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INTEGRAL POINTS OF BOUNDED HEIGHT ON A CERTAIN

TORIC VARIETY

FLORIAN WILSCH

Abstract. We determine an asymptotic formula for the number of integral
points of bounded height on a certain toric variety, which is incompatible with
part of a preprint by Chambert-Loir and Tschinkel. We provide an alternative
interpretation of the asymptotic formula we get. To do so, we construct an
analogue of Peyre’s constant α and describe its relation to a new obstruction
to the Zariski density of integral points in certain regions of varieties.
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1. Introduction

A classical problem in Diophantine geometry is to understand the number of
rational points on a given algebraic variety. For Fano varieties—that is, smooth
projective varieties whose anticanonical bundle is ample—the set of rational points
is expected to be Zariski dense (thus in particular infinite) as soon as it is nonempty.
A conjecture of Manin’s [FMT89] makes a more precise quantitative prediction for
this setting. Given a Fano variety X over a number field K, one orders the set of
rational points X(K) by an anticanonical height H : X(K) → R>0. There might
be a closed subvariety Z ⊂ X, or, more generally, a thin subset Z ⊂ X(K) of
the rational points on X that dominates the number of rational points of bounded
height, and one should count points on its complement V = X(K)\Z. In its current
form (cf. e.g. [LST22, Conj. 1.2] and [BM90,Pey95,BT98b,Pey03] for variants and
important waypoints leading to its current formulation), the conjecture predicts
that the number

NV,H(B) = #{x ∈ V | H(x) ≤ B}
of rational points of height at most B conforms to the asymptotic formula

(1) NV,H(B) ∼ cV,HB(logB)rkPicX−1,
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where the exponent of logB is the rank of the Picard group of X and cV,H > 0 is
an explicit constant depending on X and H.

A related problem is the quantitative study of integral points. On projective
varieties, rational and integral points can be seen to coincide by clearing denomina-
tors in the solution to a homogeneous equation or, more formally, as a consequence
of the valuative criterion for properness. A problem analogous to the one treated
by Manin’s conjecture, asking about integral points on a quasiprojective variety, is
the following: Let X be a smooth, projective variety over a number field K and D
be a reduced, effective divisor with strict normal crossings such that the log anti-
canonical bundle ωX(D)∨ is at least big. Let U be an integral model of U = X \D,
and let H be a log anticanonical height function. The number of integral points on
U of bounded height might be dominated by points lying on an accumulating thin
set Z ⊂ X(K), which should be excluded. What is the asymptotic behavior of the
number

(2) #{x ∈ U(oK) ∩ V | H(x) ≤ B}

of integral points of bounded height that (as rational points) belong to the comple-
ment V = X(K) \ Z of accumulating subsets?

For complete intersections of low degree compared to their dimension, this kind of
problem can be studied using the circle method (e.g. [Bir62,Sch85]). Methods such
as harmonic analysis exploiting a group action can be used to study linear algebraic
groups and their homogeneous spaces (e.g. [DRS93,EM93,EMS96,Mau07,GOS09])
as well as partial equivariant compactifications thereof ([CLT12, TBT13] and the
incomplete [CLT10b]); the asymptotic formulas in the latter cases are interpreted
in a way that is similar to the formula (1) proposed by Manin and Peyre, building
on the framework set out in [CLT10a].

Universal torsors were defined by Colliot-Thélène and Sansuc [CTS87] and were
first used by Salberger [Sal98] to count rational points on toric varieties. This
method can be adapted to count integral points [Wil22], and in the present paper,
we use it to count integral points of bounded height on the toric variety defined as
follows. Let X0 = P1 × P1 × P1 be a product of projective lines with coordinate
pairs (a0 : a1), (b0 : b1), and (c0 : c1), and consider the two lines l1 = V (a1, b1)
and l2 = V (a1, c1). Let π : X → X0 be the toric variety obtained by blowing up
P1×P1×P1 in l1 and then blowing up the resulting variety in the strict transform of
l2. Denote by T0 = X0 \V (a0a1b0b1c0c1) the open torus in X0 and by T = π−1(T0)
the open torus in X. Denote by E1 and E2 the two exceptional divisors above the
lines l1 and l2 and by M the preimage of the plane V (a0) parallel to them. Let

D = E1 + E2 +M, U = X \D, and U0 = X0 \ (V (a0) ∪ l1 ∪ l2),

the latter subvariety being isomorphic to U . Consider the integral model

U = P1
Z × P1

Z × P1
Z \ V (a0) ∪ l1 ∪ l2

of U0
∼= U . An integral point on P1 × P1 × P1 can be represented by three pairs

(a0, a1), (b0, b1), (c0, c1) of coprime integers, uniquely up to three choices of sign.
Such a point lies in the complement of V (a0) if a0 does not vanish modulo any
prime, that is, if a0 is a unit. Similarly, the point lies in the complement of l1 if a1
and b1 do not simultaneously vanish modulo any prime, that is, if gcd(a1, b1) = 1,
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and analogously for l2. The set of integral points on U is thus

(3) U(Z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

((a0 : a1), (b0 : b1), (c0 : c1)) ∈ X0(Q)

∣∣∣∣∣∣∣∣∣∣∣∣

a0, . . . , c1 ∈ Z, a0 ∈ {±1},
gcd(a1, b1) = gcd(a1, c1)

= gcd(b0, b1)

= gcd(c0, c1)

= 1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

A point P ∈ U(Z) represented as in (3) lies in T0(Q) (resp. in T when interpreted
as a point on X) if and only if all coordinates are nonzero, and for any such point,
we set

H(P ) = |a1|max{|b0| , |b1|}2 max{|c0| |c1|}2,
which will turn out to be a log anticanonical height function on the pair (X,D)
(Lemma 3.1.2).

Theorem 1.0.1. The number

N(B) = {P ∈ U(Z) ∩ T (Q) | H(P ) ≤ B}

of integral points of bounded height satisfies

(4) N(B) = cB(logB)2 +O(B logB(log logB)3),

where

c = 4
∏
p

((
1− 1

p

)2(
1 +

2

p
− 1

p2
− 1

p3

))
.

Thanks to the machinery in [Der09], the proof is very straightforward (Sec-
tions 3.1 and 3.2). The main interest of Theorem 1.0.1 lies in the shape of the
asymptotic formula: it contradicts part of the unpublished preprint [CLT10b] by
Chambert-Loir and Tschinkel, exemplifying a gap in a proof of which they were
already aware and due to which they no longer believed in the correctness of their
result (see Remark 3.3.2 for more details on this issue). Conceptually, the deviation
from the asymptotic formula in op. cit. can be explained by an obstruction to the
existence of integral points in a region that was expected to dominate the number
of integral points. More precisely, the maximal number of components of D that
have a common real point is part of the exponent of logB because integral points in
arbitrarily small real neighborhoods of such intersections normally constitute 100%
of the total asymptotic number.

On the toric variety X \D, this does not hold: The function f = a1/a0 (in fact,
a character of T0) is regular on U0 and spreads out to U; hence, it is an integer
on every integral point P ∈ U(Z). If P ∈ T0(Q), then f(P ) 	= 0. So |f(P )| ≥ 1
for P ∈ U(Z) ∩ T0(Q), that is, for every point P counted by N (Figure 1). The
set V = π−1{|f | < 1} is a neighborhood of E1(R) ∩ E2(R), and in fact even of
E1(R) ∪ E2(R), in the analytic topology, as f vanishes on these sets—but V does
not meet U(Z)∩T (Q), whence cannot contribute to the counting function N . This
leaves only the irreducible component M of D to contribute to the number N(B) of
points of bounded height. We interpret the asymptotic formula in a way that only
takes this component into account (Theorem 3.0.1), explaining the smaller power of
logB. Section 3.3 deals with the details of this interpretation and the comparison
with loc. cit.
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Figure 1. Integral points of height at most 9 in U(Z) ∩ T (Q),
viewed as a subset of P1 × P1 × P1. The two lines l1 and l2 blown
up are in the plane a1 = 0. By [CLT10b], one expects arbitrarily
small neighborhoods of the intersection of the two red lines to dom-
inate the counting function—but in fact, any sufficiently small such
neighborhood contains no points counted by N at all: as a1/a0 is
an integer for all integral points, all integral points lie on “sheets”,
and all these sheets have distance ≥ 1 from the intersection point,
which corresponds to the unique maximal dimensional face of the
Clemens complex. (The plane a1/a0 = 0 defined by both lines
contains integral points on U, which are not shown as they are not
in T (Q); in fact, it contains infinitely many points, all of height 1,
hence has to be discarded as an accumulating subvariety to achieve
a well-defined counting function.)

This phenomenon is an instance of a more general obstruction and related to the
construction of a factor in the leading constant. After fixing notation and recalling
the relevant definitions on Clemens complexes and the kind of Tamagawa measures
appearing in the context of integral points (Section 2.1), we describe factors αA

associated with each maximal face A of the Clemens complex analogous to Peyre’s
constant α, slightly generalizing a construction in [CLT10b] to nontoric varieties
(Section 2.2, in particular Definition 2.2.8).
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In (9), we associate an open subvariety UA with every maximal face A of the
Clemens complex. As soon as this open subvariety admits nonconstant regular func-
tions, the set of integral points in a certain region of the variety associated with A
fails to be Zariski dense, and we say that there is an obstruction to the Zariski den-
sity of integral points near A; in such a case, the maximal face A cannot contribute
to the counting function (2). This obstruction is described and studied in detail in
Section 2.3. It turns out that it is closely related to an obstruction described by
Jahnel and Schindler: under some assumptions on X and D, including that they be
defined over a field K with only one archimedean place ∞, an obstruction at every
face of the archimedean Clemens complex implies that the open subvariety X \D
is weakly obstructed at ∞ in the sense of [JS17, Def. 2.2 (ii–iii)] (Lemma 2.3.7); in
particular, its set of integral points is not Zariski dense. This allows a generaliza-
tion of [JS17, Thm. 2.6] to arbitrary number fields: the set of integral points on
U is not Zariski dense if all maximal faces of the Clemens complex are obstructed,
without restrictions on K (Corollary 2.3.6), or, more generally, if a condition simi-
lar to being obstructed at infinity in the sense of op. cit., simultaneously involving
all infinite places, holds (Theorem 2.3.11).

The relation between this obstruction and the construction of αA is explored
in Section 2.4: whenever this constant vanishes or some pathologies appear in
its construction, the Zariski density of the corresponding set of integral points is
obstructed (Theorem 2.4.1), providing a geometric reason for the face A to be dis-
carded. Finally, we briefly sketch how to take this obstruction into account when in-
terpreting asymptotic formulas for the number of integral points of bounded height
(Section 2.5), Theorem 3.0.1 providing an example for this kind of interpretation.

