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C0-LIMITS OF LEGENDRIAN KNOTS

GEORGIOS DIMITROGLOU RIZELL AND MICHAEL G. SULLIVAN

Abstract. Take a sequence of contactomorphisms of a contact three-manifold
that C0-converges to a homeomorphism. If the images of a Legendrian knot
limit to a smooth knot under this sequence, we show that it is contactomorphic
to the original knot. We prove this by establishing that, on one hand, non–
Legendrian knots admit a type of contact-squashing (similar to squeezing) onto
transverse knots while, on the other hand, Legendrian knots do not admit such
a squashing. The non-trivial input from contact topology that is needed is (a
local version of) the Thurston–Bennequin inequality.

1. Introduction and results

A knotK inside a contact 3-manifold (M3, ξ) is Legendrian (resp. transverse)
if, for all points p ∈ K, TpK ⊂ ξp (resp. TpK �⊂ ξp). In this article, all knots are
considered to be smooth co-orientable embeddings of S1 into a contact 3-manifold,
where the contact structure of the latter is assumed to be co-orientable; we do
not make additional assumptions on the ambient contact manifold, i.e., it can be
either closed or open. Generalizing the notion of transverse, the knot K is called
non–Legendrian if, for some p ∈ K, TpK �⊂ ξp. Both Legendrian and transverse
knots have been widely studied, and each class exhibits various interesting rigidity
phenomena. Non–Legendrian knots are somewhat more flexible, especially when
considered from a quantitative viewpoint; for example, in the case when there
exists a contactomorphism of (M2n+1, ξ) that connects two non–Legendrian n-
dimensional submanifolds, Rosen–Zhang [RZ20, Section 1] have shown that there
exists such a contactomorphism of arbitrarily small Hofer norm.

General non–Legendrian knots in the contact geometric setting have not re-
ceived the same amount of attention as transverse and Legendrian knots. This
article shows that non–Legendrian knots behave more like transverse knots than
Legendrian knots, at least when it comes to quantitative questions. Indeed, the
starting point of the results of this article is the following type of flexibility: a non–
Legendrian knot can be “squashed” arbitrarily close to some given transverse knot.
(See Theorem A for the precise statement.) Non–Lagrangian submanifolds (which
fail the Lagrangian tangency condition at at least one point) in symplectic man-
ifolds also demonstrate some flexibility; for example, non–Lagrangians which are
C1-close to Lagrangians and have vanishing Euler characteristic will have vanishing
displacement energy [Pol95, Corollary 1.6 and Theorem 1.2].
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In the following we fix an arbitrary Riemannian metric on M inducing a distance
function d, and denote by

Br(K) := {x ∈ M ; d(K,x) < r} ⊂ M

the set of points of distance less than r from the subset K ⊂ M .
The results in this paper are closely connected to the concept of (ambient) con-

tact squeezing, see Definition 1.9. We begin with a first proposed (Legendrian)
version of this, which we call squashing.

Definition 1.1. Let K0,K ⊂ (M, ξ) be submanifolds of a contact manifold. We
say that the contact isotopy ϕt : M → M finely squashes K0 onto K if there
exists ε(t) with limt→+∞ ε(t) = 0 such that for all t � 0 sufficiently large, ϕt(K0) ⊂
Bε(t)(K) and ϕt(K0) is smoothly isotopic to K inside Bε(t)(K).

Example 1.2. The squashing property need not be symmetric. Let K = j10 ⊂
(J1S1 = T ∗S1 × Rz, dz − pdθ) be the zero section, and let Kstab be a Legeden-
drian stabilization of K. (A stabilization in the Lagrangian projection T ∗S1 is a
Reidemeister-1 move, while in the front projection S1 × Rz it is an added “zig-
zag.” In particular K and Kstab are smoothly isotopic.) The fibrewise rescaling
(θ, p, z) �→ (θ, p/t, z/t) for t ≥ 1 is a contact isotopy that finely squashes Kstab

onto K.
Now embed J1S1 as a standard neighborhood of the standard Legendrian unknot

in the standard contact vector space R3 = J1R so that j10 is identified with the
standard Legendrian unknot, which we again denote by K, and hence Kstab is
a stabilization of the unknot. The Chekanov-Eliashberg (or “Legendrian contact
homology”) DGA of K has an augmentation. So [DRS20, Theorem 1.7] implies
there do NOT exist a contact isotopy ϕt : R

3 → R3 and a one-jet neighborhood V
of Kstab, such that ϕ1(K) ⊂ V and [ϕ1(K)] �= 0 ∈ H1(V ;Z2) = Z2. In particular,
this implies that K does not finely squash onto Kstab when considered in R3, and
thus that it also cannot be squashed onto Kstab when considered inside J1S1. This
could also be proven by an argument as in the proof of Theorem 1.3, based upon
convex surfaces and the Thurston–Bennequin invariant.

This construction-argument generalizes to arbitrary dimensions where K ⊂
J1(M) is any closed Legendrian whose Chekanov-Eliashberg DGA has an aug-
mentation, and where the Legendrian Kstab is constructed from K by adding a
small loose chart.

One of our main results is that non–Legendrian knots are flexible in the sense
that they can be squashed onto transverse knots.

Theorem A. Let K ⊂ (M3, ξ) be a non–Legendrian knot. There exists a transverse

knot T ⊂ (M3, ξ) and a contact isotopy ϕt : M
∼=−→ M that squashes K onto T .

In particular, by replacing M with a small tubular neighborhood of K, we can
assume that the transverse knot T lives in that neighborhood.

Theorem B and part (i) of Lemma 1.7 prove that Legendrians cannot be squashed
onto transverse knots, and therefore, by the transitivity of the squashing prop-
erty provided by part (ii) of Lemma 1.7, they also cannot be squashed onto non–
Legendrian knots.

Non-squeezing results are a central theme in symplectic topology, going back to
Gromov’s famous non-squeezing result in symplectic manifolds [Gro85]. In con-
tact topology, the notion of squeezing a domain into an open subset by a contact
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isotopy was defined by Eliashberg–Kim–Polterovich [EKP06], who also provided
non-trivial obstructions for squeezing. Definition 1.1 of squashing is related to the
notion of squeezing. However, squashing allows K0 to be a closed submanifold (like
a knot). In addition, while squeezing places a subset into some fixed open subset, a
squashing of K0 onto K places the former into an arbitrarily small neighborhoods
of the latter subset K (typically a transverse or non–Legendrian knot). Our notion
of finely squashing (as well as our coarser version of squashing, see Definition 1.5)
is strictly stronger than Hausdorff convergence of the involved subsets. So the ini-
tial submanifold K0 can be visualized as “squashing onto” the latter submanifold
K by the isotopy, which motivates the choice of terminology. In Section 1.1 we
compare our notion of squashing, saying a subset squashes onto another one, with
the notion of squeezing in [EKP06], where subsets squeeze into other subsets. The
subsets in [EKP06] are diffeomorphic to open solid tori inside the standard contact
prequantization R2n × S1 and, as discussed in Section 1.1, there are relations be-
tween squeezing solid tori into other solid tori, and squashing knots onto cores of
solid tori.

We have previously defined a Legendrian version of squeezing [DRS20, Section
1.2] and proved a non-squeezing result for certain non-loose Legendrians onto loose
Legendrians [DRS20, Theorem 1.7], which we use in Example 1.2. This is closely
related to the non-squashing phenomena studied here. This result was generalized
in [Laz19, Corollary 1.12]. The aforementioned articles established this Legendrian
version of non-squeezing in arbitrary dimensions using holomorphic curve technol-
ogy. The results in this article are based on parts of the theory of convex surfaces
that so far only has been thoroughly developed in dimension three.

