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APOLLONIAN PACKINGS AND KAC-MOODY ROOT SYSTEMS

IAN WHITEHEAD

Abstract. We study Apollonian circle packings using the properties of a cer-
tain rank 4 indefinite Kac-Moody root system Φ. We introduce the generating
function Z(s) of a packing, an exponential series in four variables with an Apol-
lonian symmetry group, which is a symmetric function for Φ. By exploiting
the presence of affine and Lorentzian hyperbolic root subsystems of Φ, with
automorphic Weyl denominators, we express Z(s) in terms of Jacobi theta
functions and the Siegel modular form Δ5. We also show that the domain
of convergence of Z(s) is the Tits cone of Φ, and discover that this domain
inherits the intricate geometric structure of Apollonian packings.

1. Introduction

The aim of this article is to study Apollonian circle packings from the perspective
of Kac-Moody theory, motivating new questions about packings and Kac-Moody
root systems. We introduce an indefinite Kac-Moody root system Φ which encodes
many of the properties of Apollonian packings, e.g.

• The Cartan matrix of Φ is the matrix of the Descartes quadratic form.
• The Weyl group is the Apollonian group.
• Certain Weyl orbits in the root lattice correspond to Apollonian packings.
• Principal root subsystems of Φ correspond to important subsets of packings:
the sets of circles tangent to one or more fixed circles.

• The Tits cone can be constructed geometrically from a packing; see Figure
4 and Theorem 6.2.

We will use the character theory of Φ to approach number-theoretic questions about
packings.

Fix a bounded Apollonian packing P. To make the connection between P and
the root system Φ, we define a series that can be considered as a generating function
for P, or a symmetric function for Φ. For s1, s2, s3, s4 ∈ C, let

(1.1) Z(s1, s2, s3, s4) =
∑

(c1,c2,c3,c4)∈P
e−c1s1−c2s2−c3s3−c4s4 .

The sum is over all Descartes quadruples of mutually tangent circles appearing in
P, with (c1, c2, c3, c4) being the four curvatures. This series has an infinite group
of symmetries W isomorphic to the Apollonian group or the Weyl group of Φ.
Its analytic properties–convergence, growth, zeroes and poles–can translate into
information about the asymptotic behavior of quadruples in P.

In Section 2, we introduce Apollonian packings and Kac-Moody root systems,
for the reader with background in one area but not the other. To further motivate
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this article, we give one example of how the series Z(s) can be used to study the
density of curvatures in an integral packing.

Our first question about the series Z(s) is whether it can be expressed in terms of
automorphic forms. This question is inspired by Gritsenko and Nikulin’s theory of
automorphic correction for Lorentzian Kac-Moody root systems [16, 17]. In many
cases, one of the simplest symmetric functions for a Kac-Moody root system, the
Weyl denominator, can be multiplied by an extra factor to produce an automorphic
form. This means roughly that the Weyl denominator has a much larger group of
symmetries than just the Weyl group. We do not obtain an automorphic correction
for Z(s), but we use known automorphic corrections for root subsystems of Φ to
obtain partial results.

In Section 3, we use an affine root subsystem A
(1)
1 of Φ. By the Jacobi triple

product formula, the characters of this root subsystem are Jacobi theta functions,
so we find that Z(s) is related to Jacobi theta functions. Proposition 3.1 leads
to an expansion of Z(s) as a sum of theta functions. In Section 4, we use the

hyperbolic root subsystem H
(3)
71 , which is a foundational example for Gritsenko and

Nikulin. The Weyl denominator for H
(3)
71 is automorphically corrected to the Siegel

automorphic form Δ5 on Sp(4) [15]. Theorem 4.1 gives an automorphic correction
for a series related to Z(s), leading to an expression in terms of Δ5. These sections
are intended to lay the groundwork for further study of Z(s) from an automorphic
perspective.

Our second question about Z(s) is more elementary: where is it defined? In
Sections 5 and 6 we describe its domain of absolute convergence, a four-dimensional
region which we call the Apollonian cone A. We prove that the real part of the
Apollonian cone is the interior of the Tits cone of Φ:

Theorem 5.3. The domain of absolute convergence of Z is A =
⋃

w∈W

w(C).

Here C is the cone of nonnegative linear combinations of the fundamental weights
for Φ with at least three nonzero terms. The Tits cone is

⋃
w∈W w(C̄). The domain

A is independent of P and has a rich geometry related to Apollonian packings. In
Theorem 6.2, we give a complete geometric description of A in three-dimensional
projective space.

Theorem 6.2. We have A = J ∪
⋃

S∈T
CS in RP

3.

Here J is an open ball and T is an Apollonian packing on the sphere that bounds
J . For each circle S ∈ T , CS is the unique open cone whose boundary is tangent
to the sphere along S. A projective visualization of A is shown in Figure 4. These
sections allow us to rediscover Apollonian packings based solely on the Descartes
quadratic form. Our argument provides a template to study the geometry of Tits
cones for Kac-Moody root systems more generally.

Chen and Labbé have studied the set of limit roots in certain Kac-Moody root
systems and related them to sphere packings [9]. Their work involves similar vi-
sualizations to ours of the action of Weyl groups on the root space. However, the
Apollonian cone constructed here seems to be original, although the method of
construction requires no specialized tools.

Having established a connection between Apollonian packings and the Kac-
Moody root system Φ, we will suggest some possible generalizations on both sides.
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On the Kac-Moody side, one could begin with an indefinite Kac-Moody root system
of similar complexity to Φ, and study the geometry of its Weyl group of symmetry
and Tits cone. What fractal figures arise this way? In many cases, the Weyl group
will be a “thin group,” with orbits that are Zariski dense but of infinite covolume
in the ambient space [22]. It is an interesting problem to classify Kac-Moody root
systems with this property, all of which will be beyond hyperbolic type. Finally,
one could generalize the key arithmetic statements about packings—the asymptotic
density result of [24], the local-to-global conjecture of [12]—to Weyl orbits for these
root systems.

On the packing side, there are many possible generalizations to consider: higher
dimensional packings like the sphere packings of Boyd [7] and Maxwell [27], Apol-
lonian superpackings [13], the octahedral packing of Guettler and Mallows [19],
and more. Kontorovich and Nakamura introduce a classification of crystallographic
sphere packings in all dimensions [23]. They give notions of integrality and super-
integrality for general crystallographic sphere packings, and show that the latter
yields a finite classification. Stange introduces a collection of packings associated
to imaginary quadratic fields and Bianchi groups [30]. In all these cases, the basic
unit of the packing is a tuple of circles whose curvatures satisfy one or more qua-
dratic forms. The group of symmetries is generated by reflections which preserve
the forms. One could ask which generalizations of Apollonian packings are related
to a Kac-Moody root system. The results of Sections 5 and 6 should generalize to
many circle and sphere packings besides the Apollonian packing.

