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CLOSED k-SCHUR KATALAN FUNCTIONS AS K-HOMOLOGY

SCHUBERT REPRESENTATIVES OF THE AFFINE

GRASSMANNIAN

TAKESHI IKEDA, SHINSUKE IWAO, AND SATOSHI NAITO

Dedicated to the memory of Bumsig Kim

Abstract. Recently, Blasiak–Morse–Seelinger introduced symmetric func-
tions called Katalan functions, and proved that the K-theoretic k-Schur
functions due to Lam–Schilling–Shimozono form a subfamily of the Kata-
lan functions. They conjectured that another subfamily of Katalan functions
called closed k-Schur Katalan functions is identified with the Schubert struc-
ture sheaves in the K-homology of the affine Grassmannian. Our main result
is a proof of this conjecture.

We also study a K-theoretic Peterson isomorphism that Ikeda, Iwao, and
Maeno constructed, in a nongeometric manner, based on the unipotent solution
of the relativistic Toda lattice of Ruijsenaars. We prove that the map sends
a Schubert class of the quantum K-theory ring of the flag variety to a closed
K-k-Schur Katalan function up to an explicit factor related to a translation
element with respect to an antidominant coroot. In fact, we prove this map
coincides with a map whose existence was conjectured by Lam, Li, Mihalcea,
Shimozono, and proved by Kato, and more recently by Chow and Leung.

1. Introduction

The study of K-theoretic Schubert calculus attracts much attention in the last
few decades. In this paper we focus on the K-theory version of the “quantum
equals affine” phenomenon, which originally comes from an unpublished result by
Peterson in 1997 for the case of (co)homology and has been developed by many
authors. See the textbook [19] by Lam, Lapointe, Morse, Schilling, Shimozono,
and Zabrocki on these topics.

Lam, Schilling, and Shimozono [21] identifies the K-homology K∗(Gr) of the
affine Grassmannian Gr = G(C((t)))/G(C[[t]]) of G = SLk+1, with a subring
Λ(k) = C[h1, . . . , hk] of the ring of symmetric functions, where hi is the ith com-

plete symmetric function. In particular, the K-theoretic k-Schur functions g
(k)
λ ,

the K-k-Schur functions for short, were introduced in [21], which form a family of
inhomogeneous symmetric functions in Λ(k). It was proved that the K-theoretic
k-Schur functions, indexed by the partitions λ with λ1 ≤ k, are identified with a
distinguished basis ofK∗(Gr). These functions form a basis of Λ(k), and are indexed
by the partitions λ with λ1 ≤ k.
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Although the K-k-Schur functions can be characterized by a Pieri type formula
(see Definition 2.6), there was no explicit combinatorial formula until recently.
Blasiak, Morse, and Seelinger [5] proved a raising operator formula for the K-k-
Schur functions. In fact, they introduced a family of inhomogeneous symmetric
functions called K-theoretic Catalan functions, Katalan functions for short, and
proved that the K-theoretic k-Schur functions form a subfamily of the Katalan
functions.

The Katalan functions K(Ψ;M ; γ) are indexed by triples (Ψ,M, γ), where Ψ is
an upper order ideal in the set Δ+

� := {εi − εj | 1 ≤ i < j ≤ �} of positive roots of

type A�−1, M is a multiset supported on {1, . . . , �}, and γ ∈ Z�. For any root ideal
L ⊂ Δ+

� , set L(L) :=
⊔

(i,j)∈L{j}, where (i, j) is a shorthand notation for εi − εj .

Let Pk denote the set of all partitions λ such that λ1 ≤ k. For λ ∈ Pk, let g
(k)
λ

denote the corresponding K-k-Schur function (see §2.5 for the definition). In [5], it
was proved that

(1.1) g
(k)
λ = K(Δk(λ);L(Δk+1(λ));λ),

where

Δk(λ) := {(i, j) ∈ Δ+
� | λi + j − i > k},

and � ≥ �(λ), the length of λ. As one of the consequences of (1.1), a long-standing
conjecture by Morse [31] was verified in [5]: for λ ∈ Pk,

(1.2) λ1 + �(λ) ≤ k + 1 =⇒ g
(k)
λ = gλ,

where gλ is the dual stable Grothendieck polynomial .
In [5], they introduced another subfamily of Katalan functions, called closed

k-Schur Katalan functions, defined for λ ∈ Pk by

g̃
(k)
λ := K(Δk(λ);L(Δk(λ));λ).

It is conjectured that the closed k-Schur Katalan function is related to the function

(1.3) g̃
(k)
λ :=

∑
μ≤

k
λ

g(k)μ ,

where λ, μ ∈ Pk, and ≤
k
denotes the order on Pk induced by the Bruhat order on

the affine symmetric group S̃k+1 (see §2.1 for details). We call g̃
(k)
λ a closed K-k-

Schur function. These functions are essential in the K-homology Schubert calculus
because it is identified with the class of the Schubert structure sheaf OGr

λ for the

affine Grassmannian, whereas g
(k)
λ is identified with the class of ideal sheaf of the

boundary of the Schubert variety; see [20, Theorem 1] and [21, Theorems 5.4 and

7.17(1)]. It should be noted that Takigiku [39] proved a Pieri type formula for g̃
(k)
λ .

Another important result in [39] is called the k-rectangle factorization formula. For
1 ≤ i ≤ k, define

Ri = (

k+1−i︷ ︸︸ ︷
i, . . . , i).

Takigiku showed

(1.4) g̃Ri
· g̃(k)λ = g̃

(k)
λ∪Ri

,
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where λ ∪ Ri is the partition made by combining the parts of λ and those of Ri

and then sorting them. This formula is natural from a geometric point of view (see
[20]), and plays an important role in our construction.

Let σ be a ring automorphism of Λ given by σ(hi) =
∑i

j=0 hj (i ≥ 1) with
h0 = 1. We can now state the main result of this paper confirming a conjecture
[5, Conjecture 2.12(a)] by Blasiak, Morse, and Seelinger, which enable us to have a
better explicit knowledge of the structure sheaf OGr

λ .

Theorem 1.1. For λ ∈ Pk, we have

g̃
(k)
λ = σ(g̃

(k)
λ ).

Knowing Takigiku’s result (1.4), an immediate consequence is the following k-

rectangle factorization formula for g̃
(k)
λ , which was first proved by Seelinger [37] by

a more direct method involving generalized Katalan functions defined for arbitrary
subsets of Δ+

� .

Corollary 1.2 (cf. [5, Conjecture 2.12(f)]). For 1 ≤ i ≤ k, we have

g̃
(k)
Ri

· g̃(k)λ = g̃
(k)
λ∪Ri

.

Another motivation of our study is to clarify the connection between a map called
the K-theoretic Peterson isomorphism constructed by Ikeda, Iwao, and Meano [13],
and a map whose existence was conjectured by Lam, Li, Mihalcea, and Shimozono
[20]; this conjecture was proved by Kato [15], and more recently by Chow and
Leung [7, a] using different methods.

Let QK(G/B) be the (small) quantum K-theory ring of the flag variety G/B =
SLk+1(C)/B, a deformation of the Grothendieck ring of coherent sheaves on G/B
studied by Givental and Lee [10] (see also the finiteness result [2] by Anderson,
Chen, Tseng, and Iritani). This is a commutative associative algebra over the
formal power series ring C[[Q]] := C[[Q1, . . . , Qk]] in the variables Qi, called the
Novikov variables. For w ∈ Sk+1, the symmetric group of degree k+1, the Schubert

variety Ωw in G/B is defined to be B−wB/B, where B− is the opposite Borel
subgroup. Let Ow

G/B denote (the class of) the structure sheaf of Ωw. As a C[[Q]]-

module, QK(G/B) has a basis consisting of Ow
G/B (w ∈ Sk+1). Let K∗(Gr) be

the K-homology group of the affine Grassmannian Gr, which has a ring structure
by the Pontryagin product. The ring has a basis consisting of (the class of ) the
Schubert structure sheaves OGr

λ indexed by the k-bounded partitions (see [21] for a
more detailed description).

We represent QK(G/B) as a quotient ring Ak+1 of the polynomial ring
C[[Q]][z1, . . . , zk+1] (see §4 for details). According to Lam, Schilling, and Shimo-
zono [21], we can identify K∗(Gr) with Λ(k). More precisely, OGr

λ is identified with

σ−1(g̃
(k)
λ ) in our convention (see §4.3 for details). For any partition λ, let gλ ∈ Λ

be the dual stable Grothendieck polynomial (see §2.4). We also set g̃λ :=
∑

μ⊂λ gμ,

following Takigiku [40]. We let Apol
k+1 be a C[Q]-algebra which is a polynomial

version of Ak+1 (see §4). There is a ring isomorphism [13] given by:

Φk+1 : Apol
k+1[Q

−1
i (1 ≤ i ≤ k)] → Λ(k)[τ

−1
i , (τ+i )−1(1 ≤ i ≤ k)],

Φk+1(zi) =
τiτ

+
i−1

τ+i τi−1

, Φk+1(Qi) =
τi−1τi+1

τ2i
,
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where

τi = gRi
, τ+i = g̃Ri

for 1 ≤ i ≤ k and τ0 = τk+1 = τ+0 = τ+k+1 = 1. It should be emphasized that the
nature of the construction of Φk+1 is combinatorial rather than geometric, in the
sense that it heavily depends on the explicit presentations of the rings involved. In
fact, they used a nonlinear differential equation called the relativistic Toda lattice
introduced by Ruijsenaars. The map Φk+1 arises as a solution of the relativistic
Toda lattice equation with its Lax matrix unipotent. For the affine side, the func-
tions hi (1 ≤ i ≤ k) can be thought of as the coordinates of a certain abelian
centralizer subgroup in PSLk+1(C).

There is a map θk : Sk+1 → Pk explicitly described by Lam and Shimozono [24].
For w ∈ Sk+1, define Des(w) = {1 ≤ i ≤ k | w(i) > w(i + 1)}. The next result is
a generalization of Theorem 1 in [24] by Lam and Shimozono for the (co)homology
case to the K-theoretic setting.

Theorem 1.3. For w ∈ Sk+1, we have

Φk+1(O
w
G/B) =

σ−1(g̃θk(w))∏
i∈Des(w) τi

.

As previously noted, σ−1(g̃θk(w)) = g̃
(k)
θk(w) is identified with the structure sheaf

OGr
θk(w), while τi is identified with the Schubert structure sheaf associated to an

antidominant translation element in S̃k+1 (see §4.3 for a more precise statement).
Note also that for w ∈ Sk+1, we can take the quantum Grothendieck polynomials
GQ

w ∈ C[Q][z1, . . . , zk] of Lenart and Maeno [27] (with the change of variables
xi = 1 − zi) as a representative for Ow

G/B (see §4). The statement of Theorem 1.3

is a refinement of [13, Conjecture 1.8]. See also [5, Conjecture 2.12 (a) and (b)].

Future works and related results. Now we are able to say that the unipotent
solution of the relativistic Toda lattice actually gives the canonical K-theoretic Pe-
terson isomorphism, in type A. A natural question is how to generalize this fact to
any semisimple algebraic group G. Furthermore, we would like to describe the K-
theoretic Peterson isomorphisms in various types at the level of concrete polynomial
representatives of Schubert classes. This leads us to a lot of interesting combinato-
rial problems related to the geometry of K-theoretic Gromov–Witten theory. We
know from Kim [16] that the quantum cohomology ring of G/B is identified with
the quotient ring of a polynomial ring by the ideal generated by the conserved
quantities of the Toda lattice for the Langlands dual group G∨ with the nilpotent
initial condition. For our purpose, one of the central tasks is to obtain an analogue
of Kim’s result in the context of quantum K-theory ring for G/B. Another possible
clue in this direction is the work of Bezrukavnikov, Finkelberg, and Mirković [3]
that studied a connection between the K-homology of the affine Grassmannian and
certain generalized Toda lattice equations. However, we still do not understand
how this work fits into the framework of the K-Peterson isomorphism.

For the affine Grassmannian side, Lam, Schilling, and Shimozono [22] defined
the k-Schur functions for the symplectic groups. It is remarkable that Seelinger [37]
made a conjecture that the symplectic k-Schur functions of [22] can be expressed
by a raising operator formula. Pon [36] studied the case of the orthogonal group.
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In particular, he gave a definition of “k-Schur functions” as the Schubert repre-
sentatives for the homology of the affine Grassmannian in type B, and established
the Pieri rule for types B and D. Further combinatorial researches on these func-
tions are needed to explore the issue of giving explicitly the K-theoretic Peterson
isomorphism.

