∈ Q0, let P(X,Y ) :=
∏
i≥0

Pi(X,Y ), where P0(X,Y ) :=

DX if X = Y and 0 otherwise, and

Pi(X,Y ) :=
⊕

Z1,...,Zi−1∈Q0

M(Zi−1, Y )⊗D(Zi−1) · · · ⊗D(Z1) M(X,Z1) for i ≥ 1.

(2) Let Q = (Q0, D(X),M(X,Y ), τ, aX , bXY ) be a τ -species. The complete
mesh category M(Q) of Q is defined as follows.

• Let P(Q) be the complete path category of the species (Q0, D(X),
M(X,Y )).

• ForX ∈ Q0\Qp
0, themesh relation is the element γX ∈ M(Y,X)⊗D(Y )

M(τX, Y ) � EndD(Y )(M(τX, Y )) corresponding to 1M(τX,Y ), where
the isomorphism is given by bXY .

• M(Q) is the quotient of P(Q) by the closure of the ideal generated by
all mesh relations with respect to the radP(Q)-adic topology.

We have the following important observation.

Proposition 7.13 ([I1, Proposition 8.4, Theorem 10.2]). Let Q be a τ -species.

Then D := M(Q) is a τ -category satisfying
⋂

i≥0 rad
iD = 0 and ARsp

τ (D) = Q.

7.2. Stable categories of extriangulated categories. We apply results on τ -
categories to study the structure of stable categories C of extriangulated categories
C as additive categories. The following result shows that almost split sequences in
C give sink (resp. source) resolutions in C (resp. C ) (cf. Proposition 6.2).

Proposition 7.14. Let C be a Krull–Schmidt extriangulated category and A →
B → C an almost split sequence in C .

(1) If C has enough projectives, then a sink resolution of C in C is given by a
direct summand of · · · → Ω2C → ΩA → ΩB → ΩC → A → B → C.
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(2) If C has enough injectives, then a source resolution of A in C is given by
a direct summand of A → B → C → ΣA → ΣB → ΣC → Σ2A → · · ·.

Proof. The assertions follows from the exact sequences given in Theorem 1.25. �

Motivated by Example 7.2(5), we prove the following much more general re-
sult. We refer to Definition 3.1 and Remark 1.22 for necessary definitions and to
Proposition 7.19 for a more detailed result.

Theorem 7.15. Let C be a Krull–Schmidt extriangulated category with almost split
extensions.

(1) If C has enough injectives and sink morphisms, then C is a τ -category.
(2) If C has enough projectives and source morphisms, then C is a τ -category.

Moreover ARET(C ) determines ARτ (C ) in (1) (resp. ARτ (C ) in (2)).

Before proving Theorem 7.15, we give some examples.

Example 7.16.

(1) We consider the exact category ⊥U in Example 6.7. One can check that
⊥U is a τ -category if and only if 
 = n − 1 or n − 2, while ⊥U and ⊥U
are τ -categories for each 
 by Theorem 7.15. For example, ARτ (

⊥U) and

ARτ (⊥U) for n = 7 and 
 = 4 are the following.
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(2) We consider the exact category CMR in Example 6.9. This is not a τ -
category by Example 7.2(5), while CMR = CMR is a τ -category by Theo-
rem 7.15. Moreover, ARτ (CMR) is the following.

(x, u) (x, v)

 (x, u)

 .

To prove Theorem 7.15, we need the following modification of [I2, 1.4(2)].

Lemma 7.17. Let C be a Krull–Schmidt extriangulated category and D an additive
full subcategory of C .

(1) If x ∈ C (A,B) is a right (resp. left) almost split morphism in C and if
B /∈ D (resp. A /∈ D), then x ∈ (C /D)(A,B) is a right (resp. left) almost
split morphism in C /D .

(2) Let A
x−→ B

y−→ C be an almost split sequence such that C /∈ D . Then a

right τ -sequence of C in C /D is given by A
x−→ B

y−→ C if B /∈ D , and by
0 −→ 0 −→ C if B ∈ D .