2. Background and motivation

2.1. Background on Apollonian packings. Figure 1 is a Descartes quadruple of
mutually tangent circles in the plane, with curvatures (c1, c2, c3, c4) = (−3, 5, 8, 12).

-3

5
8

12

Figure 1. Descartes quadruple c = −3α1 + 5α2 + 8α3 + 12α4

By convention, we take ci to be negative if this circle is external to the other
three; a circle can also degenerate to a straight line with curvature 0. Descartes
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discovered that the four curvatures satisfy a quadratic equation:

(2.1) 2c21 + 2c22 + 2c23 + 2c24 − (c1 + c2 + c3 + c4)
2 = 0.

Let α1, α2, α3, α4 be the standard basis for R4, and let ( , ) denote the symmetric
bilinear form of signature (3, 1) associated to the Descartes quadratic form, nor-
malized so that (αi, αi) = 2. A Descartes quadruple can be represented as a vector
c = c1α1 + c2α2 + c3α3 + c4α4 satisfying (c, c) = 0.

The Apollonian group is:

(2.2) W = 〈σ1, σ2, σ3, σ4|σ2
i = 1〉

with action on R4 determined by σi(αj) = αj − (αj , αi)αi. This preserves the form
( , ). The action of W on a Descartes quadruple c = c1α1 + c2α2 + c3α3 + c4α4

has a beautiful geometric interpretation. If three mutually tangent circles are fixed,
then there exist exactly two circles which are tangent to all three. The mapping σi

corresponds to fixing circles of curvature cj for j �= i, and swapping out the circle
of curvature ci. This can also be interpreted as a Möbius transformation of the
complex plane: an inversion across a circle containing the points of tangency of the
three fixed circles.

The orbit of W on an initial Descartes quadruple c is an Apollonian circle pack-
ing, shown in Figure 2.

-3

5
8

8
77 12

53

12

53

12

45

29

29

44

29

44

29

77

53

77

53

56

68

32

68

56

32 77

77

5353

5353

48

48
68

68
29

29

Figure 2. Apollonian packing

A quadruple of mutually tangent circles c′ = c′1α1 + c′2α2 + c′3α3 + c′4α4 appears
in this figure if and only if it can be obtained from c by an element of W . We will
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denote the multiset of Descartes quadruples in the packing as P (the multiplicity of
quadruples in the packing will be discussed in the proof of Proposition 5.1). Notice
that if the initial quadruple c ∈ Zα1⊕Zα2⊕Zα3⊕Zα4, then so is every quadruple
in the packing; in this case the packing is called integral. The number-theoretic
study of integral Apollonian packings has experienced a renaissance in the last 20
years; see [12, 29]. The central problem in this field is to understand the set of
integers which appear as curvatures in a given packing.

All integral packings are either bounded, with a unique exterior circle of negative
curvature, or are strip packings, contained between two parallel lines of curvature
zero. If we define the height of a quadruple ht(c1α1 + c2α2 + c3α3 + c4α4) =
c1 + c2 + c3 + c4, then in each case there is a quadruple in P, called the base
quadruple, of minimal height. (This is usually called the root quadruple, but we
use the term base quadruple to avoid confusion with root system terminology.) A
bounded packing has a unique base quadruple, which appears with multiplicity 1 or
2 in P. A strip packing has nαi +nαj for some i �= j as its unique base quadruple,
which appears with infinite multiplicity.

2.2. Background on Kac-Moody root systems. We focus here on the sym-
metric Kac-Moody root systems, and particularly on the root system Φ which will
be used throughout this article. For more general definitions, we refer the reader
to [21].

A symmetric Kac-Moody root system is defined from a symmetric Cartan matrix,
with entries of 2 on the diagonal and nonpositive integers off the diagonal. Our
root system Φ has the Cartan matrix

(2.3)

⎛
⎜⎜⎝

2 −2 −2 −2
−2 2 −2 −2
−2 −2 2 −2
−2 −2 −2 2

⎞
⎟⎟⎠

which is the matrix of the Descartes quadratic form. The real simple roots are the
standard basis vectors αi. The root space is

⊕
i Rαi; the root lattice is Q =

⊕
i Zαi.

The Cartan matrix defines a bilinear form on the root space. The Weyl group is the
group generated by reflections across the hyperplanes orthogonal to the real simple
roots, using this bilinear form. The Weyl group acts on the root space, preserving
the root lattice. In our case, by definition, the Weyl group W of Φ is the Apollonian
group.

The set of real roots Φre is the orbit of the real simple roots under W . Each
real root α lies in Q and satisfies (α, α) = 2. The set of imaginary roots Φim is
more difficult to define, but it arises naturally from the representation theory of
Kac-Moody algebras. Each imaginary root α lies in Q and satisfies (α, α) ≤ 0. The
full set of roots Φ = Φre ∪ Φim is a W -invariant subset of Q. Each root is either
positive, belonging to the cone Q+ of nonnegative linear combinations of the real
simple roots, or negative, belonging to the cone Q− = −Q+.

An integral Descartes quadruple can be viewed as a vector c of length squared
(c, c) = 0 in the root lattice Q of Φ. An Apollonian packing is the W -orbit of c
in Q. Since (c, c) = 0, one might ask whether integral Descartes quadruples are
imaginary roots. The answer is no if c is in a bounded packing P. In such a packing,
quadruples involving the exterior circle do not belong to Q+ or Q−, so they cannot
be imaginary roots. The orbit P is bounded below (by the base quadruple) but not
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contained in the positive cone Q+; this behavior is not possible for Weyl orbits in
affine or hyperbolic types, but it occurs in Φ. Thus P is not an orbit of imaginary
roots. The strip packings do correspond to orbits of imaginary roots; indeed, these

are imaginary roots of the affine root subsystems A
(1)
1 which will be defined below.

The fundamental weights ωi are a dual basis to the simple roots αi under ( , ).
The weight space is

⊕
i Rωi; the weight lattice, which contains the root lattice, is⊕

i Zωi. The Weyl group acts on the weight space, preserving the weight lattice.
The Weyl vector ρ is the sum of the fundamental weights. In the case of Φ, we

have ωi =
1
8

(
αi −

∑
j �=i αj

)
and ρ = − 1

4 (
∑

i αi), but in general the fundamental

weights and Weyl vector may not be in the root space. The dominant cone C̄ is
the cone of nonnegative linear combinations of the fundamental weights, dual to
the positive cone. The antidominant cone is −C̄. The Tits cone is

⋃
w∈W w(C̄).

Using the notation of this section, we may take c ∈ P a Descartes quadruple,
s = s1ω1 + s2ω2 + s3ω3 + s4ω4, and write the generating function

(2.4) Z(s) =
∑
w∈W

e−(wc,s) =
∑
w∈W

e−(c,ws).