Even in type A, there are a lot of things to do. We have a Chevalley type
formula for QK(G/B) ([28], [29], [27], [32]), which describes the multiplication by
Osi

G/B (1 ≤ i ≤ k), where si is the transposition (i, i+ 1). The image of Osi
G/B (1 ≤

i ≤ k) under Φk+1 is σ−1(g̃
(k)
R∗

i
)/τi, where R∗

i is the partition obtained from Ri

by removing the unique corner box. We expect a good combinatorial formula for

g̃
(k)
R∗

i
· g̃(k)λ . Although we know a dictionary between quantum and affine Schubert

classes, the problem of translating the Chevalley formula into its affine counterpart
seems not to be so simple. For the homology case, the analogous issue was pursued
by Dalal and Morse [9, Conjecture 39]. Another basic question is what formula

on the quantum side is corresponding to g̃
(k)
(i) · g̃(k)λ and g̃

(k)
(1i) · g̃

(k)
λ (1 < i < k − 1).

Furthermore, there is a conjecture1 by Lenart and Maeno of a Pieri type formula for
GQ

w [27, Conjecture 6.7]. We hope that the “quantum equals affine” phenomenon in
K-theory would shed light on these questions. Also, it is natural to extend Theorem
1.3 torus equivariantly. In fact, Lam and Shimozono [23] proved the equivariant
(co)homology version of the explicit Peterson isomorphism in [24]. It was shown
that the double k-Schur functions of Lam–Shimozono [25], and the quantum double
Schubert polynomials by Kirillov and Maeno [18] and by Ciocan–Fontanine and
Fulton [8], can be obtained from each other by the map. There are arguments in
[23, §4] on the centralizer family for SLk+1 in connection with Peterson’s j-map,
which would be useful in future studies.

Organization. In §2, we present some basic definitions and preliminary facts. In
§3, we prove Theorem 1.1. In §4, we discuss the K-theoretic Peterson isomorphism.
In Appendix A, we provide some results related to the parabolic quotient of a
Coxeter group, which are used in the proof of Theorem 1.1. In Appendix B, we
give a proof of a result (Lemma B.3) on Grassmannian permutations. In Appendix
C, we record the vertical Pieri rule for the closed K-k-Schur functions.

2. Basic definitions

Let k be a positive integer. In this section, we fix the notation and explain the
definitions and some properties of basic notions needed to understand Theorem 1.1.

2.1. Affine symmetric groups. The affine symmetric group S̃k+1 is the group
with generators {si | i ∈ I} for I = {0, 1, . . . , k} subject to the relations:

s2i = id, sisi+1si = si+1sisi+1, sisj = sjsi for i− j 	= 0,±1,

with indices considered modulo k+1. The length �(w) of w ∈ S̃k+1 is the minimum
number m such that w = si1 · · · sim for some ij ∈ I; any such expression for
w with �(w) generators is said to be reduced. The set of affine Grassmannian

elements S̃0
k+1 is the minimal length coset representatives for S̃k+1/Sk+1, where

Sk+1 = 〈s1, . . . , sk〉.

1After the first version of this paper was submitted, the conjecture has been proved in [33].
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The Bruhat order (or strong order) on S̃k+1 is denoted by ≤. It can be described
by the subword property (see [4, §2]).

2.2. k-bounded partitions and affine Grassmannian elements. Let Pk
� :=

{(λ1, . . . , λ�) ∈ Z� | k ≥ λ1 ≥ · · · ≥ λ� ≥ 0} denote the set of partitions contained
in the � × k rectangle and let Pk be the set of partitions λ with λ1 ≤ k. For
a partition λ, the length �(λ) is the number of nonzero parts of λ. There is a

bijection Pk → S̃0
k+1 (λ �→ xλ) due to Lapointe and Morse [26, Definition 45,

Corollary 48] given by

(2.1) xλ := (sλ�−� · · · s−�+1) · · · (sλ2−2 · · · s−1)(sλ1−1 · · · s0),

where � = �(λ). To make the notation simple, we are omitting the dependency of
xλ on k.

Example 2.1. Let k = 4, λ = (4, 3, 2). The corresponding affine Grassmannian

element in S̃0
5 is xλ = s4s3 · s1s0s4 · s3s2s1s0. This is obtained by reading the

(k+1)-residues in each row of λ, from right to left, proceeding with bottom row to
top.

0 1 2 3
4 0 1
3 4

.

For λ, μ ∈ Pk, we denote λ ≤
k
μ if xλ ≤ xμ holds, where ≤ is the Bruhat order

on S̃k+1. The following fundamental fact is included in the proof of [5, Proposition
2.16].

Lemma 2.2. Suppose λ ∈ Pk satisfies λ1 + �(λ) ≤ k + 1. For μ ∈ Pk, μ ≤
k
λ ⇐⇒

μ ⊂ λ.

Remark 2.3. For λ, μ ∈ Pk, λ ⊂ μ implies λ ≤
k
μ. The reverse implication is not

true in general. For example, in S̃3 we have (2, 2) ≤
2
(2, 1, 1, 1) because the reduced

expression x(2,1,1,1) = s0s1s2s1s0 has a subexpression s0s2s1s0 = x(2,2).

2.3. Cyclically increasing elements in S̃0
k+1. Let A be a proper subset of I =

{0, 1, . . . , k}. Set |A| = r. There is a sequence (i1, . . . , ir) consisting of the elements
of A such that an index i+1 never occurs anywhere to the left of an index i (mod k+

1). For any such sequence, the element si1 · · · sir ∈ S̃k+1 depends only on the set of
indices A = {i1, . . . , ir} (see also Remark B.2). Let us denote the element by uA.

Such an element in S̃k+1 is called a cyclically increasing element. Similarly, for any
A � I, we can define the corresponding cyclically decreasing element denoted by
dA. We choose a sequence (i1, . . . , ir) such that an index i never occurs anywhere
to the right of an index i+ 1 (mod k + 1), and set dA := si1 · · · sir .

Example 2.4. Let k = 4. Then for A = {0, 1, 3, 4}, uA = s3s4s0s1, dA = s1s0s4s3,
and for A = {0, 2, 4}, uA = s4s0s2 = s4s2s0 = s2s4s0, dA = s2s0s4 = s0s2s4 =
s0s4s2.

2.4. Dual stable Grothendieck polynomials. We work in the ring

Λ = Z[e1, e2, . . .] = Z[h1, h2, . . .]
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of symmetric functions in infinitely many variables (x1, x2, . . .), where er
=
∑

i1<···<ir
xi1 · · ·xir and hr =

∑
i1≤···≤ir

xi1 · · ·xir . Set h0 = e0 = 1 and hr = 0
for r < 0 by convention.

Let σ be the ring automorphism of Λ defined by σ(hi) = h̃i (i ≥ 1), where we

set h̃i =
∑i

j=0 hj . Note that σ−1 sends hi to hi − hi−1 for i ≥ 1. For i,m ∈ Z,
define

h
(m)
i := σm(hi) =

i∑
j=0

(
m+ j − 1

j

)
hi−j ,

where
(
n
i

)
= n(n− 1) · · · (n− i+ 1)/i! for n ∈ Z, i ≥ 1 and

(
n
0

)
= 1 for n ∈ Z. For

γ ∈ Z�, define

(2.2) gγ := det(h
(i−j)
γi+j−i)1≤i,j≤�.

When λ is a partition, gλ is the dual stable Grothendieck polynomials . Although

the defining formula for gγ in [5] is det(h
(i−1)
γi+j−i)1≤i,j≤�, by some column operations,

we see that their definition agrees with (2.2). Note that h
(m)
i is denoted by k

(m)
i in

[5].
The following result is fundamental and used throughout the paper.

Proposition 2.5 (Takigiku, [40]). For any partition λ, set g̃λ :=
∑

μ⊂λ gμ. Then
we have

(2.3) σ(gλ) = g̃λ.

2.5. K-k-Schur functions. For i ∈ I, set for w ∈ S̃k+1,

(2.4) si ∗ w =

{
siw (siw > w)

w (siw < w)
.

If we write φi : S̃k+1 → S̃k+1 (w �→ si ∗ w), then φ2
i = φi, φiφi+1φi = φi+1φiφi+1

(see the proof of [38, Proposition 2.1]). So for v ∈ S̃k+1, we can define

v ∗ w = si1 ∗ (si2 ∗ · · · (sir ∗ w) · · · ) (w ∈ S̃k+1),

where v = si1 · · · ssr is an arbitrary reduced expression.

For x ∈ S̃0
k+1, we write g

(k)
x for g

(k)
λ with x = xλ , λ ∈ Pk.

Definition 2.6. The K-k-Schur functions {g(k)λ }λ∈Pk are the family of elements of

Λ(k) such that g
(k)
∅

= 1 and

(2.5) hr · g(k)λ =
∑

A⊂I, |A|=r

dA∗xλ∈S̃0
k+1

(−1)|A|−�(dA∗xλ)+�(xλ)g
(k)
dA∗xλ

for λ ∈ Pk and 1 ≤ r ≤ k.

Example 2.7. Let k = 2, λ = (1, 1, 1), and r = 2. Then xλ = s1s2s0. There are
three A’s: {1, 0}, {0, 2}, {1, 2}. We compute

d{1,0} ∗ xλ = (s1s0) ∗ (s1s2s0) = s1s0s1s2s0 = s0s1s0s2s0 = s0s1s2s0s2 /∈ S̃0
3 ,

d{0,2} ∗ xλ = (s0s2) ∗ (s1s2s0) = s0s2s1s2s0 = x(2,1,1,1) ∈ S̃0
3 ,

d{1,2} ∗ xλ = (s2s1) ∗ (s1s2s0) = s2s1s2s0 = x(2,1,1) ∈ S̃0
3 ,
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and hence
h2 · g(2)(1,1,1) = g

(2)
(2,1,1,1) − g

(2)
(2,1,1).

It is known that {g(k)λ }λ∈Pk is a basis of Λ(k) [21].

Proposition 2.8 ([21]). For 1 ≤ r ≤ k, g
(k)
(r) = hr.

Recall that we set g̃λ :=
∑

μ⊂λ gμ for any partition λ.

Proposition 2.9. For λ ∈ Pk such that λ1 + �(λ) ≤ k + 1,

g̃
(k)
λ = g̃λ.

Proof. From Lemma 2.2, and (1.2), we see that

g̃
(k)
λ =

∑
μ≤

k
λ

g(k)μ =
∑
μ⊂λ

g(k)μ =
∑
μ⊂λ

gμ = g̃λ.

�
2.6. Katalan functions. Fix a positive integer �. Let {ε1, . . . , ε�} be the standard
basis of Z�. By a positive root β, we mean an element of the form εi − εj ∈ Z�

with 1 ≤ i < j ≤ �, which is also denoted by (i, j). The set of all positive roots
is denoted by Δ+

� . Although this is considered as the set of positive roots of type

A�−1, we use this notation Δ+
� following [5] rather than Δ+

�−1.

A natural partial order ≤ on Δ+
� is defined by α ≤ β if β − α is a linear

combination of positive roots with coefficients in Z≥0. An upper order ideal Ψ of
Δ+

� is called a root ideal .

Given a root ideal Ψ ⊂ Δ+
� , a multisetM supported on {1, . . . , �}, and γ ∈ Z�, we

call (Ψ,M, γ) a Katalan triple. Let mM : {1, . . . , �} → Z≥0 denote the multiplicity
function of M . Each Katalan triple (Ψ,M, γ) can be depicted by an � × � grid
of square boxes (labeled by matrix-style coordinates) with the boxes of Ψ shaded,
mM (a) •’s in column a (assuming mM (a) < a), and the entries of γ written along
the diagonal boxes.

Example 2.10. Let Ψ = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (3, 5)} ⊂ Δ+
5 , M =

{3, 4, 5, 5}, and γ = (3, 2, 0, 1, 0). The Katalan triple (Ψ,M, γ) is depicted by

3 • • •
2 •

0
1

0

.

We define the Katalan function associated to the triple (Ψ,M, γ) by

K(Ψ;M ; γ) :=
∏
j∈M

(1− Lj)
∏

(i,j)∈Δ+
� \Ψ

(1−Rij)kγ ,

kγ := h(0)
γ1

h(1)
γ2

· · ·h(�−1)
γ�

.

Note that raising operators are not well-defined as linear transformations on Λ.
They act on the subscript γ of kγ rather than the function kγ . A rigorous formu-
lation can be found in [5, §3]. For any root ideal L ⊂ Δ+

� , let

L(L) =
⊔

(i,j)∈L

{j}.
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We also write K(Ψ;L(L); γ) simply as K(Ψ;L; γ).
In [5], Blasiak, Morse, and Seelinger introduced, for λ ∈ Pk

� ,

g
(k)
λ := K(Δk(λ);Δk+1(λ);λ),

g̃
(k)
λ := K(Δk(λ);Δk(λ);λ).

g
(k)
λ is called a K-Schur Katalan function, and g̃

(k)
λ a closed K-Schur Katalan

function. If we choose � such that � ≥ �(λ), then g
(k)
λ and g̃

(k)
λ do not depend on �

([5, Lemma 3.4 and Remark 3.5]).
The following simplified formula is available.

