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BETTER THAN SQUARE-ROOT CANCELLATION FOR

RANDOM MULTIPLICATIVE FUNCTIONS

MAX WENQIANG XU

Abstract. We investigate when the better than square-root cancellation phe-
nomenon exists for

∑
n≤N a(n)f(n), where a(n) ∈ C and f(n) is a random

multiplicative function. We focus on the case where a(n) is the indicator

function of R rough numbers. We prove that log logR � (log log x)
1
2 is the

threshold for the better than square-root cancellation phenomenon to disap-

pear.

1. Introduction

The study of random multiplicative functions has attracted intensive attention.
Historically, they were introduced to model arithmetic functions. A Steinhaus
random multiplicative function f(n) is a completely multiplicative function defined
on positive integers such that f(p) are independently and uniformly distributed on
the complex unit circle for all primes p. One may view it as a random model for
arithmetic functions like Dirichlet characters χ(n) or nit. Another popular model
is the Rademacher random multiplicative function f(n) which was first used by
Wintner[46] as a random model for Möbius function μ(n). In this note, we focus
on the Steinhaus case. The obvious dependence between random variables f(m)
and f(n) whenever (m,n) �= 1 makes the study of random multiplicative functions
intriguing.

Arguably the most striking result so far in the study of random multiplicative
functions is Harper’s [26] remarkable resolution of Helson’s conjecture[30] (see [9]
for some earlier discussions), that is, the partial sums of random multiplicative
functions enjoy better than square-root cancellation

(1.1) E[|
∑
n≤x

f(n)|] �
√
x

(log log x)1/4
,

where f(n) are random multiplicative functions. In particular, with the natural
normalization

√
x, the partial sums

∑
n≤x f(n) do not converge in distribution to

the standard complex normal distribution (see also [23]). Before Harper’s result
[26], there was progress on proving good lower bounds close to

√
x, e.g. [28], and it

was not clear that such better than square-root cancellation in (1.1) would appear
until Harper’s proof. See also recent companion work on analogous results in the
character sums and zeta sums cases established by Harper [25, 27]. It is known
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that the better than square-root cancellation phenomenon in random multiplica-
tive functions is connected to the “critical multiplicative chaos” in the probability
literature. We point out references [8, 12, 32, 38, 41] for related discussions.

A closely related important question in number theory is to understand the
distribution of the Riemann zeta function over typical intervals of length 1 on the
critical line Re(s) = 1

2 . One may crudely see the connection by viewing ζ(s) as a

sum of n− 1
2−it for a certain range of n and nit behaves like a Steinhaus random

multiplicative function for randomly chosen t. A conjecture of Fyodorov, Hiary,
and Keating (see e.g. [14, 15]) suggests that there is a subtle difference between
the true order of local maximal of log |ζ(1/2 + it)| and one’s first guess based
on Selberg’s central limit theorem for log |ζ(1/2 + it)|. The existence of this subtle
difference and the appearance of the better than square-root cancellation for random
multiplicative functions both show that the corresponding nontrivial dependence
cannot be ignored. We refer readers to [1–6, 16, 17, 20–22, 25, 34, 37, 42] for related
discussions about partial sums of random multiplicative functions and zeta values
distribution.

In this paper, we are interested in further exploring Harper’s result (1.1) and
methods used there, by considering the problem in a more general context.

Question 1.1. Let a(n) be a sequence in C. When does the better than square-root
cancellation phenomenon hold for

∑
n≤N a(n)f(n), i.e.

(1.2) E[|
∑
n≤N

a(n)f(n)|] = o

⎛
⎝√∑

n≤N

|a(n)|2
⎞
⎠?

We first make some simple observations in the situations where a(n) is “typical”
or a(n) has a rich multiplicative structure. Then we focus on a particular case
where the coefficient a(n) is an indicator function of a multiplicative set.

1.1. Typical coefficients. If partial sums
∑

n≤N a(n)f(n) with the square-root
size normalization behave like the complex standard Gaussian variable, then there
is just square-root cancellation. One may attempt to prove such a central limit
theorem by computing the high moments, however, the moments usually blow
up and such a strategy does not work here (see e.g. [24, 28, 29, 45] for moments
computation results). It turns out that for “typical” choices of a(n), such a central
limit theorem does hold. It has been carried out in the concrete case where a(n) =
e2πinθ for some fixed real θ without too good Diophantine approximation properties
(such θ has relative density 1 in R, e.g. one can take θ = π) by Soundararajan and
the author [43], and also an average version of the result is proved by Benatar,
Nishry and Rodgers [7]. The proof of the result in [43] is based on McLeish’s
martingale central limit theorem[35], and the method was pioneered by Harper in
[23]. The proof reveals the connection between the existence of such a central limit
theorem and a quantity called multiplicative energy of a := {a(n) : 1 ≤ n ≤ N}

E×(a) :=
∑

m1,n1,m2,n2≤N
m1m2=n1n2

a(m1)a(m2)a(n1)a(n2).

A special case of a(n) is an indicator function of a set A, and the quantity E×(A)
is a popular object studied in additive combinatorics. It is now known [43] that
a crucial condition for such a central limit theorem to hold for

∑
n≤N a(n)f(n) is
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that the set A has multiplicative energy ≤ (2 + ε)|A|2. See Section 9.1 for more
discussions on a(n) being a “typical” choice. We refer readers who are interested in
seeing more examples of when a central limit theorem holds for partial (restricted)
sums of random multiplicative functions to [7, 10, 23, 31, 33, 39, 43].

1.2. Large multiplicative energy and sparse sets. Let us focus on the case
that an is an indicator function of a set A. As we mentioned if the set A has
small multiplicative energy (among other conditions), then partial sums exhibit
square-root cancellation. Suppose we purposely choose a set A with very large
multiplicative energy, will it lead to better than square-root cancellation? One
extreme example is A = {pn : 1 ≤ n ≤ logp N} being a geometric progression,
where p is a fixed prime. A standard calculation gives that

E[|
∑
n∈A

f(n)|] =
∫ 1

0

|
∑

n≤logp N

e(θn)|dθ � log logN,

while E[|
∑

n∈A f(n)|2] = |A| � logN and E[|
∑

n∈A f(n)|4] � |A|3 which is pretty
large. It shows that there is a great amount of cancellation in this particular
example when the multiplicative energy is large. One may also take A to be some
generalized (multidimensional) geometric progression and get strong cancellation
of this type. We note that the sets mentioned here with very rich multiplicative
structures all have small sizes.

Based on the initial thoughts above, we may lean toward believing that better
than square-root cancellation only appears when a(n) has some particular structure
that is perhaps related to multiplicativity. To fully answer Question 1.1 seems hard.
The majority of the paper is devoted to a special case, where a(n) is an indicator
function of a set with multiplicative features. We focus on fairly large subsets.

1.3. Main results: multiplicative support. Suppose now that a(n) is a multi-
plicative function with |a(n)| ≤ 1. The particular example we study in this paper
is that a(n) is the indicator function of R-rough numbers, although the proof here
may be adapted to other cases when a(n) is multiplicative. We write

(1.3) AR(x) := {n ≤ x : p|n =⇒ p ≥ R}.

By a standard sieve argument, for all 2 ≤ R ≤ x/2 (the restriction R ≤ x/2 is only
needed for the lower bound), we have asymptotically [11]

(1.4) |AR(x)| �
x

logR
.

We expect the following threshold behavior to happen. If R is very small, the
set AR(x) is close to [1, x] and better than square-root cancellation appears as in
[26]. If R is sufficiently large, then weak dependence may even lead to a central
limit theorem. Indeed, an extreme case is that R >

√
x, in which AR(x) is a set

of primes and {f(n) : n ∈ AR(x)} is a set of independent random variables. It is
natural to ask to what extent the appearance of small primes is needed to guarantee
better than square-root cancellation. Our Theorem 1.2 and Theorem 1.3 answer
the question. We show that log logR ≈ (log log x)1/2 is the threshold.