This series is invariant under s 	→ ws for w ∈ W .
The Weyl denominator identity is

(2.5)
∑
w∈W

(−1)�(w)e(w(ρ)−ρ,s) =
∏

α∈Φ+

(1− e−(α,s))mult(α),

where �(w) denotes the length of a reduced word for w, Φ+ is the set of positive real
and imaginary roots, and mult(α) is a positive integer, called the multiplicity, of
each root. This formula can serve as an artificial definition of the set of imaginary
roots. The multiplicity of each real root is 1; describing the multiplicities of the
imaginary roots is a difficult problem. The Weyl denominator (2.5) is a convergent
series for s in the interior of the Tits cone.

The idea of automorphic correction is to augment the set of imaginary roots for
Φ so that the Weyl denominator (2.5) becomes an automorphic form. In its sum
expression, the corrected denominator function contains infinitely many different
Weyl orbits, not just one. In its product expression, the imaginary roots and their
multiplicities can be parametrized explicitly. Weyl denominators of affine Kac-
Moody root systems are theta functions, as explained in detail in Chapter 13 of
[21]. Beginning with examples due to Feingold and Frenkel [11] and Borcherds [3],
there have been automorphic corrections for Weyl denominators in certain indefinite
Kac-Moody root systems. Gritsenko and Nikulin develop the theory of automorphic
correction in [14–17].

We will need some terminology from the classification of Kac-Moody root sys-
tems. A symmetric root system Φ is finite if the Cartan matrix is positive definite,
affine if it is positive semidefinite with a nontrivial kernel, and indefinite otherwise.
A principal root subsystem of Φ is obtained by deleting rows and columns i1, . . . ,
ik from the Cartan matrix. Φ is called hyperbolic if it is indefinite, but each proper
principal root subsystem is finite or affine. The Cartan matrix of a hyperbolic root
system must have exactly one negative eigenvalue. Then the projectivized timelike
cone of vectors s satisfying (s, s) < 0 is a hyperbolic space. The condition on prin-
cipal root subsystems implies that the fundamental weights ωi are all inside or on
the boundary of this space. The dominant cone C̄ is a hyperbolic simplex of finite
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volume, and its orbit under the Weyl group tiles the space, so the Tits cone is the
timelike cone.

Our root system Φ is not finite, affine, or hyperbolic. In Maxwell’s terminology,
Φ has level 2, because each proper principal root subsystem is finite, affine, or

hyperbolic [27]. The rank 2 principal root subsystems have affine type A
(1)
1 . The

rank 3 principal root subsystems have hyperbolic type H
(3)
71 . (The notation H

(3)
71 is

taken from Carbone et al. [8]; this root system is called A1,II in [14] and Π3,1 in
[1].) We will describe the dominant cone for Φ and its orbit under the Weyl group
in Section 6.

2.3. Motivation. We will sketch one application of the series Z(s), which also
illustrates why automorphic correction would be valuable. There has been great
interest in the Apollonian “L-function”

(2.6) L(u) =
∑
c∈P∗

c−u.

Here P∗ is the collection of curvatures of circles in P, again counted with multi-
plicity. This series is known to converge for �(u) > δ, where δ ≈ 1.30568 is the
Hausdorff dimension of the residual set of any packing [6]. Meromorphic contin-
uation to the left of δ would yield an asymptotic for the growth of circles in P.
Important work of Kontorovich and Oh [24], Vinogradov [31] and Lee and Oh [26]
has shown that

(2.7) |{c ∈ P∗|c < X}| = rXδ +O(Xδ−2(δ−s1)
63 ),

where r is a constant depending on the packing, and s1 is a constant independent of
the packing. Their approach is based on equidistribution of horocycles on a hyper-
bolic 3-manifold and does not explicitly involve L(u). Meromorphic continuation
of L(u) would yield a new proof.

In fact, L(u) can be obtained from Z(s) by an integral transform. First, for
t > 0, we take

Z1(t) =
1

2πi

∫
(
1
2 )

Z(stω1 + stω2 + stω3 + (1− s)tω4)

+ Z(stω1 + stω2 + (1− s)tω3 + stω4)

+ Z(stω1 + (1− s)tω2 + stω3 + stω4)

+ Z((1− s)tω1 + stω2 + stω3 + stω4)
ds
s ,

(2.8)

where the integral on the vertical line �(s) = 1
2 is taken in the principal value sense.

An individual summand in Z(stω1 + stω2 + stω3 + (1 − s)tω4) has the form

e(−c1−c2−c3+c4)st−c4t. The integral in s will be 0 if c1 + c2 + c3 > c4,
e−c4t

2 if
c1 + c2 + c3 = c4, and e−c4t if c1 + c2 + c3 < c4. The results of the integration
for the three other terms of the integrand are entirely parallel. For any Descartes
quadruple (c1, c2, c3, c4) ∈ P other than the base quadruple, there is a unique
Apollonian group reflection σi which reduces ci, yielding a Descartes quadruple of
larger circles in P. For this i, we have ci >

∑
j �=i

cj , and ci is the maximal circle in
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the quadruple. It follows that the integral of

e(−c1−c2−c3+c4)st−c4t + e(−c1−c2+c3−c4)st−c3t

+ e(−c1+c2−c3−c4)st−c2t + e(c1−c2−c3−c4)st−c1t

will be simply e−max(ci)t. The base quadruple does not contribute to the integral
at all. Note that packings with symmetry type D2, i.e. with the base quadruple
being a multiple of (−1, 2, 2, 3), contain two copies of the base quadruple. In this

case each copy of the base quadruple (c1, c2, c3, c4) will contribute
e− max(ci)t

2 , so it
is as if one copy of the base quadruple is removed.

Because each c ∈ P∗ is the maximum of a unique Descartes quadruple other
than the base quadruple, we have shown that

(2.9) Z1(t) + e−c1t + e−c2t + e−c3t + e−c4t =
∑
c∈P∗

e−ct,

where c1, c2, c3, c4 are the four curvatures of the base quadruple. Finally, a Mellin
transform in t yields

(2.10)

∫ ∞

0

tu(Z1(t) + e−c1t + e−c2t + e−c3t + e−c4t)dtt = Γ(u)L(u).

We will see from Proposition 5.1 that Z(s) converges absolutely in the domain of the
two integrations. The first integral converges conditionally in the principal value
sense. The integrand in the second integral has a potential singularity at t = 0.
The integral converges as t → ∞ because of the rapid decay of Z1(t), but it may
diverge as t → 0 for sufficiently small �(u).