Proposition 2.11. Let λ ∈ Pk
� , then

(2.6) g̃
(k)
λ =

∏
(i,j)∈Δ+

� \Δk(λ)

(1− Lj)
−1(1−Rij)hλ,

where hλ = hλ1
· · ·hλ�

, and Lj , Rij act on the subscript λ.

Proof. In the proof of [5, Proposition 2.3], it was shown that
∏

(i,j)∈Δ+
�
(1−Lj)kγ =

hγ . (2.6) follows from this. �

Example 2.12. For k = 3, λ = (2, 1, 1), g̃
(3)
λ is depicted by

2 •
1

1
. We have

g̃
(3)
(2,1,1) = (1− L2)

−1(1− L3)
−1(1−R12)(1−R23)h211

= h211 + h201 − h220 − h301 + h310

= h2
1h2 + h1h2 − h2

2

= h2(h
2
1 + h1 − h2).

One of the main results in [5] is

g
(k)
λ = g

(k)
λ .

The main result of the present paper (Theorem 1.1) is

(2.7) g̃
(k)
λ = σ−1(g̃

(k)
λ ).

A simple consequence of (2.7) is the following.

Corollary 2.13 ([5, Proposition 2.16(d)]). If λ1 + �(λ) ≤ k + 1, then g̃
(k)
λ = gλ.

Proof. By Lemma 2.9 and Proposition 2.5,

g̃
(k)
λ = σ−1(g̃

(k)
λ ) = σ−1(g̃λ) = gλ.

�

3. Proof of Theorem 1.1

Before we start the proof of Theorem 1.1, we gather some results on K-k-Schur
functions and Katalan functions in the first three subsections. In §3.1, we explain
some results on the k-conjugation. In §3.2, we collect some basic properties of
Katalan functions used in §3.5. In §3.3, we introduce an action of the 0-Hecke
algebras on Λ(k). The outline of the proof of Theorem 1.1 is given in §3.4. The last
subsection is devoted to the proof of a key lemma (Lemma 3.17). With the help of
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a general fact (Lemma 3.18) on the parabolic coset space of a Coxeter group, we
complete the proof of Theorem 1.1.

3.1. k-conjugation. There is an automorphism ωk of S̃k+1 given by ωk(si) =
s−i = sk+1−i for i ∈ I. Note that ωk fixes s0. In fact, ωk is an automorphism of a
Coxeter group. So it is easy to see

w ≤ v ⇐⇒ ωk(w) ≤ ωk(v).(3.1)

The left weak order ≤L on S̃k+1 is defined by the covering relation

w �L v ⇐⇒ v = siw and �(v) = �(w) + 1 for some i ∈ I.

It is easy to see that w �L v ⇐⇒ ωk(w)�L ωk(v), and hence we have

w ≤L v ⇐⇒ ωk(w) ≤L ωk(v).(3.2)

For A = {i1, . . . , im} � I, we have

ωk(uA) = dA, ωk(dA) = uA,

where A := {−i1, . . . ,−im}.

Definition 3.1. Let Ω be the ring morphism of Λ defined by

(3.3) Ω(hi) = g(1i) (i ≥ 1).

Proposition 3.2. Ω is an involution on Λ and Ω commutes with σ.

Proof. A proof of the fact that Ω is an involution can be found in [31, §8]. The
commutativity follows from (2.3):

Ω(σ(hi)) = Ω(

i∑
j=0

hj) =

i∑
j=0

g(1j) = σ(g(1i)) = σ(Ω(hi)).

�

It is easy to see that ωk preserves S̃0
k+1. Hence for λ ∈ Pk, ωk(xλ) = xμ for some

μ ∈ Pk. Then we define ωk(λ) = μ. An explicit description of ωk(λ), also denoted
by λωk in [19], [31], is available (see [19, §1.3]).

Theorem 3.3 ([31]). For x ∈ S̃0
k+1, Ω(g

(k)
x ) = g

(k)
ωk(x)

. Equivalently, for λ ∈ Pk,

Ω(g
(k)
λ ) = g

(k)
ωk(λ)

.

Corollary 3.4. For λ ∈ Pk, Ω(g̃
(k)
λ ) = g̃

(k)
ωk(λ)

.

Proof. For x ∈ S̃0
k+1, g̃

(k)
x =

∑
y≤x g

(k)
y , where y are the elements in S̃0

k+1 such that

y ≤ x in the Bruhat order. From Theorem 3.3, and the fact (3.1), we see that

Ω(g̃(k)x ) = Ω(
∑
y≤x

g(k)y ) =
∑
y≤x

Ω(g(k)y ) =
∑
y≤x

g
(k)
ωk(y)

=
∑

ωk(y)≤ωk(x)

g
(k)
ωk(y)

= g̃
(k)
ωk(x)

,

where the last equality holds since ωk is an involution. Set x = xλ. Then Ω(g̃
(k)
λ ) =

g̃
(k)
ωk(λ)

. �
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3.2. Basic properties of Katalan functions. Let Ψ ⊂ Δ+
� be a root ideal. A

root α ∈ Ψ is a removable root of Ψ if Ψ \ α is a root ideal. A root β ∈ Δ+
� is an

addable root of Ψ if Ψ ∪ α is a root ideal.
We define an oriented graph with {1, . . . , �} as the vertex set and the oriented

edges j → i if (i, j) is a removable root in Ψ (in [5] the bounce graph is not
considered as an oriented graph, but here it is). An edge of the bounce graph of Ψ
is called simply a bounce edge of Ψ. Let p ∈ {1, . . . , �}. If there is a bounce edge
p → i of Ψ, then such i is unique by the construction, and we write i = upΨ(p).

Figure 1. Bounce graph of Ψ

Each connected component of the bounce graph of Ψ is called a bounce path of
Ψ. For p ∈ {1, . . . , �}, topΨ(p) denotes the smallest element in the bounce path
containing p (see [5]).

Example 3.5. For the root ideal Ψ in Figure 1, {1, 3}, {2, 5, 7}, {4, 6, 9}, {8} are
the bounce paths. We have, for example, upΨ(3) = 1, upΨ(7) = 5, topΨ(7) =
topΨ(5) = topΨ(2) = 2.

Definition 3.6 (Walls and ceilings). Let d be a positive integer. A root ideal Ψ
is said to have a wall in rows r, r + 1, . . . , r + d if the rows r, r + 1, . . . , r + d of Ψ
have the same length, and a ceiling in columns c, c + 1, . . . , c + d if the columns
c, c+ 1, . . . , c+ d of Ψ have the same length.

Example 3.7. The root ideal Ψ in Figure 1 has a ceiling in columns 1, 2, in columns
3, 4, in columns 7, 8, and has a wall in rows 3, 4, in rows 7, 8, 9.

Let us begin with an obvious remark.

Lemma 3.8. Let Ψ be a root ideal of Δ+
� , and p ∈ {2, . . . , �}. If topΨ(p) = p, i.e.,

if there is no bounce edge starting from p, then Ψ has a ceiling in columns p− 1, p.

Lemmas 3.9 and 3.11 are borrowed from [5, Lemma 4.4].

Lemma 3.9 (Adding or removing a root). Let (Ψ,M, γ) be a Katalan triple.

(i) For any addable root α of Ψ,

K(Ψ;M ; γ) = K(Ψ ∪ α;M ; γ)−K(Ψ ∪ α;M ; γ + α).

(ii) For any removable root α of Ψ,

K(Ψ;M ; γ) = K(Ψ \ α;M ; γ) +K(Ψ;M ; γ + α).
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Example 3.10. We apply Lemma 3.9(i) to the following Katalan triple, with
α = ε2 − ε3:

1
0

1
1

=

1
0

1
1

−
1

1
0

1

.

We apply Lemma 3.9(ii) to the following Katalan triple, with α = ε3 − ε4:

1
0

1
1

=

1
0

1
1

+

1
1

2
0

.

Lemma 3.11 (Adding or removing a dot). Let (Ψ,M, γ) be a Katalan triple.

(i) For any j ∈ M , K(Ψ;M ; γ) = K(Ψ;M \ {j}; γ)−K(Ψ;M \ {j}; γ − εj),
(ii) For any 1 ≤ j ≤ �, K(Ψ;M ; γ) = K(Ψ;M � {j}; γ) +K(Ψ;M ; γ − εj).

Lemma 3.12 is [5, Lemma 3.3].

Lemma 3.12 (Alternating property). Let Ψ ⊂ Δ+
� be a root ideal, and M a

multiset on {1, . . . , �}. Suppose there is an index 1 ≤ i ≤ �− 1 such that

(a) Ψ has a ceiling in columns i, i+ 1,
(b) Ψ has a wall in rows i, i+ 1,
(c) mM (i+ 1) = mM (i) + 1.

Then for any γ ∈ Z�,

(3.4) K(Ψ;M ; γ) = −K(Ψ;M ; siγ − εi + εi+1).

In particular, if γi+1 = γi + 1 holds, then

(3.5) K(Ψ;M ; γ) = 0.

3.3. The 0-Hecke algebra. The 0-Hecke algebraHk+1 is the associative C-algebra
generated by {Ti | i ∈ I} subject to the relations:

T 2
i = −Ti, TiTi+1Ti = Ti+1TiTi+1, TiTj = TjTi for i− j 	= 0,±1,

with indices considered modulo k + 1. For w ∈ S̃k+1, define Tw = Ti1 · · ·Tim for

any reduced expression w = si1 · · · sim . The elements Tw (w ∈ S̃k+1) form a basis
of Hk+1.

We introduce a family of symmetric functions
◦
g
(k)

λ (λ ∈ Pk) such that g̃
(k)
λ =∑

μ≤
k
λ

◦
g
(k)

μ for all λ ∈ Pk. Such functions uniquely exist since the transition matrix

from {◦g
(k)

λ } to {g(k)λ } is upper unitriangular.

Proposition 3.13. There is a left Hk+1-module structure on Λ(k) such that

Ti ·
◦
g
(k)

λ =

⎧⎪⎪⎨
⎪⎪⎩

◦
g
(k)

siλ (sixλ > xλ and sixλ ∈ S̃0
k+1)

−◦
g
(k)

λ (sixλ < xλ)

0 (otherwise)

,

for λ ∈ Pk and i ∈ I. Moreover, we have

Di · g̃(k)λ =

{
g̃
(k)
siλ

(sixλ > xλ and sixλ ∈ S̃0
k+1)

g̃
(k)
λ (otherwise)

,

for i ∈ I and λ ∈ Pk, and Di := Ti + 1.
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A proof of this proposition is given in Appendix A.1.

Remark 3.14. Note that we will eventually show σ(
◦
g
(k)

λ ) = g
(k)
λ . There is an action

of Hk+1 on Λ(k) used in [5]. If we denote the action of Ti in [5, §5.4] by T ′
i , then

we have T ′
i = σ ◦ Ti ◦ σ−1.

3.4. Outline of proof of Theorem 1.1. The following characterization property
for the closed K-k-Schur functions is available. Note that for 1 ≤ r ≤ k, we have

g̃
(k)
(1r) = g̃(1r) and g̃

(k)
(r) = g̃(r) = h̃r (Proposition 2.9).

Lemma 3.15. For λ ∈ Pk and 1 ≤ r ≤ k, we have

(3.6) g̃(1r) · g̃(k)λ =
∑
μ≤

k
λ

∑
A⊂I, |A|≤r

uA∗xμ∈S̃0
k+1

(−1)|A|−�(uA∗μ)+�(μ)g
(k)
uA∗xμ .

Moreover, the {g̃(k)λ }λ∈Pk are the unique elements of Λ(k) satisfying (3.6) for 1 ≤
r ≤ k.

Proof. By summing up (2.5) over μ ∈ Pk such that μ ≤
k

λ and integers i with

0 ≤ i ≤ r, we obtain

(3.7) g̃(r) · g̃(k)λ =
∑
μ≤

k
λ

∑
A⊂I, |A|≤r

dA∗xμ∈S̃0
k+1

(−1)|A|−�(dA∗μ)+�(μ)g
(k)
dA∗xμ

.

In fact, this identity appears in [39, p. 470]. We apply the k-conjugation to both
sides of (3.7), and use Corollary 3.4, to have

g̃(1r) · g̃(k)ωk(λ)
=
∑
μ≤

k
λ

∑
A⊂I, |A|≤r

dA∗xμ∈S̃0
k+1

(−1)|A|−�(dA∗μ)+�(μ)g
(k)
uA∗xωk(μ)

.