(3) Let A
x−→ B

y−→ C be an almost split sequence such that A /∈ D . Then a

left τ -sequence of A in C /D is given by A
x−→ B

y−→ C if B /∈ D , and by
A −→ 0 −→ 0 if B ∈ D .

Proof. (1) This is clear since rad(C /D)(X,B) = ((radC )/[D ])(X,B) holds for any
X ∈ C .
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(2) y is right almost split by (1), and x is a weak kernel of y by Lemma 1.26.

Since A ∈ indC , a sink sequence of C in C /D is given by A
x−→ B

y−→ C if B /∈ D ,
and 0 −→ 0 −→ C if B ∈ D . Clearly the latter sequence gives a right τ -sequence
of C in C /D , and so is the former one since the dual argument shows that − ◦ x :
(C /D)(B,−) → rad(C /D)(A,−) is surjective.

(3) is dual to (2). �

Another key observation is the following.

Proposition 7.18. Let C be an extriangulated category with enough injectives.
Let P ∈ C be an indecomposable projective non-injective object, and f ∈ C (A,P )

a sink morphism. Then 0 → A
f−→ P is a right τ -sequence in C .

Proof. The proof is parallel to that of Theorem 6.4. It suffices to show that f is a
monomorphism in C . We will show that any g ∈ C (B,A) satisfying fg = 0 satisfies

g = 0. Take an s-conflation B
i−→ I

j−→ X with I injective. By [LNa, Proposition

1.20], we have the following commutative diagram such that B

[
i

−g

]
−−−−→ I⊕A

[h x′]−−−→ Z
is an s-conflation.

B
i ��

g
��

I
j ��

h��

X

A
x′

�� Z
y′

�� X

By the assumption of fg = 0, there exists a ∈ C (I, P ) such that fg = ai. Thus
there exists b ∈ C (Z, P ) such that b[h x′] = [a f ].

If b is a retraction, then [a f ] = b[h x′] ∈ C (I ⊕A,P ) is a deflation, and hence a
retraction since P is projective. This is a contradiction since both a and f belong
to radC by non-injectivity of P . Therefore b is not a retraction. Since f is a sink
morphism, there is c ∈ C (Z,A) satisfying b = fc. Since f = bx′ = fcx′ holds
and f is right minimal, cx′ is an isomorphism in C . Thus there is a left inverse
z ∈ C (Z,A) of x′. This gives g = zhi, hence g = 0 as desired. �

Now we are able to prove the following main observations.

Proposition 7.19. Let C be a Krull–Schmidt extriangulated category.

(1) If C has enough injectives and left almost split extensions, then C is a left
τ -category.

(2) If C has enough injectives and sink morphisms, then C is a right τ -category.
(3) If C has enough projectives and right almost split extensions, then C is a

right τ -category.
(4) If C has enough projectives and source morphisms, then C is a left τ -

category.

Proof. (1) Since C has enough injectives, we have C = C /I for I := Inj
E
C by

Remark 1.22. Fix any A ∈ indC = indC \ indI . Since C has left almost split

extensions, there exists an almost split sequence A
x−→ B

y−→ C. By Lemma 7.17(3),

it gives a left τ -sequence of A in C .
(2) Fix any C ∈ indC = indC \ indI . If C is projective, then a sink morphism

B
y−→ C gives a right τ -sequence 0 −→ B

y−→ C by Proposition 7.18. If C is
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non-projective, then Lemma 3.2 shows that there exists an almost split sequence

A
x−→ B

y−→ C. By Lemma 7.17(2), it gives a right τ -sequence of C in C .
(3) and (4) are dual to (1) and (2) respectively. �

We are ready to prove Theorem 7.15.

Proof of Theorem 7.15. The assertions are immediate from Proposition 7.19. �

Theorem 7.15 enables us to apply results on τ -categories to (co)stable categories
of extriangulated categories. In the rest of this subsection, we give some applica-
tions.

Corollary 7.20 (Radical Layers Theorem). Let C be a Krull–Schmidt extrian-
gulated category which has enough projectives, almost split extensions and source
morphisms, and let D = C .