2. Geometric framework

Throughout this section, let K be a number field, oK its ring of integers, K an
algebraic closure, Kv the completion at a place v, and kv the residue field at a finite
place v. Equip the completions with the absolute values |·|v normalized such that

|x|v =
∣∣NKv/Qw

(x)
∣∣
w

at a place v lying above a place w of Q, such that |p|p = 1/p on Qp, and with the
usual absolute value on R. Moreover, equip each of the local fields with a Haar
measure μv satisfying μv(oKv

) = 1 at finite places, the usual Lebesgue measure
dμv = dx at real places, and dμv = i dz dz = 2dx dy at complex places.

We consider pairs (X,D) as follows. Throughout, let X be a smooth, projective,
geometrically integralK-variety, and let D be a reduced, effective divisor with strict
normal crossings. Let U = X \ D, and let U be an integral model, that is, a flat
and separated oK-scheme of finite type together with an isomorphism between its
generic fiber U×oK

K and U . Throughout, similarly to [Pey03, Déf 3.1, Hyp. 3.3],
we assume that

(1) H1(X,OX) = H2(X,OX) = 0,
(2) the geometric Picard group Pic(XK) is torsion free,
(3) there is a finite number of effective divisors D1, . . . , Dn that generate the

pseudoeffective cone EffX = {
∑

aiDi | ai ∈ R≥0} ⊂ Pic(X)R (which we
shall also simply call the effective cone for that reason), and

(4) the log anticanonical bundle ωX(D)
∨
is big, that is, it is in the interior of

the pseudoeffective cone.
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In particular, the anticanonical bundle ω∨
X is also big, and X is almost Fano in the

sense of [Pey03, Déf 3.1].
For simplicity, we will assume some form of splitness of the pair (X,D): that

the canonical homomorphism Pic(X) → Pic(XK) is an isomorphism and that all
irreducible components of DK are defined over K. This assumption on D is weaker
than the pair (X,D) being split in the sense of [Har17].

To fix further notation, for an open subvariety V ⊂ X, we let

E(V ) = OX(V )×/K×

be the finitely generated abelian group of invertible regular functions on V up to
constants.

2.1. Metrics, heights, Tamagawa measures, and Clemens complexes. To
make this section self-contained, we begin by briefly recalling several definitions
needed for the geometric interpretation of asymptotic formulas, as found for exam-
ple in [Pey03,CLT10a].

2.1.1. Adelic metrics. Several of the invariants appearing in the interpretation of
asymptotics formulas often depend on a choice of an adelic metric on one or several
line bundles L, that is, a family of norm functions ‖·‖v : L(xv) → R≥0 on the fibers
L(xv) = x∗

vL above every local point xv ∈ X(Kv) that varies continuously with the
points xv and is induced by a model at almost all places [Pey03, Ex. 2.2, Déf. 2.3].

In an application of the torsor method, we shall make use of the following stan-
dard construction of an adelic metric on a base point free bundle L: a set (s0, . . . , sn)
of sections of L without a common base point defines a morphism f : X → Pn,
x → (s0(x) : · · · : sn(x)), and we set

‖s(x)‖v = min

{∣∣∣∣ s(x)s0(x)

∣∣∣∣
v

, . . . ,

∣∣∣∣ s(x)sn(x)

∣∣∣∣
v

}
for a Kv-point x = (x0 : . . . : xn) and a local section s of L. OPn(1). Furthermore,
adelic metrics ‖·‖L1

, ‖·‖L2
on two line bundles L1, L2 induce an adelic metric on

their quotient L1 ⊗ L∨
2 by setting

‖g(x)‖v =
‖(g ⊗ f2)(x)‖L1,v

‖f2(x)‖L2,v

for a local section g of L1 ⊗L∨
2 , which is independent of a choice of a nonvanishing

local section f2 of L2.

2.1.2. Heights. Such an adelic metric ‖·‖ induces a height function

HL,‖·‖ : X(K) → R≥0, x →
∏
v

‖s(x)‖−1
v ,

where s is an arbitrary section that does not vanish in x [Pey03, Déf 2.3]. If L
is ample, the number #{x ∈ X(K) | HL(x) ≤ B} of rational points of bounded
height is finite for any B ≥ 0. This still holds outside a closed subvariety if L is
big.

Example 2.1.1. In order to construct a height associated with an arbitrary (not
necessarily base point free) line bundle L, something that we shall need in the
second section, we can write the bundle as a quotient L = A ⊗ B−1 of base point
free bundles. Choosing sets a0, . . . , ar and b0, . . . , bs of global sections of A and B
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without a common base point induces morphisms f1 : X → Pr and f2 : X → Ps,
respectively, as well as metrics on the two bundles. Then

HL =
∏
v

max{|ai|v | i = 0, . . . , r}
max{|bj |v | j = 0, . . . , s} =

HPr ◦ f1
HPs ◦ f2

,

where HPr =
∏

v max{|x0|v , . . . , |xr|v} is the standard height on Pr, using that∏
v |s(x)|v = 1 for any section s not vanishing in the respective image of x.
If L is not base point free, it does not suffice to take global sections of L and

consider the maximum of their absolute values. There is, however, an inequality:
If L has global sections, take a basis s0, . . . , sn of them. After completing {sibj}i,j
to a basis of the global sections of A, we get

H(x) ≥
∏
v

max
i=0,...,n

{|si|v}

for the height function H induced by this choice of basis. If x is not contained in
the base locus, the right-hand side is HPn(g(x)) for the rational map g : X ��� Pn

associated with L. From this, we can recover the above fact: Assume that L is
big. After passing to an appropriate multiple (and taking the corresponding root
of all resulting metrics and height functions), we can write L = A⊗ E , where A is
very ample and E = OX(E) is effective. Endow A and E with metrics according
to the above constructions and L with the product metric. Let f : X ↪→ Pn be the
resulting closed immersion corresponding to A and g : X ��� Pm be the resulting
rational map corresponding to E . If x ∈ (X \ E)(Q), then g(x) is defined, and in
particular HE(x) ≥ HPm(g(x)) ≥ 1; if moreover HL(x) ≤ B, then

HPn(f(x)) =
HL(x)

HE(x)
≤ B,

making the number of rational points on X \ E of height at most B finite.

2.1.3. Tamagawa measures. A Tamagawa measure, appearing in asymptotic for-
mulas for the number of rational points of bounded height, is a Borel measure τX,v

on X(Kv) for a place v, induced by an adelic metric on the canonical bundle ωX .
In local coordinates x1, . . . , xn, it is defined as

dτX,v =
dx1 · · · dxn

‖dx1 ∧ · · · ∧ dxn‖v
,

with respect to the fixed Haar measure onKn
v [Pey03, Not. 4.3]. This is independent

of the choice of local coordinates by the change of variables formula.
When counting integral points, variants of this measure induced by a metric on

the log anticanonical bundle ωX(D) take its place:

(5) dτ(X,D),v =
dx1 · · ·dxn

‖1D ⊗ dx1 ∧ · · · ∧ dxn‖v
and its restriction to U(Kv) [CLT10a, § 2.1.9]. Here, 1D denotes the canonical
section of OX(D), corresponding to 1 under the canonical embedding OX(D) →
KX . For a finite place v < ∞, the set U(ov) is compact, so the norm ‖1D‖−1

v is
bounded on it, and its volume is finite. Moreover, these volumes verify

τ(X,D),v(U(ov)) =
#U(kv)

(#kv)dimX
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at almost all places ([CLT10a, § 2.4.1 with § 2.4.3] going back to Weil [Wei82]).
These measures are multiplied with convergence factors associated with the Galois
representations Pic(UK) and E(UK) [CLT10a, Def. 2.2]. Our splitness assumption
implies that the Galois action on both modules is trivial, and we get the powers(

1− 1

#kv

)rk Pic(U)−rkE(U)

of the local factors at s = 1 of the Dedekind zeta function ζK of K. These make
the product ∏

v<∞

(
1− 1

#kv

)rk Pic(U)−rkE(U)

τ(X,D),v(U(ov))

absolutely convergent [CLT10a, Thm. 2.5]. Finally, this product is multiplied with
the principal value of the corresponding L-function [CLT10a, Def. 2.8], in this case

ρ
rkPicU−rkE(U)
K , where

ρK =
2r(2π)s RegK hk

#μK

√
|dK |

is the principal value of the Dedekind zeta function, with the numbers r and s of
real and complex places, the regulator RegK , the class number hK , the group μK

of roots of unity, and the discriminant dK of K.

2.1.4. Clemens complexes. Often, there are simple topological reasons for which
integral points cannot evenly distribute along U(Kv) for archimedean places v. For
instance, if K = Q and U is affine, its integral points are lattice points, which
form a discrete subset of U(R); however, regarded as a subset of the compact set
X(R), the set of integral points must have accumulation points as soon as it is
infinite, which consequently lie on the boundary D(R). Phenomena like this can
be observed in many cases: integral points tend to accumulate near the boundary,
with “more” points lying near intersections of several components of the boundary
divisor. For this reason, combinatorial data on the boundary, encoded in Clemens
complexes [CLT10a, § 3.1], appears in asymptotic formulas for the number of inte-
gral points of bounded height.

The geometric Clemens complex CK(D) is a partially ordered set defined as
follows: Let A be an index set for the set of irreducible components of D (which
are the same as the irreducible components of DK by our assumptions); denote by
Dα the irreducible component of D corresponding to α ∈ A, and, for any A ⊂ A,
by ZA the intersection

⋂
α∈A Dα. Then the geometric Clemens complex consists of

all pairs (A,Z), such that A is a subset of A, and Z is an irreducible component
of (ZA)K . Its ordering is given by (A,Z) � (A′, Z ′) if A ⊂ A′ and Z ⊃ Z ′. The
dimension of a face (A,Z) ∈ CK(D) is the longest length n of a chain

(∅, X) ≺ (A0, Z0) ≺ · · · ≺ (An, Zn) = (A,Z)

of strict inclusions. In other words, we add a vertex (of dimension 0) for every
component of D; if the intersection of a set of components is nonempty, we glue
one simplex to the corresponding set of vertices for every geometric component of
the intersection. In the following, we will often suppress Z from the notation.

For an archimedean place v, we will also be interested in theKv-analytic Clemens
complex Can

v (D). It is the subset of CK(D) consisting of all pairs (A,Z) such that
Z is defined over Kv and has a Kv-rational point. (Note that this depends on v
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and not just on the isomorphism class of Kv.) By the splitness assumption in the
beginning of this section, we have the following:

Lemma 2.1.2. If a face (A,Z) of the geometric Clemens complex is part of the
Kv-analytic Clemens complex Can

v (D), then so are all of its subfaces (A′, Z ′).