Theorem 1.2. Let f(n) be a Steinhaus random multiplicative function and x be
large. Let AR(x) be the set of R rough numbers up to x. For any log logR �
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(log log x)
1
2 , we have

E[|
∑

n∈AR(x)

f(n)|] �
√
|AR(x)| ·

( log logR+ log log log x√
log log x

) 1
2

.

In particular, if log logR = o((log log x)
1
2 ), then

E[|
∑

n∈AR(x)

f(n)|] = o
(√

|AR(x)|
)
.

The term log log log x is likely removable. But for the convenience of the proof,
we state the above version. See Remark 5.4 for more discussions.

Theorem 1.3. Let f(n) be a Steinhaus random multiplicative function and x be
large. Let AR(x) be the set of R rough numbers up to x. For any log logR �
(log log x)

1
2 , we have

E[|
∑

n∈AR(x)

f(n)|] �
√
|AR(x)|.

One probably can prove a lower bound of the shape√
|AR(x)| · (log logR/

√
log log x)−1/2

when log logR = o(
√
log log x). We do not pursue this as we focus on finding

the threshold value of R instead of caring about the quantification of the exact
cancellation.

We note that one way to derive a lower bound on L1 norm is by proving an
upper bound on L4 norm. A simple application of Hölder’s inequality gives that
(1.5)

|AR(x)| = E[|
∑

n∈AR(x)

f(n)|2] ≤
(
E[|

∑
n∈AR(x)

f(n)|4]
)1/3(

E[|
∑

n∈AR(x)

f(n)|]
)2/3

.

The fourth moment � |AR(x)|2 would imply that L1 norm �
√
|AR(x)|. However,

to achieve such a bound on the fourth moment, one requires logR � (log x)c for
some constant c (by using the method in [43]), and thus this approach would not
give the optimal range as in Theorem 1.3.

Another reason for studying the fourth moment (multiplicative energy) is to
understand the distribution. As mentioned before, this is the key quantity that
needs to be understood in order to determine if random sums have Gaussian limiting
distribution, via the criteria in [43]. One may establish a central limit theorem in
the range R � exp((log x)c) for some small positive constant c.1 Interested readers
are suggested to adapt the proof of [43, Corollary 1.2]. We do not pursue results
along this direction in this note.

Theorem 1.2 and Theorem 1.3 are both proved by adapting Harper’s robust
method in [26], with some modifications, simplifications and new observations, and
we sketch the strategy with a focus on how we find the threshold. We also refer
readers to a model problem in the function field case by Soundararajan and Zaman

1One trick to get a smaller c than by directly computing the fourth moment over the full sum
is to take the anatomy of integers into account. We refer interested readers to [40,47] to see how
this idea is connected to the correct exponent in extremal sum product conjecture of Elekes and
Ruzsa [13].
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[44]. The first step is to reduce the L1 norm estimate to a certain average of the
square of random Euler products. Basically, we prove that

(1.6) E[|
∑

n∈AR(x)

f(n)|] ≈
( x

log x

)1/2
· E[(

∫ 1/2

−1/2

|F (R)(
1

2
+ it)|2dt)1/2],

where F (R)(1/2 + it) :=
∏

R≤p≤x(1−
f(p)

p1/2+it )
−1 is the random Euler product over

primes R ≤ p ≤ x. The challenging part is to give a sharp bound on the above
expectation involving |F (R)(1/2 + it)|2 for |t| ≤ 1/2.

We first discuss the upper bound proof. If we directly apply Hölder’s inequality
(i.e. moving the expectation inside the integral in (1.6)), then we would only get the

trivial upper bound �
√
|AR(x)| as E[|F (R)(1/2 + it)|2] ≈ log x/ logR. Harper’s

method starts with putting some “barrier events” on the growth rate of all random
partial Euler products for all t. Roughly speaking, it requires that for all k,

(1.7)
∏

xe−(k+1)≤p≤xe−k

|1− f(p)

p1/2+it
|−1 “grows as expected” for all |t| ≤ 1.

Denote such a good event by G and write s = 1/2+ it. By splitting the probability
space based on the event G holding or not, and applying Cauchy–Schwarz inequality,
we have

E[(

∫ 1/2

−1/2

|F (R)(s)|2dt)1/2]

≈ E[(

∫ 1/2

−1/2

1G |F (R)(s)|2dt)1/2] + E[(

∫ 1/2

−1/2

1G fail|F (R)(s)|2dt)1/2]

� E[(

∫ 1/2

−1/2

1G |F (R)(s)|2dt)1/2] + P(1G fail)
1/2(E[|F (R)(s)|2])1/2.

According to the two terms above, there are two tasks that remain to be done.

(1) Task 1: Show that the expectation is small, conditioning on 1G .
(2) Task 2: Show that P(1G fail) is sufficiently small.

To accomplish task 1, Harper’s method connects such an estimate to the “ballot
problem” or say Gaussian random walks (see Section 3.2), which is used to estimate
the probability of partial sums of independent Gaussian variables having a certain
barrier in growth. Task 2 of estimating the probability of such good events G
happening can be done by using some concentration inequality, e.g. Chebyshev’s
inequality. Our main innovation lies in setting up “barrier events” in (1.7) properly
which is not the same as in [26]. On one hand, it should give a strong enough

restriction on the growth rate of the products so that E[(
∫ 1/2

−1/2
1G |F (R)(s)|2dt)1/2]

has a saving, compared to it without conditioning on 1G . On the other hand, one
needs to show that such an event G is indeed very likely to happen which requires
that the designed “barrier” cannot be too restrictive. To achieve the two goals
simultaneously, we need log logR = o(

√
log log x) and this is the limit that we can

push to (see Remark 5.3).
The lower bound proof in Theorem 1.3 uses the same strategy as in [26] but is

technically simpler. After the deduction step of reducing the problem to study-
ing a certain average of the square of random Euler products (see (1.6)), we only
need to give a lower bound of the shape � (log x/ logR)1/2 for the expectation
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on the right-hand side of (1.6). Since the integrand |F (R)(s)|2 is positive, it suf-
fices to prove such a lower bound when t is restricted to a random subset L. We
choose L to be the set of t such that certain properly chosen “barrier events”
hold. The main difficulty is to give a strong upper bound on the restricted prod-
uct E[1t1,t2∈L|F (R)(1/2 + it1)|2|F (R)(1/2 + it2)|2] in the sense that the bound

is as effective as in the ideal situation where the factors |F (R)(1/2 + it1)|2 and
|F (R)(1/2 + it2)|2 are independent (see Proposition 8.1), and this is also the main
reason that the condition log logR �

√
log log x is needed subject to our chosen

“barrier events”. Our proof of Theorem 1.3 does not involve the “two-dimensional
Girsanov calculation”, which hopefully makes it easier for readers to follow.

Organization. We set up the proof outline of Theorem 1.2 in Section 2 and defer
the proof of two propositions to Section 4 and Section 5 respectively. We put all
probabilistic preparations in Section 3 which will be used in the proof for both
theorems. The proof of Theorem 1.3 is done in Section 6 and again we defer proofs
of two key propositions to Section 7 and Section 8 respectively. Finally, we give
more details about the “typical” choices of a(n) in Section 9, as well as mentioning
some natural follow-up open problems.

2. Proof of Theorem 1.2

We follow the proof strategy of Harper in [26]. We establish Theorem 1.2 in
a stronger form that for 1/2 ≤ q ≤ 9/10 and R in the given range log logR �
(log log x)1/2,

E[|
∑

n∈AR(x)

f(n)|2q] � |AR(x)|q
( log logR + log log log x√

log log x

)q
.

One should be able to push the range of q to 1 but for simplicity in notation, we
omit it. Our interest is really about the case q = 1/2. Note that in the given range
of R, by (1.4), it is the same as proving

E[|
∑

n∈AR(x)

f(n)|2q] �
( x

logR

)q( log logR + log log log x√
log log x

)q
.