This is equivalent to

g̃(1r) · g̃(k)λ =
∑

ωk(μ)≤
k
ωk(λ)

∑
A⊂I, |A|≤r

dA∗xωk(μ)∈S̃0
k+1

(−1)|A|−�(dA∗ωk(μ))+�(ωk(μ))g
(k)
uA∗xμ .(3.8)

Noting that ωk(dA ∗ xωk(μ)) = uA ∗ xμ, and |A| = |A|, the right-hand side of (3.8)
is identical to that of (3.6) because the involution ωk preserves the Bruhat order
and the length. The uniqueness follows from the unitriangularity of the transition

matrix and the fact that g̃
(k)
(1r) = g̃(1r) for 1 ≤ r ≤ k. �

Theorem 1.1 will follow easily once we have Proposition 3.16.

Proposition 3.16. For λ ∈ Pk and 1 ≤ r ≤ k, we have

(3.9) g(1r) · g̃(k)λ =
∑
μ≤

k
λ

∑
A⊂I, |A|≤r

uA∗xμ∈S̃0
k+1

(−1)|A|−�(uA∗μ)+�(μ)◦
g
(k)

uA∗xμ
.

We apply the ring automorphism σ of Λ(k) on both sides of (3.9) to obtain

(3.10) g̃(1r) · σ(g̃(k)λ ) =
∑
μ≤

k
λ

∑
A⊂I, |A|≤r

uA∗xμ∈S̃0
k+1

(−1)|A|−�(uA∗μ)+�(μ)σ(
◦
g
(k)

uA∗xμ
).
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Note that when we express σ(
◦
g
(k)

uA∗xμ
) as a linear combination of {σ(g̃(k)λ )}, g(k)uA∗xμ

is also a linear combination of {g̃(k)λ } with the same coefficients. Therefore we
see that (3.6) and (3.10) are exactly the same equation via the correspondence

σ(g̃
(k)
λ ) �→ g̃

(k)
λ , and hence we have σ(g̃

(k)
λ ) = g̃

(k)
λ for all λ ∈ Pk.

Here is the outline of the proof of Proposition 3.16. We compute g(1r) · g̃(k)λ by
using the combinatorial theory of Katalan functions developed in [5] to show the
following result, which is the technical heart of this paper (see §3.5 for the proof).

Lemma 3.17 (Key lemma for Proposition 3.16).

(3.11) g(1r) · g̃(k)λ =
∑

A⊂I, |A|≤r

TuA
· g̃(k)λ

By the definition of
◦
g
(k)

λ the right-hand side of (3.11) can be written as:

(3.12)
∑
μ≤

k
λ

∑
A⊂I, |A|≤r

TuA
· ◦g

(k)

μ .

Thus, in order to complete the proof of Proposition 3.16, it suffices to show that∑
A⊂I, |A|≤r

TuA
· ◦g

(k)

μ =
∑

A⊂I, |A|≤r

uA∗xμ∈S̃0
k+1

(−1)|A|−�(uA∗μ)+�(μ)◦g
(k)

uA∗xμ
.

The final step of the proof of Proposition 3.16 is the following.

Lemma 3.18. Let A � I. Then

TuA
· ◦g

(k)

μ =

{
(−1)|A|−�(uA∗xμ)+�(μ)◦g

(k)

uA∗xμ
(uA ∗ xμ ∈ S̃0

k+1),

0 (otherwise).

The proof of Lemma 3.18 is given by a general statement (Proposition A.6) that
holds in the context of an arbitrary Coxeter group (W,S) and its parabolic quotient.
A detailed discussion is given in Appendix A.2.

3.5. Proof of Lemma 3.17. This section is devoted to the proof of Lemma 3.17.

3.5.1. Basic straightening rule.

Definition 3.19 (Map r). Define a map r : {1, . . . , �} → I = Z/(k + 1)Z by
r(p) = −p+ 1 mod k + 1.

The following is the crucial combinatorial result, whose proof will be given in
§3.5.4.
Lemma 3.20 (Basic straightening rule). For λ ∈ Pk

m and an integer �− k < p ≤ �
with p ≥ m+ 2,

K(Δk(λ);Δk(λ);λ+ εp) = Dr(p) · g̃(k)λ .

Furthermore, we have

Dr(p) · g̃(k)λ = g̃
(k)
sr(p)xλ

⇐⇒ sr(p)xλ > xλ and sr(p)xλ ∈ S̃0
k+1

⇐⇒ topΨ(p) < topΨ(p− 1),(3.13)

with Ψ = Δk(λ).
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Corollary 3.21. For λ ∈ Pk
m and an integer �− k < p ≤ � with p ≥ m+ 2,

K(Δk(λ);L(Δk(λ)) � {p};λ+ εp) = Tr(p) · g̃(k)λ .

Proof. We apply Lemma 3.11(i) to deduce that

K(Δk(λ);L(Δk(λ)) � {p};λ+ εp)

= K(Δk(λ);Δk(λ);λ+ εp)−K(Δk(λ);Δk(λ);λ)

= Dr(i) · g̃(k)λ − g̃
(k)
λ (by Lemma 3.20)

= Tr(i) · g̃(k)λ .

�

For the reader’s convenience, we give some examples showing how the proof of
Lemma 3.20 goes.

Example 3.22. Let k = 4, λ = (3, 2, 1, 0, 0, 0), Ψ := Δk(λ),M = L(Ψ). Note that
β = (2, 4) is an addable root of Ψ. Consider γ = λ+ ε5 = (3, 2, 1, 0, 1, 0). By using
Lemma 3.9(i), we have

(3.14) K(Ψ;M ; γ) = K(Ψ ∪ β;M ; γ)−K(Ψ ∪ β;M ; γ + ε2 − ε4).

3 • • • •
2 • •

1
0

1
0

=

3 • • • •
2 • •

1
0

1
0

−

3 • • • •
3 • •

1
−1

1
0

.

The first term of (3.14) vanishes by (3.5) with i = 4. The second term equals

(−1)2K(Ψ ∪ β;M ; s4(γ + ε2 − ε4)− ε4 + ε5) = K(Ψ ∪ β;M ;μ)

with μ := (3, 3, 1, 0, 0, 0), by (3.4) with i = 4. Hence we have

K(Ψ;M ;λ+ ε5) = K(Ψ ∪ β;M ;μ) =

3 • • • •
3 • •

1
0

0
0

.

Next, we apply Lemma 3.11(ii) to it with j = 4 to get

(3.15) K(Ψ ∪ β;M � {4};μ) +K(Ψ ∪ β;M ; (3, 3, 1,−1, 0, 0)).
3 • • • •

3 • • •
1

0
0

0

+

3 • • • •
3 • •

1
−1

0
0

.

The second term of (3.15) vanishes by (3.5) with i = 4. Noting Ψ∪ β = Δ4(μ) and
M � {4}=L(Δ4(μ)), we finally obtain

K(Ψ ∪ β;M � {4};μ) = K(Δ4(μ);L(Δ4(μ));μ) = g̃
(4)
(3,3,1).

3 • • • •
3 • • •

1
0

0
0
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Example 3.23. Let k = 4, and (Ψ,M, λ) the same as Example 3.22. Consider
γ = λ+ ε6 = (3, 2, 1, 0, 0, 1). We can apply Lemma 3.11(i) with j = 5 to get

(3.16) K(Ψ;M ; γ) = K(Ψ;M \ {5}; γ)−K(Ψ;M \ {5}; γ − ε5),

depicted by
3 • • • •

2 • •
1

0
0

1

=

3 • • • •
2 •

1
0

0
1

−

3 • • • •
2 •

1
0
−1

1

.

The first term vanishes by (3.5) with i = 5. Hence we have

K(Ψ;M ; γ) = −K(Ψ;M \ {5}; γ − ε5) = −

3 • • • •
2 •

1
0
−1

1

=

3 • • • •
2 •

1
0

0
0

,

where we used (3.4) for the last equality with i = 5. Thus, we obtain

3 • • • •
2 •

1
0

0
0

=

3 • • • •
2 • •

1
0

0
0

−

3 • • • •
2 •

1
0
−1

0

=

3 • • • •
2 • •

1
0

0
0

= g̃
(4)
(3,2,1),

where we again used (3.5) with i = 5 for the last equality.

3.5.2. Some lemmas.

Lemma 3.24 (Bounce-up lemma). Let (Ψ,M, γ) be a Katalan triple, and p → q a
bounce edge of Ψ, such that

(a) β := (q, p− 1) is an addable root of Ψ,
(b) γp = γp−1 + 1,
(c) mM (p) = mM (p− 1) + 1,
(d) Ψ has a wall in rows p− 1, p.

Then, we have

K(Ψ;M ; γ) = K(Ψ ∪ β;M ; γ + εq − εp)(3.17)

= K(Ψ ∪ β;M � {p− 1}; γ + εq − εp).(3.18)

Proof. Since β is a removable root, we have, by Lemma 3.9(i),

(3.19) K(Ψ;M ; γ) = K(Ψ ∪ β;M ; γ)−K(Ψ ∪ β;M ; γ + β).

Note that Ψ ∪ β has a ceiling in columns p − 1, p. Hence, by (c) and (d), we can
apply (3.5) to the first term of (3.19), which then vanishes. Applying (3.4) to the
second term, we obtain (3.17).

By Lemma 3.11(ii) with j = p− 1, the right-hand side of (3.17) equals

K(Ψ ∪ β;M � {p− 1}; γ + εq − εp) +K(Ψ ∪ β;M ; γ + εq − εp−1 − εp),

in which the second term vanishes by (3.5) with i = p − 1. Therefore, we obtain
(3.18). �
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Example 3.25. The following equation is given by applying Lemma 3.24 with
p = 6. Here, q = 3 and β = (3, 5).

3 • • • • • • •
2 • • • • •

2 β • • • •
1 • •

1 •
2

0
0

0

=

3 • • • • • • •
2 • • • • •

3 • • • •
1 • •

1 •
1

0
0

0

=

3 • • • • • • •
2 • • • • •

3 • • • • •
1 • •

1 •
1

0
0

0

.

Lemma 3.26 (Absorption lemma, [5, Lemma 4.4]). Let (Ψ,M, γ) be a Katalan
triple, and p ≥ 2 such that

(a) topΨ(p) = p,
(b) γp = γp−1 + 1,
(c) mM (p) = mM (p− 1),
(d) Ψ has a wall in rows p− 1, p.

Then,

K(Ψ;M ; γ) = K(Ψ;M ; γ − εp).

Proof. By (a), Ψ has a ceiling in columns p − 1, p. From Lemma 3.11(i) with
j = p− 1, it follows that

(3.20) K(Ψ;M ; γ) = K(Ψ;M \ {p− 1}; γ)−K(Ψ;M \ {p− 1}; γ − εp−1).

Let M ′ = M \ {p − 1}. Then, we have mM ′(p) = mM ′(p − 1) + 1, which implies
that we can apply (3.5) with i = p− 1 to the first term of (3.20). Hence we obtain

K(Ψ;M ; γ) = −K(Ψ;M ′; γ − εp−1) = K(Ψ;M ′; γ − εp),

where we used (3.4) with i = p − 1 for the last equality. By Lemma 3.11(ii) with
j = p− 1, we deduce that

K(Ψ;M ′; γ − εp) = K(Ψ;M ; γ − εp) +K(Ψ;M ′; γ − εp − εp−1),

in which the second term vanishes by (3.5) with i = p− 1. �

Example 3.27. From Lemma 3.26 with p = 6, we have

3 • • • •
2 • •

1
0

0
1

=

3 • • • •
2 • •

1
0

0
0

.

3.5.3. Mirror edges and mirror paths.

Definition 3.28 (Mirror edge, mirror path, mirror top). Let Ψ be a root ideal,
and e := (p → q) a bounce edge of Ψ. We say that e is a mirror edge if p−1 → q−1
is also a bounce edge of Ψ. A bounce path p = p0 → p1 → · · · → pL is a mirror
path of length L of Ψ if pi → pi+1 is a mirror edge for each 0 ≤ i ≤ L − 1. If such
L is maximal, then we define mtopΨ(p) = pL and call it the mirror top of p. In
particular, if p is not contained in any mirror path, we have mtopΨ(p) = p.
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Example 3.29. For the root ideal Ψ illustrated in the following picture, 10 → 6 →
3 is a mirror path having the maximal length 2. Hence, we have mtopΨ(10) = 3.

.

It is easy to see the following.

Lemma 3.30. Let Ψ be a root ideal, and p → q a mirror edge of Ψ. Then β :=
(q, p− 1) is an addable root of Ψ. Furthermore, Ψ∪{β} has a wall in rows q− 1, q,
and a ceiling in columns p− 1, p.

Lemma 3.31. Let Ψ be a root ideal, and z the lowest nonempty row of Ψ. Assume
that Ψ is wall-free in nonempty rows, i.e., Ψ has no wall between the 1st and zth
rows. Then, for p ≥ 2, we have

mtopΨ(p) = max{topΨ(p), topΨ(p− 1) + 1}.
Proof. Let p → q be a bounce edge of Ψ. Note that, whenever upΨ(p− 1) exists, it
satisfies upΨ(p− 1) = q − 1; otherwise, Ψ has a wall in rows q − 1, q.