Proof. Such a subface is given by data A′ = {D1, . . . , Dr} ⊂ A and an irreducible
component Z ′ ⊂ ZA′ with Z ′ ⊃ Z. Since Z(Kv) 	= ∅, it contains a Kv-point P , that
is, a point P invariant under the action of the Galois group of Kv; since Z ′ ⊃ Z,
the point P also lies on Z ′. For contradiction, assume now that Z ′ is not defined
over Kv. Since the Di are all defined over K, they are invariant under the Galois
action, and hence so is ZA′ ; it follows that all conjugates σZ ′ of Z ′ are irreducible
components of ZA′ as well. As P is contained in the intersection of all conjugates
(and there is more than one by the assumption), ZA′ is singular in P , and D cannot
have strict normal crossings. �

Observe that, since ZA is smooth for every A ⊂ A, the set ZA(Kv) is a smooth
Kv-manifold. We are interested in maximal faces of the analytic Clemens complex
with respect to the ordering (i.e., facets), corresponding to minimal strata of the
boundary; such faces need not be maximal-dimensional, that is, maximal with
respect to their number of vertices. Speaking geometrically, maximal faces are faces
(A,Z) such that Z(Kv) intersects no other divisor component Dα(Kv), α 	∈ A. We
denote the set of maximal faces by Can,max

v (D); if the Kv-analytic Clemens complex
is empty at a place v—that is, if D(Kv) = ∅—then the empty set is its unique
maximal face.

2.1.5. Archimedean analytic Clemens complexes. Finally, we shall often be inter-
ested in all archimedean places at the same time. To this end, we define the
archimedean analytic Clemens complex to be the product (or join)

Can
∞ (D) =

∏
v|∞

Can
v (D)

of all Kv-analytic Clemens complexes, that is, the product set with the induced
partial order. In particular, a face A ∈ Can

∞ (D) is a tuple A = (Av)v|∞ of faces
Av ∈ Can

v (D) and has dimension
∑

v #Av − 1. Associated with such a face is the
set

(6) ZA =
∏
v|∞

ZAv
(Kv);

it is a closed subset of X(KR) =
∏

v|∞ X(Kv).

Finally, note that a face A is maximal if and only if all the Av are; again, we
denote by Can,max

∞ (D) the set of maximal faces.

Remark 2.1.3. There are conflicting conventions on whether to include the empty
face (∅, X) in such complexes. Here, we include it, as a face of dimension −1. For
instance, this convention is necessary to neatly deal with the case D = 0, in which
studying the empty face of the Clemens complex recovers Manin’s conjecture on
rational points; moreover, it facilitates the statement of some theorems that follow,
in which the empty face is an interesting special case.
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2.1.6. The measure associated with a maximal face. Let v be an archimedean place,
and let A ∈ Can,max

v (D) be a maximal face of the Kv-analytic Clemens complex,
that is, a maximal subset of the irreducible components whose intersection ZA has
a Kv-rational point. Let

DA =
∑
α∈A

Dα and ΔA = D −DA

be the sum of divisors corresponding to A and their “complement”, respectively.
We are interested in a measure τZA

on ZA(Kv) defined as follows [CLT10a, § 2.1.12]:
A metric on ωX(DA) defines a metric on ωZA

and thus a Tamagawa measure τ on
ZA(Kv) by repeated use of the adjunction isomorphism (since D is assumed to have

strict normal crossings). We are interested in the modified measure ‖1ΔA
‖−1
O(ΔA),v τ .

This measure only depends on the metric on the log canonical bundle ωX(D): this
metric induces one on ωZA

⊗OX(ΔA)|ZA
via the adjunction isomorphism, and the

above measure is equal to∥∥∥1ΔA

∣∣
ZA

⊗ dx1 ∧ · · · ∧ dxs

∥∥∥−1

ωZA
⊗OX(ΔA)|ZA

,v
dx1 · · ·dxs,

for local coordinates x1, . . . , xs on ZA(Kv). Note that the maximality of A guar-

antees that ‖1ΔA
‖−1
v does not have a pole on ZA(Kv), and is thus bounded on the

compact set ZA(Kv). These measures are further renormalized by a factor c#A
Kv

,
where cR = 2, resp. cC = 2π, is the volume of the unit ball in the archimedean local
field with respect to the Haar measure we are using. This results in the residue
measure

τZA
= c#A

Kv
‖1ΔA

‖−1
O(ΔA),v τ

on ZA(R). See [CLT10a, §§ 3.3.1, 4.1] for more details.

Remark 2.1.4. Let A ∈ Can,max
∞ (D) be a maximal face of the archimedean analytic

Clemens complex. The above constructions furnish a finite measure

τA =
∏
v<∞

(
1− 1

#kv

)rkPic(U)−rkE(U)

τU,v ×
∏
v|∞

τZAv ,v

on the subset ∏
v<∞

U(ov)×
∏
v|∞

ZAv
(Kv) ⊂ X(AK)

of adelic points. Often, integral points of bounded height equidistribute towards
the sum of (suitably normalized) measures on a disjoint union of such sets: usu-
ally that over all maximal dimensional faces, but Sections 2.3 and 3 provide a
reason for which this can fail. Chambert-Loir and Tschinkel provide an abstract
theorem that allows such an equidistribution theorem to be deduced from suf-
ficiently general counting theorems [CLT10a, Prop. 2.10], generalizing work of
Peyre’s [Pey03, Prop. 5.4] in the setting of rational points.

2.2. A divisor group and the constants αA. We associate some data with tu-
ples of maximal faces analogous to groups defined by Chambert-Loir and Tschinkel
for toric varieties [CLT10b, § 3.5], using the full set of divisors instead of invariant
ones:

Definition 2.2.1. Let A ∈ Can,max
∞ (D).
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(i) An A-divisor L is a tuple (LU , (Lv)v|∞), where L ∈ Div(U) is a divisor
on U and Lv ∈ Div(X) are divisors supported on DAv

, that is, linear
combinations of Dα with α ∈ Av. Denote by

Div(U ;A) ∼= Div(U)⊕
⊕
v|∞

ZAv

the group of A-divisors.
(ii) Let divA : KX → Div(U ;A) be the map associating with a rational function

f its corresponding principal A-divisor

divA(f) =

⎛⎝divU (f),

( ∑
α∈Av

ordDα
(f)Dα

)
v

⎞⎠ .

(iii) Finally, denote by

Pic(U ;A) = Div(U ;A)/ im(divA)

the group of A-divisor classes.

Notation 2.2.2. Since divA is compatible with the standard divisor function, the
pullback homomorphism i∗ : Pic(X) → Pic(U) along the inclusion i : U → X fac-
tors through Pic(U ;A) as follows. The first homomorphism

(7) πA : Pic(X) → Pic(U ;A)

maps the class [L] of an irreducible divisor L ∈ Div(X) to

πA([L]) = [(L ∩ U, (δL∈Av
L)v)],

where δL∈Av
is 1 if L is a component of D and belongs to the maximal face Av and

0 otherwise. The second homomorphism

(8) σA : Pic(U ;A) → Pic(U)

maps the class of an A-divisor (LU , (Lv)v) to the class

σA([LU , (Lv)v]) = [LU ]

of LU in PicU . If K has only one archimedean place and A ∈ Can,max
∞ (D), these

constructions simplify to the Picard group Pic(U ;A) = Pic(UA) of UA and the
pullback homomorphisms Pic(X) → Pic(UA) and Pic(UA) → Pic(U). Moreover,
there is an isomorphism

Pic(U ;A) →

⎧⎨⎩(Lv)v ∈
⊕
v|∞

Pic(UAv
)

∣∣∣∣∣∣ Lv|U ∼= Lv′ |U for all v, v′ | ∞

⎫⎬⎭ ,

[L, (Lv)v] → ([L+ Lv])v

that allows an equivalent interpretation of an A-divisor class as a tuple of divisor
classes (or line bundles) on UAv

whose restrictions to U coincide. In particular, σA

factors through a canonical homomorphism

σA,v : Pic(U ;A) → Pic(UAv
)

for each v | ∞.
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Set

(9) ΔA =
∑
α
∈Av

for all v|∞

Dα and UA = X \ΔA,

so that ΔA ⊂ D is again the “complement” of A. With ΔAv
as before for the

maximal face Av at a place v and UAv
= X \ΔAv

, there are inclusions

ΔA ⊂ ΔAv
⊂ D and U ⊂ UAv

⊂ UA ⊂ X.

Lemma 2.2.3. The sequences

(10) 0 E(U) CH0(D) Pic(X) Pic(U) 0,div (iD)∗ i∗U

where iD : D → X and iU : U → X are the inclusions, and
(11)

0 E(UA) E(U)
⊕

v|∞ CH0(DAv
) Pic(U ;A) Pic(U) 0,

·|U o p σA

where o = (ordDα
)α,v and p is induced by the projection Div(U ;A) → Pic(U ;A),

are exact.

Proof. The part on the right of (10) is the localization sequence for Chow groups.
Exactness on the left follows from the observation that a relation making a divisor
supported on supp(D) linearly trivial has to come from a meromorphic section
whose only zeroes and poles are on supp(D), that is, an invertible regular function
on U . The only such functions mapping to 0 in CH0(D) are regular and invertible
on X, hence invertible constants, and we get E(U) on the left.

Turning to (11), the kernel of σA is generated by A-divisors supported outside
U , that is, on the DAv

. If such an A-divisor L = (0, (Lv)v) is linearly equivalent
to 0 in Pic(U ;A), this equivalence has to be induced by a section which has cor-
responding zeroes and poles on L, but no zeroes and poles on U ; again, we can
exclude constants. Finally, the invertible regular functions on U not inducing such
a relation, thus mapped to 0 by o, are those which do not have a zero or pole on
any A, that is, those that are regular and invertible on UA. �

In the context of asymptotic formulas, we will be interested in the two numbers

bA = rkPic(U)− rkE(U) +
∑
v|∞

#Av and

b′A = rkPic(U ;A)

connected to the exponent of logB and a factor of the leading constant associated
with Pic(U ;A).

Lemma 2.2.4. For every A ∈ Can,max
∞ (D), we have

bA = rkPicX −#A+
∑
v|∞

#Av and

b′A = bA + rkE(UA).

Proof. These equalities follow directly from Lemma 2.2.3, on noting that rkCH0(D)
= #A. �
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Remark 2.2.5. An equality bA = b′A always holds for toric varieties [CLT10b, § 3.7.1
with the remark before Lem. 3.8.5] and partial equivariant compactifications of
vector groups and semisimple groups (since their effective cones are simplicial and
generated by invariant divisors, so there cannot be an element in E(UA) that would
induce a relation between some of them). More generally, both numbers play a role
in asymptotic formulas, and we shall see in Theorem 2.4.1(ii) that they are equal
whenever we can expect a tuple A of maximal faces to contribute to an asymptotic
formula.