The first step (Proposition 2.1) is to connect the L1 norm of the random sums to
a certain average of the square of random Euler products. We define for all s with
Re(s) > 0 and integers 0 ≤ k ≤ log log x− log logR, the random Euler products

(2.1) F
(R)
k (s) :=

∏
R≤p≤xe−(k+1)

(1− f(p)

ps
)−1 =

∑
n≥1

p|n =⇒ R≤p≤xe−(k+1)

f(n)

ns
.

We also write

(2.2) F (R)(s) :=
∏

R≤p≤x

(1− f(p)

ps
)−1 =

∑
n≥1

p|n =⇒ R≤p≤x

f(n)

ns
.

We use the notation ‖X‖2q := (E[|X|2q]) 1
2q for a random variable X.
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Proposition 2.1. Let f(n) be a Steinhaus random multiplicative function and x

be large. Let F
(R)
k (s) be defined as in (2.1) and log logR � (log log x)

1
2 . Set

K := log log log x�. Then uniformly for all 1/2 ≤ q ≤ 9/10, we have
(2.3)

‖
∑

n∈AR(x)

f(n)‖2q ≤
√

x

log x

∑
0≤k≤K

∥∥∥ ∫ 1/2

−1/2

|F (R)
k (

1

2
− k

log x
+ it)|2dt

∥∥∥ 1
2

q
+

√
x

log x
.

We remind the readers that the upper bound we aim for in Theorem 1.2 is very
close to

√
x/ logR. The second term in (2.3) is harmless since logR is much smaller

than log x.
The second step deals with the average of the square of random Euler products

in (2.3), which lies at the heart of the proof.

Proposition 2.2. Let F
(R)
k (s) be defined as in (2.1) and log logR � (log log x)

1
2 .

Then for all 0 ≤ k ≤ K = log log log x�, and uniformly for all 1/2 ≤ q ≤ 9/10, we
have

E

[(∫ 1
2

− 1
2

|F (R)
k (

1

2
− k

log x
+ it)|2dt

)q]

� e−
k
2 ·
(
log x

logR

)q ( log logR+ log log log x√
log log x

)q
.

Proof of Theorem 1.2 assuming Proposition 2.1 and Proposition 2.2. Apply Prop-
osition 2.1 and Proposition 2.2 with q=1

2 . Notice that when log logR�(log log x)1/2,

the term
√

x
log x in (2.3) is negligible and we complete the proof. �

3. Probabilistic preparations

In this section, we state some probabilistic results that we need to use later. The
proof can be found in [26] (with at most very mild straightforward modification).

3.1. Mean square calculation. We first state results on mean square calcula-
tions.

Lemma 3.1. Let f be a Steinhaus random multiplicative function. Then for any
400 < x ≤ y and σ > −1/ log y, we have

(3.1) E[
∏

x<p≤y

|1− f(p)

p
1
2+σ

|−2] = exp
( ∑

x<p≤y

1

p1+2σ
+O(

1√
x log x

)
)
.

The proof is basically using the Taylor expansion and the orthogonality deduced
from the definition of a Steinhaus random multiplicative function. See [26, Lemma
1, and (3.1)].

We also quote the following result on two-dimensional mean square calculations.
This will be used in proving the lower bound in Theorem 1.3.
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Lemma 3.2. Let f be a Steinhaus random multiplicative function. Then for any
400 < x ≤ y and σ > −1/ log y, we have

(3.2) E[
∏

x<p≤y

|1− f(p)

p
1
2+σ

|−2|1− f(p)

p
1
2+σ+it

|−2]

= exp

⎛
⎝ ∑

x<p≤y

2 + 2 cos(t log p)

p1+2σ
+O(

1√
x log x

)

⎞
⎠ .

Moreover, if x > e1/|t|, then we further have

(3.3) = exp
( ∑

x<p≤y

2

p1+2σ
+O(1)

)
.

The proof of (3.2) is in [26, (6)]. To deduce (3.3), we only need to show the
contribution involves cos(t log p) terms are � 1, which follows from a strong form
of prime number theorem. See how it is done in [26, Lemma 5] and [22, Section
6.1].

3.2. Gaussian random walks and the ballot problem. A key probabilistic
result used in Harper’s method is the following (modification of) a classical result
about Gaussian random walks, which is connected to the “ballot problem”.

Lemma 3.3 (Probability result 1, [26]). Let a ≥ 1. For any integer n > 1, let G1,
. . . , Gn be independent real Gaussian random variables, each having mean zero and
variance between 1/20 and 20, say. Let h be a function such that |h(j)| ≤ 10 log j.
Then

P

( j∑
m=1

Gm ≤ a+ h(j), ∀1 ≤ j ≤ n
)
� min{1, a√

n
}.

Without the term h(j), it is a classical result and actually that is all we need in
this paper. However, we state this stronger form as the h(j) term can be crucial if
one wants to remove the log log log x factor in Theorem 1.2. We expect the random
sum is fluctuating on the order of

√
j (up to step j) and so the above result is

expected to be true. The quantity h(j) is much smaller compared to
√
j so it is

negligible in computing the probability.
We do not directly use the above lemma. We shall use an analogous version for

random Euler products (Proposition 3.4). We do the Girsanov-type calculation in
our study (an analogue of Girsanov’s theorem from the theory of Gaussian random
variables). As in [26], we introduce the probability measure (here x is large and
|σ| ≤ 1/100, say)

P̃(A) :=
E[1A

∏
p≤x1/e |1− f(p)

p
1
2
+σ

|−2]

E[
∏

p≤x1/e |1− f(p)

p
1
2
+σ

|−2]
.

For each � ∈ N ∪ {0}, we denote the �-th increment of the Euler product

(3.4) I�(s) :=
∏

xe−(�+2)
<p≤xe−(�+1)

(1− f(p)

ps
)−1.

Since we are restricted to R-rough numbers n, the parameter � lies in the range
0 ≤ � ≤ log log x− log logR. All the remaining setup is exactly the same as in [26].
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Proposition 3.4. There is a large natural number B such that the following is
true. Let n ≤ log log x − log logR − (B + 1), and define the decreasing sequence
(�j)

n
j=1 of non-negative integers by �j = log log x− log logR�−(B+1)−j. Suppose

that |σ| ≤ 1
eB+n+1 , and that (tj)

n
j=1 is a sequence of real numbers satisfying |tj | ≤

1
j2/3eB+j+1 for all j.

Then uniformly for any large a and any function h(n) satisfying |h(n)| ≤ 10 log n,
and with I�(s) defined as in (3.4), we have

P̃(−a−Bj ≤
j∑

m=1

log |I�m(
1

2
+ σ + itm)| ≤ a+ j + h(j), ∀j ≤ n) � min{1, a√

n
}.

One may view the above sum approximately as a sum of j independent random
variables and each with mean ≈

∑
xe−(�+2)

<p≤xe−(�+1)
1
p ≈ 1 and with constant

variance between 1/20 and 20. This shows the connection to Lemma 3.3. The
deduction of Proposition 3.4 from Lemma 3.3 can be found in the proof of [26,
Proposition 5]. The only modification is changing the upper bound restriction from
n ≤ log log x − (B + 1) to n ≤ log log x − log logR − (B + 1) and all conditions
remaining are satisfied.

4. Proof of Proposition 2.1

The proof follows closely to the proof of [26, Proposition 1]. For any integer
0 ≤ k ≤ K = log log log x�, let

(4.1) Ik := (xk+1, xk] := (xe−(k+1)

, xe−k

].

Let P (n) be the largest prime factor of n. For simplicity, we use
∑�

n to denote the
sum where the variable n is R-rough. By using Minkowski’s inequality (as 2q ≥ 1),

(4.2) ‖
∑

n∈AR(x)

f(n)‖2q ≤
∑

0≤k≤K
‖

∑�

n≤x
P (n)∈Ik

f(n)‖2q + ‖
∑�

n≤x

P (n)≤xe−(K+1)

f(n)‖2q.

We first bound the last term by only using the smoothness condition and it is

bounded by ≤ Ψ(x, x1/ log log x)
1
2 �

√
x(log x)−c log log log x, which is acceptable.