One would hope to meromorphically continue L(u) following the procedure of
Riemann’s second proof of the meromorphic continuation and functional equation
for the zeta function. This requires finding a symmetry for Z1(t) in t 	→ 1

t . Such
a symmetry does not arise from the group of functional equations W for Z(s), but
it might come from additional automorphic behavior. In particular, both the theta
functions of Section 3 and the Siegel automorphic form Δ5 of Section 4 possess such
symmetries. This is one reason to search for an automorphic correction of Z(s).

Gritsenko and Nikulin give conditions on generalized Kac-Moody root systems
which are good candidates for automorphic correction in [18]. They call these root
systems “Lorentzian.” A Lorentzian root system is hyperbolic and has Weyl vector
ρ in the root space. Our root system Φ satisfies the second condition but not the
first. Automorphic correction may still be possible for Φ but it is more difficult than
the automorphic corrections which are currently known. This indicates the difficulty
of generalizing Riemann’s proof as discussed above. As another indication, note
that the constant δ would appear in the calculation as a pole of L(u). Since little
is known about this constant, it is not clear how it would arise. A more tractable
problem is to make use of other Lorentzian root subsystems of Φ (besides the
principal ones). This could yield new information about the density of curvatures
appearing in different subsets of an Apollonian packing.

3. Expansion of Z(s) in theta functions

The Kac-Moody root system Φ has a principal rank 2 root subsystem A
(1)
1 with

the Cartan matrix

(
2 −2
−2 2

)
. The Weyl group of this root subsystem is an infinite
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dihedral group. Sums over Weyl orbits are theta functions—this is equivalent to the
fact that the set of circles tangent to two fixed circles in a packing have curvatures
parametrized by a quadratic polynomial. Theta functions satisfy a group GL(2,Z)
of symmetries, in which the Weyl group elements act as upper-triangular matrices.
Their appearance here is preliminary evidence that Z(s) may have automorphic
properties beyond its Apollonian group of symmetries. In this section we will
briefly explain the connection between Z(s) and theta functions.

Let W2 denote the subgroup 〈σ3, σ4〉 ⊂ W , which is the Weyl group of an

A
(1)
1 root subsystem. Fix a pair of tangent circles in P, assuming without loss

of generality that their curvatures are c1, c2 in a Descartes quadruple c = c1α1 +
c2α2 + c3α3 + c4α4. The set of all Descartes quadruples including these two circles
is an orbit of W2 in P. Define

(3.1) Z+
2 (s) =

∑
w∈W2

e−(wc,s), Z−
2 (s) =

∑
w∈W2

(−1)�(w)e−(wc,s).

Proposition 3.1 relates these to Jacobi theta functions, which we denote as

(3.2) θ00(z, τ ) =
∑
n∈Z

e2πinz+πin2τ , θ01(z, τ ) =
∑
n∈Z

(−1)ne2πinz+πin2τ .

Proposition 3.1. We have:

Z±
2 (s) = e−(c,s)

((
θ00+θ01

2

) ( (c1+c2+c3−c4)s3−(c1+c2−c3+c4)s4
2πi , −(c1+c2)(s3+s4)

πi

)
±e(c3−c4)(s3−s4)

(
θ00−θ01

2

) (−(c1+c2−c3+c4)s3+(c1+c2+c3−c4)s4
2πi , −(c1+c2)(s3+s4)

πi

))
.

(3.3)

Proof. The set of Descartes quadruples in P containing c1, c2 may be parametrized
as follows:

{c+ n((n− 1)(c1 + c2)− c3 + c4)α3 + n((n+ 1)(c1 + c2)− c3 + c4)α4 | n even}
∪ {c+ (n+ 1)(n(c1 + c2)− c3 + c4)α3 + (n− 1)(n(c1 + c2)− c3 + c4)α4 | n odd},

where the first subset comes from applying words of even length in σ3, σ4 to
(c1, c2, c3, c4), and the second comes from applying words of odd length. We can
then write

Z±
2 (s) = e−(c,s)

( ∑
n∈Z even

e−n2(c1+c2)(s3+s4)+n(c1+c2+c3−c4)s3−n(c1+c2−c3+c4)s4

±
∑

n∈Z odd

e−n2(c1+c2)(s3+s4)−n(c1+c2−c3+c4)s3+n(c1+c2+c3−c4)s4+(c3−c4)(s3−s4)

)

which is equivalent to the desired formula. �

It follows from this proposition that we may write:

Z(s) =
∑
c1,c2

e−(c,s)
((

θ00+θ01
2

) ( (c1+c2)(s3−s4)+(c3−c4)(s3+s4)
2πi , −(c1+c2)(s3+s4)

πi

)

+e(c3−c4)(s3−s4)
(
θ00−θ01

2

) ( (c1+c2)(s4−s3)+(c3−c4)(s3+s4)
2πi , −(c1+c2)(s3+s4)

πi

))
,

(3.4)
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where the sum is over pairs c1, c2 such that some Descartes quadruple c = c1α1 +
c2α2 + c3α3 + c4α4 appears in P. It does not matter which quadruple c we choose
to associate to c1, c2.

In the special case c3 = c4, which can occur if the packing P has a line of sym-
metry, Z+

2 (s) and Z−
2 (s) behave especially nicely. In this case, Z−

2 (s) is essentially

the Weyl denominator for A
(1)
1 rather than a general alternating sum over the Weyl

group. We have

Z+
2 (s) = e−(c,s)θ00

(
(c1 + c2)(s3 − s4)

2πi
,
−(c1 + c2)(s3 + s4)

πi

)
,

Z−
2 (s) = e−(c,s)θ01

(
(c1 + c2)(s3 − s4)

2πi
,
−(c1 + c2)(s3 + s4)

πi

)
.

(3.5)

The series Z+
2 (s) and Z−

2 (s) admit Jacobi triple product expressions and satisfy
simpler transformation laws with respect to GL(2,Z). A related simplification
occurs when s3 = s4, as we have in the integral transform of equation (2.8).

4. Relation to the Siegel modular form Δ5

The Kac-Moody root system Φ has a principal rank 3 root subsystem H
(3)
71 with

the Cartan matrix

(4.1)

⎛
⎝ 2 −2 −2
−2 2 −2
−2 −2 2

⎞
⎠ .

This root system is hyperbolic and Lorentzian. Indeed, it is one of the original
examples of a Lorentzian root system, studied by Gritsenko and Nikulin in [15].
They furnish an automorphic correction of this root system whose Weyl denomina-
tor is the Siegel automorphic form Δ5 on Sp(4). In this section we will outline the
relationship between Z(s) and Δ5.

An orbit of the Weyl group of H
(3)
71 in P is simply the collection of Descartes

quadruples including a fixed circle. This collection plays an important role in the
literature on Apollonian packings. After a change of variables, the Weyl group is
isomorphic to the congruence subgroup Γ0(2) of GL(2,Z); its action on Descartes
quadruples is isomorphic to the action of Γ0(2) on binary quadratic forms. As a
consequence, one can show that the curvatures of circles tangent to a fixed circle
in a packing P are precisely the values taken by a shifted binary quadratic form
[28]. This has been a crucial tool for proving density results on the family of
curvatures—see [4, 5].