The local smooth isotopy equivalence requirement in Definition 1.1 is in part
motivated by the following Legendrian flexibility: if K0 = Λ ⊂ M = R2n+1 is any
closed Legendrian, then there exists a contact isotopy taking Λ into an arbitrarily
small neighborhood of any point in any submanifold K. (The analogous flexibility
statement does not hold for symplectomorphisms of Lagrangians in R2n.) To avoid
such phenomena in [DRS20, Section 1.2], we impose the weaker Z2-homological
constraint as in Example 1.2.

The classification of contact structures on solid tori by Giroux [Gir00] and Honda
[Hon00], based upon the convex surface theory by Giroux [Gir91], implies that Leg-
endrian approximations of transverse knots must be increasingly stabilized. More
precisely:

Theorem 1.3 (Giroux [Gir00] and Honda [Hon00]). For a Legendrian knot Λ
that lives inside a tubular neighborhood of a transverse knot, with the additional
assumption that the two knots are smoothly isotopic inside the given tubular neigh-
borhood, one can give a bound from below on the number of stabilizations that the
Legendrian has in terms of the distance from the Legendrian to the transverse knot.
Furthermore, this number tends to +∞ as this distance tends to zero.

Remark 1.4. When the Legendrian knot is null-homologous, and thus has a well-
defined Thurston–Bennequin invariant, it immediately follows from the aforemen-
tioned result that Legendrians cannot be squashed onto transverse knots. Indeed,
Definition 1.1 provides the hypotheses to apply Theorem 1.3, forcing the number
of stabilizations of the Legendrian to increase during the squashing isotopy, which
contradicts that this number is a Legendrian isotopy invariant. We will refer to
results that give obstructions to squashing as non-squashing results (in analogy



C0-LIMITS OF LEGENDRIAN KNOTS 801

to the classical non-squeezing results that have been proven in both contact and
symplectic settings). Section 3.3 is dedicated to extending this non-squashing result
from null-homologous to arbitrary Legendrian knots.

To the authors’ knowledge, Theorem 1.3 has not been explicitly stated in the
literature. Since our work here does not rely on the previous result, but rather
use weaker results in the same spirit that concern relative Thurston–Bennequin
numbers, we only provide a brief sketch of the ideas that go into the proof.

Sketch of proof of Theorem 1.3. Consider a Legendrian Λ which is close to a trans-
verse knot T in the same isotopy class. By Giroux’s theory of convex surfaces
[Gir91], one can produce an embedded convex annulus A inside the normal neigh-
borhood of the transverse knot with boundary ∂A = Λ
Λk. Here Λk is the standard
k-fold stabilized Legendrian approximation of the transverse knot T described in
Section 3.2, which is contained on the boundary of a tubular neighborhood of T ,
while Λ is contained in the interior of the neighborhood. Lemma 3.5 implies that
we can take k � 0 arbitrarily large, if Λ is taken to be sufficiently close to T .

We use the language of [Hon00]. A sufficiently small tubular neighborhood of
the transverse knot is tight. So the dividing curves of the convex tori inside this
neighborhood satisfy the minimally twisting property. Consider the dividing curves
of the annulus A. The minimally twisting property implies the existence of bypass
half-disks in A for the boundary component Λ ⊂ ∂A (unless Λ is isotopic to Λk)
while no analogous bypass half-disk exists for Λk. Unless Λ and Λk are Legendrian
isotopic, we thus deduce from the existence of the bypass half-disk that Λ is obtained
from Λk by stabilization. �

In order to deduce that a smooth image of a Legendrian knot under a C0-
converging sequence of contactomorphisms again is Legendrian, we need a stronger
type of non-squashing result than the consequence of Theorem 1.3 outlined in Re-
mark 1.4. The main point is that we need a non-squashing result for contacto-
morphisms and not merely contact isotopies. One of the crucial results is that
Legendrians also cannot be squashed onto non–Legendrians in this weaker sense;
see Theorem B.

Definition 1.5. We say that the sequence of contactomorphisms ϕi : M → M
coarsely squashes K0 ⊂ M onto K ⊂ M , where K0 and K are submanifolds, if
the following holds.

(1) There exists εi > 0 with limi→+∞ εi = 0 such that for all i � 0, ϕi(K0) ⊂
Bεi(K) and ϕi(K0) is smoothly isotopic to K inside Bεi(K).

(2) For any r > 0 and ε > 0, there exists some ir,ε � 0 such that

d(ϕi ◦ ϕ−1
j (x), x) < ε

for all i ≥ j ≥ ir,ε and x ∈ M \Br(K).

Part (1) of Definition 1.5 is a “discretized” version of the property in Defini-
tion 1.1 that the contact isotopy keeps K0 near K for all times.

Example 1.6. In certain contact manifolds one can find a sequence of contacto-
morphisms, a Legendrian knotK0 = Λ0, and a transverse knotK = T , that satisfies
part (1) of Definition 1.5; this is the reason why we want to define squashing as
something stronger than merely what is postulated in part (1). For such an exam-
ple, consider the contact manifold given as the ideal boundary ∂∞(C∗×C) ∼= S1×S2



802 G. DIMITROGLOU RIZELL AND M. G. SULLIVAN

z

x

T

Λ

Λ0

Λ2

Figure 1. Above: A transverse knot T = {z = z0, y = −1} can
be approximated by a Legendrian knot Λ if the latter is sufficiently
stabilized (stabilizations correspond to zig-zags). Below: A homo-
logically essential Legendrian knot Λ0 inside ∂∞(C∗×C), depicted
as a Kirby diagram with a single Weinstein one-handle attached
to S3. The Legendrian Λ0 is Legendrian isotopic to its two-fold
stabilization Λ2 and thus, by induction, is Legendrian isotopic to
a 2k-fold stabilization for any k ≥ 0.

of the Weinstein manifold C∗ × C, and the Legendrian core given as a connected
component

Λ0 ⊂ ∂∞(S1 ×Re(C)) ⊂ ∂∞(C∗ × C)

of the Legendrian link at infinity. The Legendrian Λ0 is shown in the Kirby diagram
in Figure 1. It is homologically essential, and Legendrian isotopic to a two-fold
stabilization of itself, consisting of one positive and one negative stabilization; see,
e.g., [DG09, Figure 19] for more details. Now consider the transverse core given as
a connected component

T ⊂ ∂∞(C∗ × {0}) ⊂ ∂∞(C∗ × C)

of a transverse two-component link at infinity. It is possible to C0-approximate T
by a sufficiently stabilized Legendrian core in the same smooth isotopy class. For
example, the upper figure in Figure 1 depicts a transverse arc that is approximated
by a Legendrian with many positive stabilizations. In particular, there is a Legen-
drian isotopy of the Legendrian core Λ into an arbitrarily small neighborhood of the
transverse core, so that the Legendrian is smoothly isotopic to the transverse knot
inside the same neighborhood. Note that if a Legendrian has many positive and
negative stabilizations, then the negative stabilizations can be shrunk arbitrarily,
in order to not interfere with the approximation that is made by using the positive
stabilizations.

We are not sure if part (2) is the most natural definition if one wants a notion of
squashing that precludes the possibility of squashing a Legendrian onto a transverse
knot. However, as we prove in Section 2, one good feature of Definition 1.5 is that
the existence of squashing sequences becomes transitive in the following manner.
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Lemma 1.7.