(1) Let A
x−→ B

y−→ C be an almost split sequence in C such that A is non-
projective. Then the following sequences are exact for each i ≥ 0, where
rad−1D := D .

radi−1D(−, A)
x◦−−−−→ radiD(−, B)

y◦−−−→ radi+1D(−, C) → 0,

radi−1D(C,−)
−◦y−−→ radiD(B,−)

−◦x−−−→ radi+1D(A,−) → 0.

(2) Let I
x−→ A be a source morphism in C of an indecomposable injective non-

projective object I. Then we have an isomorphism of functors for each
i ≥ 0.

− ◦ x : radiD(A,−)
∼−→ radi+1D(I,−).

Proof. (1) By Theorem 7.5, the morphism x ∈ C (A,B) has a right ladder. We
apply [I1, Theorem 4.2] to a0 := x and n := 0. Since L = radD(−, C), we obtain
the first exact sequence

radi−1D(−, A)
x◦−−−−→ radiD(−, B)

y◦−−−→ radi+1D(−, C) → 0.

Dually, we obtain the second exact sequence

radi−1D(C,−)
−◦y−−→ radiD(B,−)

−◦x−−−→ radi+1D(A,−) → 0.

(2) By the dual of Proposition 7.18, we have an isomorphism −◦x : D(A,−)
∼−→

radD(I,−). Taking radi of these functors, we obtain the desired isomorphism. �

We leave it to the reader to state the dual results for the costable category C .
From Corollary 7.20, we obtain the following exact sequences and an isomorphism,
which explain the term “Radical Layers Theorem”:

(radi−1D/radiD)(−, A)
x◦−−−−→ (radiD/radi+1D)(−, B)

y◦−−−→ (radi+1D/radi+2D)(−, C) → 0,

(radi−1D/radiD)(C,−)
−◦y−−→ (radiD/radi+1D)(B,−)

−◦x−−−→ (radi+1D/radi+2D)(A,−) → 0,

− ◦ x : (radiD/radi+1D)(A,−)
∼−→ (radi+1D/radi+2D)(I,−).
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Let C be a Krull–Schmidt extriangulated category which has enough projectives,
almost split extensions and source morphisms, and let D = C . Then D is a τ -
category and ARτ (D) is determined by ARET(C ) (Theorem 7.15). On the other
hand, the functions (θi)i≥0 for D given in Definition 7.6 are determined by ARτ (D).
Therefore the next result enables us to calculate the dimensions of D(X,Y ) and
E(X,Y ) from ARτ (D). An example will be given in Example 7.22. We denote by

〈−,−〉 : K0(D)×K0(D) → Z

the bilinear form such that 〈X,Y 〉 is the Kronecker delta δXY for X,Y ∈ indD .

Corollary 7.21 (Auslander–Reiten Combinatorics). Let C be a Krull–Schmidt
extriangulated category which has enough projectives (resp. injectives), almost split
extensions and source (resp. sink) morphisms, and let D = C (resp. C ).

(1) For each object X ∈ D and i ≥ 0, there is an isomorphism of functors

(D/radD)(−, θiX) � (radiD/radi+1D)(−, X).

(2) (Sign-coherence) θi is a monoid endomorphism of K0(D)+, that is, for each
X,Y ∈ D , we have θi(X ⊕ Y ) � θiX ⊕ θiY .

(3) Assume
⋂

i≥0 rad
iD = 0. Then for each X ∈ D and Y ∈ indD , we have

lengthD(Y,X)EndD(Y ) =
∑
i≥0

〈Y, θiX〉.

This is equal to lengthEndC (τY )E(X, τY ) if C has Auslander–Reiten–Serre
duality.

Proof. (1) Let a0 := 0 ∈ D(0, X). By Theorem 7.5, a0 has a right ladder (7.2). By
[I1, Theorem 4.1], we have an exact sequence of functors

D(−, Xi)
ai◦−−−−→ D(−, Yi) → radiD(−, X) → 0.