Here Ψ(x, y) denotes the number of positive integers up to x with no primes bigger
than y and the estimate is standard, see [18]. The main contribution to the upper
bound in (4.2) can be written as

=
∑

0≤k≤K
‖

∑
m≤x

p|m =⇒ p∈Ik

f(m)
∑�

n≤x/m
n is xk+1-smooth

f(n)‖2q.
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We now condition on f(p) for p small but at least R. Write E(k) to denote the
expectation conditional on (f(p))p≤xk+1

. Then the above is

=
∑

0≤k≤K
(EE(k)[|

∑
m≤x

p|m =⇒ p∈Ik

f(m)
∑�

n≤x/m
n is xk+1-smooth

f(n)|2q])1/2q

≤
∑

0≤k≤K
(E[(E(k)[|

∑
m≤x

p|m =⇒ p∈Ik

f(m)
∑�

n≤x/m
n is xk+1-smooth

f(n)|2])q])1/2q

=
∑

0≤k≤K
(E[(

∑
m≤x

p|m =⇒ p∈Ik

|
∑�

n≤x/m
n is xk+1-smooth

f(n)|2)q]) 1
2q .

Then we only need to show that for each expectation in the sum, it is bounded
as in (2.3). We next replace the discrete mean value with a smooth version, i.e.

we want to replace the sum with some integral. Set X = e
√
log x, and we have the

expectation involving primes in Ik is

� E

⎡
⎢⎢⎣
⎛
⎜⎜⎝ ∑

m≤x
p|m =⇒ p∈Ik

X

m

∫ m(1+ 1
X )

m

|
∑�

n≤x/t
n is xk+1-smooth

f(n)|2dt

⎞
⎟⎟⎠

q⎤
⎥⎥⎦

+ E

⎡
⎢⎢⎣
⎛
⎜⎜⎝ ∑

m≤x
p|m =⇒ p∈Ik

X

m

∫ m(1+ 1
X )

m

|
∑�

x/t≤n≤x/m
n is xk+1-smooth

f(n)|2dt

⎞
⎟⎟⎠

q⎤
⎥⎥⎦ .

(4.3)

By using Hölder’s inequality, we upper bound the second term in (4.3) by the q-th
power of

(4.4)
∑
m≤x

p|m =⇒ p∈Ik

X

m

∫ m(1+ 1
X )

m

E[|
∑�

x/t≤n≤x/m
n is xk+1-smooth

f(n)|2]dt.

Do a mean square calculation (analogous to (3.1)) and throw away the restriction

on the R-rough numbers. Then (4.4) is at most � 2−ekx/ log x and thus the second

term in (4.3) is � (2−ekx/ log x)q. Summing over k ≤ K, this is acceptable and
thus we only need to focus on the first term in (4.3). By swapping the summation,
it is at most

E

⎡
⎢⎢⎣
⎛
⎜⎜⎝
∫ x

xk+1

|
∑�

n≤x/t
n is xk+1-smooth

f(n)|2
∑

t/(1+1/X)≤m≤t
p|m =⇒ p∈Ik

X

m
dt

⎞
⎟⎟⎠

q⎤
⎥⎥⎦ .
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We upper bound the sum over m by using a simple sieve argument (sieving out all
primes in [2, t1/10]\Ik) to derive that the above is at most

E

⎡
⎢⎢⎣
⎛
⎜⎜⎝
∫ x

xk

|
∑�

n≤x/t
n is xk+1-smooth

f(n)|2 dt

log t

⎞
⎟⎟⎠

q⎤
⎥⎥⎦

= xq
E

⎡
⎢⎢⎣
⎛
⎜⎜⎝
∫ x/xk+1

1

|
∑�

n≤z
n is xk+1-smooth

f(n)|2 dz

z2 log(xz )

⎞
⎟⎟⎠

q⎤
⎥⎥⎦ ,

where in the equality above we used the substitution z := x/t. A simple calculation
shows that we can replace log(x/z) by log x without much loss. Indeed, if z ≤

√
x

then log(x/z) � log x; if
√
x ≤ z ≤ x/xk+1 then log(x/z) ≥ z−2k/ log x log x. Thus,

we further have the bound

(4.5) �
(

x

log x

)q

E

⎡
⎢⎢⎣
⎛
⎜⎜⎝
∫ x/xk+1

1

|
∑�

n≤z
n is xk+1-smooth

f(n)|2 dz

z2−2k/ log x

⎞
⎟⎟⎠

q⎤
⎥⎥⎦ .

To this end, we apply the following version of Parseval’s identity, and its proof can
be found in [36, (5.26) in Sec 5.1].

Lemma 4.1 ([26, Harmonic Analysis Result 1]). Let (an)
∞
n=1 be any sequence of

complex numbers, and let A(s) :=
∑∞

n=1
an

ns denote the corresponding Dirichlet
series, and σc denote its abscissa of convergence. Then for any σ > max{0, σc},
we have ∫ ∞

0

|
∑

n≤x an|2

x1+2σ
dx =

1

2π

∫ +∞

−∞

∣∣∣A(σ + it)

σ + it

∣∣∣2dt.
Apply Lemma 4.1 and the expectation in (4.5) is

= E

⎡
⎣(∫ +∞

−∞

|F (R)
k ( 12 − k

log x + it)|2

| 12 − k
log x + it|2

dt

)q⎤⎦

≤
∑
n∈Z

E

⎡
⎣(∫ n+ 1

2

n− 1
2

|F (R)
k ( 12 − k

log x + it)|2

| 12 − k
log x + it|2

dt

)q⎤⎦ .

Since f(m)mit has the same law as f(m) for all m, for any fixed n we have

E

[(∫ n+ 1
2

n− 1
2

|F (R)
k (

1

2
− k

log x
+ it)|2dt

)q]

= E

[(∫ 1
2

− 1
2

|F (R)
k (

1

2
− k

log x
+ it)|2dt

)q]
.

For n−1/2 ≤ t ≤ n+1/2, we have 1/| 12−
k

log x+it|2 � 1/(1+n2) which is summable

over n. We complete the proof by inserting the above estimates into (4.5).
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5. Proof of Proposition 2.2

This is the key part of the proof that reveals how log logR ≈
√
log log x could

become the transition range. We begin with a discretization process which is the
same as in [26]. For each |t| ≤ 1

2 , set t(−1) = t, and then iteratively for each
0 ≤ j ≤ log(log x/ logR)− 2 define

t(j) := max{u ≤ t(j − 1) : u =
n

((log x)/ej+1) log((log x)/ej+1)
for some n ∈ Z}.

By the definition, we have [26, (4.1)]

|t− t(j)| ≤ 2

((log x)/ej+1) log((log x)/ej+1)
.

Given this notation, let B be the large fixed natural number from Proposition 3.4.
Let G(k) denote the event that for all |t| ≤ 1

2 and for all k ≤ j ≤ log log x −
log logR−B − 2, we have

(5.1)

(
log x

ej+1 logR
eC(x))−1 ≤

�log log x−log logR	−B−2∏
�=j

|I�(
1

2
− k

log x
+ it(�))|

≤ log x

ej+1 logR
eC(x),

where notably, our C(x) is chosen as

(5.2) C(x) := log logR + 100 log log log x.

We shall establish the following two key propositions. The first proposition says
that when we are restricted to the good event G(k), the q-th moment is small.

Proposition 5.1. Let x be large and log logR � (log log x)
1
2 . Let C(x) be defined

as in (5.2). Let F
(R)
k be defined as in (2.1) and G(k) be defined as in (5.1). For all

0 ≤ k ≤ K = log log log x� and 1/2 ≤ q ≤ 9/10, we have

E

[(∫ 1
2

− 1
2

1G(k)|F (R)
k (

1

2
− k

log x
+ it)|2dt

)q]
�
(

log x

ek logR

)q ( C(x)√
log log x

)q
.

The second proposition is to show that indeed 1G(k) happens with high proba-
bility.

Proposition 5.2. Let G(k) be defined as in (5.1). For all 0≤k≤K=log log log x�
and uniformly for all 1/2 ≤ q ≤ 9/10 and C(x) defined in (5.2), we have

P(G(k) fails) � e−C(x).