(i) If there exists a contact isotopy ψt : M → M that finely squashes a subman-
ifold K0 ⊂ M onto a submanifold K ⊂ M then one can produce a coarsely

squashing sequence ϕi : M
∼=−→ M of contactomorphisms of K0 onto K. The

support of ϕi can be assumed to be contained inside the support of ψt.
(ii) Consider two sequences of contactomorphisms

ϕ
(ν)
i : M → M, ν = 1, 2,

where {ϕ(ν)
i } coarsely squashes Kν onto Kν−1. Then there exists a suitable

re-indexing α(i) ≥ i for which

ϕ
(1)
i ◦ ϕ(2)

α(i) : M → M

is a sequence of contactomorphisms that coarsely squashes K2 onto K0.
(iii) The property of either an isotopy or a sequence of contactomorphisms to

squash a submanifold K0 onto K does not depend on the choice of Rie-
mannian metric on M .

We establish the non-squashing result for Legendrian knots onto transverse
knots.

Theorem B. Let Λ ⊂ (M, ξ) be a Legendrian knot. If T ⊂ (M, ξ) is a transverse
knot, then there does not exist any sequence of contactomorphisms that coarsely
squashes Λ onto T .

The proof of our non-squashing result Theorem B does not rely on the fact that
a Legendrian that is close to a transverse knot in the same isotopy class must be
stabilized, as shown in Theorem 1.3; however, the proof establishes that its relative
Thurston–Bennequin number admits a bound from above, where this bounds tends
to −∞ as the distance to the transverse knot tends to zero. If one would like
to deduce the existence of stabilizations for the knot, one could subsequently use
the classification result for Legendrian knots by Eliashberg–Fraser [EF09] or Ding–
Geiges [DG07].

It turns out that the only ingredient from the classification of contact structures
that is needed for Theorem B is the Thurston–Bennequin inequality for Legendrian
unknots in R3 as proven by Bennequin in [Ben83]. Of course, this inequality is also
highly non-trivial, as it, e.g., implies that the standard contact 3-sphere is tight.

In the case when H1(M) = H2(M) = 0, so that the ordinary (i.e., non-relative)
Thurston–Bennequin number of any Legendrian knot is well-defined, this non-
squashing result can be seen to follow directly from Theorem 1.3 as outlined in
Remark 1.4. For the general statement, the main ingredient is the Thurston–
Bennequin inequality for Legendrian knots in standard R3 proven by Bennequin
[Ben83] (or, more precisely, a relative formulation for unknotted Legendrian cores
of the solid torus J1S1).

In combination with the existence of squashing of non–Legendrians onto trans-
verse knots proven by Theorem A, we obtain the following non-squashing for Leg-
endrians into a neighborhood of a non–Legendrian.

Corollary C. Let Λ ⊂ (M3, ξ) be a Legendrian knot. If K ⊂ (M3, ξ) is a
non–Legendrian knot, then there does not exist a sequence of contactomorphisms
ϕi : M → M that coarsely squashes Λ onto K.
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Proof. Assume that there exists a sequence of contactomorphisms that squashes Λ
onto K. Apply Theorem A to produce a contact isotopy that squashes K onto a
transverse knot T . By Lemma 1.7 we can find a sequence of contactomorphisms
that squashes Λ onto T ; this is in contradiction with Theorem B. �

Remark 1.8. In contact manifolds of dimension 2n + 1 ≥ 5 the result analogous
to Corollary C does not hold: there are contact isotopies that squash certain Leg-
endrians onto non–Legendrians. Such examples can be constructed by alluding to
Murphy’s h-principle for loose Legendrians [Mur]. Namely, by this h-principle we
can approximate any n-dimensional non–Legendrian submanifold by a loose Leg-
endrian while keeping control of its formal Legendrian isotopy class. The loose
Legendrian approximations are Legendrian isotopic by the same h-principle.

The main difference between high dimensions and dimension 2n+ 1 = 3 in this
respect is that, in the low dimensional case, one cannot add stabilizations inside
a sufficiently small neighborhood of a transverse knot (or, more generally, non–
Legendrian knot) without decreasing the relative Thurston–Bennequin number.

In symplectic geometry the existence of capacities for Lagrangian submanifolds
defined by Floer homology has given rise to many rigidity phenomena of a quantita-
tive nature. In particular, in [LS94] Laudenbach–Sikorav showed that Lagrangians
cannot be placed inside neighborhoods of non–Lagrangians. This result can be used
to show that a smooth limit of Lagrangians under a sequence of symplectomor-
phisms that converge to a homeomorphism must again be Lagrangian. The anal-
ogous result for coisotropic manifolds was shown in codimension one by Opshtein
[Ops09]. The full answer was later given by Humilière–Leclercq–Seyfaddini who
established the analogous result for arbitrary coisotropic submanifolds in [HLS15].
The analogous questions in the setting of contact topology have only seen partial re-
sults [Nak20,RZ20,Ush21]. Using Corollary C, we settle the question in dimension
three.

Theorem D. Let (M3, ξ) be a three-dimensional contact manifold and ϕi ∈
Cont(M, ξ) a sequence of contactomorphisms that converge in C0-norm to a home-
omorphism ϕ∞. Let Λ ⊂ (M, ξ) be a Legendrian knot whose image ϕ∞(Λ) is a
smooth knot. Then ϕ∞(Λ) is Legendrian as well. In addition, there exists a glob-
ally defined smooth contactomorphism of M that maps Λ to ϕ∞(Λ).

Nakamura proves the first statement in Theorem D for arbitrary dimension as-
suming that for some contact form there exists a uniform lower bound on the lengths
of the Reeb chords from ϕi(Λ) to itself [Nak20, Theorem 3.4]. He also assumes some
technical conditions that we have since lifted [DRS21, Corollary 1.5]. Rosen and
Zhang prove the first part of Theorem D in arbitrary dimensions assuming a uni-
form convergence of the conformal factors fi (defined by ϕ∗

iα = fiα for a contact
form α) [RZ20, Theorem 1.4]. Usher generalizes Rosen and Zhang’s result assuming
certain lower bounds on the fi [Ush21, Theorem 1.2]. Observe that the latter works
do not make any claims about the contactomorphism type of the limit.

Since any tangent vector in the contact plane can be realized as the tangent
to a small Legendrian knot, Theorem D is strong enough to settle “C0-rigidity of
contactomorphisms” in this dimension: a smooth C0-limit of contactomorphisms
is itself a contactomorphism. This result was first proven by Eliashberg [Eli87]; see
work by Müller–Spaeth for a more recent proof [MS14]. Note that, in the case when
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the C0-limit homeomorphism ϕ∞ is smooth, the C0-rigidity of contactomorphisms
can itself be used to derive the conclusion of Theorem D.

1.1. Digression: squashing onto vs. squeezing into. Here we compare our no-
tion of squashing onto, with the notion of squeezing into introduced by
Eliashberg–Kim–Polterovich [EKP06].

Definition 1.9. The subset U1 can be squeezed into U2 if there exists a contact
isotopy φt for which φ0 = IdM and such that φ1(U1) ⊂ U2.