Remark 2.2.6. As a consequence of the splitness assumption, it does not matter
whether we work over K or K: for a group Pic(UK ;A) similarly defined over

K, there would be a canonical isomorphism Pic(UK ;A) ∼= Pic(U ;A). Indeed,

consider the exact sequences in Lemma 2.2.3 over both K and K together with the
obvious homomorphisms from the former to the latter. The splitness assumptions
imply that the homomorphisms Pic(X) → Pic(XK) and CH0(D) → CH0(DK) are
isomorphisms, so using the five lemma three times yields Pic(UK ;A) ∼= Pic(U ;A).

In [CLT10b], Chambert-Loir and Tschinkel define a group Pic(U ;A) for (not
necessarily split) toric varieties starting with torus-invariant divisors. Their con-
struction coincides with the one above.

Lemma 2.2.7. If X is a split toric variety, D is invariant under the action of the
torus, and A ∈ Can,max

∞ (D), then

(12) Pic(U ;A) ∼=

⎛⎝PicT (U)⊕
⊕
v|∞

ZAv

⎞⎠ / divA(M),

where PicT (U) is the group of torus invariant divisors and M ⊂ KX is the character
group of the torus.

Proof. The group on the right-hand side of (12) fits into the sequence (11) in
place of Pic(U ;A) on noting that E(U), EA(U) ⊂ M and that Pic(U) is generated

by PicT (U). Then the five lemma implies that the inclusion PicT (U) → Div(U)
induces the desired isomorphism. �
Effective cones and the α-constant. If V is a real vector space and Λ ⊂ V a lattice,
we can equip the dual space V ∨ with a Haar measure such that Λ∨ has covolume 1.
Recall that if C ⊂ V a convex cone, the characteristic function XC of C is defined
to be

XC : V → R≥0 ∪ {∞} x →
∫
C∨

e−〈x,t〉 dt.

It is finite in the interior of C.

Definition 2.2.8. Let A ∈ Can,max
∞ (D).

(i) Let VA = Pic(U ;A)R, and define the effective cone associated with A to be
the cone EffA ⊂ Pic(U ;A)R generated by the images of effective divisors

Div≥0(U)R ⊕
⊕

v R
Av

≥0.

(ii) Assume that Pic(U ;A) is torsion free; it is thus a lattice in VA. Define

αA =
1

(b′A − 1)!
XEffA

(πA(ωX(D)∨)),

where πA : Pic(X) → Pic(U ;A) is as in (7).
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Remark 2.2.9.

(i) If K has only one archimedean place and A ∈ Can,max
∞ (D), then EffA is

simply the effective cone EffUA
of UA.

(ii) In Theorem 2.4.1(iii), we shall see that the assumption in Definition 2.2.8(ii)
holds whenever we can expect A to contribute to an asymptotic formula.

(iii) Since the log anticanonical bundle ωX(D)∨ is big, its image is in the interior
of EffA, making αA finite.

This value is nonzero if and only if EffA is strictly convex. In The-
orem 2.4.1(i), we shall see that if this is not the case, then there is an
obstruction to the Zariski density of integral points “near A”, and the face
A should not contribute to an asymptotic formula.

(iv) The constant αA can alternatively be described as a volume: Equip the
hyperplanes Ha = {t ∈ V ∨

A | 〈L, t〉 = a} with measures νHa
normalized

such that ∫
V ∨
A

f dν =

∫
R

(∫
Ha

f dνHa

)
da

for all functions f on V ∨
A with compact support. Then (cf. [Vin63, Ch. 2, § 2]

and [BT98a, Prop. 5.3])

αA = νH1
{t ∈ Eff∨

A | 〈ωX(D)∨, t〉 = 1}
= b′A ν{t ∈ Eff∨

A | 〈ωX(D)∨, t〉 ≤ 1}.

If the cone EffA is smooth, that is, generated by a Z-basis r1, . . . , rb′A of

Pic(U ;A), this can be simplified further: if π(ω(D)∨) has the representation
(a1, . . . , ab′A) in this basis, we have

αA =
1

(b′A − 1)!

∏
1≤i≤b′A

1

ai
.

More generally, if EffA is generated by a Z-basis of a sublattice Λ ⊂
Pic(U ;A), the same is true after dividing the right-hand side by the in-
dex [Pic(U ;A) : Λ].

2.3. An obstruction. Let A ∈ Can,max
∞ (D) be a maximal face of the archimedean

analytic Clemens complex, and consider the regular functions OX(UA) on UA. If
OX(UA) 	= K, that is, if there are nonconstant functions on UA, then there are no
integral points that are simultaneously near all ZAv

, except possibly on a finite set
of strict subvarieties (Corollary 2.3.2). If any such subvariety were to contribute
to the asymptotic behavior, we would have to exclude it as accumulating; hence,
there cannot be a contribution of “points near A” to an asymptotic formula if
OX(UA) 	= K. In this case, we will say that there is an obstruction to the Zariski
density of integral points near A.

The most general statement of this obstruction deals with not necessarily maxi-
mal faces A. In this setting, the existence of such a function prevents the density
of points “near A”, except possibly near strictly larger faces B:

Proposition 2.3.1. Let A ∈ Can
∞ (D) be a (not necessarily maximal) face such that

OX(UA) 	= K. For each v | ∞, let Bv,1, . . . , Bv,rv ∈ Can
v (D) be the faces strictly

containing Av. For each v | ∞ and 1 ≤ i ≤ rv, let Wv,i be an arbitrary analytic
neighborhood of ZBv,i

(Kv).
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Then there exists an analytic neighborhood Uv of

ZAv
(Kv) \

rv⋃
i=1

Wv,i

for each v | ∞ and a Zariski dense open subvariety V ⊂ X such that

{U(oK) ∩ V (K) | x ∈ Uv for all v | ∞} = ∅.

Proof. Let s be a nonconstant regular function on UA. After multiplying with a
suitable constant, we can assume it is regular on the integral model. Let v be an
infinite place. As the poles of s are contained in ΔAv

, its only poles on ZAv
(Kv)

are contained in ZAv
∩ΔAv

=
⋃

i ZBv,i
. Hence, |s|v is continuous on the compact

set Z = ZAv
\
⋃

i WBv,i
and attains its maximum Mv. It follows that

Uv = {x ∈ X(Kv) | |s(x)|v < 2Mv}
is a neighborhood of Z. Since s(x) ∈ oK for integral points x ∈ U(oK), it can only
attain the finitely many integral values α in the box in

∏
v|∞ Kv defined by the Mv.

Every integral point lying in all the Uv must thus lie on one of the finitely many
subvarieties V (s− α) ⊂ X. �

Corollary 2.3.2. Let A ∈ Can,max
∞ (D) be a maximal face such that OX(UA) 	= K.

Then there are a nonempty Zariski open subset V ⊂ X and an analytic neighborhood
Uv of ZAv

in X(Kv) for every archimedean place v such that

{x ∈ U(oK) ∩ V (K) | x ∈ Uv for all v | ∞} = ∅.

Proof. This is the special case of Proposition 2.3.1 where A is maximal. Then for
each v | ∞, there is no strictly larger Bv � Av, and Uv is simply a neighborhood
of ZAv

(Kv). �

The obstruction can be rephrased using the notation (6):

Corollary 2.3.3. Let A ∈ Can
∞ (D). For each strictly larger B � A, let WB

be an open neighborhood of ZB. Then there exists an open neighborhood U of
ZA \

⋃
B�A WB and a nonempty Zariski open V ⊂ X such that

U(oK) ∩ V (K) ∩ U = ∅,
where the intersection is to be understood in X(KR). In particular, if A is maximal,
then

U(oK) ∩ V (K) ∩ ZA = ∅.

Remark 2.3.4. If there is an obstruction to the Zariski density of integral points
near a maximal face A (in the sense of Corollary 2.3.2), Proposition 2.3.1 implies
that the density of points near ZA′ for subfaces A′ is similarly obstructed—except
possibly near a larger face B � A′; indeed, any nonconstant regular section on UA

is also regular on UA′ ⊂ UA. In such a case, we would expect that the number of
such points is described by invariants attached to the maximal faces B containing
A′. In other words, Corollary 2.3.2 provides no reason for which nonmaximal faces
might have to be studied when counting integral points.

As a consequence, if all maximal faces B containing a face A are obstructed,
there are no integral points simultaneously near all ZAv

(Kv):
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Corollary 2.3.5. Let A ∈ Can
∞ (D) be a (not necessarily maximal) face of the

archimedean analytic Clemens complex such that OX(UB) 	= K for all maximal
B � A. Then there are a nonempty Zariski open subset V ⊂ X and a neighborhood
U of ZA in X(KR) such that

{x ∈ U(oK) ∩ V (K) | x ∈ Uv for all v | ∞} = ∅.

Proof. This follows using induction on the codimension c of A. The case c = 0 is
Corollary 2.3.2. For general A, if B � A, then the induction hypothesis implies the
existence of a neighborhood UB of ZB and a nonempty Zariski open VB such that
U(oK)∩VB∩UB = ∅. Corollary 2.3.3 guarantees the existence of a neighborhood UA

of ZA \
⋃

B�A UB and a nonempty Zariski open VA such that U(oK)∩VA∩UA = ∅.
The statement follows with U = UA ∪

⋃
B�A UB and V = VA ∩

⋂
B�A VB. �

A notable special case is the empty face (∅, . . . , ∅), with corresponding stratum
Z∅ = X:

Corollary 2.3.6. Assume that OX(UA) 	=K for all maximal faces A ∈ Can,max
∞ (D).

Then U(oK) is not Zariski dense for any integral model U of U .

This obstruction is very similar to the notion of a weak obstruction at infinity
developed by Jahnel and Schindler [JS17, Def. 2.2]. For an archimedean place v,
the complement U of a very ample divisor D is called weakly obstructed at v if there
are a connected component U ′ of U(Kv), a constant c > 0, an integer d > 0, and a
finite set of rational functions of the form si = fi/1

d
D with fi ∈ H0(X,OX(D)⊗d)

not multiples of 1dD (that is, nonconstant regular functions si on U) such that, for
every point x ∈ U ′, there is at least one si with |si|v < c.

Lemma 2.3.7. Let v be an archimedean place of K and assume that U(Kv) is
connected. If OX(UA) 	= K for all maximal faces A of the Kv-analytic Clemens
complex, then U is weakly obstructed at v.

Proof. Take a nontrivial sA ∈ OX(UA) for all maximal faces A. For every point
x on the boundary, at least one of the sA is regular in x. Moreover, all of them
are regular on U , whence {|si| < c}i,c covers the compact set X(Kv), and there
is a finite subcover. We can then take c as the maximal constant used in this
subcover. �

Remark 2.3.8. Over fields with only one infinite place, integral points are not Zariski
dense if U is weakly obstructed at ∞ by [JS17, Thm. 2.6]. In a more general setting,
this does not need to be the case, even if U is obstructed at every archimedean place
(Example 2.3.10). However, Corollary 2.3.6 and the more general Theorem 2.3.11
generalize the obstruction to arbitrary number fields.