The above two key propositions imply Proposition 2.2.
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Deduction of Proposition 2.2. According to the good event G(k) happening or not,
we have

E

[(∫ 1
2

− 1
2

|F (R)
k (

1

2
− k

log x
+ it)|2dt

)q]

≤ E

[(∫ 1
2

− 1
2

1G(k)|F (R)
k (

1

2
− k

log x
+ it)|2dt

)q]

+ E

[(∫ 1
2

− 1
2

1G(k) fails|F (R)
k (

1

2
− k

log x
+ it)|2dt

)q]

≤
(

log x

ek logR

)q ( C(x)√
log log x

)q

+

(∫ 1
2

− 1
2

E[|F (R)
k (

1

2
− k

log x
+ it)|2]dt

)q

P(G(k) fails)1−q,

where in the first term we used Proposition 5.1 and we applied Hölder’s inequality
with exponents 1

q ,
1

1−q to get the second term. We next apply the mean square

calculation (3.1) to derive that the above is

�
(

log x

ek logR

)q (( C(x)√
log log x

)q
+ P(G(k) fails)1−q

)
.

Plug in the definition of C(x) and use Proposition 5.2 with 1 − q ≥ 1/10 (and
then the exceptional probability to the power 1/10 is negligible) to deduce that the
above is

� e−k/2

(
log x

logR

)q

·
( C(x)√

log log x

)q
,

which completes the proof. �

Remark 5.3. We remark that in (5.2), the quantity

C(x) = log logR + 100 log log log x

is different from just being a constant C in [26]. The reason for our choice of C(x)
is the following. Firstly, to keep the q-th moment in Proposition 5.1 has a saving

(i.e. to make
(

C(x)√
log log x

)q
small), we require that C(x) = o(

√
log log x). Secondly,

it turns out that in order to make the exceptional probability in Proposition 5.2
small enough, one has the constraint log logR � C(x). The combination of the
above two aspects together leads to log logR = o(

√
log log x).

Remark 5.4. In the deduction of Proposition 2.2, we did not use an iterative process
as used in [26]. Instead, we added an extra term 100 log log log x for the purpose of
getting strong enough bounds on P(G(k) fails). We simplified the proof by getting
a slightly weaker upper bound in Theorem 1.2 as compensation.

5.1. Proof of Proposition 5.1. The proof of Proposition 5.1 is a simple modifi-
cation of the proof of Key Proposition 1 in [26]. We emphasize again that we will
use C(x) defined in (5.2) instead of just a constant as in [26], and we do not need
the extra help from the quantity h(j) which hopefully makes the proof conceptually
easier.
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By using Hölder’s inequality, it suffices to prove that

(5.3) E[1G(k)

∫ 1
2

− 1
2

|F (R)
k (

1

2
− k

log x
+ it)|2dt] � e−k · log x

logR
· C(x)√

log log x
,

uniformly for 0 ≤ k ≤ K = log log log x�. We can upper bound the left-hand side
of (5.3) by

(5.4) ≤
∫ 1

2

− 1
2

E[1G(k,t)|F (R)
k (

1

2
− k

log x
+ it)|2]dt

where 1G(k,t) is the event that, for any given t,

(
log x

ej+1 logR
eC(x))−1 ≤

�log log x−log logR	−B−2∏
�=j

|I�(
1

2
− k

log x
+ it(�))|

≤ log x

ej+1 logR
eC(x)

for all k ≤ j ≤ log log x − log logR − B − 2. This is an upper bound as 1G(k) is

the event of 1G(k,t) holds for all |t| ≤ 1
2 . By the fact that f(n) has the same law as

f(n)nit, we have

(5.5)

∫ 1
2

− 1
2

E[1G(k,t)|F (R)
k (

1

2
− k

log x
+ it)|2]dt =

∫ 1
2

− 1
2

E[1H(k,t)|F (R)
k (

1

2
− k

log x
)|2]dt,

where 1H(k,t) denotes the event that, for any given t,

(
log x

ej+1 logR
eC(x))−1 ≤

�log log x−log logR	−B−2∏
�=j

|I�(
1

2
− k

log x
+ i(t(�)− t))|

≤ log x

ej+1 logR
eC(x),

for all k ≤ j ≤ log log x − log logR − B − 2. We next apply Proposition 3.4. It
is clear that H(k, t) is the event treated in Proposition 3.4 with n = log log x −
log logR�−(B+1)−k; σ = −k

log x and tm = t(log log x− log logR�−(B+1)−m)−t

for all m; and

a = C(x) +B + 1, h(j) = 0.

The parameters indeed satisfy |σ| ≤ 1
eB+n+1 and |tm| ≤ 1

m2/3eB+m+1 for allm. Apply
Proposition 3.4 to derive

E[1H(k,t)|F (R)
k ( 12 − k

log x )|2]

E[|F (R)
k ( 12 − k

log x )|2]
= P̃(H(k, t)) � min{1, a√

n
}.

A simple mean square calculation (see (3.1)) gives that

E[|F (R)
k (

1

2
− k

log x
)|2] = exp

⎛
⎝ ∑

R≤p≤xe−(k+1)

1

p1−2k/ log x
+O(1)

⎞
⎠� log x

ek logR
.

Combining the above two inequalities and the relation in (5.5), we get the desired
upper bound for the quantity in (5.4). Thus, we complete the proof of (5.3) and
Proposition 5.1.
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5.2. Proof of Proposition 5.2. In the proof, we will see why it is necessary to
make C(x) large enough compared to log logR. The proof starts with the union
bound. We have

P(G(k) fails) ≤ P1 + P2,

where

P1 =
∑

k≤j≤log( log x
log R )−B−2

P

⎛
⎜⎜⎜⎜⎝

�log( log x
log R )	−B−2∏

�=j

|I�(
1

2
− k

log x
+ it(�))|

>
log x

ej+1 logR
eC(x) for some t

⎞
⎟⎟⎟⎟⎠

and

P2 =
∑

k≤j≤log( log x
log R )−B−2

P

⎛
⎜⎜⎜⎜⎝

�log( log x
log R )	−B−2∏

�=j

|I�(
1

2
− k

log x
+ it(�))|−1

>
log x

ej+1 logR
eC(x) for some t

⎞
⎟⎟⎟⎟⎠ ,

where |t| ≤ 1/2. We focus on bounding P1, and P2 can be estimated similarly.
Replace the set of all |t| ≤ 1/2 by the discrete set

T (x, j) :=

{
n

((log x)/ej+1) log((log x)/ej+1)
: |n|≤((log x)/ej+1) log((log x)/ej+1)

}
,

and apply the union bound to get

P1 ≤
∑

k≤j≤log( log x
log R )−B−2

t(j)∈T (x,j)

P

⎛
⎜⎜⎜⎜⎝

�log( log x
log R )	−B−2∏

�=j

|I�(
1

2
− k

log x
+ it(�))|

>
log x

ej+1 logR
eC(x)

⎞
⎟⎟⎟⎟⎠ .

By using Chebyshev’s inequality this is at most

≤
∑

k≤j≤log( log x
log R )−B−2

t(j)∈T (x,j)

1

( log x
ej+1 logReC(x))2

E[

�log( log x
log R )	−B−2∏

�=j

|I�(
1

2
− k

log x
+ it(�))|2].

Since f(n) and f(n)nit have the same law, the above is

�
∑

k≤j≤log( log x
log R )−B−2

|T (x, j)|
( log x
ej+1 logReC(x))2

E[

�log( log x
log R )	−B−2∏

�=j

|I�(
1

2
− k

log x
)|2].

The expectation here is, again through a mean square calculation (3.1), � log x
ej+1 logR .

Note |T (x, j)| ≤ ((log x)/ej+1) log((log x)/ej+1). We conclude that

P1 �
∑

k≤j≤log( log x
log R )−B−2

elog logR−2C(x)+log log(log x/ej+1) � e−C(x),

where in the last step we used that C(x) = log logR + 100 log log log x. Thus we
complete the proof of Proposition 5.2.
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6. Proof of Theorem 1.3

We first notice that if R > x
1
A for any fixed large constant A, then AR(x) is a

set of elements with only OA(1) number of prime factors. This would immediately
imply that E[|

∑
n∈AR(x) f(n)|4] �A |AR(x)|2 and by (1.5), the conclusion follows.