If U1 is pre-compact like the following examples, φ1 can be assumed to have
compact support. Let Bk

R ⊂ Rk denote the open ball of radius R centered at
the origin. The open subset B2n

R × S1 of the pre-quantization of the symplectic
vector-space (R2n × S1, dθ − pdq) cannot be squeezed into itself when 1

2R
2 ≥ 1 is

an integer [EKP06, Theorem 1.5]; however, for n > 1 and 1
2 (R1)

2 < 1
2 (R2)

2 < 1,

B2n
R2

× S1 can be squeezed into B2n
R1

× S1 [EKP06, Theorem 1.3]. Chiu proved

that B2n
R × S1 cannot be squeezed into itself for arbitrary 1

2R
2 ≥ 1 [Chi17]. Fraser

generalized Chiu’s result proving that there exist no contactomorphism φ such that

φ(B2n
R × S1) ⊂ φ(B2n

R ×S1) for all 1
2R

2 ≥ 1 [Fra16]. Since φ need not be the time-1
map of a contact isotopy, Fraser’s coarser squeezing definition is more analogous
to Definition 1.5. (To compare notation, in [EKP06,Fra16,Chi17] B2n(R) × S1 =
{z ∈ R2n |π‖z‖2 < R} × R/Z, while in this article B2n

R × S1 = {z ∈ R2n | ‖z‖2 <
R2} × R/(2πZ).)

The squeezings provided by [EKP06, Theorem 1.3] do not exist when n = 1
instead of n > 1 [Eli91]. In fact, the obstruction for squeezing the solid torus
B2

R2
× S1 into B2

R1
× S1 when R1 ≤ R2 that holds in the case when n = 1 can be

seen to be closely related to the same mechanism that governs our non-squashing
result in Theorem B, i.e., the local Thurston–Bennequin inequality. The point is
that in the particular case of the contact manifold R2 × S1, an even stronger form
of non-squashing holds for Legendrians isotopic to {0} × S1 than the one given by
Theorem B; namely, if such a Legendrian is placed inside a small neighborhood of
the transverse knot {0}×S1 by a contact isotopy, then it is automatically smoothly
isotopic, inside the same neighborhood, to this transverse knot. We give examples of
non-squeezing results for open subsets that can be proven by using this mechanism.

• If some fixed B2√
2/k

×S1 squeezes into B2
R1

×S1 for R1 > 0 arbitrarily small,

then that would mean that the Legendrian knots that foliate the boundary
of B2√

2/k
×S1 would admit contact isotopies that place them in arbitrarily

small neighborhoods of the transverse knot {0} × S1 ⊂ B2
R1

× S1, i.e.,
the core of the solid torus. This contradicts the local Thurston–Bennequin
inequality which is the main technical ingredient of the proof of Theorem B.

• The local Thurston–Bennequin inequality for the Legendrian knots that
foliate the boundary of B2√

2
× S1 shows that these Legendrians cannot

be placed inside B2√
2
× S1 by a contact isotopy; see Cant’s recent result

[Can23, Proposition 5] that is based upon techniques from this article. In
particular, this provides an alternative proof of the fact that the solid torus
B2√

2
× S1 cannot be squeezed into itself.
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• The local Thurston–Bennequin inequality also implies the following re-
sult about non-squeezing of open subsets in the sense of Eliashberg–Kim–
Polterovich. If U2 is a solid torus neighborhood of a fixed Legendrian knot
in M = R2 × S1 in which the knot is smoothly isotopic to the transverse
knot {0}×S1, then there exists a solid torus neighborhood U1 = B2

R1
×S1

of the latter transverse knot into which U2 cannot be squeezed.

We emphasize that these three results should be known to experts, and implicitly
contained in the low-dimensional classification results by Giroux [Gir00] and Honda
[Hon00].

2. Transitivity of squashing (proof of Lemma 1.7)

We prove Lemma 1.7.
Part (i): Consider the contact Hamiltonian Ht : M → R that generates the

contact isotopy ψt. We cut off Ht via a sequence of bump functions ρt · Ht that
have support contained inside Bε(t)(K) for all t ≥ 0, while ρt ≡ 1 holds near
ψt(K0). The new contact isotopy ϕt obtained restricts to the old isotopy along K0,
and hence squashes K0 onto K as well.

The corresponding sequence of contactomorphisms ϕi for the integer times i =
0, 1, 2, 3, . . . is the sought sequence that squashes K1 onto K. For part (2) of
Definition 1.5, we may take

ir,ε := min{i0; ε(i) < r for all i ≥ i0}

to be independent of ε. In this case, the maps ϕi ◦ ϕ−1
j with i ≥ j ≥ ir,ε all have

support contained inside Br(K), i.e., ϕi ◦ ϕ−1
j (x) = x for x /∈ Br(K).

Part (ii): By the assumption that ϕ
(ν)
i are sequences that squashes Kν onto

Kν−1 we get that, for any r, ε > 0, there are i
(ν)
r,ε such that

d(ϕ
(ν)
i ◦ (ϕ(ν)

j )−1(x), x) < ε

holds for all x /∈ Br(Kν−1) and i ≥ j ≥ i
(ν)
r,ε . In particular,

(ϕ
(1)
j )−1(Br−δ(K0)) ⊂ (ϕ

(1)
i )−1(Br(K0)) ⊂ (ϕ

(1)
j )−1(Br+δ(K0))

may be assumed to hold for all sufficiently small δ > 0 and i ≥ j ≥ i
(1)
r/2,ε/2.

By the definition of squashing, we can assume that K1 ⊂ (ϕ
(1)
j )−1(Br−δ(K0))

is satisfied after increasing i
(1)
r/2,ε/2 � 0 further and taking j ≥ i

(1)
r/2,ε/2. In other

words, all images (ϕ
(1)
i )−1(Br(K0)) can be assumed to contain a fixed neighborhood

(ϕ
(1)
ir/2,ε/2

)−1(Br−δ(K0)) ⊃ K1 whenever i ≥ i
(1)
r/2,ε/2.

We claim that the sequence ϕ
(1)
i ◦ ϕ

(2)
α(i) squashes K2 onto K0 for a suitable

increasing re-indexing α(i) ≥ i where α(i)− i � 0 is taken to be sufficiently large.
First we verify that part (1) of the definition is satisfied. Note that we have an

inclusion,

ϕ
(2)
α(i)(K2) ⊂ B

ε
(2)

α(i)

(K1)

where the sequence ε
(2)
α(i) satisfies limi→+∞ ε

(2)
α(i) = 0. Consequently, B

ε
(2)

α(i)

(K1) ⊂

(ϕ
(1)
j )−1(Br(K0)) may be assumed to hold for any arbitrary r > 0 and all i � 0,
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whenever j � i
(1)
r,ε . In conclusion, for any r > 0,

ϕ
(1)
i ◦ ϕ(2)

α(i)(K2) ⊂ Br(K0)

is satisfied whenever we take α to satisfy α(i)−i � 0. The image of K2 is smoothly
isotopic to K0 inside the same subset.

What remains is to verify part (2) of the definition. Take

ir,ε := max(i
(1)
r,ε/4, i

(2)
ρ(ε),ε/4),

for ρ(ε) > 0 sufficiently small so that the inclusion

Bρ(ε)(K0) ⊂ (ϕ
(1)
i )−1(Br(K0))

is satisfied for all i ≥ i
(1)
r,ε/4. It is then readily checked that part (2) is satisfied for

the sequence {ϕ(1)
i ◦ ϕ(2)

α(i)} of contactomorphisms.

Part (iii): This is obvious since the property of convergence is independent of
the metric, as it only depends on the topology. �

3. Some tb prerequisites (proof of Theorem B)

The material in this section concerns a type of non-squashing behavior for Leg-
endrians that can roughly be described as follows: a Legendrian that approximates
a transverse knot sufficiently well (in a certain technical sense) can be destabilized.
This matches well with the intuition that one needs to add zig-zags in order to ap-
proximate non–Legendrian knots by Legendrians; see Figure 1. As said in Section 1,
this result is implicitly contained in the proofs of the classification of contact struc-
tures on solid tori from [Gir00], [Hon00]. However, we choose a different path here,
and instead prove the result by directly relying only on the Thurston–Bennequin
inequality for Legendrian knots in tight three-manifolds. Recall that the Thurston–
Bennequin inequality [Ben83] for Legendrian unknots Λ ⊂ (S3, ξst) in the standard
contact sphere states that

tb(Λ) ≤ −1.