This obstruction always vanishes after a suitable base change:

Lemma 2.3.9. There is a finite extension L ⊃ K such that there is a maxi-
mal face A = (Aw)w of the archimedean analytic Clemens complex Can

∞ (DL) with
OXL

((UL)A) = L.

Proof. Let A1, . . . , An be the maximal faces of the geometric Clemens complex
CK(D), and let L ⊃ K be an extension with at least n complex places w1, . . . , wn

(i.e., nonconjugate embeddings into C whose image is not contained in R). Then
Can
Lwi

(DL) = CK(D) for these places as all ZAi
(Lwi

) are nonempty, and we can
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take the face A = (Aw)w with Awi
= Ai for these n complex places and Aw an

arbitrary maximal face for all other places. Since every Di belongs to at least
one maximal face of the geometric Clemens complex, we have (UL)A = XL, hence
OXL

((UL)A) = L. �

Example 2.3.10. Let X = P1 = ProjK[t0, t1], D = {0,∞}, and U = P1\D = Gm

with integral model U = Gm,oK
. (Its log anticanonical bundle is trivial, violating

the assumptions at the beginning of the section.) For every archimedean place
v, the analytic Clemens complex consists of the two vertices 0 and ∞, which are
maximal faces.

Assume for now that K has only one infinite place; that is, K is the field of
rational numbers or imaginary quadratic. The two open subvarieties associated
with the two maximal faces are U0 = P1 \ {∞} and U∞ = P1 \ {0}. Considering
t = t1/t0 ∈ OP1(U0) and t−1 ∈ OP1(U∞), both maximal faces are obstructed, and
indeed, Gm,oK

(oK) = o
×
K is well known to be finite, whence not Zariski dense.

If K has more than one place, there are more maximal faces to consider. Choos-
ing the maximal face 0 at every place, we again have U(0,...,0) = P1 \ {∞}, and
A = (0, . . . , 0) is obstructed by t. Analogously, (∞, . . . ,∞) is obstructed by t−1.
However, all remaining tuples B of faces (e.g. B = (0,∞, . . . )) satisfy UB = P1,
whence OP1(UB) = K, and those tuples are unobstructed. Indeed, in this case,
the set Gm,oK

(oK) = o
×
K is well known to be infinite, whence Zariski dense (and

can be checked to be “dense near” all these B as a consequence of Dirichlet’s unit
theorem). See Figure 2 for an example involving a real quadratic field.

Finally, Corollary 2.3.6 can be generalized and stated in a setting without as-
sumptions on U , in a way and with a proof that is very similar to [JS17]:

Theorem 2.3.11. Let U be a K-variety. Assume that

(O) there are nonconstant regular functions s1, . . . , sn ∈ OU (U) \K and a con-
stant C > 0 such that, for every point (xv)v ∈

∏
v|∞ U(Kv), there is a

1 ≤ i ≤ n with |si(xv)|v < C simultaneously for all v | ∞.

Then U(oK) is not Zariski dense for any integral model U of U .

Proof. After multiplying the si and C with a suitable constant, we can assume that
they are regular on U. Let α1, . . . , αs be the finitely many integers in oK such that
|αj |v < C for all v | ∞. Then each point P ∈ U(oK) lies on one of the finitely many
subvarieties V (si − αj) ⊂ U . �

Returning to the setting with (X,D) as in the beginning of this section (as-
sumptions that are stronger than necessary for what follows), Lemma 2.3.9 and
Lemma 2.3.12 will imply that this obstruction, too, vanishes after a suitable finite
base change.

Lemma 2.3.12. If (O) holds, then for all A ∈ Can
∞ (D) such that each Av is of

dimension 0—that is, Av = {Dv} for some component Dv of D—the group OX(UA)
is nontrivial.

Proof. For each si, consider the set Ui = {|si(xv)|v < C for all v} ⊂ X(KR). By
assumption, these sets cover U(KR), and as this cover is finite, their closures Fi

cover X(KR). Let A ∈ Can
∞ (D) be such that each Av is of dimension 0. For each

i, write the divisor associated with si as a rational function on X as a difference
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− 1
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0 1 ∞ −3

v1

− 1
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0

1

∞

−3

v 2

Figure 2. Integral points on Gm over K = Q(
√
5)—that is, units

of the ring of integers—of small height. Those of norm 1 are
shown in black, those of norm −1 in grey. They are embedded
into Gm(R) × Gm(R) = R× × R× along its two places v1 and v2;
a chart showing both 0 and ∞ is used, and the complement of the
multiplicative group is designated by dashed lines. The maximal
faces (0, 0) and (∞,∞) of Can

∞ (D) are obstructed, and no points
are near them; the other two maximal faces (0,∞) and (∞, 0) are
not, and integral points accumulate near them.

div si = Mi−Ni of effective divisors (without shared components). For each v | ∞,
write

D′
v = Dv(Kv) \

⋃
Dv 
⊂Mi

Mi(Kv),

which is nonempty by the smoothness of Dv.
If an si is not in OX(UA), that is, if it has a pole along at least one of the

Dv, then for that v | ∞, the set Ui,v = {|si(xv)|v < C} is disjoint from Dv(Kv) in
X(Kv). Its closure Fi,v can only meet Dv(Kv) ⊂ Ni(Kv) along the base locus of the
pencil spanned by Mi and Ni. (Indeed, blowing up the base locus yields a variety
π : X ′ → X with a morphism σ : X ′ → P1 whose fibers are the strict transforms of
the divisors in the pencil; then Fi,v is π(σ−1(B)) for the closed ball B of radius C
around 0 by properness of π, while Dv(Kv) is contained in Ni = π(σ−1(∞)).) It
follows that Fi,v is disjoint from D′

v, so that Fi is disjoint from
∏

v D
′
v.

If none of the si were in OX(UA), then
⋃

i Fi = X(KR) would be disjoint from
the nonempty subset

∏
v D

′
v, a contradiction. �
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Lemma 2.3.13. There is a finite field extension L/K such that (O) does not hold
for UL.

Proof. By Lemma 2.3.9, there is a field extension such that OXL
((UL)B) = L for at

least one maximal faceB ∈ Can
∞ (DL). IfD = 0, then U = X is proper andOX(X) =

K, so (O) cannot hold. Otherwise, possibly enlarging L to a totally imaginary field
to make all Kv-analytic Clemens complexes coincide with the geometric one, B
contains a subface A such that all Av have dimension 0; as UA ⊃ UB , the group of
regular functions OXL

((UL)A) ⊂ OXL
((UL)B) is still trivial. Now the statement

follows from Lemma 2.3.12. �
2.4. Relating the obstruction to the constants αA. This obstruction can be
triggered if some of the objects defined in the previous section behave pathologically.

Theorem 2.4.1. Let A ∈ Can,max
∞ (D) be a maximal face such that one of the

following holds:

(i) the effective cone EffA is not strictly convex (that is, αA = 0),
(ii) bA 	= b′A, or
(iii) the group Pic(U ;A) of A-divisor classes is not torsion free.

Then OX(UA) 	= K, and there is an obstruction to the Zariski density of points
near A. Moreover, if K has only one infinite place and (ii) holds, then U(oK) is
not Zariski dense for any integral model U of U .

Proof. Case (i). That EffA is not strictly convex means that it contains a line
through 0, that is, we can find two nonzero effective divisors (E, (Ev)v) and
(E′, (E′

v)v) ∈ Div(U ;A) with E + E′ ∼ 0. Hence, there exists a rational func-
tion which vanishes on all E,Ev, E

′, E′
v (and thus is nonconstant), and whose only

poles are outside UA.

Case (ii). We have seen in Lemma 2.2.4 that bA 	= b′A if and only if there is a
nonconstant invertible regular function s ∈ E(UA); so, in particular, OX(UA) 	= K
in this case.

Next, assume that K has only one infinite place, that is, the group of units o×K is
finite, and let s ∈ E(UA) be such an invertible regular function. After multiplying
s and s−1 with appropriate constants, we get regular sections s and s′ on U such
that ss′ = a ∈ oK . For a rational point x ∈ U(oK), the value s(x) then has to be a
divisor of a, of which there are only finitely many. The integral point x must thus
lie on one of the finitely many subvarieties V (s− α)α|a of X.

Case (iii). Consider the embedding

ZA\ suppΔA →
⊕
v

ZAv , L → (L|DAv
)v;

let M be the quotient, and observe that it is torsion free. Let φ : Pic(U ;A) → M
map the class of (L, (Lv)v) to the class of (Lv)v; indeed, this is well-defined as any
divisor of the form divA(f) maps to⎛⎝ ∑

α
∈suppΔA

ordDα
(f)Dα

∣∣∣∣
DAv

⎞⎠
v

,

which has trivial class in M . Then the sequence

(13) CH0(ΔA) Pic(X) Pic(U ;A) M 0,
(iΔA

)∗ πA φ
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where iΔA
: ΔA → X is the inclusion, is exact. Indeed, the kernel of πA is gen-

erated by divisors supported on ΔA, hence by the image of the pushforward map
CH0(ΔA) → Pic(X); for exactness on the right, note that

Pic(X) = (Div(U)⊕ ZA)/ im(divX),

so the cokernel of πA is indeed
⊕

v Z
Av/ZA\ suppΔA , after omitting the part ZsuppΔA

mapped to 0 by πA.
It follows that every nonzero torsion element T ∈ Pic(U ;A) has to be the image

of a (nonzero) element T̃ ∈ Pic(X) such that nT̃ ∈ im(ZsuppΔA); that is, there are

bα ∈ Z such that nT̃ +
∑

bαDα ∼ 0. Consider

T̃ ′ = T +
∑⌈

bα
n

⌉
Dα.

The divisor T̃ ′ is nonzero and in the pseudoeffective cone, so, using our assumptions

on X, it is represented by an effective Q-divisor E. The image of T̃ ′ = [E] is still
T , so the image of [nE] is trivial. Working with a suitable multiple of nE that is
integral, this means that there is a rational function s that vanishes on the support
of E and can only have poles on ΔA. Since the image of [E] in Pic(U ;A) is nonzero,
the support of E cannot be contained in the support of ΔA. Hence, s is nonconstant
and regular on UA, and OX(UA) 	= K. �

The toric variety studied in Section 3 furnishes an example for Theorem 2.4.1(i).
For the other two cases, we have the following:

Example 2.4.2. Consider Pn over a number field K with r real and s complex
places, together with the three hyperplanes V (x0), V (x1), and V (x0 + x1). Their
sum does not have strict normal crossings, a situation that can be remedied by
blowing up V (x0, x1). Call the resulting variety X, and consider the pair (X,D)
with D = H1 +H2 +H3 + E, where the Hi are the strict transforms of the three
hyperplanes and E is the exceptional divisor. For n ≥ 3, the log anticanonical
bundle is big (though never nef), and we have

U = X \D ∼= An \ (V (x1) ∪ V (x1 + 1)).