From now on, we may assume that

(6.1) R ≤ x
1
A .

The proof strategy of Theorem 1.3 again follows from [26]. The main differences
lie in the design of the barrier events and taking advantage of R being large. In
particular, we do not need a “two-dimensional Girsanov-type” calculation which
makes our proof less technical. We first do the reduction step to reduce the problem
to understanding certain averages of random Euler products, as in the upper bound
proof.

Proposition 6.1. There exists a large constant C such that the following is true.
Let V be a sufficiently large fixed constant. Let x be sufficiently large and log logR �√
log log x. Let F (R)(s) be defined as in (2.2). Then, uniformly for all 1/2 ≤ q ≤

9/10 and any large V , we have

‖
∑

n∈AR(x)

f(n)‖2q �
√

x

log x

(∥∥∥∫ 1
2

− 1
2

|F (R)(
1

2
+

4V

log x
+ it)|2dt

∥∥∥ 1
2

q

− C

eV

∥∥∥ ∫ 1
2

− 1
2

|F (R)(
1

2
+

2V

log x
+it)|2dt

∥∥∥ 1
2

q
−C

)
.

The proof of Proposition 6.1 is in Section 7. The remaining tasks are to give a

desired lower bound on ‖F (R)( 12 + 4V
log x + it)‖

1
2
q and an upper bound on ‖F (R)( 12 +

2V
log x + it)‖

1
2
q . The upper bound part is simple. Indeed, simply apply Hölder’s

inequality and do a mean square calculation (3.1) to get

E[(

∫ 1
2

− 1
2

|F (R)(
1

2
+

2V

log x
+ it)|2dt)q] �

(∫ 1
2

− 1
2

E[|F (R)(
1

2
+

2V

log x
+ it)|2]dt

)q
(6.2)

�
( log x

V logR

)q
.

We next focus on the main task, giving a good lower bound on ‖F (R)( 12 +
4V
log x +

it)‖
1
2
q . For each t ∈ R, we use L(t) to denote the event that for all log V � + 3 ≤

j ≤ log log x− log logR −B − 2, the following holds
(6.3)

(
log x

ej+1 logR
eD(x))−B ≤

�log log x−log logR	−B−2∏
�=j

|I�(
1

2
+

4V

log x
+it)| ≤ log x

ej+1 logR
eD(x),

where D(x) := c
√
log log x− log logR with

(6.4) c =
1

4
min

{ log logR√
log log x− log logR

, 1
}
� 1.

We are now ready to define a random set

(6.5) L := {−1/2 ≤ t ≤ 1/2 : L(t) defined by (6.3) holds}.
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It is clear that

(6.6) E[(

∫ 1
2

− 1
2

|F (R)(
1

2
+

4V

log x
+ it)|2dt)q] ≥ E[(

∫
L
|F (R)(

1

2
+

4V

log x
+ it)|2dt)q].

We use the following estimate and defer its proof to Section 8.

Proposition 6.2. Let V be a large fixed constant. Let x be sufficiently large and
log logR �

√
log log x. Let F (R)(s) be defined as in (2.2). Let L be the random set

defined in (6.5). Then uniformly for any 1/2 ≤ q ≤ 9/10, we have

(6.7) E[(

∫
L
|F (R)(

1

2
+

4V

log x
+ it)|2dt)q] �

( log x

V logR

)q
.

Plug (6.6), (6.7) and (6.2) into Proposition 6.1 with q = 1
2 (and choosing V to

be a sufficiently large fixed constant so that C/eV kills the implicit constant) to get
that

E[|
∑

n∈AR(x)

f(n)|] �
√
|AR(x)|,

where we remind the readers the size of |AR(x)| is estimated in (1.4). This completes
the proof of Theorem 1.3.

7. Proof of Proposition 6.1

The proof proceeds the same as in [26, Proposition 3] (see also [28]) and we
provide a self-contained proof here and highlight some small modifications.

Let P (n) denote the largest prime factor of n as before. We have assumed that
(6.1) holds, e.g. R ≤

√
x (This restriction is not crucial but makes the notation

later easier). Let ε denote a Rademacher random variable independent of f(n), and
recall that

∑�indicates that the variable n under the summation is R rough. For
1/2 ≤ q ≤ 9/10, we have

E[|
∑�

n≤x
P (n)>

√
x

f(n)|2q]

=
1

22q
E[|

∑�

n≤x
P (n)≤√

x

f(n) +
∑�

n≤x
P (n)>

√
x

f(n) +
∑�

n≤x
P (n)>

√
x

f(n)−
∑�

n≤x
P (n)≤√

x

f(n)|2q]

≤ E[|
∑�

n≤x
P (n)≤

√
x

f(n) +
∑�

n≤x
P (n)>

√
x

f(n)|2q] + E[|
∑�

n≤x
P (n)>

√
x

f(n)−
∑�

n≤x
P (n)≤

√
x

f(n)|2q]

= 2E[|ε
∑�

n≤x
P (n)>

√
x

f(n) +
∑�

n≤x
P (n)≤

√
x

f(n)|2q] = 2E[|
∑�

n≤x

f(n)|2q],

where the last step we used the law of

ε
∑�

n≤x
P (n)>

√
x

f(n) = ε
∑

√
x<p≤x

f(p)
∑�

m≤x/p

f(m)

conditional on (f(p))R≤p≤
√
x is the same as the law of

∑�
n≤x

P (n)>
√
x

f(n). By the

above deduction, it suffices to give a lower bound on ‖
∑�

n≤x
P (n)>

√
x

f(n)‖2q. Do the
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decomposition ∑�

n≤x
P (n)>

√
x

f(n) =
∑

√
x≤p≤x

f(p)
∑�

m≤x/p

f(m).

The inner sum is determined by (f(p))R≤p≤
√
x and apply the Khintchine’s inequal-

ity (see [19, Lemma 3.8.1] for the Rademacher case, and the Steinhaus case may be
proved similarly) to get

E[|
∑�

n≤x
P (n)>

√
x

f(n)|2q] � E[(
∑

√
x<p≤x

|
∑�

m≤x/p

f(m)|2)q]

≥ 1

(log x)q
E[(

∑
√
x<p≤x

log p · |
∑�

m≤x/p

f(m)|2)q].

Next, do the smoothing step as we did in the upper bound case. Again set X =

e
√
log x. Write

∑
√
x<p≤x

log p · |
∑�

m≤x/p

f(m)|2 =
∑

√
x<p≤x

log p · X
p

∫ p(1+1/X)

p

|
∑�

m≤x/p

f(m)|2dt.

One has |a+ b|2 ≥ a2/4−min{|b|2, |a/2|2} ≥ 0 and thus the above is at least

1

4

∑
√
x<p≤x

log p · X
p

∫ p(1+1/X)

p

|
∑�

m≤x/t

f(m)|2dt

−
∑

√
x<p≤x

log p · X
p

∫ p(1+1/X)

p

min{|
∑�

x/t≤m≤x/p

f(m)|2, 1
4
|
∑�

m≤x/t

f(m)|2}.
(7.1)

It follows that the quantity we are interested in has the lower bound

E[|
∑�

n≤x
P (n)>

√
x

f(n)|2q](7.2)

≥ 1

(log x)q
E[(

1

4

∑
√
x<p≤x

log p · X
p

∫ p(1+1/X)

p

|
∑�

m≤x/t

f(m)|2dt)q]

− 1

(log x)q
E[(

∑
√
x<p≤x

log p · X
p

∫ p(1+1/X)

p

|
∑�

x/t<m≤x/p

f(m)|2dt)q].