From this change of variables, we can see directly that a sum over the Weyl

group of H
(3)
71 has GL(2,Z) symmetries. The surprising fact is that such a sum may

possess a larger group Sp(4,Z) of symmetries, in which GL(2,Z) is the subgroup of
block diagonal matrices. This fact has not been used in the literature. Because of
the technical details of automorphic correction, we will encounter some obstacles
in applying this Sp(4) automorphicity to density and counting problems in pack-
ings. But new results may be possible, especially if we broaden to consider other
Lorentzian root subsystems of Φ.

Let W3 denote the subgroup 〈σ2, σ3, σ4〉 ⊂ W . which is the Weyl group of an

H
(3)
71 root subsystem. Fix a Descartes quadruple c = c1α1+c2α2+c3α3+c4α4 ∈ P.

We assume from the start that c2 = c3 = c4 and, by rescaling if necessary, that
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2c1 + 2c2 = 1. This ensures that a sum over the Weyl orbit of c behaves like the

Weyl denominator for H
(3)
71 . These assumptions cannot be satisfied in an integral

plane packing, but they can with the non-integral packing with D3 symmetry whose

base quadruple is −
√
3
4 α1 +

1
4

(
2 +

√
3
)
α2 +

1
4

(
2 +

√
3
)
α3 +

1
4

(
2 +

√
3
)
α4. They

can also be satisfied in the integral spherical and hyperbolic packings studied in
[10].

As in Section 3, define

(4.2) Z+
3 (s) =

∑
w∈W3

e−(wc,s), Z−
3 (s) =

∑
w∈W3

(−1)�(w)e−(wc,s).

Our goal is to relate Z−
3 (s) to the Siegel modular form Δ5.

Let us fix some notation. The group Sp(4,Z) consists of integral 4× 4 matrices

M =

(
A B
C D

)
such that tM

(
0 I
−I 0

)
M =

(
0 I
−I 0

)
. Here A, B, C, D, 0

and I denote 2 × 2 block matrices. The Siegel upper half plane H2 is the set of
symmetric 2× 2 complex matrices Z = X + iY such that the imaginary part Y is
a positive-definite matrix. Sp(4,Z) acts on H2 via

(4.3)

(
A B
C D

)
Z = (AZ +B)(CZ +D)−1.

A Siegel modular form f of weight k ∈ Z and character ν : Sp(4,Z) → C× is a
holomorphic function on H2 satisfying

(4.4) f(MZ) = ν(M) det(CZ +D)kf(Z)

for all M ∈ Sp(4,Z).
The function Δ5 : H2 → C is a Siegel cusp form of weight 5 with a nontrivial

quadratic character ν. For full details on the construction of Δ5, we refer the reader
to [15]. Here we will work with the Fourier expansion of Δ5:

(4.5)
1

64
Δ5(Z) =

∑
l,m,n odd

m,n,4mn−l2>0

∑
d| gcd(l,m,n)

d4g

(
mn

d2
.
l

d

)
eπi(nz1+lz2+mz3),

where Z =

(
z1 z2
z2 z3

)
∈ H2 [15, Equation 4.10]. The coefficients g(k, l) are defined

by the generating series

(4.6)
∑

k,l odd

g(k, l)eπi(kz1+lz2) = η(z1)
9θ11(z2, z1),

where η(z) = eπiz/12
∞∏

n=1
(1−e2πinz) and θ11(z, τ ) =

∑
n∈Z

(−1)neπi(2n+1)z+πi(n+1/2)2τ .

Then the Jacobi triple product formula yields:∑
k,l odd

g(k, l)eπi(kz1+lz2)

= −eπi(z1−z2)
∞∏

n=1

(1− e2πi((n−1)z1+z2))(1− e2πi(nz1−z2))(1− e2πinz1)10.

(4.7)

In order to relate the action of Sp(4,Z) on H2 to the action of the Apollonian
group, we introduce a new basis of R4 and change variables. Let β1 = (α3 +α4)/2,
β2 = α4, β3 = (α2 + α4)/2. Then s = s1ω1 + s2ω2 + s3ω3 + s4ω4 can be rewritten
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as z0ω1 + z1β1 + z2β2 + z3β3 for some z0, z1, z2, z3 ∈ C. This is the same change of
variables used to relate the action of the Apollonian group to the action of Γ0(2)
on binary quadratic forms. We also let ρ = − 1

2 (α2 + α3 + α4), the Weyl vector for

the H
(3)
71 root subsystem.

Theorem 4.1. For s = s1ω1 + s2ω2 + s3ω3 + s4ω4 = z0ω1 + z1β1 + z2β2 + z3β3,
we have

(4.8) e(c,s)

(
Z−
3 (s)−

∑
α

m(α)
∑

w∈W3

(−1)�(w)e−(w(c+α),s)

)
=

e−(ρ,s)

64
Δ5

(
1

πi
Z

)
,

where the first sum is over α ∈ Z≥0α2 ⊕ Z≥0α3 ⊕ Z≥0α4 such that (α, αi) ≤ 0 for
i = 2, 3, 4, and the m(α) are integer constants. Further,

(4.9)
e−(ρ,s)Δ5

(
1
πiZ

)
64e(c,s)Z−

3 (s)

is a series of exponentials of the form e−(β,s) where each β is a nonnegative integer
combination of α2, α3, α4 satisfying (β, β) ≤ 0.

The first statement is the analog of Theorem 2.3 in [15]. The meaning of the
second statement comes from comparing the product forms of the Weyl denomina-

tor for H
(3)
71 , e(c,s)Z−

3 (s), to the Weyl denominator of its automorphic correction,
e−(ρ,s)

64 Δ5

(
1
πiZ

)
. The original root system and the automorphic correction have the

same real roots, and differ only by imaginary roots.

Proof. Note that (c, αi) = −(ρ, αi) = −1 for i = 2, 3, 4 because c2 = c3 = c4 and
2c1+2c2 = 1. Therefore, for α as in the proposition, the bilinear pairing of c+α with
any positive root in the root subsystem will be a nonpositive integer. That is, c+α
behaves like an antidominant weight. Further, for w ∈ W3, we have c−w(c+α) =
−ρ−w(−ρ+α), and this is a nonpositive integer combination of α2, α3, α4. Applying
the bilinear form, we see that (c, s) − (w(c + α), s) = (−ρ, s) − (w(−ρ + α), s) is
an even integer combination of z1, z2, z3, with nonnegative coefficients of z1 and z3.
Since (ρ, s) = z1 + z2 + z3, we can write:

−(w(−ρ+ α), s) = nz1 + lz2 +mz3.