The geometric and every Kv-analytic Clemens complex is a “star”, with the vertex
corresponding to E connected to the other three vertices Hi. If we take A = (Av)v
with the same maximal face Av = A = {E,Hi} (for some fixed i) for all infinite
places, we have UA

∼= An−1 ×Gm. Hence,

bA = rkPic(U)− rkE(U) +
∑
v|∞

#A = 0− 2 + 2(r + s) = 2(r + s)− 2.

On the other hand, using (11), the sequence

0 → E(UA) → E(U) → (ZA)⊕(r+s) → Pic(U ;A) → 0

is exact, with the groups to the left having ranks 1, 2, and 2(r + s), respectively,
so b′A = 2(r+ s)− 1, and there is an obstruction by Theorem 2.4.1(ii). In fact, the
set of integral points is not Zariski dense: every integral point lies on one of the
subvarieties {ax0 − bx1 = 0} parametrized by the finitely many solutions a, b ∈ o

×
K

of the unit equation a+ b = 1. (Note that by Lemma 2.3.9, there are unobstructed
faces over sufficiently large fields, so this failure of Zariski density is not explained
by Corollary 2.3.6 in general.)
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Example 2.4.3. Consider Pn together with a divisor D having two components:
the quadric hypersurface Q = {x2

0 =
∑n

i=1 x
2
i } and the hyperplane H = {x0 = 0}.

If n ≥ 3, the log anticanonical bundle is ample. The intersection Q ∩ H does not
contain any R-points; so, if K is a totally real field, every Kv-analytic Clemens
complex consists of two isolated vertices. Consider the face A = (H, . . . ,H) ∈
Can,max
v (D). Since the Picard group of U = Pn \ D is trivial, (11) allows us to

compute
Pic(U ;A) ∼= Zr/(2, . . . , 2) ∼= Zr−1 ⊕ Z/2Z,

and Theorem 2.4.1(iii) applies. Note that if K = Q, there are only finitely many
points corresponding to the solutions of x2

1 + · · · + x2
n = 2, while for larger fields,

we get the sets of solutions of x2
1 + · · ·+ x2

n = 1 + u for units u ∈ o
×
K .

2.5. Asymptotic formulas. These definitions allow the interpretation of asymp-
totic formulas. Keep all the assumptions on (X,D) from the beginning of this
chapter, which included X and D being split. Let U be an integral model of U , and
assume that U(oK) is not thin (whence in particular Zariski dense). Let H be the
height function associated with a metric on the log anticanonical bundle ωX(D)∨.
We are interested in the asymptotic behavior of the number

N(B) = {x ∈ U(oK) ∩ V | H(x) ≤ B}
of integral points of bounded height whose generic point lies on the complement V
of an appropriate accumulating thin set Z ⊂ X(K). If strong approximation holds
(using the set of connected components at archimedean places, cf. e.g. [CTWX20]),
asymptotic expansions for N(B) tend to be similar to

(14) c∞cfinB(logB)b−1(1 + o(1)),

where

c∞ =
1

|dK |dimU/2

∑
A∈Cmax,◦(D)

αA

∏
v|∞

τZAv ,v
(ZAv

(Kv)) and

cfin = ρ
rkPicU−rkE(U)
K

∏
v<∞

(
1− 1

#kv

)rkPicU−rkE(U)

τU,v(U(oKv
)).

Here, the number b in the exponent of logB is the maximal value of bA = b′A
attained on tuples A of maximal faces with OX(UA) = K, i.e., on tuples without
an obstruction. The sum runs over the set

Cmax,◦(D) = {A ∈ Can,max
∞ (D) | OX(UA) = K, bA = b}

of faces A on which this maximum b is attained, that is, the set of maximal dimen-
sional faces under those without an obstruction. Corollary 2.3.6 guarantees that
the sum does not run over the empty set, and Theorem 2.4.1(i) guarantees that the
factors αA are nonzero.

In a more general setting, the product of volumes has to be replaced by the
volume of a suitable subset of adelic points: those points in⋃

A∈Cmax,◦(D)

∏
v<∞

U(oK)×
∏
v

ZAv
(Kv)

that are limit points of integral points (or, if there still are no such limit points,
a similarly defined set using maximal faces of smaller dimension necessitating a
further change of b), making necessary adjustments to the Tagamawa volume on
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ZAv
(Kv) if there are failures of strong approximation involving some connected

components of U(Kv) bordering on ZAv
(Kv) for archimedean v to account for the

fact that there are fewer points near this stratum.
Moreover, the factor ρK has to be replaced by the principal value of a different

L-function, and additional factors can appear in the constant, related to failures of
strong approximation, to nonsplitness, and to cohomological invariants (similar to
β in the case of rational points). It is unclear to the author what the shape of such a
factor for arbitrary (X,D) should be and under which conditions one should expect
it to be different from 1. Note that the Brauer group modulo constants, whose order
β is a factor of Peyre’s constant for rational points, might be nontrivial even for
split U .

We can compare (14) to results in the framework by Chambert-Loir and
Tschinkel. We note a difference in the case of toric varieties, and list the addi-
tional factors appearing in these asymptotic formulas.

• The formula above agrees with [CLT12, Thm. 3.5.6] on partial equivariant
compactifications of vector groups, since the obstruction never occurs in
these cases, and since the cones EffA are all smooth, satisfying

αA =
1

(b− 1)!

⎛⎝∏
α
∈A

1

ρα

⎞⎠⎛⎝∏
v|∞

∏
α∈Av

1

ρα − 1

⎞⎠
with the description −KX =

∑
α∈D ραDα of the anticanonical divisor as a

sum of the boundary components {Dα}α∈D.
• Similarly, in the case of partial equivariant compactifications of split semi-
simple groups G [TBT13], the obstruction does not occur, and the cones are
smooth with a similar description of αA, making the formulas compatible.
An additional factor is part of the asymptotic formula (18) in op. cit.: the
number |χS,D,λ(G)| of certain automorphic characters of the underlying
group G, related to strong approximation on G.

• The formula (14) is not compatible with [CLT10b, Thm. 3.11.5] on toric
varieties; it modifies the exponent b − 1 of logB and the index set of the
sum. Our formula above agrees with the asymptotic formula we determine
in Section 3. The formula in loc. cit. contains additional factors

|A(T, U,K)∗|
|A(T )∗|

∣∣H1(Γ,Pic(XE))
∣∣

|H1(Γ,ME)|
:

two groups of automorphic characters, related to weak and strong approx-
imation on T , and cohomology groups from the action of the Galois group
(which is trivial in the split case). Moreover, the volume is taken on the
subset of the adelic points cut out by these automorphic characters.

• The formula is compatible with [DW22], treating integral points of several
open subvarieties of the minimal desingularization of a singular quartic del
Pezzo surface. This variety is an example of a nontoric variety in which the
construction of αA does not lead to a simplicial cone.

3. Integral points on a toric threefold

The aim of this section is to provide an asymptotic formula for the number
N(B) of integral points of height at most B on the toric variety X defined in Sec-
tion 1. Integral points on toric varieties are treated by Chambert-Loir and Tschinkel
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in [CLT10b]; however, our result contradicts part of this (unfinished) work. After
parametrizing the set of integral points using a universal torsor in Section 3.1, we
determine an asymptotic formula in Section 3.2, proving Theorem 1.0.1. The ex-
ponent of logB is 1 less than the one given in [CLT10b], which is explained by an
obstruction to the existence of integral points on a certain part of X: Chambert-
Loir’s and Tschinkel’s asymptotic formula is associated with the one-dimensional
face {E1, E2} of the Clemens complex. There is a function obstructing the Zariski
density of integral points near E1 and E2, which also makes the leading constant
of their asymptotic formula vanish. In Section 3.3, we compare our formula to the
one given by Chambert-Loir and Tschinkel in greater detail and get a very similar
geometric interpretation to theirs (Theorem 3.0.1), associated with the maximal,
but only zero-dimensional face M of the Clemens complex.

Theorem 3.0.1. The number of integral points of bounded height satisfies the
asymptotic formula

N(B) = c∞cfinB(logB)bM−1(1 + o(1)),

with

c∞ = αMτM,∞(M(R)),

cfin =
∏
p

(
1− 1

p

)rkPicU

τU,p(U(Zp)),

where all constants are associated with the maximal, but not maximal-dimensional,
face M of the Clemens complex. More explicitly,

N(B) = cB(logB)2 +O(B logB(log logB)3),

where

c = 4
∏
p

((
1− 1

p

)2(
1 +

2

p
− 1

p2
− 1

p3

))
.

3.1. Passage to a universal torsor. The fan ΣX of X (depicted in Figure 3)
can be obtained by starting with the fan of P1 × P1 × P1, then subdividing it by
adding the ray ρx = R(−1,−1, 0) (corresponding to the exceptional divisor E1),
then further subdividing it by adding the ray ρy = R(−1, 0,−1) (corresponding to
E2). The Picard group of X is

Pic(X) = Zπ∗[H1] + Zπ∗[H2] + Zπ∗[H3] + Z[E1] + Z[E2] ∼= Z5,

where H1, H2, and H3 are planes of degree (1, 0, 0), (0, 1, 0), and (0, 0, 1), respec-
tively.

Aiming to count integral points by a parametrization using a universal tor-
sor, we start by determining the Cox ring; cf. for example [ADHL15, § 2.1.3]
for background on the following constructions. The Cox ring of X is RX =
Q[a0, a1, b0, b1, c0, c1, x, y], its generators corresponding to the rays of ΣX . It is
graded by Pic(X), the degree of each generator being the class of the correspond-
ing divisor in the Picard group. Under the above isomorphism Pic(X) ∼= Z5, the
grading is thus given by Table 1.
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a0

b0

c0

a1

b1

c1

x

y

Figure 3. The fan ΣX of X, its rays labeled with the correspond-
ing generators of the Cox ring

Table 1. The generators of RX and their degrees in Z5 ∼= Pic(X)

a0 a1 b0 b1 c0 c1 x y

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 −1 0 −1 0 0 1 0
0 −1 0 0 0 −1 0 1

The irrelevant ideal is generated by the set {
∏

g | ρg 	⊂ σ}σ∈Σ(max) ; it is thus

Iirr = (a1b1c1xy, a1b0c1xy, a1b1c0xy, a1b0c0xy,

a0b1c1xy, a0b0b1c1y, a0a1b0c1y, a0b1c0c1x,

a0a1b1c0x, a0a1b0c0y, a0b0b1c0c1, a0a1b0b1c0),

and we get a universal torsor Y = SpecRX \ V (Iirr) → X. The image of a point

(a0, a1, b0, b1, c0, c1, x, y) ∈ Y (Q)

is denoted by (a0 : a1 : b0 : b1 : c0 : c1 : x : y) ∈ Y (Q) (expressed in Cox coordinates),
and is further mapped to ((a0 : a1xy), (b0 : b1x), (c0 : c1y)) ∈ X0(Q) by the blow-up
morphism π.