This is a strong result that, e.g., implies the tightness of the standard sphere.
We start by recalling certain topological notions in contact manifolds, such as the
Thurston–Bennequin number.

3.1. Twisting and Thurston–Bennequin. Define the linking number of two
disjoint oriented null-homologous knots K0
K1 ⊂ M3 by the algebraic intersection
number

lk(K0,K1) := K0 • Σ
where Σ is a choice of two-chain with boundary ∂Σ = K1. When the ambient
manifold satisfies H2(M) = 0 this linking number does not depend on the choice of
null-homology.

A framing of a knot K ⊂ M3 inside an orientable three-dimensional manifold
can be defined either as a non-vanishing normal vector field, or as a small piece of
an embedded orientable surface Σ whose boundary contains the knot. Recall that
two different framings of an oriented knot have a well-defined winding number in
Z, which vanishes if and only if the two framings are homotopic. This winding
number can be interpreted as the “difference of framings” via the formula

d(FrΣ0
,FrΣ1

) := KΣ0
• Σ1 ∈ Z,
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where KΣ0
is a sufficiently small push-off of K along a non-vanishing normal vector

field that is tangent to the surface Σ0. Here Σi are given orientations that agree on
the boundary component K; it thus follows that this number only depends on the
orientation of the ambient three-manifold. In the case when Σ1 is embedded and
K = ∂Σ1 is its entire boundary, we get the identity d(FrΣ0

,FrΣ1
) = lk(KΣ0

,K).
Recall that a contact structure on a three-dimensional manifold induces a canon-

ical orientation via the locally defined volume form α ∧ dα. A Legendrian knot Λ
has the canonical framing FrReeb given by push-off in the Reeb direction. In the
case when Λ ⊂ R3 we have the canonical Seifert framing induced by a bounding
surface ΣΛ. We define the Thurston–Bennequin number via

tb(Λ) := d(FrReeb,FrSeifert) = lk(ΛReeb,Λ),

where ΛReeb denotes a small push-off in the Reeb direction. In arbitrary contact
manifolds one can define the Thurston–Bennequin number by a similar formula
when the knot is null-homologous; in general, this number depends on a choice of
null-homology. In addition, given a fixed knot K ⊂ M , we can define a relative
Thurston–Bennequin number for any Legendrian knot Λ ⊂ M \K that satisfies
{±[Λ]} = {±[K]} ⊂ H1(M). Again, this number depends on the choice of a chain
Σ with ∂Σ = Λ ∪K in general; we denote it by

tbK,Σ(Λ) := ΛReeb • Σ.
This number is invariant under contactomorphisms φ in the sense that

tbK,Σ(Λ) = tbφ(K),φ(Σ)(φ(Λ)).

WhenH2(M) = 0 it immediately follows that tbK,Σ(Λ) is independent of the choice
of chain Σ, in which case we will simply write tbK(Λ).

When Λ is either contained in a surface Σ, or equal to one of its boundary com-
ponents, one can define the following quantity related to the Thurston–Bennequin
number. The twisting number is given by

tw(Λ,FrΣ) := d(FrReeb,FrΣ) ∈ Z

where FrΣ is the framing induced by the surface. When ∂Σ = Λ we immediately
get

tw(Λ,FrΣ) = tbΣ(Λ) := tb∅,Σ(Λ)

where the right-hand side is the non-relative Thurston–Bennequin number.
The following results are standard.

Lemma 3.1.

(1) Suppose K ⊂ (M3, ξ) is a smooth knot, Λ ⊂ M \K is a Legendrian knot,
Σ′ is a (possibly) singular chain with ∂Σ′ = Λ 
 K an oriented link, and
Σ′′ is a singular chain with K = −∂Σ′′. Then

tbΣ′∪Σ′′(Λ) = tbΣ′,K(Λ) + Λ • Σ′′ = tbΣ′,K(Λ)− lk(Λ,K).

(2) Let Σ ⊂ (M3, ξ) be an oriented embedded surface with boundary

∂Σ = Λ0 
 −Λ1

an oriented Legendrian link. Then

tbΣ′,K(Λ1)− tbΣ∪Σ′,K(Λ0) = tw(Λ1,FrΣ)− tw(Λ0,FrΣ)

where K ⊂ M \ Σ is either a knot or the empty set K = ∅, and Σ′ is a
singular chain that satisfies ∂Σ′ = Λ1 ∪K.
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Proof. Part (1): This is a straightforward computation of algebraic intersection
numbers.

Part (2): First we use the fact that Σ is embedded in order to compute

(3.1) tbΣ∪Σ′,K(Λ0) = tw(Λ0,FrΣ) + (Λ0)Reeb • Σ′

where the second term counts intersections of (Λ0)Reeb and Σ′.
Note that the push-off ΣReeb in the Reeb-direction is an embedded homology

between (Λ0)Reeb and (Λ1)Reeb. We will analyze the intersection locus ΣReeb ∩ Σ′.
For simplicity we consider the case when the chain Σ′ is an immersed surface. For
ΣReeb a sufficiently small push-off, followed by a small generic perturbation, the
intersections consist of a union of oriented paths in ΣReeb whose boundary points
transversely intersect the boundary

∂ΣReeb = (Λ0)Reeb − (Λ1)Reeb,

except for a number of boundary components that are in bijection with the finite
number of transverse intersection points

∂Σ′ ∩ ΣReeb = Λ1 ∩ ΣReeb ⊂ ΣReeb \ ∂ΣReeb

in the interior of ΣReeb. A signed count of these different boundary points gives
rise to the identity

(Λ0)Reeb • Σ′ = (Λ1)Reeb • Σ′ − Λ1 • ΣReeb

of algebraic intersection numbers.
In the latter equation, the first term on the right-hand side is equal to tbΣ′,K(Λ1),

while the second term is equal to

−(Λ1)Reeb • Σ = −tw(Λ1,FrΣ),

where we again have used the fact that Σ is embedded. To conclude:

(Λ0)Reeb • Σ′ = tbΣ′,K(Λ1)− tw(Λ1,FrΣ)

which gives the sought equality between Thurston–Bennequin and twisting numbers
when combined with equation (3.1). �

From part (2) of Lemma 3.1 we immediately deduce the following.

Corollary 3.2. Let Λ0,Λ1 ⊂ (M, ξ) be two Legendrian knots inside a contact
manifold M that satisfies H2(M) = 0, where Λ1 
 Λ2 = ∂Σ is the boundary of an
embedded orientable surface Σ ⊂ M . For any knot

K ⊂ M \ Σ
in the same homology class (we allow K = ∅), the difference

tbK(Λ0)− tbK(Λ1)

of relative Thurston–Bennequin numbers is independent of the choice of such K.

Recall that for any manifold X and any f ∈ C∞(X) (including the constant-
and zero-functions f ≡ c, f ≡ 0), the one-jet

j1f := {(x, dxf, f(x)|x ∈ X}
is a Legendrian in J1(X) with its canonical contact structure. The crucial technical
result that we rely on is the following relative version of the Thurston–Bennequin
inequality:
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Lemma 3.3 (Bennequin [Ben83]). Consider a Legendrian knot Λ ⊂ J1S1 which is
smoothly isotopic to the zero section j10, and fix a reference Legendrian K = j1c
for c � 0. It follows that the relative Thurston–Bennequin invariants satisfy

tbK(Λ) ≤ tbK(j10) = 0,

i.e., the zero-section has maximal relative Thurston–Bennequin invariant.