Let p = p0 → p1 → · · · → pL and p − 1 = q0 → q1 → · · · → qL′ be bounce
paths of maximal lengths. By what we noted in the previous paragraph, we have
qi = pi − 1 for 0 ≤ i ≤ min(L,L′). If L > L′, then we have mtopΨ(p) = pL′ =
qL′ + 1 = topΨ(p− 1) + 1, while mtopΨ(p) > topΨ(p). If L = L′, then mtopΨ(p) =
topΨ(p) = topΨ(p−1)+1. If L < L′, then mtopΨ(p) = topΨ(p), while mtopΨ(p) =
topΨ(p) = qL + 1 > topΨ(p− 1) + 1. �

Note that Ψ = Δk(λ) is wall-free in nonempty rows, then we can apply the
previous result to it.

Lemma 3.32. Let λ ∈ Pk. Set Ψ := Δk(λ), M = L(Ψ). Let e = (p → q) be a
bounce edge of Ψ such that q ≥ 2.

(1) e is a mirror edge of Ψ if and only if λq−1 = λq.
(2) If e is a mirror edge of Ψ, then mM (p) = mM (p− 1) + 1.
(3) If e is not a mirror edge, then λq−1 > λq.

Proof. (1) and (2) are clear from the definitions of Ψ,M . For (3), if e is not a
mirror edge, then it follows from (1) that λq−1 	= λq. Since λ is a partition, we
have λq−1 > λq. �

Lemma 3.33. Let λ ∈ Pk, and Ψ := Δk(λ) ⊂ Δ+
� . Then for p ∈ {1, . . . , �},

r (mtopΨ(p)) = r(p).

Proof. This is [5, Lemma 5.7]. �
In the final step of the proof of Lemma 3.20, we use the following.

Lemma 3.34 (Cleaning Lemma, [5, Lemma 4.7]). Let (Ψ,M, γ) be a Katalan triple
such that

(a) β = (q, p− 1) is a removable root of Ψ,
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(b) Ψ has a wall in rows p− 1, p,
(c) Ψ has a ceiling in columns p− 1, p,
(d) γq = γq−1,
(e) mM (p) = mM (p− 1) + 1.

Then

(3.21) K(Ψ;M ; γ) = K(Ψ \ β;M ; γ).

3.5.4. Proof of Lemma 3.20.

Proof of Lemma 3.20. Let λ ∈ Pk, and Ψ := Δk(λ) ⊂ Δ+
� . Set T := (Ψ,M, γ) =

(Δk(λ), L(Δk(λ)), λ+ εp). Let p = p0 → p1 → · · · → pL be a mirror path starting
from p of maximal length L ≥ 0. We will prove that we can successively apply
Lemma 3.24 to T and obtain the sequence of Katalan triples:

(3.22) T =: T0
p0−→ T1

p1−→ · · · pL−1−→ TL =: T′.

Here Ti
pi−→ Ti+1 means that Ti+1 is obtained from Ti by applying equation (3.17)

in Lemma 3.24 with respect to the mirror edge pi → pi+1 of Ti. If L = 0, it
suffices to put T′ = T. Assume L ≥ 1. We can check immediately that T = T0

satisfies assumptions (a)–(d) of Lemma 3.24: (a) holds by Lemma 3.30; (b) holds
from λp−1 = λp = 0 (since p ≥ m+2) and γ = λ+ εp; (c) holds by Lemma 3.32(2);
(d) holds because there are no roots of Ψ = Δk(λ) in rows p−1, p (since p > �−k).
Then, we obtain a new Katalan triple T1 = (Ψ(1),M (1), γ(1)) by applying (3.17)
to T0. When L > 1, we have λp1−1 = λp1

from Lemma 3.32(1), which implies

γ
(1)
p1 = γ

(1)
p1−1 + 1. By Lemma 3.30, Ψ(1) has a wall in rows p1 − 1, p1. Hence, T1

satisfies (b), (d) of Lemma 3.24. The remaining conditions (a) and (c) hold for T1

for the same reasons as in the case of T0: the multiset M (1) is the same as M ;
the root ideals Ψ(1) and Ψ coincide with each other in columns ≤ p1. Therefore,
we can apply equation (3.17) in Lemma 3.24 to T1 with respect to the mirror edge
p1 → p2, and obtain T2. The previous procedure can be repeated L times to obtain
the sequence in (3.22). Let T′ = (Ψ′,M ′, γ′). Then, we have

(3.23) Ψ′ = Ψ∪{β1, . . . , βL}, M ′ = M, γ′ = γ+εmtopΨ(p)−εp(= λ+εmtopΨ(p)),

where βi := (pi, pi−1 − 1) (1 ≤ i ≤ L). Note that Ψ′ has a wall in rows pi − 1, pi
for each i. The following procedure depends on whether (i) topΨ(p) < topΨ(p− 1)
or (ii) topΨ(p) > topΨ(p− 1).

If topΨ(p) < topΨ(p− 1), then we have mtopΨ(p) = topΨ(p− 1) + 1 > topΨ(p)
by Lemma 3.31, which implies that there is a bounce edge mtopΨ(p) → q of Ψ for
some q. Note that mtopΨ(p) → q is also a bounce edge of Ψ′. Therefore, we can
apply Lemma 3.24 to T′ with respect to this bounce edge. From (3.18), it follows
that

K(Ψ′;M ′; γ′) = K(Ψ′ ∪ β;M ′ � {mtopΨ(p)− 1}; γ′ + εq − εmtopΨ(p)),

where

β := (q,mtopΨ(p)− 1).

Note that

λ′ := γ′ + εq − εmtopΨ(p) = λ+ εq

and M ′ � {mtopΨ(p) − 1} = L(Δk(λ′)). Moreover, λ′ is a partition by Lemma
3.32(3). To prove that λ′ is k-bounded, it suffices to consider the case that λ1 = k
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and q = 1. However, one sees that this does not occur in view of Lemma 3.31. We
also note that

Ψ ∪ β = (Ψ′ ∪ β) \ {β1, . . . , βL} = Δk(λ′).

By using Lemma 3.34 recursively, we can remove βL, . . . , β2, β1 from Ψ′, and obtain

K(Δk(λ′);L(Δk(λ′));λ′) = g̃
(k)
λ′ .

From Lemma 3.33, we deduce that

q = upΨ(mtopT(p)) ≡ mtopT(p) ≡ r(p) mod k + 1,

and sr(p)xλ = xλ′ .
Next assume that topΨ(p) > topΨ(p− 1). We check that T′ satisfies conditions

(a)–(d) of Lemma 3.26 with p = mtopΨ(p). From Lemma 3.31, we have mtopΨ(p) =
top(p), which implies (a). Condition (b) follows from Lemma 3.32(1). Condition
(c) follows from the fact that there is a ceiling in the columns p − 1, p. Condition
(d) follows from the definition of Ψ′.

From Lemma 3.26, we have

K(Ψ′;M ′; γ′) = K(Ψ′;M ′; γ′ − εmtopΨ(p)).

In view of (3.23), we can rewrite

K(Ψ′;M ′; γ′ − εmtopΨ(p)) = K(Δk(λ) ∪ {β1, . . . , βL}; Δk(λ);λ).

By Lemma 3.34, we can remove βL, . . . , β2, β1 successively to obtain

K(Δk(λ);L(Δk(λ));λ) = g̃
(k)
λ .

Again by Lemma 3.33, we deduce that

q = upΨ(mtopT(p)) ≡ mtopT(p) ≡ r(p) mod k + 1,

and sr(p)xλ = xλ. �

Here are some examples.

Example 3.35. Case 1 (p = 8): top(p) = mtopΨ(p) = 4 < top(p − 1) = 7 with
p = 8. In this case, we have L = 0.

(1) Lemma 3.24 equation (3.18) with p = 8.

3 • • • • • • •
2 • • • • •

2 • • • •
1 • •

1 •
1

0
1

0

=

3 • • • • • • •
2 • • • • •

2 • • • •
2 • • •

1 •
1

0
0

0

.

Example 3.36. Case 2 (p = 11): top(p) = 11 > top(p− 1) = 6 and L = 0.

(1) Lemma 3.26 with p = 11.
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3 • • • • • • • • • • •
2 • • • • • • • • •

1 • • • • • • •
1 • • • • • •

1 • • • • •
1 • • • •

0 • •
0 •

0
0

1
0

0

=

3 • • • • • • • • • • •
2 • • • • • • • • •

1 • • • • • • •
1 • • • • • •

1 • • • • •
1 • • • •

0 • •
0 •

0
0

0
0

0

.

Example 3.37. Case 1 (p = 9): top(p) = 2 < top(p− 1) = 4.

(1) Lemma 3.24 equation (3.17) with p = 9.
(2) Lemma 3.24 equation (3.18) with p = 5.
(3) Cleaning Lemma with q = 5.

3 • • • • • • •
2 • • • • •

2 • • • •
1 • •

1 •
1

0
0

1

=

3 • • • • • • •
2 • • • • •

2 • • • •
1 • •

2 •
1

0
0

0

=

3 • • • • • • •
3 • • • • • •

2 • • • •
1 • •

1 •
1

0
0

0

=

3 • • • • • • •
3 • • • • •

2 • • • •
1 • •

1 •
1

0
0

0

.

Example 3.38. Case 1 (p = 10): top(p) = 1 < top(p− 1) = 2 and r(p) = 1.

(1) Lemma 3.24 equation (3.17) with p = 10.
(2) Lemma 3.24 equation (3.17) with p = 6.
(3) Lemma 3.24 equation (3.18) with p = 3.
(4) Cleaning Lemma twice with q = 3, 5.

3 • • • • • • • •
2 • • • • • •

2 • • • • •
1 • • •

1 • •
1 •

0
0

0
1

=

3 • • • • • • • •
2 • • • • • •

2 • • • • •
1 • • •

1 • •
2 •

0
0

0
0

=

3 • • • • • • • •
2 • • • • • •

3 • • • • •
1 • • •

1 • •
1 •

0
0

0
0

=

4 • • • • • • • • •
2 • • • • • •

2 • • • • •
1 • • •

1 • •
1 •

0
0

0
0

=

4 • • • • • • • • •
2 • • • • • •

2 • • • • •
1 • • •

1 • •
1 •

0
0

0
0

.

Example 3.39. Case 2 (p = 10): top(p) = 6 > top(p− 1) = 2.

(1) Lemma 3.24 equation (3.17) with p = 10.
(2) Lemma 3.26 with p = 6.
(3) Cleaning Lemma with q = 6.



688 TAKESHI IKEDA, SHINSUKE IWAO, AND SATOSHI NAITO

3 • • • • • • • • • • •
2 • • • • • • • • •

1 • • • • • • •
1 • • • • • •

1 • • • • •
1 • • • •

0 • •
0 •

0
1

0
0

0

=

3 • • • • • • • • • • •
2 • • • • • • • • •

1 • • • • • • •
1 • • • • • •

1 • • • • •
2 • • • •

0 • •
0 •

0
0

0
0

0

=

3 • • • • • • • • • • •
2 • • • • • • • • •

1 • • • • • • •
1 • • • • • •

1 • • • • •
1 • • • •

0 • •
0 •

0
0

0
0

0

=

3 • • • • • • • • • • •
2 • • • • • • • • •

1 • • • • • • •
1 • • • • • •

1 • • • • •
1 • • • •

0 • •
0 •

0
0

0
0

0

.

Remark 3.40. From the proof of Lemma 3.20, we can slightly improve the statement
of the lemma as follows: For λ ∈ Pk

m, an integer �− k < p ≤ � with p ≥ m+2, and
κ ∈ Z� with p < supp(κ) ≤ �, we have

K(Δk(λ);Δk(λ);λ+ εp + κ) = K(Δk(μ);Δk(μ);μ+ κ),

where g̃
(k)
μ = Dr(p) · g̃(k)λ . Indeed, throughout the straightening process introduced

in §3.5.4, κ is left unchanged because the process affects only topmost p rows of the
diagram.

From Remark 3.40, we obtain the following key formula: For λ ∈ Pk
m, and a set

of integers �− k < p1 < · · · < pr ≤ � with p1 ≥ m+ 2, we have

K(Δk(λ);Δk(λ);λ+ εp1
+ · · ·+ εpr

) = Dr(pr) · · ·Dr(p1) · g̃
(k)
λ .(3.24)

3.5.5. Proof of Lemma 3.17. Let Ψ1,Ψ2 be root ideals of Δ+
�1

and Δ+
�2
, respectively.