Lemma 3.1.1. The log anticanonical bundle is big, i.e., in the interior of the
effective cone, but it is not nef. It has the description ωX(D)∨ ∼= L1 ⊗ L∨

2 as a
quotient of base point free bundles, where the class of L1 is (2, 2, 2,−2,−2), and the
class of L2 is (1, 0, 0, 0, 0) under the above isomorphism Pic(X) ∼= Z5.

Proof. In Cox coordinates, the exceptional divisors are defined by E1 = V (x) and
E2 = V (y) and the third component of the boundary is M = V (a0). The log
anticanonical class ωX(D) corresponds to

(1, 2, 2,−2,−2) =
∑

g generator of RX

deg(g)− deg(x)− deg(y)− deg(a0)

under the above isomorphism Pic(X) ∼= Z5. It is not base point free, since b1c1
divides all of its global sections. Since the same holds for all its multiples, it is not
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semiample and, as a consequence, not nef, since the two notions coincide on toric
varieties. It is, however, big: the effective cone is generated by the degrees of the
generators of the Cox ring, and

(1, 2, 2,−2,−2) = deg(a0)+3 deg(a1)+deg(b0)+7 deg(b1)+deg(c0)+7 deg(c1)+2 deg(x)+2 deg(y)
4

is in its interior. We shall use its description (2, 2, 2,−2,−2) − (1, 0, 0, 0, 0) as a
difference of base point free classes to construct a corresponding height function.
The sets

(15) {a21b20c20, a21b21c20x2, a21b
2
0c

2
1y

2, a21b
2
1c

2
1x

2y2, a20b
2
1c

2
1} and {a0, a1xy}

of elements of the Cox ring correspond to global sections of L1 and L2, respectively.
Neither of these sets can vanish simultaneously, so both classes are indeed base point
free. �

These choices of sections induce metrics on the bundles L1, L2, and L1 ⊗ L∨
2
∼=

ωX(D)∨, which in turn induce a log anticanonical height function.

Lemma 3.1.2. There is a 4-to-1-correspondence between the set of integral points
U(Z) ∩ T (Q) and the set

{(1, a1, b1, b2, c1, c2, 1, 1) ∈ Z8

=0 | (16) holds} ⊂ Y (Q),

where

(16) gcd(a1b0c0, a1b0c1, a1b1c0, b1c1) = 1.

The log anticanonical height of the image of a point (1, a1, b0, b1, c0, c1, 1, 1) in the
above set is

(17) H(a1, b0, b1, c0, c1) = |a1|max{
∣∣b20∣∣ , ∣∣b21∣∣}max{

∣∣c20∣∣ , ∣∣c21∣∣}.
Proof. Consider an integral point as in the description (3), that is, a point

P = ((a0 : a1), (b0 : b1), (c0 : c1)) ∈ U(Z) ⊂ X0(Q)

with a0 ∈ {±1} satisfying coprimality conditions that can be checked to be equiv-
alent to (16). Multiplying the first pair with a0 eliminates the choice of sign in a0;
but multiplying any of the latter two pairs with a unit does not change the integral
point P , resulting in the claimed 4-to-1-correspondence. The point P is the image
of

(18) (1, a1, b0, b1, c0, c1, 1, 1) ∈ Y (Q)

by the description of the torsor and blow-up morphism before Lemma 3.1.1. Such
a point is in the open torus T (Q) if and only if a1b0b1c0c1 	= 0.

The choice (15) of global sections of L1 and L2 induces metrics on these line bun-
dles and, consequently, on the line bundle L1⊗L∨

2 isomorphic to the log anticanon-
ical bundle. The latter metric then induces a log anticanonical height function. Its
value on the image of a point (a0, a1, b0, b1, c0, c1, x, y) ∈ Y (Q) is∏

v

max
{∣∣a21b20c20∣∣v , ∣∣a21b21c20x2

∣∣
v
,
∣∣a21b20c21y2∣∣v , ∣∣a21b21c21x2y2

∣∣
v
,
∣∣a20b21c21∣∣v}

max {|a0|v , |a1xy|v}
.

For a point as in (18) and a finite place p, the denominator is |a0|p = 1, while

the numerator is 1 as a consequence of the coprimality condition (16); hence, the
factors associated with finite primes are 1. Using that |a0| = |x| = |y| = 1 and
|a1| ≥ 1, the factor at the archimedean place can be simplified to (17). �
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Remark 3.1.3. More formally, the fan ΣX also induces a toric Z-scheme X and a
universal torsor Y → X (cf. [Sal98, p. 187 and Rem. 8.6 (b)], building on [Dem70]).
The fiber above each integral point is a G5

m,Z-torsor, the isomorphism classes of

which are parametrized by H1
fppf(SpecZ;G

5
m,Z) = Cl(Q)5; as this group is trivial,

each fiber is isomorphic to G5
m,Z, which has 25 integral points. The set (18) of

points in Y (Q) then coincides with (Y \ V (a0xy))(Z) up to fixing the three signs
a0, x, y ∈ {±1}, yielding a 4-to-1-correspondence to integral points on the model
X \D of U , which can be checked to coincide with U.

3.2. Counting. In other words, we now have a new description

N(B) =
1

4
#{(a1, b0, b1, c0, c1) ∈ Z5


=0 | H(a1, b0, b1, c0, c1) ≤ B, (16) holds}

of the counting function, with the height function H in (17).

Lemma 3.2.1. We have

N(B) =
∏
p

((
1− 1

p

)2(
1 +

2

p
− 1

p2
− 1

p3

))
V (B) +O(B logB(log logB)3)

with

V (B) =
1

4

∫
|a1|,|b0|,|b1|,|c0|,|c1|≥1,

|a1|max{|b20|,|b21|}max{|c20|,|c21|}≤B

da1 db0 db1 dc0 dc1.

Proof. The counting problem can be rephrased as

N(B) =
1

4

∑
a1,b0,b1,c0,c1∈Z�=0

H(a1,b0,b1,c0,c1)≤B

θ(a1, b0, b1, c0, c1),

where θ = δgcd(a1b0c0,a1b0c1,a1b1c0,b1c1)=1 =
∏

p θ
(p) with

θ(p)(a1, b0, b1, c0, c1) =

{
0, if p | a1b0c0, a1b0c1, a1b1c0, b1c1,
1, else.

Aiming to first replace the sum over b0 by an integral, observe that the height
conditions imply that ∣∣a1b20c20∣∣ , ∣∣a1b21c20∣∣ , ∣∣a1b0b1c21∣∣ ≤ B,

since the latter one is the geometric average of two terms in the height function.
We have

1 =
B

|a1b0b1c0c1|

(
B

|a1b20c20|

)−1/4(
B

|a1b21c20|

)−1/4(
B

|a1b0b1c21|

)−1/2

,

and note that the function θ satisfies Definition 7.9 in [Der09]. Using [Der09,
Prop. 3.9] with r = 1 and s = 3, we get

N(B) =
∑
a1,b1,

c0,c1∈Z�=0

θ1(a1, b1, c0, c1)V1(a1, b1, c0, c1;B) +O(B logB(log logB)3),
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where V1(a1, b1, c0, c1;B) = 1
4

∫
|b0|≥1

H(a0,b0,b1,c0,c1)≤B

db0 and θ1 =
∏

p θ
(p)
1 with

θ
(p)
1 (a1, b1, c0, c1) =

⎧⎪⎨⎪⎩
0, if p | a1c0, a1c1, b1c1,
1− 1

p , if p | b1, p � a1 and (p � c0 or p � c1),

1, if p � b1 and (p � c1 or p � a1c0).

Using the geometric average of the two height conditions involving b0, we can bound
V1 by

V1(a1, b1, c0, c1;B) �
√

B

|a1c0c1|
=

B

|a1b1c0c1|

(
B

|a1b21c20|

)−1/4(
B

|a1b21c21|

)−1/4

.

Since
∣∣a1b21c20∣∣ and ∣∣a1b21c21∣∣ are bounded by B, applying [Der09, Prop. 3.9] once

more (with r = 1, s = 2) yields

N(B) =
∑

a1,b1,c1∈Z�=0

θ2(a1, b1, c1)V2(a1, b1, c1;B) +O(B logB(log logB)3),

where V2(a1, b1, c1;B) = 1
4

∫
|b0|,|c0|≥1

H(a0,b0,b1,c0,c1)≤B

d(b0, c0) and θ2 =
∏

p θ
(p)
2 with

θ
(p)
2 (a1, b1, c0, c1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if p | a1, b1c1,(
1− 1

p

)2

, if p | b1c1, p � a1,

1− 1
p , if p | b1, p � a1c1,

1− 1
p , if p | c1, p � a1b1,

1, if p � b1c1.

To complete the summations, we use the fact that the height conditions imply∣∣a1b20c0c1∣∣ ≤ B, and get an upper bound

V2(a1, b1, c1;B) �
∫

|c0|≥1

|a1b
2
1c

2
0|≤B

√
B

|a1c0c1|
dc0 � B3/4

|a1|3/4 |b1|1/2 |c1|1/2

=
B

|a1b1c1|

(
B

|a1b21c21|

)−1/4

for V1. Since
∣∣a1b21c21∣∣ ≤ B, Proposition 4.3 in [Der09] yields the desired result, for

which we are only left to check that the constant is indeed
∏

p cp with

cp =
1

p2

(
1− 1

p

)(
1− 1

p

)2

+ 2
1

p

(
1− 1

p

)2(
1− 1

p

)
+

(
1− 1

p

)2

=

(
1− 1

p2

)(
1 +

2

p
− 1

p2
− 1

p3

)
. �

Proof of Theorem 1.0.1. We are only left to provide an asymptotic expansion of
V (B). The error we introduce when removing the condition |a1| ≥ 1 in the integral,
while keeping the condition max{

∣∣b20∣∣ , ∣∣b21∣∣}max{
∣∣c20∣∣ , ∣∣c21∣∣} ≤ B implied by the
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others, is at most

2

∫
|c0|,|c1|≥1,

max{|b20|,|b21|}max{|c20|,|c21|}≤B

db0 db1 dc0 dc1

�
∫
|c0|,|c1|≥1

B

max{|c20| , |c21|}
dc0 dc1 � B logB.

Using the symmetry in the integral, we get

V (B) =

∫
|b0|,|b1|,|c0|,|c1|≥1
|b0|≤|b1|,|c0|≤|c1|,

|b21c21|≤B

B

|b21| |c21|
db0 db1 dc0 dc1 +O(B logB).