Thus there is an isomorphism of functors

(D/radD)(−, Yi) � (radiD/radi+1D)(−, X).

By [I1, Theorem 7.1], θiX = Yi holds for each i ≥ 0. Thus the assertion follows.
(2) The assertion follows from isomorphisms of functors

(D/radD)(−, θi(X ⊕ Y ))
(1)
� (radiD/radi+1D)(−, X ⊕ Y )

�(radiD/radi+1D)(−, X)⊕ (radiD/radi+1D)(−, Y )

(1)
� (D/radD)(−, θiX)⊕ (D/radD)(−, θiY ) � (D/radD)(−, θiX ⊕ θiY ).

(3) The assertion follows from

lengthD(Y,X)EndD(Y ) =
∑
i≥0

length(radiD/radi+1D)(Y,X)EndD(Y )

(1)
=

∑
i≥0

length(D/radD)(Y, θiX)EndD(Y ) =
∑
i≥0

〈Y, θiX〉. �
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Example 7.22. Using the extriangulated category (C ,F, t) with the following
Auslander–Reiten quiver given at the end of Section 5, we explain Corollary 7.21.

• • • •
• • • •

• • • •

Then ARτ (C ) is given by the following.

• • •
• X •

• •

For X in the previous diagram, θiX is given as follows:

0 0 0

0 1 0

0 0

θ0X

1 0 0

0 0 0

0 1

θ1X

0 0 0

1 0 0

0 0

θ2X

0 0 0

0 0 0

0 0

θiX (i ≥ 3)

Summing up them, the map Y 
→ lengthC (Y,X)EndC (Y ) is given by the following.

1 0 0

1 1 0

0 1

We end this section with an extriangulated version of Reconstruction Theorem
[BG, Proposition 5.1], [IT2, Lemma 3.1]. For a Krull–Schmidt category D , its
associated completely graded category GrD has the same objects as D , and the
morphisms are given by

GrD(X,Y ) =
∏
i≥0

(radiD/radi+1D)(X,Y ),

where the compositions are defined naturally.

Corollary 7.23 (Reconstruction Theorem, [I1, Theorem 9.2]). Let C be a Krull–
Schmidt extriangulated category which has enough projectives (resp. injectives), al-
most split extensions and source (resp. sink) morphisms, and let D = C (resp. C ).
Then the category GrD is equivalent to the complete mesh category of ARsp

τ (D)
(see Example 7.11, Definition 7.12).

8. Inverse Problem for extriangulated categories

Let C be a Krull–Schmidt extriangulated category with almost split extensions.
Then the Auslander–Reiten quiver of C has a structure of a τ -quiver (Proposition
3.15). This section is devoted to studying the following Inverse Problem.

Problem 8.1 (Inverse Problem). Let Q be a locally finite symmetrizable τ -quiver
(see Definition 3.14). Does there exist a Krull–Schmidt extriangulated category D
with almost split extensions satisfying ARET(D) = Q?
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Our main result below in this section gives a positive answer to Problem 8.1. No-
tice that an extriangulated category which is a τ -category has sink morphisms and
source morphisms by definition, and hence has almost split extensions by Lemma
3.2.

Theorem 8.2. Let Q be a locally finite symmetrizable τ -quiver.

(1) There exists a Krull–Schmidt extriangulated category D which is a τ -categ-
ory satisfying ARET(D) = Q.

(2) If Q is strict, then there exists a Krull–Schmidt exact category D = (D ,E, s)
which is a strict τ -category satisfying ARET(D) = ARτ (D) = Q and the
following conditions.
(a) The E-projective objects coincide with the τ -projective objects, and the

E-injective objects coincide with the τ -injective objects.
(b) The almost split sequences are precisely the τ -sequences.

Theorem 8.2(1) follows easily from Theorem 8.2(2) by adding more projective-
injective objects. This strategy is detailed below. Notice that a similar idea was
used in [KS1,KS2].

The following result is a main step to prove Theorem 8.2(2).

Theorem 8.3. Let D be a strict τ -category.