Let Ψ1 �Ψ2 be the subset of Δ+
�1+�2

defined by:

{(i, j) ∈ Δ+
�1+�2

| (i, j) ∈ Ψ1 or (i− �1, j − �1) ∈ Ψ2 or (i ≤ �1 and j > �1)}.
Let λ ∈ Pk

� . Set Ψ = Δk(λ). By the product rule [5, Lemma 3.8], we have

g(1r) · g̃(k)λ = K(Ψ �∅r; Ψ �∅r;λ+ ε{�+1,...,�+r}).(3.25)

By applying Diagonal Removable Lemma [5, Lemma 4.13], one shows that the
right-hand side of (3.25) is identical to

(3.26) K(Ψ′; Ψ′;λ+ ε{�+1,...,�+r}),

where Ψ′ = (Δk(λ) � ∅r) \ {(i, j) ∈ Δ+
�+r | i ≤ �, j ≥ �, j − i ≤ r − 1}. We can

apply [5, Lemma 5.3] with x = �− k + 1, h = k − r + 1 (in the notation there) to
show that (3.26) is identical to

(3.27)

r∑
a=0

∑
S⊂{�−k+1+r−a,...,�}

|S|=a

K(Ψ′′;L(Ψ′′) � S;λ+ εS + ε{�+1,...,�+r−a}),
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where Ψ′′ = Ψ′ \ {(i, j) | i ≤ �, j ≥ �, j − i ≤ k} = Δk(λ) ⊂ Δ+
�+r (see also the

last part of the proof of [5, Proposition 5.4]). By Lemma 3.11(i) and (3.24), for
S = {p1 < p2 < · · · < pa}, we have

K(Ψ′′;L(Ψ′′) � S;λ+ εS + ε{�+1,...,�+r−a})

=
∑

S′⊂S

(−1)|S\S′|K(Ψ′′;L(Ψ′′);λ+ εS′ + ε{�+1,...,�+r−a})

=

a∑

b=0

∑

�−k+1+r−a≤pi1<pi2<···<pib
≤�

(−1)a−bDr(�+r−a)· · ·Dr(�+1)Dr(pib
)· · ·Dr(pi1 ) · g̃(k)λ

= Dr(�+r−a) · · ·Dr(�+1)Tr(pa) · · ·Tr(p1) · g̃
(k)
λ .

Therefore, (3.27) is equal to

(3.28)

r∑
a=0

∑
�−k+1+r−a≤p1<···<pa≤�

Dr(�+r−a) · · ·Dr(�+1)Tr(pa) · · ·Tr(p1) · g̃
(k)
λ .

Proposition 3.41. For 1 ≤ r ≤ k, and � ∈ Z, we have

r∑
a=0

∑
�−k+1+r−a≤p1<···<pa≤�

Dr(�+r−a) . . .Dr(�+1)Tr(pa) . . . Tr(p1) =
∑

A⊂I, |A|≤r

TuA
.

Proof. We first note that for any subsequence A1 of (r(�+ r− a), . . . , r(�+1)) such
that 0 ≤ |A1| ≤ r − a, and A2 of (r(�), r(�− 1), . . . , r(�− k + 1+ r − a)) such that
|A2| = a, the concatenation A1 ·A2 is a cyclically increasing sequence of length less
than or equal to r.

For 0 ≤ a ≤ n ≤ r, let

Xn
a =

{
(p1, . . . , pn) ∈ Zn

∣∣∣∣ �− k + r − a < p1 < · · · < pa ≤ �

< pa+1 < · · · < pn ≤ �+ r − a

}
.

Substituting Dp = Tp+1 into the left-hand side of the equation in the proposition,
we see that

r∑
a=0

∑
�−k+1+r−a≤p1<···<pa≤�

(Tr(�+r−a) + 1) . . . (Tr(�+1) + 1)Tr(pa) . . . Tr(p1)

=

r∑
a=0

r∑
n=a

∑
(p1,...,pn)∈Xn

a

Tu{r(p1),...,r(pn)}

=
r∑

n=0

n∑
a=0

∑
(p1,...,pn)∈Xn

a

Tu{r(p1),...,r(pn)} .

Then it suffices to show that the map

rm :

n⊔
a=0

Xn
a → {A ⊂ I ; |A| = n}, (p1, . . . , pn) �→ {p1, . . . , pn},

is bijective. For this, we identify a subset A ⊂ I with a 01-sequence η1η2 · · · ηk+1 ∈
{0, 1}k+1 by letting ηp = 0 if p+ � ∈ A and ηp = 1 otherwise. Then the image of
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Xn
a by rm is contained in the set

Sn
a :=

⎧⎪⎪⎨
⎪⎪⎩η1η2 . . . ηk+1 ∈ {0, 1}k+1

∣∣∣∣∣∣∣∣
∑k+1

p=1 ηp = k + 1− n,∑r−a
p=1 ηp = r − n

ηr−a+1 = 1

⎫⎪⎪⎬
⎪⎪⎭ .

For any η1η2 . . . ηk+1 ∈
⋃n

a=0 S
n
a , we have

a = r + 1−min{p | η1 + · · ·+ ηp = r − n+ 1},
which implies Sn

a ∩ Sn
a′ = ∅ ⇐⇒ a 	= a′. This implies that rm is injective as its

restriction to Xn
a is injective. Because

∑n
a=0 |Xn

a | =
∑n

a=0

(
k−r+a

a

)(
r−a
n−a

)
=
(
k+1
n

)
=

�{A ⊂ I ; |A| = n}, the map rm is also surjective. �
This completes the proof of Lemma 3.17.

4. Relation to quantum K-theory

4.1. Quantum K-theory ring of the flag variety.

Theorem 4.1 ([17],[27],[28],[34],[35]). QK(G/B) can be identified with the quotient
ring

(4.1) Ak+1 := C[[Q]][z1, . . . , zk+1]/Ik+1,

where Ik+1 is the ideal of C[[Q]][z1, . . . , zk+1] generated by

(4.2)
∑

I⊂{1,...,k+1}
|I|=i

∏
j∈I

zj
∏
j∈I

j+1/∈I

(1−Qj)−
(
k+1
i

)
(1 ≤ i ≤ k + 1),

in such a way that for w ∈ Sk+1 the quantum Grothendieck polynomial GQ
w of

Lenart and Maeno, with the change of variables xi = 1 − zi, represents Ow
G/B in

QK(G/Bk+1).

Let QKpol(G/B) denote the C[Q]-module spanned by Ow
G/B (w ∈ Sk+1). Let S

be the multiplicative subset 1 + (Q) of C[Q]. For a C[Q]-module M , we denote by
MS the localization by S. By a result of Anderson, Chen, Tseng, and Iritani [2],
QKpol(G/B)S forms a subring of QK(G/B).

Let Apol
k+1 be the quotient ring C[Q][z1, . . . , zk+1]/I

pol
k+1, where I

pol
k+1 is the ideal of

C[Q][z1, . . . , zk+1] generated by polynomials in (4.2). The following result is a mod-
ified version of Kirillov–Maeno’s (conjectural) presentation, given as [28, Remark
52]. For the reader’s convenience, we give a sketch of its proof; see also [34, Remark
6.2].

Proposition 4.2. There exists an isomorphism of C[Q]S algebras

(4.3) (Apol
k+1)S −→ QKpol(G/B)S.

Moreover, the image of GQ
w in (Apol

k+1)S is sent to Ow
G/B for w ∈ Sk+1.

Proof. By [1, Chapter 3, Exercise 2], we see that the localized ideal (Q)S is con-
tained in the Jacobson radical of C[Q]S . By [34, Corollary B.3(2)], we see that the
right-hand side of (4.3) is finitely generated as a C[Q]S-module. Then we can apply
Nakayama–type arguments ([11, Proposition A.3 and Remark A.6]) to obtain the
isomorphism by the same arguments as in [34, Theorem 6.1]. The second statement
follows from [28, Theorem 51] or [35, Theorem 4.4]. �
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4.2. Map Φk+1. Recall that τi := gRi
, τ+i := g̃Ri

withRi = (

k+1−i︷ ︸︸ ︷
i, . . . , i) for 1 ≤ i ≤ k.

Note that the notation Ri is different from the one used in [13], and the indices of
τi are also switched from the ones in [13] by i �→ k + 1− i (see Remark 4.4).

Theorem 4.3 ([13]). There is a ring isomorphism

(4.4) Φk+1 : Apol
k+1[Q

−1
i ] −→ Λ(k)[τ

−1
i , (τ+i )−1],

where 1 ≤ i ≤ k, such that

(4.5) zi �→
τiτ

+
i−1

τ+i τi−1

(1 ≤ i ≤ k + 1), Qi �→
τi−1τi+1

τ2i
(1 ≤ i ≤ k).

The map Φk+1 was constructed by solving the relativistic Toda lattice equation
with the initial condition that the Lax matrix is unipotent. Although the construc-
tion of Φk+1 has no apparent geometric meaning, it is expected that the map sends
a Schubert structure sheaf Ow

G/B to an element in K∗(Gr)loc related to a Schubert

class.

Remark 4.4. Our convention for Φk+1 is slightly different from the one in [13]. Let
Ω be the automorphism of Λ(k)[τ

−1
i , (τ+i )−1] given as the natural extension of Ω

(see §3.1). One can check that Φ′
k+1 = Ω◦Φk+1 coincides with the map introduced

in [13] by replacing σi in their notation with τ+i .

Corollary 4.5. There is an injective C[Q]-algebra homomorpshism

φ : Apol
k+1[Q

−1
i ] ↪→ QK(G/B)[Q−1

i ]

such that the image of GQ
w in Apol

k+1[Q
−1
i ] is sent to Ow

G/B.

Proof. We know from Theorem 4.3 that Apol
k+1[Q

−1
i ] is an integral domain, and hence

Apol
k+1[Q

−1
i ] is a C[Q]-subalgebra of (Apol

k+1[Q
−1
i ])S, where S = 1+(Q). Consider the

composition of ring homomorphisms

Apol
k+1[Q

−1
i ] ↪→ (Apol

k+1[Q
−1
i ])S

= ((Apol
k+1)S)[Q

−1
i ]

∼= (QKpol(G/B)S)[Q
−1
i ] (Proposition 4.2)

↪→ QK(G/B)[Q−1
i ].

The statement on GQ
w follows from that of Proposition 4.2. �

4.3. K-homology of the affine Grassmannian. For x ∈ S̃0
k+1, let ξ

0
x ∈ K∗(Gr)

be the element defined in [21, §6.3]. The nonequivariant K-theoretic k-Schur func-

tion g
(k)
x in [21, Theorem 7.17(2)] corresponds to ξ0x. Let us denote this isomorphism

by α◦ : K∗(Gr) → Λ(k). It holds that α◦(O
Gr
x ) = g̃

(k)
x ([39], [20, Lemma 2(ii)]). We

define a twisted isomorphism α : K∗(Gr) → Λ(k) by α := σ−1 ◦ α◦. Thus we have

(4.6) α(OGr
x ) = σ−1(g̃(k)x ).

Proposition 4.6. If λ ⊂ Ri for some 1 ≤ i ≤ k, equivalently λ1 + �(λ) ≤ k + 1,
then we have

(4.7) α(OGr
λ ) = gλ.
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In particular, we have

(4.8) α(OGr
Ri
) = τi.

Proof. We know from Proposition 2.9 that g̃
(k)
λ = g̃λ. Therefore, using Proposition

2.5, we see that

α(OGr
λ ) = σ−1(g̃

(k)
λ ) = σ−1(g̃λ) = gλ.

�
4.4. Correspondence of Schubert bases. We consider the extended affine sym-
metric group Ŝk+1, which is generated by {si | i ∈ I} ∪ {π} satisfying the same
relations among si’s and

πk+1 = id, πsi = si+1π.

We have Ŝk+1
∼= Sk+1 � P∨, where P∨ is the coweight lattice of SLk+1(C). The

translation element associated to −�∨
i ∈ P∨ is explicitly given by

t−�∨
i
= π−ixRi

.

Example 4.7. For k = 3,

t−�∨
1
= π−1s2s3s0, t−�∨

2
= π−2s0s3s1s0, t−�∨

3
= π−3s2s1s0.(4.9)

Let w ∈ Sk+1 be an i-Grassmannian permutation, i.e., Des(w) = {i}. The set of
all i-Grassmannian permutations in Sk+1 is in bijection with Pk+1−i

i . Explicitly, for

an i-Grassmannian permutation w in Sk+1, the corresponding partition λ ∈ Pk+1−i
i

is given by

(4.10) λi+1−j = w(j)− j (1 ≤ j ≤ i).

For each partition λ in Pk+1−i
i , we denote the corresponding i-Grassmannian per-

mutation by wλ,i. For λ ∈ Pk+1−i
i , the dual partition of λ is the element λ∨ in

Pk+1−i
i defined by λ∨

j = k + 1− i− λi+1−j (1 ≤ j ≤ i).

Proposition 4.8 ([13]). Let wλ,i ∈ Sk+1 be an i-Grassmannian permutation. Then

(4.11) Φk+1(Gλ,i) =
g(λ∨)′

τi
,

where (λ∨)′ is the conjugate of λ∨.