Proof. Construct a contact embedding

F : (J1S1, ξst) ↪→ (R3, ξst)

that takes the one-jet j1C of a constant function to a standard Legendrian unknot,
i.e., a knot which is Legendrian isotopic to Λst ⊂ (R3, ξst) with tb(Λst) = −1.
Using this we immediately compute

lk(F (j1C), F (j10)) = tb(Λst) = −1

for any C > 0. For c � 0 we thus get lk(F (j1c), F (Λ)) = −1 as well, since Λ and
j10 can be assumed to be smoothly isotopic inside J1S1 \ j1c.

The image F (Λ) is also a Legendrian unknot. Consider an embedded annulus
Σ′ ⊂ F (J1S1) with boundary ∂Σ′ = F (K) ∪ F (Λ), and let Σ′′ ⊂ R3 be a null-
homology of F (K) = F (j1c).

Alluding to part (1) of Lemma 3.1 with F (K) = F (j1c), c � 0, and Σ′ and Σ′′

as previously defined, we conclude

tbK(Λ) = tb(F (Λ))− lk(F (j1c), F (Λ)) = tb(F (Λ)) + 1.

In particular, we get
tbK(j10) = tb(Λst) + 1 = 0.

Finally, the Thurston–Bennequin inequality [Ben83] gives

tb(F (Λ)) ≤ tb(Λst) = −1

from which the sought inequality follows. �

3.2. Standard Legendrians near a transverse knot. In this subsection we
analyze the standard contact solid tori

B2√
2/k

× S1 ⊂
(
R2

(x,y) × S1
θ , ker (dθ − (1/2) (y dx− x dy))

)
For any integer k, the boundary torus ∂B2√

2/k
is foliated by the Legendrian knots

Λk :=
{(√

2/keikθ, θ + θ0

)
; θ ∈ S1

}
⊂ R2 × S1.

These Legendrian knots are smoothly isotopic to the core T = {0}×S1 of the solid
torus B2√

2/k
× S1, which is a transverse knot.

Lemma 3.4. There is a contact-form-preserving contact embedding of

(B2√
2
× S1

θ , dθ − (1/2)(xdy − ydx))

into (S3, x dy − y dx), with image being the complement of a standard transverse
unknot. This embedding takes Λ2 to the standard Legendrian unknot with tb = −1.

It follows that, for any fixed K ⊂ B2√
2
× S1 that satisfies [K] = [{0} × S1] ∈

H1(B
2√
2
× S1), the relative Thurston–Bennequin invariant

tbK(Λ), for Λ ⊂ (B2√
2
× S1) \K, [Λ] = [K] ∈ H1(B

2√
2
× S1),
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satisfies the bound
tbK(Λ) ≤ −1 + lk(Λ,K)

whenever Λ is smoothly isotopic to {0} × S1.

Proof. Recall that (S3, x dy − y dx) is foliated by periodic Reeb orbits of length
2π, which gives it the structure of the prequantization S1-bundle over CP 1 with
curvature 2π. The complement of a single fibre of this prequantum bundle can thus
be identified with the trivial prequantum bundle(

B2√
2
× S1, ker (dθ − (1/2) (y dx− x dy))

)
→ B2√

2
.

The standard Legendrian unknot in S3 can be realized as the intersection S3∩ReC2,
and can thus be seen to be the two-fold cover of the equator in the prequantum
bundle projection S3 → CP 1. Since Λ2 lives over a disc of total area π, it can be
identified with the unknot in this chart B2√

2
× S1.

Similarly to the proof of Lemma 3.3, the uniform upper bound then follows from
the Thurston–Bennequin inequality for Legendrian unknots in S3 together with
part (1) of Lemma 3.1. Note that the linking number lk(Λ,K) computed in S3

does not depend on the choice of Λ as above. �

Lemma 3.5. Take any reference knot K ⊂
(
R2 \B2√

2/m

)
× S1 which is homolo-

gous to {0} × S1. For m ≤ k, the Legendrian knots

Λk ⊂ ∂B2√
2/k

× S1 and Λm ⊂ ∂B2√
2/m

× S1

satisfy
tbK(Λm)− tbK(Λk) = −(m− k).

Hence, it follows that

tbK(Λm)− tbK(Λ) ≥ −(m− k)

for any Legendrian Λ which is contained inside a standard neighborhood of Λk while
being smoothly isotopic to Λk inside the same neighborhood.

Proof. We begin by establishing the relation

tbK(Λm)− tbK(Λk) = −(m− k)

between relative Thurston–Bennequin numbers. For this we use the contact em-
bedding

B2√
2
× S1 ↪→ (S3, ker(xdy − ydx))

provided by Lemma 3.4. Since the core {0} × S1 of the solid torus bounds a disc
in the prequantization bundle S3 → CP 1 that has intersection number −k + 1
with Λk (the disc can be taken to intersect the torus ∂B2√

2/k
× S1 transversely in

a curve of slope 1 in a framing for which Λk has slope k), one readily computes
tb(Λk) = −k + 1 inside S3; to see this, use a null-homology of Λk that consists
of an annulus in the solid torus with boundary Λk ∪ ({0} × S1) together with the
aforementioned disc. (Note that, in particular, Λ2 is the standard unknot.) The
sought relation for the relative Thurston–Bennequin numbers then follows from
Corollary 3.2.

We continue with the inequality

tbK(Λm)− tbK(Λ) ≥ −(m− k).
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Note that there exists a smoothly embedded cylinder Σ ⊂ B2√
2/m

×S1 with bound-

ary ∂Σ = Λm
Λk; hence such a cylinder with boundary equal to Λm
Λ also exists.
Corollary 3.2 now implies that each of the differences

tbK(Λm)− tbK(Λ) and tbK(Λm)− tbK(Λk)

are independent on the choice of reference knot

K ⊂
(
R2 \B2√

2/m

)
× S1

In particular, Lemma 3.3 shows that

tbK(Λk)− tbK(Λ) ≥ 0.

One can now compute

tbK(Λm)− tbK(Λ)

= tbK(Λm)− tbK(Λk) + (tbK(Λk)− tbK(Λ))

≥ tbK(Λm)− tbK(Λk) = −(m− k)

as sought. �

3.3. Non-squashing results for Legendrian knots into neighborhoods of
transverse knots. In this subsection we can finally prove Theorem B.

We argue by contradiction and assume that there exists ϕi : M → M , such that
in the language of Definition 1.5, the sequence

ϕ
(1)
i := ϕi ◦ ϕ−1

j0
: M → M, i ≥ j0,

of contactomorphisms for j0 := ir/3,ε/3 squashes the Legendrian Λ′ := ϕj0(Λ) onto

T . By the definition of ir/3,ε/3 it follows that d(ϕ
(1)
i (x), x) < ε/3 holds on the

subset M \ Br/3(T ) whenever i ≥ j0. After increasing j0 � 0, j0 ≥ ir/3,ε/3 even
further, we may also assume that Λ′ ⊂ Br/3(T ) is satisfied for the same choice of
r > 0.

By part (iii) of Lemma 1.7 the property of being a squashing sequence does
not depend on the choice of metric. After choosing an appropriate metric on M ,
and taking the choice of r > 0 made in Definition 1.5 to be sufficiently small, the
transverse neighborhood theorem implies that one can find a neighborhood U ⊂ M
of the transverse knot T ⊂ M that is contactomorphic to(

B2
2r × S1

θ , ker (dθ − (1/2) (y dx− x dy))
)
,

under which T is identified with {0} × S1 and Bs(T ) is identified with B2
s × S1 for

all s ≤ 2r. Note that, by the above, we may assume that

Br/2(T ) ⊂ ϕ
(1)
i (Br(T )) ⊂ B2r(T ) ↪→ R2 × S1

whenever 0 < ε � r is taken to be sufficiently small.
There is a compactly supported contact isotopy of B2

r × S1 that squashes the
transverse knot {0} × S1 onto any of the Legendrian knots Λk inside the same
neighborhood, where the knots Λk ⊂ ∂B2√

2/k
× S1 were described in Section 3.2.