(1) D has a structure (D ,E, s) of an exact category whose conflations are the

sequences 0 → A
x−→ B

y−→ C → 0 satisfying the following equivalent condi-
tions.
(a) 0 → D(−, A)

x◦−−−−→ D(−, B)
y◦−−−→ D(−, C) → F → 0 is an exact

sequence in ModD such that F has finite length and F (X) = 0 hold
for each τ -projective object X ∈ D .

(b) 0 → D(C,−)
−◦y−−→ D(B,−)

−◦x−−−→ D(A,−) → G → 0 is an exact
sequence in ModDop such that G has finite length and G(X) = 0 hold
for each τ -injective object X ∈ D .

(2) This exact structure satisfies the following conditions and hence ARET(D)=
ARτ (D).
(a) The E-projective objects coincide with the τ -projective objects, and the

E-injective objects coincide with the τ -injective objects.
(b) The almost split sequences are precisely the τ -sequences.

To prove these results, we need preparations on the functor category. Let D be
a τ -category. We consider the functors

HomD(−,D) : ModD ←→ ModDop : HomDop(−,D).

For F ∈ ModD , HomD(F,D) ∈ ModDop is given by

(HomD(F,D))(X) = HomD(F,D(−, X))

for each X ∈ D . For each i ≥ 0, we also consider their derived functors

ExtiD(−,D) : ModD ←→ ModDop : ExtiDop(−,D).

Let S be the full subcategory of ModD consisting of all finite length D-modules
F such that F (X) = 0 for all τ -projective objects X ∈ D . Dually, let T be the
full subcategory of ModDop consisting of all finite length Dop-modules G such that
G(X) = 0 for all τ -injective objects X ∈ D .

The following homological properties of strict τ -categories play a key role.
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Proposition 8.4. Let D be a strict τ -category.

(1) S is a Serre subcategory of ModD , and T is a Serre subcategory of
ModDop.

(2) Each object F ∈ S has a projective resolution 0 → P2 −→ P1 −→ P0 → F →
0 such that Pi ∈ projD for each i and satisfies ExtiD(F,D) = 0 for each
i �= 2 and Ext2D(F,D) ∈ T .

(3) Each object G ∈ T has a projective resolution 0 → P2 −→ P1 −→ P0 → G →
0 such that Pi ∈ projDop for each i and satisfies ExtiDop(G,D) = 0 for each
i �= 2 and Ext2Dop(G,D) ∈ S .

(4) We have dualities

Ext2D(−,D) : S ←→ T : Ext2Dop(−,D).

Proof. (1) is clear.
(2) It suffices to consider the case when F is a simple D-module since each

object in S has a finite filtration by simple D-modules in S . Thus we can assume
F = SC := (D/radD)(−, C) for an indecomposable non-τ -projective object C.
Take a τ -sequence A −→ B −→ C in D . Then we have a projective resolution

0 → D(−, A) → D(−, B) → D(−, C) → SC → 0.

For SA := (D/radD)(A,−), the definition of τ -sequences implies

ExtiD(SC ,D) =

{
0 i �= 2,

SA i = 2
and ExtiDop(SA,D) =

{
0 i �= 2

SC i = 2.

Thus F = SC satisfies the desired conditions.
(3) is dual to (2), and (4) follows immediately from (2) and (3). �

Proof of Theorem 8.3. (1) Immediate from Enomoto’s construction of exact struc-
ture [E, Theorem 2.7] and Proposition 8.4.

(2) Immediate from the definition of conflations. �

Now we are ready to prove Theorem 8.2.

Proof of Theorem 8.2. (2) By Lemma 7.10, there exists a τ -species Q whose un-
derlying τ -quiver is Q. By Propositions 7.13 and 7.8(3)⇒(1), D := M(Q) is a strict
τ -category satisfying ARτ (D) = Q. By Theorem 8.3, D has a structure of an exact
category satisfying ARET(D) = ARτ (D) = Q and the conditions (a), (b).