Proof. Let Φ′
k+1 be the map in [13]. Recall that for w ∈ Sk+1, Ow

G/B is iden-

tified with GQ
w mod Ik+1. [13, Theorem 7.1] reads as Φ′

k+1(G
Q
wλ,i

mod Ik+1) =

gλ∨/g(k+1−i)i . From Remark 4.4, we deduce (4.11). �

In order to describe the image Φk+1(O
w
G/B), we need a map Sk+1 → Pk, w �→

θk(w), due to Lam and Shimozono [24, Lemma 11].

Proposition 4.9 ([24]). Let w ∈ Sk+1. There is a k-bounded partition θk(w) such
that

(4.12) wt−
∑

i∈Des(w) �
∨
i
= π−

∑
i∈Des(w) i · xθk(w).

Proof. One can show that the left-hand side of (4.12) is an affine Grassmannian

element in Ŝk+1 = 〈π〉� S̃k+1 (see the first part of the proof of [24, Lemma 6.1]).
Then such an element can be uniquely written in the form on the right-hand side
of (4.12) for a k-bounded partition, which we denote by θk(w). �
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For an i-Grassmannian permutation w = wλ,i, we have θk(w) = (λ∨)′ ([13,
Lemma 7.1]). See Appendix B, for another direct proof of this fact.

The next result is a refined version of [13, Conjecture 1.8].

Theorem 4.10. For w ∈ Sk+1, we have

(4.13) Φk+1(Gw) =
σ−1(g̃

(k)
θk(w))∏

i∈Des(w) τi
.

Proof. Let Q∨ denote the coroot lattice of SLk+1(C). Then we have S̃k+1
∼= Sk+1�

Q∨. We denote by tβ ∈ S̃k+1 the translation element corresponding to β ∈ Q∨.
Let K∗(Gr)loc be the localization of K∗(Gr) by the multiplicative set generated by
OGr

tβ
(β ∈ Q∨).

Kato [15, Corollary 4.15] constructed an injective ring homomorphism

κ : K∗(Gr)loc ↪→ QK(G/B)loc

such that

(4.14) κ
(
OGr

wtβ
· (OGr

tγ )
−1
)
= Qβ−γOw

G/B (w ∈ Sk+1),

where β, γ ∈ −Q∨ such that wtβ ∈ S̃0
k+1 and γ is strictly antidominant, and Qβ−γ

is defined by identifying Qα∨
i with Qi.

Since OGr
Ri

corresponds to τi = gRi
by α (Proposition 4.6), the isomorphism α

yields K∗(Gr)loc ∼= Λ(k)[τ
−1
i (1 ≤ i ≤ k)]. Let κ′ be the composition

κ′ : K∗(Gr)loc ∼= Λ(k)[τ
−1
i ] (induced by α)

↪→ Λ(k)[τ
−1
i , (τ+i )−1]

∼=
Φ−1

k+1

Apol
k+1[Q

−1
i ] (Theorem 4.3)

↪→
φ

QK(G/B)[Q−1
i ] (Corollary 4.5).

We claim that κ′ = κ. Note that K∗(Gr) is generated by OGr
si−1···s1s0 = OGr

(i) (1 ≤
i ≤ k), and that α(OGr

(i)) = g(i). For 1 ≤ i ≤ k, let ui ∈ Sk+1 be the k-Grassmannian

permutation of shape (1k−i). So by Proposition 4.8, we have

Φk+1(G
Q
ui
) =

g(i)

τk
.

Hence it follows that

κ′(OGr
(i) · (OGr

Rk
)−1) = φ(GQ

ui
) = Oui

G/B .

By Lemma B.3, we have θk(ui) = (i). Therefore, we have OGr
uit−�∨

k

= OGr
(i), and

hence by the definition of κ

κ(OGr
(i) · (OGr

Rk
)−1) = Oui

G/B .

Since (OGr
Rk

)−1 is an invertible element, we have κ′(OGr
(i)) = κ(OGr

(i)), and hence

κ′ = κ.
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For w ∈ Sk+1, we deduce that O
Gr
wt−

∑
i∈Des(w) �∨

i

= OGr
θk(w) by Proposition 4.9, and

hence see that

φ(GQ
w) = Ow

G/B = κ

⎛
⎝OGr

θk(w) ·
∏

i∈Des(w)

(OGr
Ri
)−1

⎞
⎠

= κ′

⎛
⎝OGr

θk(w) ·
∏

i∈Des(w)

(OGr
Ri
)−1

⎞
⎠

= (φ ◦ Φ−1
k+1)

⎛
⎝σ−1(g̃θk(w)) ·

∏
i∈Des(w)

τ−1
i

⎞
⎠ (by (4.6)).

Since φ is injective we obtain (4.13). �

4.5. Localizations of K∗(Gr). The isomorphism conjectured by Lam, Li, Mihal-
cea, and Shimozono in [20] is different from Φk+1 in the way of localization of
K∗(Gr). The localization of K∗(Gr) in [20] can be identified with Λ(k)[τ

−1
i (1 ≤

i ≤ k)], while our version is Λ(k)[τ
−1
i , (τ+i )−1 (1 ≤ i ≤ k)]. The aim of this section

is to clarify the geometric meaning of τ+i = g̃Ri
∈ Λ(k).

Lemma 4.11. τ2i − τi−1τi+1 = τ+i · τ−i .

Proof. This is the discrete Toda equation given by Hirota [12]. We can show this
by comparing the construction of Φk+1 [13] and the Lax formalism for the discrete
Toda equation given in [14, §1]. �

Lemma 4.12. For 1 ≤ i ≤ k, Φk+1(1−Qi) =
τ+i · τ−i

τ2i
.

Proof. This follows from Lemma 4.11. �

Lemma 4.13. For 1 ≤ i ≤ k + 1,

τi = gR∗
i
+ τ−i .

Proof. It suffices to show that σ(τi − gR∗
i
) = τi. This follows from (2.3), because

R∗
i is the unique maximal proper element among the partitions μ ⊂ Ri. �

Proposition 4.14. For 1 ≤ i ≤ k,

(1−Qi)z1 · · · zi = 1− Osi
G/B

in QK(G/B).

Proof. By the equality Φk+1(O
si) = gR∗

i
/τi [13, Theorem 1.7], and Lemma 4.13,

the image of the right-hand side by Φk+1 is

1−
gR∗

i

τi
=

τi − gR∗
i

τi
=

τ−i
τi

under the isomorphism of Proposition 4.2. On the other hand,

Φk+1((1−Qi)z1 · · · zi) =
τ−i τ+i
τ2i

i∏
j=1

τjτ
+
j−1

τ+j τj−1

=
τ−i
τi

.

�
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Remark 4.15. In view of Proposition 4.2, the previous result corresponds to [27,
Corollary 3.33]; note also that

1− Osi
G/B = OG/B(−�i).

Corollary 4.16. The following element

Q−1
t�∨

i

(1−Qi)
−1(1− Osi

G/B)

in QK(G/B)loc is sent to 1/τ+i by Φk+1, where Qt�∨
i

is the element such that

Φk+1(Qt�∨
i
) = τi.

Note that the factor Qt�∨
i
is invertible in QK(G/B)loc. Hence, up to this invert-

ible factor, 1/τ+i corresponds to the element (1−Qi)
−1(1−Osi

G/B) of QK(G/B) ⊂
QK(G/B)loc.

Appendix A. Parabolic quotient of Coxeter groups

We discuss some properties of a coset space of a Coxeter group. Our basic
reference is Bjorner–Brenti [4]. Let (W,S) be a Coxeter system (see [4] for the
definition), where W is the group generated by S = {si | i ∈ I} with index set I.
The Bruhat order on W (see [4, Chapter 2]) is denoted by ≤. Let J be any subset
of I. Let WJ be the subgroup of W generated by si (i ∈ J). The minimal coset
representatives W J of the quotient W/WJ is defined to be W J := {w ∈ W | wsi >
w for all i ∈ J}. Any element w of W is expressed uniquely as w = wJwJ , with
wJ ∈ WJ and wJ ∈ W J [4, Proposition 2.4.4].

The following result is well-known and used throughout this section.

Lemma A.1. Let x ∈ W J and i ∈ I. Then, six < x =⇒ six ∈ W J .

A.1. Proof of Proposition 3.13. The 0-Hecke algebra HW is the associative C-
algebra generated by {Ti | i ∈ I} subject to the same relations as those for W
except T 2

i = −Ti in place of s2i = id. For w ∈ W , define Tw = Ti1 · · ·Tim for any
reduced expression w = si1 · · · sim . The elements Tw (w ∈ W ) form a basis of HW .

Proposition A.2. Let V J be a left HW module given by

V J = HW eJ , eJ :=
∑

w∈WJ

Tw.

Then, V J =
⊕

x∈WJ Cax with ax := TxeJ , and for i ∈ I,

(A.1) Ti · ax =

⎧⎪⎨
⎪⎩
asix (six > x and six ∈ W J )

−ax (six < x)

0 (six > x and six /∈ W J )

.

Proof. For i ∈ J , we will prove TieJ = 0. Let X+ = {v ∈ W | siv > v} and
X− = {v ∈ W | siv < v}. We have si(X

±) = X∓. If v ∈ X+, then TiTv = Tsiv. If
v ∈ X−, then Tv = TiTsiv, and hence TiTv = T 2

i Tsiv = −TiTsiv = −Tv. Therefore,

TieJ =
∑

v∈X+

TiTv +
∑

v∈X−

TiTv =
∑

v∈X+

Tsiv −
∑

v∈X−

Tv = 0.

If v /∈ W J , then it is easy to see that there is a reduced expression v = si1 · · · sim
with im ∈ J . Hence TveJ = Tsi1 ···sim−1

TimeJ = 0. It follows that {ax}x∈WJ
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spans V J = HW eJ . Note that for x ∈ W J and v ∈ WJ , we have TxTv = Txv since
�(xv) = �(x)+�(v) ([4, Proposition 2.4.4(2)]); the linear independence of {ax}x∈WJ

follows from this fact.
Let x ∈ W J . If six > x, then

Ti · ax = Ti · TxeJ = TsixeJ =

{
asix (six ∈ W J )

0 (six /∈ W J )
.

If six < x, then Ti · ax = TiTxeJ = −TxeJ = −ax. �

Proposition A.3. For x ∈ W J , let bx :=
∑

y≤x ay. Set Di = Ti +1 (i ∈ I). Then

(A.2) Di · bx =

{
bsix (six ∈ W J , six > x)

bx (otherwise)
.

Lemma A.4 (Z-lemma). Let w, v ∈ W and i ∈ I. Suppose siw > w and siv > v.
Then the following conditions are equivalent:

(1) w ≤ v, (2) siw ≤ siv, (3) w ≤ siv.

Proof. [30, Proposition 5.4.3]. �

Lemma A.5. Let x ∈ W J and i ∈ I. We set

X+
≤x := {y ∈ W J | y ≤ x, siy ∈ W J , siy > y},

X−
≤x := {y ∈ W J | y ≤ x, siy ∈ W J , siy < y},

X0
≤x := {y ∈ W J | y ≤ x, siy /∈ W J}.

(1) If six ∈ W J , six > x, then si(X
+
≤x) = X−

≤six
, X+

≤x = X+
≤six

, X0
≤x =

X0
≤six

.

(2) If six ∈ W J , six < x, then si(X
+
≤x) = X−

≤x.

(3) If six /∈ W J , then si(X
+
≤x) = X−

≤x.

Proof. (1) and (2) follow immediately from Lemma A.4. For (3), the inclusion
si(X

+
≤x) ⊃ X−

≤x follows from Lemma A.4. We will show that si(X
+
≤x) ⊂ X−

≤x. Take

arbitrary z ∈ si(X
+
≤x). Write z = siy with y ∈ X+

≤x. Since siz = s2i y = y < siy = z,

it suffices to prove siy ≤ x. Since x ∈ W J and six /∈ W J , we have six > x by
Lemma A.1. Hence it follows from Lemma A.4 that six ≥ siy. Also, it follows
from [4, Corollary 2.5.2] that there is v ∈ WJ such that six = xv; in fact, we can
take v = sj for some j ∈ J . Hence we have xv ≥ siy. Here note that siy ∈ W J as
y ∈ X+

≤x. It follows that

siy = (siy)
J ≤ (xv)J = xJ = x;

here we used the fact that w ≤ v for w, v ∈ W implies wJ ≤ vJ [4, Proposition
2.5.1]. �

Proof of Proposition A.3. We have bx =
∑

y∈X+
≤x

ay +
∑

y∈X−
≤x

ay +
∑

y∈X0
≤x

ay.

Using (A.1), it is straightforward to verify

Di · bx =
∑

y∈X+
≤x

asiy +
∑

y∈X+
≤x

ay +
∑

y∈X0
≤x

ay.
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Consider first the case that six ∈ W J , six > x. From Lemma A.5(1), we see that

Di · bx =
∑

y∈X−
≤six

ay +
∑

y∈X+
≤six

ay +
∑

y∈X0
≤six

ay = bsix.