Removing |b0| ≥ 1 introduces an error of at most

2

∫
|b1|,|c1|≥1

|c0|≤|c1|≤
√
B/|b1|

B

|b21| |c21|
db1 dc0 dc1 �

∫
1≤|c1|≤B

B

|c1|
dc1 � B logB,

as, analogously, does removing |c0| ≥ 1. We thus arrive at

V (B) = 4

∫
|b1|,|c1|≥1,

|b1|≤
√
B/|c1|

B

|b1| |c1|
db1 dc1 +O(B logB)

= 4

∫
1≤|c1|≤

√
B

B logB

|c1|
+O(B logB) = 4B(logB)2 +O(B logB). �

3.3. Interpretation of the result. As E1 and E2 intersect and this intersection
has real points, while M meets neither of the exceptional divisors, the analytic
Clemens complex of D (Figure 4) consists of a 1-simplex A = {E1, E2} and an
isolated vertex {M} (which we will also simply denote by M). Integral points tend
to accumulate around the boundary divisor; their number is dominated by those
points lying near the intersection of a maximal number of boundary components. It
is for this reason that the dimension of the Clemens complex is part of the exponent
in the main theorem of [CLT10b].

M E1 E2

A

Figure 4. The Clemens complex of D

For the toric variety X, this does not hold. There is an obstruction to the
existence of points near the intersection E1 ∩ E2 (and even to the existence of
integral points near E1 ∪ E2): Let us consider the rational function f = a1xy/a0
(in fact, a character of T ) onX. It is a nonconstant regular function on UA = X\M ,
so there is an obstruction in the sense of Corollary 2.3.2.

Concretely, this means the following: The function f is a regular in a neighbor-
hood of E1 ∩ E2, vanishing on E1 ∩ E2. If a point p is near E1 ∩ E2, |f(p)| should
thus be small. However, since f is a regular function on U, its value is an integer at
any integral point—and thus |f(p)| ≥ 1 except for points on the subvariety {f = 0}.
This means that the only integral points that are close to E1 ∩E2 can be points on
this subvariety (which we excluded in our counting problem). For this reason we
cannot expect a contribution of the maximal face A of the Clemens complex to our
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asymptotic formula. Since f is even regular on neighborhoods of both E1 and E2,
there can in fact be no integral points near either of those divisors, and we cannot
expect a contribution of those two nonmaximal faces (a general phenomenon by Re-
mark 2.3.4). The existence of this function also has an effect on the Picard group.
That f vanishes on E1, E2, and M ′ = V (a1), and that it has a pole on M means
that we have [E1] + [E2] + [M ′] = [M ] in Pic(X), and thus [E1] + [E2] + [M ′] = 0
in Pic(X \M). All three classes are nontrivial, hence the effective cone of X \M
contains a plane. It is thus not strictly convex, and its characteristic function is
identically 0.

Since a value of the characteristic function is a factor of the leading constant
in op. cit., this means that, for this variety, the leading constant is zero, contrary
to their claim in Lemma 3.11.4. In particular, this variety is an example for the
obstruction in Section 2.3, and, more precisely, the situation considered in The-
orem 2.4.1(i). The exponent of logB in Theorem 1.0.1 is one less than the one
given by Chambert-Loir and Tschinkel. We can however interpret our asymptotic
formula analogously to the formula given by Chambert-Loir and Tschinkel: There
is no obstruction at the only remaining maximal face M of the Clemens complex.
Substituting this face for the maximal dimensional face A of the Clemens complex,
we get the correct asymptotic formula. Summarizing, the situation is as follows:

Proposition 3.3.1.

(i) The cone EffA = EffX\M ⊂ Pic(X \ M)R, associated with the unique
maximal-dimensional face A of the Clemens complex, is not strictly convex.

(ii) The cone EffM , associated with the unique other maximal face M , is strictly
convex. The constant associated with this face is αM = 1/8, and the expo-
nent associated with it is bM = b′M = 3.

Proof. The Picard group Pic(U ;A) = Pic(X \M) is the quotient

Pic(X)/[M ] ∼= Z5/〈(1, 0, 0, 0, 0)〉 ∼= Z4.

The effective cone is generated by the classes of the torus-invariant prime divisors

(0, 0,−1,−1), (1, 0, 0, 0), (1, 0,−1, 0), (0, 1, 0, 0),

(0, 1, 0,−1), (0, 0, 1, 0), and (0, 0, 0, 1),

and thus contains the plane {(0, 0, x, y) | x, y ∈ R}; in particular, it is not strictly
convex.

The Picard group Pic(U ;H) = Pic(UM ) for UM = X \ (E1 ∪E2) is the quotient

Pic(X)/〈[E1], [E2]〉 ∼= Z5/ 〈(0, 0, 0, 1, 0), (0, 0, 0, 0, 1)〉 ∼= Z3.

Its rank is b′M = 3, so it coincides with

bM = rkPic(U)− rkE(U) + #{M} = 2− 0 + 1.

The effective cone EffM = EffUM
is smooth and generated by

(1, 0, 0), (0, 1, 0), and (0, 0, 1).

The image of the log anticanonical class in this quotient is (1, 2, 2). The character-
istic function of EffM thus evaluates to 1/4, and

αM =
1

(b′M − 1)!

1

4
=

1

8
. �
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Remark 3.3.2. This exemplifies a gap in the proof of [CLT10b, Lem. 3.11.4] of
which the authors were already aware and because of which they no longer be-
lieved in the correctness of the final result of their preprint: they do not check
that the characteristic function XΛ′

A
(π(λ̃)) (in the notation of op. cit., equal to

XEffA
(π(ωX(D)∨)) = (b′A − 1)!αA in our notation) is nonzero, and this example

demonstrates that it can be zero, making the leading constant 0. Note that the for-
mula in op. cit. is still correct if interpreted as N(B) = 0·B(logB)3+O(B(logB)2),
that is, as an upper bound. Here, we prove an asymptotic formula, of the form
N(B) ∼ cB(logB)2.

To finish the proof of Theorem 3.0.1, we are only left to compute the relevant
Tamagawa volumes. To this end, consider the chart

X \ V (a1b1c1xy) → A3,

(a0 : a1 : b0 : b1 : c0 : c1 : x : y) →
(

a0
a1xy

,
b0
b1x

,
c0
c1y

)
and its inverse A3 → X

(a, b, c) → (a : 1 : b : 1 : c : 1 : 1 : 1).

Lemma 3.3.3. Under this chart, the integral points U(Zp) correspond to

{(a, b, c) ∈ Z3
p | either |a| = 1, or |a| > 1 and |b| , |c| ≤ 1}.

Proof. Analogously to (18), Zp-integral points are the images of

(1, a1, b0 :, b1, c0, c1, 1, 1) ∈ Y (Qp)

for a1, . . . , c1 ∈ Zp such that (16) holds. In particular, |a| = |1/a1| ≥ 1. If
|a| > 1, then |a1| < 1; the coprimality conditions then imply b1c1 ∈ Z×

p , and thus
|b| = |b0|, |c| = |c0| ≤ 1.

On the other hand, let (a, b, c) be a point in the above set. If |a| = 1, let a1 and
a0 = a−1. If |b| ≤ 1, let b0 = b and b1 = 1, else, let b0 = 1 and b1 = b−1, and set
c0, c1 analogously. Finally, if |a| > 1, let a0 = a, b0 = b, c0 = c, and the remaining
coordinates be 1. In each case, ((a0 : a1), (b0 : b1), (c0 : c1)) is an integral point that
maps to (a, b, c). �
Lemma 3.3.4. We have

τM,∞(M(R)) = 16 and τU,p(U(Zp)) = 1 +
2

p
− 1

p2
− 1

p3

for all primes p.

Proof. In order to get a metric on the canonical bundle inducing the Tamagawa
measures, consider the isomorphism from ωX to the bundle LωX

whose sections are
elements of degree ωX in the Cox ring that maps da∧db∧dc to a−2

1 b−2
1 c−2

1 x−1y−1;
then pull back the metric along this isomorphism. For the archimedean volume, we
want to integrate

‖1E1
1E2

db ∧ dc‖ωM (E1+E2)
=
∥∥a−11E1

1E2
da ∧ db ∧ dc

∥∥
ωX(D)

over M(R) (regarding a−1 as an element in Γ(U,O(−M)) ⊂ Γ(U,KA3)). Outside
M , we have a−1 = a−11M , where the first factor is a section in Γ(A3 \ M,OA3),
and thus

‖1E1
1E2

db ∧ dc‖ωM (E1+E2)
= lim

a→0

(∣∣a−1
∣∣ ‖1M1E1

1E2
da ∧ db ∧ dc‖ωX(D)

)
.
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The norm ‖1M1E1
1E2

da ∧ db ∧ dc‖ωX(D) is

max{|a0| , |a1xy|}
|a0xy|max{|a21b20c20| , |a21b21c20x2| , |a21b20c21y2| , |a21b21c21x2y2| , |a20b21c21|}

at a point (a0 :a1 : b0 : b1 : c0 : c1 :x : y) ∈ X(Q) given in Cox coordinates. Evaluating
in the image of a point (a, b, c) yields

‖db ∧ dc‖ = lim
a→0

|a|max{1, |a|}
|a|max{|b2c2| , |c2| , |b2| , 1, |a2|} =

1

max{1, |b|2}max{1, |c|2}
.

Integrating this results in the archimedean Tamagawa volume

τ(M,E1+E2),∞(M(R)) =

∫
R2

1

max{1, |b|2}max{1, |c|2}
db dc = 16,

which has to be renormalized with the factor cR = 2.
In order to determine the Tamagawa volumes at the nonarchimedean places, we

integrate

‖1M1E1
1E2

da ∧ db ∧ dc‖ωX(D)

over U(Zp). Using the same description as above, this results in(
1− 1

p

)∫
b,c∈Qp

1

max{1, |b|2}max{1, |c|2}
db dc+

∫
|a|>1

|b|,|c|≤1

1

|a|2
da db dc.

The first integral is(∫
b∈Qp

1

max{1, |b|2}
db

)2

=

(
1 +

∫
|b|>1

1

|b|2
db

)2

=

(
1 +

1

p

)2

,

and the second is ∫
|a|>1

1

|a|2
da =

1

p
,

so, in total, we get

τU,p(U(Zp)) =

(
1− 1

p

)(
1 +

1

p

)2

+
1

p
= 1 +

2

p
− 1

p2
− 1

p3
. �

Proof of Theorem 3.0.1. Comparing αA as computed in Proposition 3.3.1 and the
descriptions of the Tamagawa volumes in Lemma 3.3.4 to the asymptotic formula
in Theorem 1.0.1 finishes the proof. �
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15 (2003), no. 1, 319–349. Les XXIIèmes Journées Arithmetiques (Lille, 2001).
MR2019019

[Sal98] Per Salberger, Tamagawa measures on universal torsors and points of bounded height
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