(1) Using Q = (Q0, d, d
′, τ ), define a new τ -quiver Q̃ = (Q̃0, d̃, d̃

′, τ̃) as follows:
Let S := Q0 \Qp

0, and let

Q̃0 := Q0 � S, Q̃p
0 := Qp

0 � S, Q̃i
0 := Qi

0 � S and τ̃ := τ.

For X ∈ Q0 \ Qp
0, we denote by X̃ ∈ S the corresponding element. Define maps

d̃, d̃′ : Q̃0 × Q̃0 → Z≥0 by

• d̃|Q0×Q0
:= d, d̃′|Q0×Q0

:= d′.

• d̃τX,X̃ = d̃′
τX,X̃

= d̃X̃X = d̃′
X̃X

:= 1 for each X ∈ Q0 \Qp
0.

• d̃XY = d̃′XY := 0 for all other pairs (X,Y ) ∈ Q̃0 × Q̃0.

Then any element in Q̃0 \ Q̃p
0 is a target of an arrow starting at an element in Q̃p

0.

Thus Q̃ is strict by applying Proposition 7.8(4)⇒(3) to Q̃ and its mesh category.
By (2), there exists an exact category C which is a strict τ -category satisfying
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ARET(C ) = ARτ (C ) = Q̃. Let B := addS and D := C /B. By Proposition
5.11, D is an extriangulated category satisfying ARET(D) = Q. The proof is
completed. �
Remark 8.5. Notice that the exact categories given in Theorems 8.2 and 8.3 do not
necessarily have enough projectives and enough injectives.

For a symmetrizable τ -quiver which is stable (see Definition 3.14), there is a
different approach to Problem 8.1. Recall that by Riedtmann’s Structure Theorem
[Rie1, p. 206], each stable τ -quiver Q can be written as ZQ′/G, where Q′ is a
valued quiver which is a tree and G is a weakly admissible automorphism group of
the τ -quiver ZQ′. We call Q′ the tree type of Q.

Example 8.6. Let Q be a locally finite stable symmetrizable τ -quiver.

(1) There exists a Krull–Schmidt extriangulated category D such that
ARET(D) = Q.

(2) If the tree type of Q is a disjoint union of non-Dynkin quivers, then there
exists an exact category D such that ARET(D) = Q.

(3) If the tree type of Q is a disjoint union of Dynkin quivers, then there exists
a triangulated category D such that ARET(D) = Q.

Proof. (2) Since Q is strict by Example 7.7(1), the assertion follows from Theorem
8.2.

(3) Write Q = ZQ′/G for a disjoint union Q′ of Dynkin quivers and a weakly
admissible automorphism group G of ZQ′. Let Q′ be a species whose underly-
ing valued quiver is Q′, and Λ the opposite of the tensor algebra of Q′. Then
ARET(D

b(modΛ)) = ZQ′ holds. If G = {1}, then the claim follows. Otherwise, G
is generated by the action of an autoequivalence F : Db(modΛ) → Db(modΛ) on
ZQ′. By [Ke2, Theorem 1], the orbit category D := Db(modΛ)/F has a structure
of a triangulated category. Clearly ARET(D) = ZQ′/G = Q holds.

(1) follows immediately from (2) and (3). �
We end this section with the following general question.

Problem 8.7. Let D be a τ -category. Does there exist an extriangulated structure
on D such that the projective objects coincide with the τ -projective objects, and
the injective objects coincide with the τ -injective objects?

9. An example from gentle algebras

This example is motivated by [PPP, Figure 30]. Let k be a field, let A be the
quotient of the path algebra of the A3 quiver 1 → 2 → 3 with ideal of relations
rad2, and let A� be the algebra given by the quiver:

(9.1) f

d
h
�� 3

h
��

v
��

h

c

a
h �� 1

h ��
v
��

2
h ��

v

��

g

b

v

��

e

v

��
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with relations hv, vh.
We let:

• S = Pc ⊕ Pf ⊕ Pg ⊕ Ph be the sum of the simple projective modules over
A�;

• Q = Pa⊕Pb⊕Pd⊕Pe be the sum of the indecomposable projective-injective
modules over A�;

• E be the full subcategory of modA� whose objects are all those modules
M such that both HomA�(S,M) and HomA�(Q, τM) vanish.