With n, l,m odd, and n,m > 0. The condition that 4mn− l2 > 0 is equivalent to
(w(−ρ+α), w(−ρ+α)) < 0, which holds because−ρ+α is positive and antidominant
and w preserves the bilinear from. From this calculation and the Fourier expansion
of Δ5, we see that the two sides of (4.8) are exponential sums with the same support,
and it suffices to compare the coefficients.

By the Fourier expansion, the coefficients on the right side of (4.8) are integers.
Moreover, the constant coefficient, which corresponds to l = m = n = 1, is 1. We
must show that the Fourier expansion on the right side is alternating with respect
to the action of W3. This action is generated as follows: if −(w(−ρ + α), s) =
nz1 + lz2 +mz3, then

− (σ2w(−ρ+ α), s) = (n− 2l + 4m)z1 + (4m− l)z2 +mz3

− (σ3w(−ρ+ α), s) = nz1 + (4n− l)z2 + (m− 2l + 4n)z3

− (σ4w(−ρ+ α), s) = nz1 − lz2 +mz3.
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To show alternation for σ2, we must check that∑
d| gcd(4m−l,m,n−2l+4m)

d4g

(
m(n−2l+ 4m)

d2
.
4m−l

d

)
=−

∑
d| gcd(l,m,n)

d4g

(
mn

d2
.
l

d

)
.

Since the sum over d is the same on both sides, it is sufficient to check that
g (m(n− 2l + 4m), 4m− l) = −g(mn, l), or more generally g(k− 2lm+ 4m2, 4m−
l) = −g(k, l) for all k, l,m ∈ Z. We can see from the definition that this property
holds for coefficients of θ11(z2, z1), and therefore it must hold for the coefficients
g(k, l) of η(z1)

9θ11(z2, z1). The proof of alternation for σ3 is entirely parallel. For
σ4, it suffices to show that g(nm,−l) = −g(nm, l), which again is apparent from
the series definition of θ11(z2, z1).

Now that we have the expected W3 alternation on both sides of (4.8), note that
each W3 orbit contains a unique antidominant element, which can be written as
−ρ + α where −(−ρ + α, s) = nz1 + lz2 + mz3, and α is a nonnegative integer
combination of α2, α3, α4. In this case, set

(4.10) m(α) = −
∑

d| gcd(l,m,n)

d4g

(
mn

d2
.
l

d

)

and equation (4.8) follows.
To justify the final sentence of the theorem, use (4.8) to express (4.9) as a linear

combination of terms of the form∑
w∈W3

(−1)�(w)e(c−w(c+α),s)∑
w∈W3

(−1)�(w)e(c−w(c),s)
.

Both the numerator and denominator are series of exponentials e−(β,s) where each
β is a nonnegative integer combination of α2, α3, α4. The denominator is a unit
in the ring of such series. Finally, the quotient is W3-invariant, so if it includes a
term e−(β,s), then it also includes e−(w(β),s) for all w ∈ W3. Thus every element in
the W3 orbit of β is a nonnegative integer combination of α2, α3, α4. If (β, β) > 0,
then (β, αi) > 0 for i = 1, 2, or 3, and we can apply σi to reduce the height of β.
We can repeat this procedure until we have a negative coefficient of α2, α3, or α4,
a contradiction. We conclude that (β, β) ≤ 0. �

In the group Sp(4,Z) of symmetries for Δ5, W3 is embedded as the subgroup

of block matrices

(
A 0
0 tA−1

)
with A ∈ Γ0(2) ⊂ GL(2,Z). The symmetry under(

0 I
−I 0

)
∈ Sp(4,Z) is of the kind needed to complete the Mellin inversion argu-

ment sketched in Section 2. The difference between e(c,s)Z−
3 (s) and its automorphic

correction e(ρ,s)

64 Δ5

(
1
πiZ

)
adds some technical complication, but this method can

be used to estimate the density of curvatures tangent to a fixed circle in P. We do
not pursue this here because good estimates for the density of integers represented
by a shifted binary quadratic form are already available [2]. Another promising
approach is to consider alternate Lorentzian root subsystems of Φ.

In this section, we assumed that c has a particularly simple form, which causes

Z−
3 (s) to behave like the Weyl denominator for the H

(3)
71 root system. A related

simplification occurs with specializations of s, such as s2 = s3 = s4. It is not clear
whether an arbitrary sum over an orbit of W3 can be automorphically corrected.
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5. The Apollonian cone A

Since several different conelike objects appear below, we introduce some termi-
nology here. We define the cone with apex p ∈ Rn on a region R ⊂ Rn as the
union of all rays originating at p and containing a point of R. The bounded cone
with apex p on region R is the union of all line segments between p and a point of
R. A simplicial cone is the cone on a simplex or finite union of simplices in Rn.

We fix a bounded, integral packing P, and ask where its associated generating
function Z(s) converges. It is known that the domain of absolute convergence
of any series of exponentials with real coefficients is a convex tube domain (the
analogous statement for power series is [25, Proposition 2.3.15]). The real parts of
the variables si must lie in a convex region in R4, while the imaginary parts can be
arbitrary. Proposition 5.1 establishes an initial domain of absolute convergence.

Proposition 5.1. Z(s) is absolutely convergent in the simplicial cone C0 defined
by the four inequalities �(si) > 0.

Proof. Let c denote the negative curvature of the exterior circle in P. Assume
without loss of generality that the base quadruple is ordered from smallest to largest
curvature. Then we have c1 ≥ c and c2, c3, c4 ≥ 0 for all quadruples c1α1 + c2α2 +
c3α3 + c4α4 ∈ P.

Any ordered quadruple appears for at most two Descartes configurations in P.
Indeed, if the same ordered quadruple of curvatures appears at distinct configura-
tions, then the same sequence of moves in the Apollonian group can be applied to
both quadruples to obtain two distinct copies of the base Descartes configuration
in P. This is possible if and only if the packing has symmetry type D2. In this
case there are exactly two copies of the ordered base quadruple in the packing, and
thus two copies of any ordered quadruple. In any other case, there is only one copy
of each ordered quadruple.

Therefore Z(s) can be compared to the product of four geometric series

2e−cs1

(1− e−s1)(1− e−s2)(1− e−s3)(1− e−s4)

which converges absolutely in this region. �

A similar argument, counting triples of circles in the packing instead of quadru-
ples, can be used to prove Proposition 5.2, which gives a larger domain of conver-
gence.

Proposition 5.2. Z(s) is absolutely convergent in the simplicial cone C1 defined
by the 12 inequalities �(si) > −2�(sj).

In fact, the domain of convergence is even larger. The defining property of Z(s)
is its invariance under the Apollonian group W = 〈σ1, σ2, σ3, σ4〉. Applying w ∈ W
to s simply permutes the summands of Z(s), preserving absolute convergence.