Next consider the case that six ∈ W J , six < x. We see that si(X
+
≤x) = X−

≤x by

Lemma A.5(2), and hence we see that

Di · bx =
∑

y∈X−
≤x

ay +
∑

y∈X+
≤x

ay +
∑

y∈X0
≤x

ay = bx.

Finally we consider the case that six /∈ W J . We have si(X
+
≤x) = X−

≤x by Lemma

A.5(3), and hence Di · bx = bx by exactly the same reasoning as in the previous
case. �

Proof of Proposition 3.13. We apply Proposition A.2 to W = S̃k+1 = 〈si | i =

0, 1, . . . , k〉, WJ = Sk+1, W J = S̃0
k+1 with J = {1, 2, . . . , k}, and define an iso-

morphism V J → Λ(k) of vector spaces by ax �→ ◦
g
(k)

λ , bx �→ g̃
(k)
λ under the bijection

W J = S̃0
k+1 � x �→ λ ∈ Pk. Then we obtain Proposition 3.13. �

A.2. Proof of Lemma 3.18. For w ∈ W , and i ∈ I, we define si ∗w in the same
way as in (2.4). Let S = (i1, . . . , ir) be a sequence of elements of I, and w ∈ S. We
define

(A.3) S ∗ w = si1 ∗ (si2 ∗ · · · ∗ (sir ∗ w) · · · ).

Proposition A.6. Let S = (i1, . . . , ir) be a sequence of elements of I. Set |S| = r,
and TS := Ti1 · · ·Tir ∈ HW . Then for x ∈ W J , we have

TS · ax =

{
(−1)|S|−�(S∗x)+�(x)aS∗x (S ∗ x ∈ W J )

0 (S ∗ x /∈ W J )
.

Proof. For 1 ≤ p ≤ r, set Sp = (ip, . . . , ir), and Sr+1 = ∅. We use decreasing
induction on p. If p = r + 1, then the assertion is obvious. Suppose 1 ≤ p < r + 1.
We first consider the case that Sp∗x /∈ W J . Let q (≥ p) be the maximal integer such
that Sq ∗x /∈ W J . Then, we have Sq+1∗x ∈ W J , Sq ∗x = siq ∗(Sq+1∗x) = siq (Sq+1∗
x) /∈ W J , and so siq (Sq+1∗x) > Sq+1∗x by Lemma A.1. Therefore, Tiq ·aSq+1∗x = 0.
By the inductive hypothesis, we deduce that Tiq+1

· · ·Tir ·ax = ±aSq+1∗x, and hence

TSp
· ax = Tip · · ·Tiq (Tiq+1

· · ·Tir · ax) = ±Tip · · ·Tiq · aSq+1∗x = 0.

Next we consider the case when Sp ∗x ∈ W J . Note that, in view of Lemma A.1,
we have Sq ∗ x ∈ W J for p ≤ q ≤ r + 1. By the inductive hypothesis, we have

Tip+1
· · ·Tirax = (−1)r−p−�(Sp+1∗x)+�(x) · aSp+1∗x, so

(A.4) TSp
· ax = Tip · (Tip+1

· · ·Tirax) = (−1)r−p−�(Sp+1∗x)+�(x)Tip · aSp+1∗x.

Now we consider two cases: (a) sip(Sp+1∗x) > Sp+1 ∗x, (b) sip(Sp+1∗x) < Sp+1 ∗x.
If (a) holds, then sip(Sp+1 ∗ x) = sip ∗ (Sp+1 ∗ x) = Sp ∗ x ∈ W J . Therefore,

Tip · aSp+1∗x = asip (Sp+1∗x) = aSp∗x,

and hence by (A.4),

TSp
· ax = (−1)r−p−�(Sp+1∗x)+�(x)TipaSp+1∗x = (−1)r−p−�(Sp+1∗x)+�(x)aSp∗x;



698 TAKESHI IKEDA, SHINSUKE IWAO, AND SATOSHI NAITO

the sign is correct since we have �(Sp+1 ∗ x) = �(Sp ∗ x) − 1. Suppose (b) holds.
Note that Sp ∗ x = Sp+1 ∗ x ∈ W J by (A.3). By the definition of Tip ,

Tip · aSp+1∗x = −aSp+1∗x = −aSp∗x.

Hence we deduce that

TSp
· ax = (−1)r−p−�(Sp+1∗x)+�(x)(−aSp∗x) = (−1)r−p+1−�(Sp∗x)+�(x)aSp∗x,

where we again used Sp ∗ x = Sp+1 ∗ x. This completes the proof. �
Proof of Lemma 3.18. Let A � I, with |A| = r, and take a reduced expression
si1 · · · sir for uA. We apply Proposition A.6 to the sequence S = (i1, . . . , ir). Then
TS = TuA

and we obtain Lemma 3.18. �

Appendix B. Grassmannian permutations

An explicit description of θk(w) is available (see [24, §6]). For the reader’s
convenience, we include a simple direct proof when w is a Grassmannian element
wλ,i (Lemma B.3).

Proposition B.1. Let λ ∈ Pk be a k-bounded partition of size r such that λ1 +
�(λ) ≤ k+1. Take any standard tableau T of shape λ. We denote the box of λ with
entry i in T by bT (i). Then sres(bT (r)) · · · sres(bT (2))sres(bT (1)) is a reduced expression
for xλ.

Proof. We note first that the corresponding fact is well-known for the i-Grassm-
annian permutation wλ,i. The reader can consult [6, §3.1] for an exposition of this
fact in a more general setting.

Since λ1 + �(λ) ≤ k + 1, there is 1 ≤ i ≤ k such that λ ⊂ Rk+1−i. Then in
the reduced expression of xλ given by (2.1), sk+1−i does not appear. Hence xλ ∈
〈s−i+1, . . . , s−i+k〉∼=Sk+1; the isomorphism of groups φ : Sk+1→〈s−i+1, . . . , s−i+k〉
is given by φ(sj) = s−i+j . Then, the result follows from the case for the i-
Grassmannian permutation. �
Remark B.2. An element in a Coxeter groupW is fully commutative if any two of its
reduced expressions are related by a series of transpositions of adjacent commuting
generators. It is well-known that any i-Grassmannian element in Sk+1 is fully
commutative. From the proof of Proposition B.1, we see that if λ1 + �(λ) ≤ k + 1,
then xλ is fully commutative.

Lemma B.3. Let λ be a partition contained in Rk+1−i = (k + 1− i)i, and wλ,i ∈
Sk+1 the corresponding i-Grassmannian permutation. Then θk(wλ,i) = (λ∨)′.

Proof. In the extended affine symmetric group Ŝk+1, we compute wλ,it−�∨
i

=

wλ,iπ
−ixRi

= π−i(πiwλ,iπ
−i)xRi

. A reduced expression for yλ := πiwλ,iπ
−i is

obtained by replacing sj with sj+i in wλ,i. It is straightforward to see when we
reflect the tableau of yλ along the line with a slope of 1, it fits inside the tableau
of shape Ri filled with (k + 1)-residues adjusted to the south-east corner (see Ex-
ample B.4). Let T be the standard tableau with shape Ri that is obtained by
filling positive integers into each row of (λ∨)′ from left to right, with rows taken
from top to bottom, and then into each column of the remaining boxes from top
to bottom, with columns taken from left to right. Then apply Proposition B.1 to
T . The obtained reduced expression for xRi

shows xRi
= y−1

λ · x(λ∨)′ , and hence

wλ,it−�∨
i
= π−ix(λ∨)′ , showing θk(wλ,i) = (λ∨)′. �
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Example B.4. For k = 6, i = 3, and λ = (3, 2), the corresponding 3-Grassmannian
element is wλ,3 = s3s2 · s5s4s3. We have

yλ := π3(wλ,3)π
−3 = s6s5 · s1s0s6 : 6 0 1

5 6 .

We read the entries of the tableau of shape R3 filled with 7-residues

0 1 2
6 0 1
5 6 0
4 5 6

according

to the order given by T =

1 2 3
4 5 10
6 8 11
7 9 12

to obtain

xR3
= (s6s0s1 · s5s6) · s4s5s0s6s2s1s0.

This is y−1
λ x(λ∨)′ . The shaded boxes correspond to yλ.

Appendix C. Vertical Pieri rule for the closed K-k-Schur functions

A Pieri rule for g̃
(k)
λ was proved by Takigiku [40]. We record here the vertical

version of Takigiku’s formula, which should be known to experts but is missing in
the literature. We do not use this result in the main part of this paper.

For λ ∈ Pk, 1 ≤ r ≤ r, define

H
(k)
λ,r := {A � I

∣∣∣ |A| = r, dAxλ ∈ S̃0
k+1, dAxλ ≥L xλ} ,

V
(k)
λ,r := {A � I

∣∣∣ |A| = r, uAxλ ∈ S̃0
k+1, uAxλ ≥L xλ} .

For an element A in H
(k)
λ,r, we write dAxλ = xκ for an element κ ∈ Pk, and denote

this κ by dAλ. Similarly, for an element A in V
(k)
λ,r, we write uAxλ = xκ for an

element κ ∈ Pk, and denote this κ by uAλ.

Example C.1. For k = 3, λ = (2, 1) ∈ P3, and r = 2, we have (see Figure 2)

H
(k)
λ,r = {{2, 3}, {0, 2}}, d{2,3} = s3s2, d{0,2} = s0s2 = s2s0,

V
(k)
λ,r = {{1, 2}, {0, 2}}, u{1,2} = s1s2, u{0,2} = s0s2 = s2s0.

20

2 0 1 3

������

��� ��� ���
����	

u{0,2} = d{0,2} u{1,2} d{2,3}

λ

s0λ s2λ

s2s0λ s1s2λ s3s2λ

Figure 2. k = 3, λ = (2, 1), r = 2.
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The corresponding weak (horizontal and vertical) strips are given by

d{2,3}λ = (3, 1, 1), d{0,2}λ = u{0,2}λ = (2, 1, 1), u{1,2}λ = (2, 1, 1, 1).

For A1, . . . , Am ∈ H
(k)
λ,r, it is known by Takigiku [40, Corollary 4.8] that A1 ∩

· · · ∩Am ∈ H
(k)
λ,r′ , with r′ = |A1 ∩ · · · ∩Am| and hence dA1∩···∩Am

λ ∈ Pk is defined.

Proposition C.2. Let A �→ A be the map given by sending i ∈ A to −i ∈ A. Then
for λ ∈ Pk, and 1 ≤ r ≤ k,

H
(k)
λ,r = V

(k)
λωk ,r.

Proof. Let A ∈ H
(k)
λ,r. Recall that ωk is an automorphism of the group S̃k+1 pre-

serving the left weak order. Therefore, it follows that

uAxλωk = ωk(dA)ωk(xλ) = ωk(dAxλ) ≥L ωk(xλ) = xλωk ,

and hence A ∈ V
(k)
λ,r. Thus H

(k)
λ,r ⊂ V

(k)
λωk ,r. Similarly we have H

(k)
λ,r ⊃ V

(k)
λωk ,r. �

Theorem C.3 ([39]). Let λ ∈ Pk and 1 ≤ r ≤ k. Let

H
(k)
λ,r = {A1, . . . , Am}, V

(k)
λ,r = {B1, . . . , Bn}.

Then

g̃(r) · g̃(k)λ =

m∑
i=1

(−1)i−1
∑

1≤a1<···<ai≤m

g̃
(k)
dAa1

∩···∩Aai
λ,(C.1)

g̃(1r) · g̃(k)λ =
n∑

i=1

(−1)i−1
∑

1≤a1<···<ai≤n

g̃
(k)
uBa1

∩···∩Bai
λ.(C.2)

Proof. (C.1) is due to Takigiku [39]. From Proposition C.2, it follows that

{A1, . . . , Am} = V
(k)
λωk ,r. By applying Ω to both sides of the equation, we obtain

g̃(1r) · g̃(k)λωk =

m∑
i=1

(−1)i−1
∑

1≤a1<···<ai≤m

g̃
(k)
uAa1

∩···∩Aai
λωk ,

where we used Ω(g̃(r)) = g̃(1r) and

Ω(g̃
(k)
dAa1

∩···∩Aai
λ) = g̃

(k)
uAa1

∩···∩Aai
λωk = g̃

(k)
uAa1

∩···∩Aai
λωk .

Thus we have (C.2). �
Example C.4. According to Example C.1, we have

g̃
(3)
(2) g̃

(3)
(2,1) = g̃

(3)
(3,1,1) + g̃

(3)
(2,2,1) − g̃

(3)
(2,1,1),

g̃
(3)
(1,1)g̃

(3)
(2,1) = g̃

(3)
(2,1,1,1) + g̃

(3)
(2,2,1) − g̃

(3)
(2,1,1).
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