Then ARET(modA�) is shown in Figure 3. Since, for any modules M,N over
A�, HomA�(M, τN) = 0 if and only if Ext1A�(N,FacM) = 0 [ASm, Proposition
5.8], the subcategory E is extension-closed in modA�.

If we denote the full subcategory of projective-injective (resp. projective, injec-
tive) objects in E by B (resp. P, I ) then by [NP, Proposition 3.30], the ideal
quotient E /B is extriangulated. By Proposition 5.11, E /B has almost split exten-
sions, and ARET(E /B) is depicted in Figure 1. The Auslander–Reiten translation
is represented by dashed arrows. We note that the extriangulated category E /B is
not an exact category since the morphism 2

3 −→ d 2
3 is (both) an inflation which

is not monic (and a deflation which is not epic). We also note that the isoclasses
of indecomposable objects of E /B are in bijection with the isoclasses of indecom-
posable A-modules or shifted projectives. Moreover, the injective objects in E /B
are the shifted projectives and the projective objects in E /B are the projective A-
modules. Let A ∗A[1] be the full subcategory of the homotopy category Kb(projA)
whose objects are the complexes concentrated in degrees 0 and -1. Via the bijection
of [AIR, Theorem 4.1], the modules P3, P2, S2, P1, and S1 are respectively sent to
the complexes 0 → P3, 0 → P2, P3 → P2, 0 → P1 and P2 → P1 so that there is
a bijection between isoclasses of indecomposable objects in E /B and isoclasses of
indecomposable objects in A ∗A[1].

3

2
3

2

3[1]

1
2

1

2
3 [1]

1
2 [1]

Figure 1. ARET(E /B): The vertices are labelled by the corre-
sponding indecomposable A-modules or shifted projectives

We give a brief explanation on how E /B can be related to modA. Let εp ∈ A�

be the idempotent element corresponding to each vertex p in (9.1). Put

ε = 1− (ε1 + ε2 + ε3) = εa + εb + εc + εd + εe + εf + εg + εh,

and denote the two-sided ideal A�εA� ⊆ A� by a. The functor tensoring with
A = A�/a

G : modA� → modA ; M 
→ M/aM

satisfies G(I ) = 0, and thus induces an additive functor G : E /I → modA (recall
that I is the full subcategory of those objects that are injective in E ).
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For any indecomposable object N ∈ E which is not injective in E , we can observe
on ARET(modA�) that there are exact sequences in modA�

0 → aN → N → N/aN → 0, 0 → K → I → aN → 0

satisfying I ∈ I and K, aN ∈ FacQ. More explicitly, the only non-injective objects
N in E for which aN is non-zero are d 2

3 and 1 e
2 . Moreover, we have short exact

sequences:

0 → d
3 → d 2

3 → 2 → 0, 0 → e
2 → 1 e

2 → 1 → 0, 0 → d
3 → e

d 2
3

→ e
2 → 0,

where d
3 and

e
d 2
3

are injective in E , d
3 ∈ Fac

d
3
h
and e

2 ∈ Fac
e
2
3
f
.

For any M ∈ E , by the Auslander–Reiten duality, we have Ext1A�(M, aN) ∼=
DHomA�(aN, τM) = 0 and Ext1A�(M,K) ∼= DHomA�(K, τM) = 0 becauseK, aN ∈
FacQ and Hom(Q, τM) = 0. This shows that the short exact sequences above
induce surjections:

HomA�(M,N) → HomA�(M,N/aN) � HomA(G(M), G(N)),

HomA�(M, I) → HomA�(M, aN) � Ker
(
HomA�(M,N)

G−→ HomA(G(M), G(N))
)
,

which show that

(E /I )(M,N)
G−→ HomA(G(M), G(N))

is bijective. Thus G is fully faithful.
Moreover, since non-injective indecomposable objects in E satisfy

3 � G(3), 2
3 � G( 23 ), 2 � G( d 2

3 ), 1
2 � G( 12 ), 1 � G( 1 e

2 ),

we can observe that G is essentially surjective, and thus G : E /I → modA is an
equivalence of categories.