Namely, one can use the explicitly constructed isotopy

Λk,t :=
{(

t
√
2/keikθ, θ + θ0

)
; θ ∈ S1

}
⊂ R2 × S1
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which is through transverse knots for all t ∈ [0, 1) (at t = 1 the embedding becomes
equal to the Legendrian knot Λk). Here we need to use the standard fact that trans-
verse isotopies are generated by an ambient contact isotopy ψt; see Corollary 4.2.
Note that ψt can be assumed to be supported inside B√

2/k
(T ). Below we will take

k � 0.
Consider the sequence ϕ

(2)
i of contactomorphisms that is produced by part (i) of

Lemma 1.7 applied to the above contact isotopy ψt that squashes T onto Λk. Part

(ii) of Lemma 1.7 applied to the sequences ϕ
(1)
i and ϕ

(2)
i , i.e., the transitivity of the

existence of squashing sequences, implies that there is a sequence of contactomor-

phisms ϕ
(1)
i ◦ ϕ(2)

α(i) : M → M that squashes Λ′ ⊂ Br/3(T ) onto Λk. Note that, by

part (i) of Lemma 1.7, after choosing k � 0 in order for
√
2/k < r/4 to hold, we

can assume that ϕ
(2)
α(i)|M\Br/4(T ) = IdM .

The remainder of the proof consists of computations and estimates of rela-
tive Thurston–Bennequin numbers tbK′′(Λ′′) for Legendrians Λ′′ ⊂ Br/2(T ) and
smooth knots K ′′ ⊂ B2r(T ) \ Br/2(T ), where [K ′′] = [Λ′′] ∈ H1(B2r(T )) = Z

are generators of the first homology. The relative Thurston–Bennequin number
in general depends on a choice of two-chain. However, we will always consider
these relative Thurston–Bennequin numbers as defined inside the contact mani-
fold B2r(T ) ∼= B2

2r × S1; since H2(B2r(T )) = 0 these numbers are well-defined
(depending only on K ′′).

Fix an arbitrary smooth knot K ⊂ ∂Br/2(T ) for which [K] = [T ] ∈ H1(R
2 ×

S1). We start by finding an estimate for the relative Thurston–Bennequin number
tbK(Λ′) (where this invariant is computed inside the contact manifold B2r(T )).

Since ϕ
(1)
i ◦ ϕ(2)

α(i) squashes Λ
′ onto Λk, Lemma 3.5 implies that

tbK(Λm)− tbK(ϕ
(1)
i ◦ ϕ(2)

α(i)(Λ
′)) ≥ −(m− k)

whenever Λk,Λm ⊂ Br/2(T ) and i � 0 is sufficiently large, and m ≤ k; to that

end we note that, for large i, ϕ
(1)
i ◦ϕ(2)

α(i)(Λ
′) is contained inside a standard contact

neighborhood J1Λk ↪→ R2 × S1 of Λk, in which ϕ
(1)
i ◦ ϕ

(2)
α(i)(Λ

′) is isotopic to

j10 = Λk.
It now follows that

tb
(ϕ

(1)
i ◦ϕ(2)

α(i)
)−1(K)

((ϕ
(1)
i ◦ ϕ(2)

α(i))
−1(Λm))− tb

(ϕ
(1)
i ◦ϕ(2)

α(i)
)−1(K)

(Λ′) ≥ −(m− k)

for i � 0 large. Note that

(ϕ
(1)
i ◦ ϕ(2)

α(i))(Br(T )) ⊃ Br−ε(T )

which means that the latter inequality is between relative Thurston–Bennequin

numbers computed in B2r(T ), and where (ϕ
(1)
i ◦ ϕ(2)

α(i))
−1(Λm) ⊂ Br−ε(T ). (Recall

that 0 < ε � r is sufficiently small.)
Corollary 3.2 implies that

tbK′(Λ′)− (m− k) ≤ tbK′((ϕ
(1)
i ◦ ϕ(2)

α(i))
−1(Λm))

holds for all K ′ ⊂ B2r(T ) \ Br−ε(T ) in the homology class [K ′] = [T ]. Taking
k → +∞ while keeping m > 0 and K ′ fixed implies that the right-hand side tends

to +∞. In other words, the Legendrian (ϕ
(1)
i ◦ ϕ

(2)
α(i))

−1(Λm) that is isotopic to

T can be assumed to have a relative Thurston–Bennequin number that is greater
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than the upper bound from Lemma 3.4, which is a contradiction on the Thurston–
Bennequin numbers in B2

2r × S1 for Legendrians in the same smooth isotopy class
as T .

4. Normal neighborhood for non–Legendrians (proof of Theorem A)

Here we establish a normal neighborhood theorem for non–Legendrian knots.
The goal is to use the standard neighborhood for transverse knots and segments
(as analyzed, for example, in Section 3.2) for proving the existence of squashing for
non–Legendrians onto some transverse knot as stated in Theorem A. Throughout
this section, (M3, ξ) is a contact 3-manifold, possibly non-compact, with co-oriented
contact structure ξ = kerα.

Theorem 4.1. Let K ⊂ (M3, ξ = kerα) be a smooth co-oriented knot inside a
contact three-manifold with a co-oriented contact structure ξ = kerα, and choose a
parametrization γ(θ) ∈ K. Then there exists a neighborhood U ⊃ K that admits a
contact embedding

φ : (U, ξ) ↪→ (J1S1, ξst = ker(dz − pdθ))

that extends the map

γ(θ) �→ (θ, p, z) = (θ,−α(γ̇(θ)), 0)

where the value of the p-coordinate measures the failure of the Legendrian property.

Proof. We start by choosing a contact form α on M . Then we pick a generic smooth
family Pθ ⊂ Tγ(θ)M of tangent two-plane fields along K that are transverse to both
the line field TK and the contact planes ξ (the latter condition just means that
the plane does not coincide with ξ); in particular, the intersection Pθ ∩ ξγ(θ) is
one-dimensional. Since generic one-parameter families of two-planes inside a three-
dimensional vector space are everywhere transverse, this can be achieved simply by
choosing a generic family of two-planes that are transverse to TK. Then we choose
a pair of smooth non-vanishing vector fields V1, V2 of the rank-2 vector bundle P →
K, where V1 ∈ P ∩ ξ. Note that ξ is orientable along K since the contact structure
is co-orientable, while P is orientable along K since the knot is co-orientable; hence
V1 is a trivial real line-bundle. We then choose V2 so that (V1(θ), V2(θ)) form a
basis of Pθ at every point. The condition that K is co-orientable is used in the last
step. After renormalizing, we may require that α(V2) = 1 is satisfied.

Using these two vector fields and the exponential map, we can construct a smooth
embedding

ψ : U ↪→ J1S1

of a neighborhood U ⊃ K that extends the map

γ(θ) �→ {(θ, p, z) = (θ,−α(γ̇(θ)), 0)}
and whose differential maps the vector field V1 to ∂p and V2 to ∂z. It follows that
ψ pulls back αst = dz − p dθ to a contact form

β := ψ∗αst

that satisfies β|Tγ(θ)M = α|Tγ(θ)M along the knot K.
Since the contact manifold M is three-dimensional and kerα = kerβ along K,

the convex interpolation βt = (1 − t)β + tα is a family of contact forms along K.
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Since being a contact form is an open condition, βt are all contact forms in some
small neighborhood of K.