Applying σi to the cone C0 yields a simplicial cone defined by the four inequalities
�(si) < 0 and �(sj) > −2�(si) for j �= i. From this we see that C1 is the convex
hull of the set C0 ∪ σ1(C0) ∪ σ2(C0) ∪ σ3(C0) ∪ σ4(C0). In particular, this set
includes the faces of C̄0 where exactly one of the �(si) is 0, but does not include
the 2-skeleton of C̄0. Indeed, if the real parts of two of the si are 0, then Z(s)
certainly diverges because there exist infinitely many quadruples in the packing
with two circles fixed.
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Let C = {s ∈ C4 | all �(si) ≥ 0, at most one �(si) = 0}. Then we have the
following:

Theorem 5.3. The domain of absolute convergence of Z(s) is A =
⋃

w∈W

w(C).

This domain is the interior of the Tits cone,
⋃

w∈W w(C̄), and is independent of
the Apollonian packing P that we have fixed.

Proof. We may assume for simplicity that our point of convergence s lies in R4,
with the understanding that the real domain of absolute convergence determines
the complex domain.

It is clear from the invariance of Z(s) underW and from the previous propositions
that the domain of absolute convergence contains A. We must show that if Z(s)
converges absolutely at s, then this point belongs to A. If any W -translate of s
has two or more nonpositive coordinates, then Z(s) diverges, because the series will
contain infinitely many terms with absolute value bounded below by some positive
constant. If some W -translate has all nonnegative coordinates and at most one
zero coordinate, then the point lies in A by definition.

The only remaining possibility is that every W -translate of s has three positive
coordinates and one negative. Let B be the set of points with this property, and
suppose s ∈ B. Define the height of s as s1 + s2 + s3 + s4. Note that applying σi

adds 4si to the height of a point. Every point in B has positive height, because
there is only one negative coordinate si, and two of the three other coordinates
must exceed −2si. Moreover, for a point s ∈ B, there is a unique sequence of
W -translates:

s, σi1s, σi2σi1s, σi3σi2σi1s, . . .

with height decreasing monotonically. The heights of this sequence must converge
to a lower bound h, so the negative coordinates of the sequence must converge
to 0. It follows that the sequence of points eventually lies in the compact region
h ≤ s1 + s2 + s3 + s4 ≤ h + ε, s1, s2, s3, s4 ≥ −ε. We can choose a convergent
subsequence, denoted (sn). Because the negative coordinate si of sn converges to
0, and one other coordinate sj is bounded above by −2si, the point limn→∞ sn
must lie on the 2-skeleton of the simplicial cone C̄0.

Note that the function Z(s) on R4 is defined by a sum of positive terms. If it
converges at s, then it converges to the same value at each sn. This implies that
the partial sums at each sn are uniformly bounded above, which in turn implies
that the partial sums at limn→∞ sn are bounded above. We would then have that
Z(s) converges at limn→∞ sn, a contradiction. �

6. The geometry of A

What does the domain of absolute convergence A look like? The question is of
interest because there are few explicit examples in the literature of Tits cones for
Kac-Moody groups beyond the affine and hyperbolic cases.

The geometry of the Tits cone is well-understood for hyperbolic root systems.
The bilinear form ( , ) determines a cone J of timelike vectors satisfying (s, s) < 0.
One half of this cone, J+, intersects the dominant cone C̄. In the hyperbolic case,
C̄ is a polytope of finite hyperbolic volume in J+ with vertices at the fundamental
weights, and its W -translates cover J+, so A = J+.
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We will see, however, that none of this holds in Φ. Each fundamental weight ωi

satisfies (ωi, ωi) =
1
8 so these vectors are spacelike, not timelike. Thus C̄ extends

beyond the cone J+, and has infinite hyperbolic volume. The Tits cone Ā includes
J+ as a proper subset, and is much more geometrically complicated than J+. We
will see that the intricate structure of Apollonian packings carries over to A.

In order to visualize A, we must cut down its dimension. First, since A is a tube
domain, it suffices to describe the real part. Because the real part of each region
w(C) for w ∈ W is a simplicial cone defined by a system of homogeneous linear
inequalities, the real part of A is a cone through the origin in R4. It is easily shown
that the real part of A lies in the half-space s1 + s2 + s3 + s4 ≥ 0. A cone on the
origin in this half-space can be considered as a subset of RP3. For the rest of this
section, by abuse of notation, we will consider C, all w(C), and A as subsets of
RP

3. The graphics in this section depict the affine section of A along the hyperspace
s1 + s2 + s3 + s4 = 1.

Figure 3, generated in Mathematica [20], shows the domains
⋃

w∈W
�(w)≤�

w(C) for

� = 0, 1, 2, 3 in RP
3. Each w(C) is a 3-simplex.

Figure 3. Preliminary domains of convergence for Z(s)
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The boundary of the timelike cone J = {s ∈ RP
3 | (s, s) < 0} is the lightlike

cone N = {s ∈ RP
3 | (s, s) = 0}. N is a sphere in projective space, and J is the

ball enclosed by the sphere. Both are W -invariant.
The 3-simplex C is has vertices ω1, ω2, ω3, ω4. The six edges are segments along

si = sj = 0 for some i, j. Each edge is tangent to N . If we fix a vertex ωi, the three
points of tangency on edges through ωi lie in the plane s1 + s2 + s3 + s4 − 2si = 0.
The four planes s1 + s2 + s3 + s4 − 2si = 0 intersect N in four mutually tangent
circles.

We use these circles as a base quadruple to generate an Apollonian packing T
on N . Then, for each circle S ∈ T , let OS be the open spherical cap on N , with
boundary S (chosen so that all the sets OS are disjoint). There is a unique point
pS such that the cone on S with apex pS is tangent to N . Let CS be the bounded
cone on OS with apex pS , and let C ′

S be the unbounded cone. An image of the

region J ∪
⋃

S∈T CS ⊂ RP
3 is shown in Figure 4.

Figure 4. Full domain of convergence for Z(s)

Because the boundary of each cone CS is tangent to the sphere, the line segments
connecting apexes pS for tangent circles S ∈ T are contained in the boundary of
both cones, and tangent to the sphere. Such line segments are dense in the boundary
of the region J ∪

⋃
S∈T CS . The line segments connecting apexes of non-adjacent

cones must intersect J ; otherwise the two cones would intersect each other.
Let F ⊂ N denote the fractal set of points in N not on any circle S ∈ T or in

any spherical cap OS .
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Proposition 6.1.

(6.1)
⋂
S∈T

C ′
S = J ∪ F ∪

⋃
S∈T

CS .