Use Hölder’s inequality and throw away the R-rough condition to upper bound the
subtracted term in (7.2) by

≤ 1

(log x)q

⎛
⎝ ∑

√
x<p≤x

log p · X
p

∫ p(1+1/X)

p

E[|
∑

x/t<m≤x/p

f(m)|2]dt

⎞
⎠

q

� 1

(log x)q

( ∑
√
x<p≤x

log p · ( x

pX
+ 1)

)q
� 1

(log x)q
(
x log x

X
+ x)q � (

x

log x
)q.
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The first term in (7.2) (without the factor 1/4(log x)q) is

E[(
∑

√
x<p≤x

log p · X
p

∫ p(1+1/X)

p

|
∑�

m≤x/t

f(m)|2dt)q]

≥ E[(

∫ x

√
x

∑�

t
1+1/X

<p≤t

log p · X
p
|
∑�

m≤x/t

f(m)|2dt)q]

� E[(

∫ x

√
x

|
∑�

m≤x/t

f(m)|2dt)q] = xq
E[(

∫ √
x

1

|
∑�

m≤z

f(m)|2 dz
z2

)q],

where in the last inequality we used the prime number theorem. To this end, we
impose the smooth condition to invert the sums to Euler products. We have for
any large V ,

E[(

∫ √
x

1

|
∑�

m≤z

f(m)|2 dz
z2

)q] ≥ E[(

∫ √
x

1

|
∑�

m≤z
x-smooth

f(m)|2 dz

z2+8V/ log x
)q]

≥ E[(

∫ +∞

1

|
∑�

m≤z
x-smooth

f(m)|2 dz

z2+8V/ log x
)q]

− E[(

∫ +∞

√
x

|
∑�

m≤z
x-smooth

f(m)|2 dz

z2+8V/ log x
)q]

≥ E[(

∫ +∞

1

|
∑�

m≤z
x-smooth

f(m)|2 dz

z2+8V/ log x
)q]

− 1

e2V q
E[(

∫ +∞

1

|
∑�

m≤z
x-smooth

f(m)|2 dz

z2+4V/ log x
)q].

Apply Lemma 4.1 to get that the first term is

(7.3) � E[(

∫ 1
2

− 1
2

|F (R)(
1

2
+

4V

log x
+ it)|2dt)q].

For the second term, an application of Lemma 4.1 gives it is bounded by

� e−2V q
E[(

∫ +∞

−∞

|F (R)( 12 + 2V
log x + it)

| 12 + 2V
log x + it|2

dt)q](7.4)

� e−2V q
E[(

∫ 1
2

− 1
2

|F (R)(
1

2
+

2V

log x
+ it)|2)q]

where in the last step we used the fact that f(n)nit has the same law as f(n) and∑
n≥1 n

−2 converges. Bounds in (7.3) and (7.4) together give the desired bound for

the first term in (7.2) and we complete the proof.

8. Proof of Proposition 6.2

In this section, we prove Proposition 6.2. The proof significantly relies on Propo-
sition 8.1, which is a mean value estimate of the product of |F (R)(σ + it1)|2 and
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|F (R)(σ+ it2)|2. Our upper bound matches the guess if you pretend the two prod-
ucts are independent.

Proposition 8.1. Let V be a large fixed constant. Let x be sufficiently large and
log logR �

√
log log x. Let F (R)(s) be defined as in (2.2). Let L be the random set

defined in (6.5). Then we have

(8.1) E[(

∫
L
|F (R)(

1

2
+

4V

log x
+ it)|2dt)2] � (

log x

V logR
)2.

Proof of Proposition 6.2 assuming Proposition 8.1. The proof starts with an appli-
cation of Hölder’s inequality. We have

(8.2) E[(

∫
L
|F (R)(

1

2
+

4V

log x
+ it)|2dt)q] ≥

(E[
∫
L |F (R)( 12 + 4V

log x + it)|2dt])2−q

(E[(
∫
L |F (R)( 12 + 4V

log x + it)|2dt)2])1−q
.

Proposition 8.1 gives a desired upper bound for the denominator. We next give a
lower bound on the numerator. By using that f(n)nit has the same law as f(n),
the numerator is

(

∫ 1/2

−1/2

E[1L(t)|F (R)(
1

2
+

4V

log x
+ it)|2]dt)2−q = (E[1L(0)|F (R)(

1

2
+

4V

log x
)|2])2−q.

We next use Proposition 3.4 by taking n = log log x− log logR�−(B+1)−log V �,
a = D(x) = c

√
log log x− log logR and h(j) = 0 to conclude that P̃(1L(0)) � 1.

Combining with the mean square calculation (3.1), we have
(8.3)

E[1L(0)|F (R)(
1

2
+

4V

log x
+ it)|2] � P̃(1L(0)) · E[|F (R)(

1

2
+

4V

log x
+ it)|2] � log x

V logR
.

We complete the proof by plugging (8.1) and (8.3) into (8.2). �

The proof of Proposition 8.1 is a bit involved and its proof is inspired by [26, Key
proposition 5] and [21, Multiplicative chaos results 4]. We are not using the “two-
dimensional Girsanov-type” computation as used in [26, Key proposition 5] which
significantly simplified the proof. We do not expect any further savings when R is
as large as stated in Proposition 8.1 while for a smaller R, one might expect there
could be further cancellation as in [26, Key Proposition 5] which may be verified
by adapting the “two-dimensional Girsanov-type” calculation.

Proof of Proposition 8.1. Expand the square and the left hand side of (8.1) equals

E[

∫ 1/2

−1/2

1L(t1)|F (R)(
1

2
+

4V

log x
+ it1)|2dt1

∫ 1/2

−1/2

1L(t2)|F (R)(
1

2
+

4V

log x
+ it2)|2dt2].

By using that f(n)nit has the same law as f(n), we write the above as (t := t1− t2)

(8.4)

∫ 1

−1

E[1L(0)|F (R)(
1

2
+

4V

log x
)|21L(t)|F (R)(

1

2
+

4V

log x
+ it)|2]dt.

For |t| large enough, the two factors behave independently, which is the easier case.
Indeed, if |t| > 1/ logR, drop the indicator functions and bound the corresponding
integration by

� max
1/ logR<|t|≤1

E[|F (R)(
1

2
+

4V

log x
)|2 · |F (R)(

1

2
+

4V

log x
+ it)|2].
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Apply the two dimensional mean square calculation (3.3) with (x, y) = (R, x) to
conclude that the above is

�
( log x

V logR

)2
.

We next focus on the case |t| ≤ 1/ logR. Since f(p) are independent of each
other, we can decompose the Euler products into pieces and analyze their contri-
butions to (8.4) separately. Define the following three sets of primes based on the
sizes of primes

P1 := {p prime : R ≤ p < xe−(�log log x−log log R�−B−2)},

P2 := {p prime : xe−(�log log x−log log R�−B−2) ≤ p ≤ xe−(�log V �+3)},

and

P3 := {p prime : xe−(�log V �+3)

< p ≤ x}.

We proceed as follows. Note that the events L(0) and L(t) are irrelevant to f(p)
for p ∈ P1 ∪P3. For partial products over primes p ∈ P1 ∪P3, we directly do mean
square calculations. For partial products over primes p ∈ P2, we will crucially use
the indicator functions 1L(0) and 1L(t) defined in (6.3) with j = log V �+ 3. This
separation gives that the integration in (8.4) over |t| ≤ 1/ logR is∫

|t|≤ 1
log R

E[
∏

p∈P1∪P3

|1− f(p)

p
1
2+

4V
log x

|−2|1− f(p)

p
1
2+

4V
log x+it

|−2]

×E[1L(0)1L(t)

∏
p∈P2

|1− f(p)

p
1
2+

4V
log x

|−2|1− f(p)

p
1
2+

4V
log x+it

|−2]dt.

(8.5)

We first upper bound the expectation over primes in P1 ∪ P3 uniformly over all t.
By using independence between f(p) and (3.2), we can bound it as

(8.6) � exp
( ∑

p∈P1

4

p1+
8V

log x

+
∑
p∈P3

4

p1+
8V

log x

)
.