Explicit computations detailed below show the following:

Claim 9.1. The bijection in Figure 1 induces a bijection between basic support
τ -tilting modules (equivalently: basic τ -tilting pairs) over A and basic maximal
E-rigid objects in the extriangulated category E /B. Moreover, τ -tilting mutation
can be computed in E /B by means of approximation extriangles.

Proof. Up to isomorphism, the extriangles in E /B are the trivial ones, the ten
extriangles listed below and all their direct sums. One can then check that τ -
compatibility of τ -rigid pairs in modA corresponds to E-rigidity in E /B. As shown
in Figure 2, maximal E-rigid objects in E /B have a well-behaved theory of mutation
and mutation of τ -tilting pairs inmodA corresponds to mutation of maximal E-rigid
objects in E /B.

(1) 3 �� 2
3

�� 2 ����� (2) 2
3

�� 2 �� 3[1] �����

(3) 2 �� 1
2 ⊕ 3[1] �� 1 ����� (4) 2 �� 3[1] �� 2

3[1] �����

(5) 1
2

�� 1 �� 2
3[1] ����� (6) 1

2
�� 0 �� 1

2[1] �����

(7) 3 �� 0 �� 3[1] ����� (8) 2
3

�� 1
2

�� 1 �����

(9) 2
3

�� 0 �� 2
3[1] ����� (10) 1 �� 2

3[1] �� 1
2[1] �����

�
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1
2 [1]⊕ 2

3 [1]⊕ 3[1]

2
3 [1]⊕ 1⊕ 3[1]

1
2 [1]⊕ 2

3 [1]⊕ 3 1
2 [1]⊕ 3[1]⊕ 2

2
3 [1]⊕ 1⊕ 3 1

2 ⊕ 1⊕ 3[1]

1
2 ⊕ 3[1]⊕ 2

1
2 ⊕ 1⊕ 3 1

2 [1]⊕ 2
3 ⊕ 2

1
2 ⊕ 2

3 ⊕ 2

1
2 [1]⊕ 2

3 ⊕ 3

1
2 ⊕ 2

3 ⊕ 3

(10)

(1) (4)

(9)

(10)

(7) (5)

(6)
(2)

(5) (7)
(3)

(2)

(8)

(6)

(1)

(6)

(1)

Figure 2. The poset of basic maximal E-rigid objects in the ex-
triangulated category E /B. Vertices are representatives for the
isoclasses of basic maximal E-rigid objects in E /B. Two vertices
are linked by an edge if and only if the corresponding E-rigid ob-
jects differ by one indecomposable summand. Edges are labelled
with the corresponding approximation extriangle.
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nungen (German), Bayreuth. Math. Schr. 23 (1987), 1–134. MR882061

[Y] Yuji Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathe-
matical Society Lecture Note Series, vol. 146, Cambridge University Press, Cambridge,
1990, DOI 10.1017/CBO9780511600685. MR1079937

[ZH] Tiwei Zhao and Zhaoyong Huang, Phantom ideals and cotorsion pairs in extriangulated
categories, Taiwanese J. Math. 23 (2019), no. 1, 29–61, DOI 10.11650/tjm/180504.
MR3909989

[ZZ] Panyue Zhou and Bin Zhu, Triangulated quotient categories revisited, J. Algebra 502
(2018), 196–232, DOI 10.1016/j.jalgebra.2018.01.031. MR3774890

Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya

464-8602, Japan

Current address: Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba
Meguro-ku Tokyo 153-8914, Japan

Email address: iyama@ms.u-tokyo.ac.jp
URL: https://www.ms.u-tokyo.ac.jp/~iyama/index.html

Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya

464-8602, Japan

Email address: nakaoka.hiroyuki@math.nagoya-u.ac.jp
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