Proof. Given two points p1,p2 ∈ RP
3 \ J , we may form two cones tangent to N

with these points as apexes. We will denote the open regions enclosed by these
cones as C ′

1 and C ′
2, and the circles of tangency as S1 and S2 (For points on N , the

cone becomes a half-space, and the circle becomes a single point.) If the circles S1

and S2 are externally disjoint, then each point is contained in the interior of the
other cone. If the circles are externally tangent, then each point is on the boundary
of the other cone. If the circles intersect non-tangentially, then each point is outside
the other cone. If the circles are internally tangent, then the inner point is on the
boundary of the outer cone. If one circle is internal to the other, then the inner
point is enclosed by the outer cone.

First we will show that the union on the right side is contained in the intersection
on the left. The ball J is contained in every region C ′

S . The set F is also contained
in every C ′

S because it does not intersect the boundary of any of these sets. Finally,
a pair of circles in the packing T must be externally disjoint or externally tangent.
It follows that each point pS is contained in all the regions C̄ ′

S , and therefore that
every bounded region CS is contained in all the unbounded regions C ′

S .
Next we show the opposite inclusion. For a point s contained in every region

C ′
S, either s ∈ J or we may form the cone tangent to N with s at its apex. The

circle of tangency cannot intersect any circle S ∈ T . This is possible only if the
circle is internal to some S, in which case s ∈ CS , or if the circle degenerates to a
single point in F . �

We now come to the main result of this section.

Theorem 6.2. We have

(6.2) A = J ∪
⋃
S∈T

CS

in RP
3. Moreover, each vertex of each simplex ¯w(C) is pS for some S ∈ T , and

each edge of each ¯w(C) is the line segment connecting the apexes of two adjacent
cones in the packing.

Proof. The four points ωi are the apexes of four cones tangent to N , which intersect
N in the base quadruple of T . The four reflections σi, considered as transformations
of RP3, map N to itself. Because each circle on N is contained in a unique plane,
and σi maps planes to planes, σi must map circles to circles on N . Each σi fixes
the plane si = 0. For j �= i, σi maps the plane s1 + s2 + s3 + s4 − 2sj = 0 to itself.
Thus σi maps three of the four circles in the base quadruple to themselves, and
moves the fourth circle. Because σi must preserve tangency, it maps the packing T
to itself. From the action on the base quadruple, we can see that W acts on T in
the standard way.

Because the transformations σi map the packing T to itself, and because they
preserve tangency, they must map the collection of cones CS for S ∈ T to itself. In
particular, the set of apexes pS for S ∈ T is the orbit of W on the four initial points
ω1, ω2, ω3, ω4. This set is the zero-skeleton of A. Each w(C̄) is a simplex with
vertices at the four points pS corresponding to a Descartes quadruple of circles
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S ∈ T . The edges of this simplex are line segments, tangent to N , connecting
apexes of adjacent cones—these form the one-skeleton of A. The faces and interior
of the simplex lie in the union of J with the four cones of the Descartes quadruple.

It remains to show that A ⊇ J∪
⋃

S∈T CS . We have remarked that the boundary
of A, specifically the 2-skeleton, is dense in the boundary of each cone CS. Since
A is convex, it follows that CS is contained in A. Since the cones CS intersect the
boundary of J in another dense set, it follows that J is contained in A. �

Note that even conditional convergence is impossible along the 2-skeleton of A.
Conditional convergence may be possible at other points of ∂A. The question of
conditional convergence will not be discussed further here.

Recall that the set B from the proof of Theorem 5.3 consists of points s such
that every W -translate w(s) has three positive coordinates and one negative. We
can classify a point s ∈ RP

3, assuming s1 + s2 + s3 + s4 ≥ 0, based on the number
of negative coordinates of its W -translates.

Proposition 6.3. Any point of RP
3 \ Ā has a W -translate with three negative

coordinates, or two negative coordinates and one zero coordinate.

Proof. Given a point s ∈ RP
3 \ Ā, we can form the cone tangent to N with apex

s. As in the proof of 6.1, the circle of tangency cannot be internal to any circle in
T . It must contain some point of the boundary of some circle of T internally, and
then, because it contains a neighborhood of that point, it must in fact contain a
circle S ∈ T internally. It follows that the point s must be contained in the region
bounded by the cone opposite to C ′

S , i.e. the cone with apex pS and half-lines in
the opposite direction of those in C ′

S .
As demonstrated in Theorem 6.2, the region CS is contained in a union of sim-

plices w(C) for those w ∈ W which map the base quadruple to a quadruple involving
S. Each of these simplices is defined by four inequalities. If we drop the inequal-
ity which is strictly satisfied by pS , we obtain an unbounded triangular cone with
apex pS . The region C ′

S is the union of the regions enclosed by these unbounded
triangular cones. A point in the cone opposite C ′

S must lie in the opposite of one
of the these triangular cones. Thus, it satisfies three inequalities opposite to those
which define the triangular cone. If it lies opposite the interior of a triangular cone,
it satisfies the three inequalities strictly.

By applying a W -translation which maps S to a circle of the base quadruple, we
find that some w(s) has three nonpositive coordinates, with at most one coordinate
equal to zero. �

Proposition 6.4 describes the region B.

Proposition 6.4. Let s be a point of ∂A which is not in the 2-skeleton of A. Then
every W -translate of s has exactly three positive coordinates and one negative. Thus
B is the boundary ∂A with the two-skeleton of A removed.

Proof. It suffices to show that s satisfies exactly three of the four inequalities which
define each simplex w(C) for w ∈ W . Then we see that the translate of s by
every w−1 has three positive coordinates and one negative. The simplex w(C) has
vertices pS1

, pS2
, pS3

, pS4
for a Descartes quadruple of circles S1, S2, S3, S4 ∈ T .

There are two cases: if s does not lie on ∂CSi
for i = 1, 2, 3, 4, then since s ∈ ∂A,

it must lie on the surface in the interstitial region between three of the circles Si.
Assume that s lies between S1, S2, and S3. Then s is on the right side of the plane
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through pS1
, pS2

, pS4
, the plane through pS1

, pS3
, pS4

, and the plane through
pS2

, pS3
, pS4

, but it is on the wrong side of the plane through pS1
, pS2

, pS3
.

For the other case, assume that s lies on ∂CS1
. Then there are three line segments

connecting pS1
to pS2

, pS3
, and pS4

. The point s must lie between two of these
segments. Assume that it lies between the segment to pS2

and the segment to pS3
.

Then s is on the right side of the plane through pS1
, pS2

, pS4
, the plane through

pS1
, pS3

, pS4
, and the plane through pS2

, pS3
, pS4

, but it is on the wrong side of
the plane through pS1

, pS2
, pS3

. �

The results of this section allow us to rediscover the geometry of Apollonian
packings with just the Descartes quadratic form as a starting point. This raises the
natural question: what generalizations of Apollonian packings can we obtain if we
start with a different quadratic form?
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