By simply using the prime number theorem and the definition of P1 and P3, one
has that both sums in (8.6) are � 1 so that (8.6) is � 1, where we remind readers
that B is a fixed constant. Now our task is reduced to establishing the following
(8.7)∫

|t|≤ 1
log R

E[1L(0)1L(t)

∏
p∈P2

|1− f(p)

p
1
2+

4V
log x

|−2|1− f(p)

p
1
2+

4V
log x+it

|−2]dt �
( log x

V logR

)2
.

Our strategy would be, roughly speaking, using the barrier event 1L(t) to bound
certain partial products involved with t directly and then use the mean square
calculation to deal with the rest of the products. The exact partial products that
we will apply barrier events would depend on the size of t.

We first do a simple case, which helps us get rid of the very small t, say |t| <
V/ log x. We use the condition 1L(t) and pull out the factors related to L(t) to get
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that the contribution from |t| < V/ log x is at most

�
∫
|t|≤ V

log x

e2c
√
log log x−log logR · ( log x

V logR
)2 · E[1L(0)

∏
p∈P2

|1− f(p)

p
1
2+

4V
log x

|−2]dt

� V

log x
· e2c

√
log log x−log logR ·

( log x

V logR

)2
· E[

∏
p∈P2

|1− f(p)

p
1
2+

4V
log x

|−2]

�
( log x

V logR

)2
,

where in the second to last step we dropped the 1L(0) condition, and in the last

step we applied (3.1) together with logR ≥ exp(4c
√
log log x) where c is defined in

(6.4). Thus we only need to establish the following
(8.8)∫

V
log x≤|t|≤ 1

log R

E[1L(0)1L(t)

∏
p∈P2

|1− f(p)

p
1
2+

4V
log x

|−2|1− f(p)

p
1
2+

4V
log x+it

|−2]dt �
( log x

V logR

)2
.

We now enter the crucial part where we will apply the barrier events according
to the size of |t|. We decompose the set P2 into two parts according to |t|. For each
fixed V/ log x ≤ |t| ≤ 1/ logR, we write

P2 = S(t) ∪M(t),

where
S(t) := {p prime : xe−(�log log x−log log R�−B−2) ≤ p ≤ e

V
|t| },

and
M(t) := {p prime : e

V
|t| ≤ p ≤ xe−(�log V �+3)}.

The set of primes S(t) would be those we will apply barrier events and M(t) would
be estimated by a mean square calculation. Note that for p ∈ M(t), there is a nice
decorrelation as we needed in (3.3) due to that p ≥ eV/|t|. Let us now see how such
a decomposition of P2 would help us. We use a local notation

G(p, t) := |1− f(p)

p
1
2+

4V
log x+it

|−2.

Then the quantity in (8.8) is the same as∫
V

log x≤|t|≤ 1
log R

E[1L(0)1L(t)

∏
p∈P2

G(p, 0)
∏

p∈S(t)

G(p, t)
∏

p∈M(t)

G(p, t)]dt.

We apply the barrier events condition 1L(t) to bound the product over p ∈ S(t) so
that the above is at most

(8.9) �
( V

logR

)2
· e2c

√
log log x−log logR

·
∫

V
log x≤|t|≤ 1

log R

1

t2
E[1L(0)

∏
p∈P2

G(p, 0)
∏

p∈M(t)

G(p, t)]dt.

We next upper bound the expectation in (8.9) uniformly for all V/ log x ≤ |t| ≤
1/ logR. We first drop the indicator function and rewrite the product based on the
independence between f(p) to derive that

E[1L(0)

∏
p∈P2

G(p, 0)
∏

p∈M(t)

G(p, t)] ≤ E[
∏

p∈S(t)

G(p, 0)] · E[
∏

p∈M(t)

G(p, 0)G(p, t)].
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Use the mean square calculation results in (3.1) and (3.3) to further get an upper
bound on the expectation

� V/|t|
logR

·
( t log x

V 2

)2
� |t|(log x)2

V 3 logR
.

Now we plug the above bound to (8.9) to get that (8.9) is crudely bounded by( log x

logR

)2
· e

2c
√
log log x−log logR

V logR
·
∫

V
log x≤|t|≤ 1

log R

1

|t|dt �
( log x

logR

)2
· log log x

V · e2c
√
log log x

,

where we used that logR ≥ exp(4c
√
log log x) and c � 1 is defined in (6.4). The

last factor tends to zero as x → +∞, so it is surely � 1
V 2 for a fixed large constant

V . This completes the proof of (8.8) and thus the proof of the proposition. �

9. Concluding remarks

9.1. Typical behavior and small perturbations. We give a sketch of the situ-
ation when a(n) itself is independently and randomly chosen. We write

(9.1) a(n) = r(n)X(n)

where r(n) > 0 is deterministic and X(n) are independently distributed with
E[|X(n)|2] = 1. We may naturally assume that there is some r such that

r(n) � r(m) � r

for all n,m, i.e. no particular random variable would dominate the whole sum in
size. One may also just assume r = 1 throughout the discussion here. We claim
that for typical X(n), the random sums satisfy the sufficient condition established
in [43, Theorem 3.1] on having a Gaussian limiting distribution.

The key condition one needs to verify is that almost surely (in terms of over
X(n)), we have

(9.2) RN (a) :=
∑

mi,nj≤N
mi �=nj

m1m2=n1n2

a(n1)a(n2)a(m1)a(m2) = o(r4N2).

The proof of (9.2) is straightforward. By using the divisor bound, we know there
are � N2+ε number of quadruples (m1,m2, n1, n2) under the summation. If we

expect some square-root cancellation among a(n1)a(n2)a(m1)a(m2), then RN (a)
above should be around r4N1+ε typically. Indeed, by using the fact that all a(n)
are independent, we have the L2 bound

E[|RN |2] = E[RNRN ] � r8N2+ε.

This leads to, almost surely (in terms of over X(n)), that we have

RN (a) = o(r4N2).

To this end, by using [43, Theorem 3.1], almost surely, we have a central limit
theorem for the random partial sums of a Steinhaus random multiplicative function.
See [7, Theorem 1.2] for a closely related result where they used the method of
moments.

In Question 1.1, we asked if it is possible to characterize the choices of a(n)
that give better than square-root cancellation. On one hand, as discussed above,
we know for typical a(n), there is just square-root cancellation. On the other
hand, if a(n) is a deterministic multiplicative function taking values on the unit
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circle, then by the fact that a(n)f(n) has the same distribution as f(n) and the
result established by Harper (1.1), the partial sums

∑
n≤N a(n)f(n) have better

than square-root cancellation. Our main theorems study one particular example
of multiplicative nature. Combining these observations, we believe that any small
perturbation coming from a(n) that destroys the multiplicative structure would make
the better than square-root cancellation in (1.1) disappear. We ask the following
question in a vague way as a sub-question of Question 1.1.

Question 9.1. Is it true that the only “essential choice” of a(n) leading to better
than square-root cancellation is of multiplicative nature?

9.2. Threshold in other settings and the limiting distribution. The main
theorems of this paper prove that there is square-root cancellation for log logR �
(log log x)

1
2 . What is the limiting distribution then? We have remarked earlier that

one may establish a central limit theorem when R � exp((log x)c) for some constant
c < 1 by understanding the corresponding multiplicative energy. It becomes less
clear for smaller R.

Question 9.2. What is the limiting distribution of
∑

n∈AR(x) f(n) with “proper”

normalization, for all ranges of R?

We finally comment that there is another family of partial sums that naturally
has the threshold behavior for better than square-root cancellation. Let A = [x, y]
with y ≤ x. We would like to know for what range of y, typically,∑

x≤n≤x+y

f(n) = o(
√
y).

We believe one can adapt the argument here to find that the threshold behavior is
around log(x/y) ≈

√
log log x. It is certainly interesting to understand the limiting

distribution for the short interval case thoroughly, beyond the previous result in
[43].
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[40] C. Pomerance and A. Sárközy, On products of sequences of integers, Number theory, Vol.

I (Budapest, 1987), Colloq. Math. Soc. János Bolyai, vol. 51, North-Holland, Amsterdam,
1990, pp. 447–463. MR1058228
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