A standard application of Moser’s trick, see, e.g., the proof of [Gei08, Theorem
2.5.22], produces a smooth isotopy ψt with ψ0 = IdM defined in some small neigh-
borhood of K, where ψt|K = IdK and (ψ ◦ ψt)

∗αst = eFtβt for some Ft : M → R.
In other words, ψ ◦ ψ1 is the sought contact embedding. �
Corollary 4.2. Consider a smooth isotopy

γt : A ↪→ (M3, ξ = kerα)

of a union of knots and arcs A that is fixed near the boundary ∂A, and which
satisfies eFtγ∗

t α = η∗t (γ
∗
0α) for some smooth path of reparametrizations ηt : A → A,

η0 = IdA, that fixes a neighborhood of the boundary, where Ft : A → R is a smooth
path of smooth functions that satisfy F0 ≡ 0. Then the path of embeddings γt ◦ η−1

t

is induced by an ambient contact isotopy that can be taken to fix a neighborhood of
the boundary.

Proof. The pull-back of e−Ftα is constant under the path of embeddings γt ◦ η−1
t .

The proof of Theorem 4.1 can be extended to produce a smooth family of contact
embeddings ψt : Ut ↪→ J1A of neighborhoods Ut ⊃ γt ◦ η−1

t (A), where the images
ψt(γt ◦ η−1

t (A)) remain fixed in the family. In addition we may assume that this
family of embeddings is fixed near the boundary of A.

Considering the inverses ψ−1
t , we obtain a family of contact embeddings whose

domain is fixed and contains ψ0(γ0). Since contact isotopies are generated by
Hamiltonians, there exists a global contact isotopy ϕt of M for which ψ−1

t = ϕt ◦
ψ−1
0 . In particular,

ϕt ◦ γ0 = γt ◦ η−1
t

holds as sought. �
Lemma 4.3. Let K be a non–Legendrian knot inside a contact manifold (M3, ξ).
Then in any neighborhood of K there exists a non–Legendrian knot K1 which can
be identified with

{p = g(θ), z = 0} ⊂ (J1S1 = S1
θ × Rp × Rz, ker(dz − p dθ))

under a locally defined contactomorphism, where g−1(0) � S1 is a finite union of
closed path-connected sets (intervals) with non-empty interior, such that there exists
a contact isotopy that squashes K onto K1.

Proof. According to Theorem 4.1, there exists a contact embedding of a neighbor-
hood U ⊃ K inside M into an open subset of

(J1S1 = S1
θ × Rp × Rz, ker(dz − p dθ)),

under which K is identified with a curve of the form C = {p = f(θ), z = 0} and U
is identified with a neighborhood UC ⊃ C in J1S1. Since K is non–Legendrian by
assumption, the function f is not everywhere zero.

One can find a finite number of pairwise disjoint neighborhoods of the form

Ori,[ai,bi] := {θ ∈ [ai, bi], z
2 + p2 ≤ r2i } ⊂ UC , i = 1, . . . , N,

where we have used the identification S1 = R/2πZ, such that

C \
N⋃
i=1

Ori,[ai,bi]
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consists of a finite number of transverse arcs. (Note that the transverse part of C
is equal to Ctr = C \ {p = 0}.) We can assume that C intersects each ∂Ori,[ai,bi]

transversely in the boundary stratum {z2 + p2 = r2i } ⊂ ∂Ori,[ai,bi].
Consider a family ft(θ) of smooth functions for which f0 = f and such that

Ct := {p = ft(θ), z = 0} coincides with C outside of
⋃N

i=1 Ori,[ai,bi], while ft(θ) =

e−ρ(t)f(θ) for θ ∈ [ai, bi] where:

• ρ(t) ≥ 0;
• ρ(t) = 0 holds in a neighborhood of {ai, bi}; and
• ρ(t) = t holds in the subset f−1(0) ⊂ ∪(ai, bi) ⊂ ∪[ai, bi] (i.e., the non-
transverse part of C).

Corollary 4.2 can now readily be applied to produce the corresponding ambient
contact isotopy that squashes C onto some knot K1 = {p = g(θ), z = 0} for
which g−1(0) � S1 consists of a finite number of closed intervals with non-empty
interior. �

Lemma 4.4. Let K1 be a non–Legendrian knot that is contactomorphic to

{z = 0, p = g(θ)} ⊂ (J1S1 = S1
θ × Rp × Rz, dz − p dθ)

where g−1(0) � S1 is a finite union of closed intervals with non-empty interior.
Then there exists a contact isotopy that squashes K1 onto a knot K2 that satisfies
the following.

• K2 is contained in an arbitrarily small neighborhood of K1.
• K2 is nowhere negatively transverse (for some choice of orientation).
• The non-transverse part of K2 again consists of a finite union of closed
intervals with non-empty interior.

In Lemmas 4.4 and 4.6 and their proofs, we recycle the coordinate notation
(r, θ, z) and (x, y, z) but hopefully in a way made clear with context.

Proof. We will construct a contact isotopy that fixes the positively transverse por-
tion of K1, that is g−1R>0 ⊂ K1, while the remaining parts are squashed onto
suitable Legendrian arcs that will be constructed explicitly. The knot K2 will be
taken to consist of these Legendrian arcs adjoined to g−1R>0 ⊂ K1. Hence, K2

will have no negatively transverse parts, as sought.
It will be useful to use polar coordinates (r, θ) on R2

(x,y) in which the standard

Liouville form can be expressed as

r2

2
dθ =

1

2
(x dy − y dx).

One now immediately verifies that(
R2

(x,y) × Rz, dz − y dx
)
→

(
R2

(x,y) × Rz, dz −
r2

2
dθ

)
,

(x, y, z) �→
(
x, y, z − 1

2
xy

)
,

is a strict contactomorphism.
Step I. Constructing Darboux balls that contain ∂(g−1R<0).
Using this change of coordinates, the standard neighborhood from Theorem 4.1

gives us the following coordinates near each boundary point pt ∈ ∂(g−1R<0) ⊂
K1 at which K1 changes behavior from Legendrian to negatively transverse (resp.
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negatively transverse to Legendrian) when following the direction specified by the
orientation of the knot. Here and below, denote B2

ε := (B2
ε )(x,y). Around each such

pt ∈ ∂(g−1R<0) we can find contact structure preserving coordinates
(
B2

ε ×[−ε, ε]z ,

dz − r2

2 dθ
)
such that

• K1 is contained inside the surface
{
z = 1

2xy
}
;

• the Legendrian locus of K1 is contained inside {y = z = 0, x ≤ 0} (resp.
{y = z = 0, x ≥ 0}); and

• the negatively transverse locus of K1 is contained inside {x > 0, y < 0, z <
0} (resp. {x < 0, y < 0, z > 0}).

Step II. Normalizing K1 near the boundary of the Darboux balls from Step I.
We want to deform K1 by a contact isotopy supported in the negatively trans-

verse part of K1 (or, equivalently, produce new coordinates while keeping K1 fixed)
after which K1, in addition to the three previous conditions, satisfies the following:

• the negatively transverse part coincides with {(0, 0)} × [ε − η, ε] (resp.
{(0, 0)} × [−ε,−(ε− η)]) near ∂(B2

ε × [−ε, ε]) for some small η > 0.

Note that, by the last bullet point in Step I, the outgoing negatively transverse
part is a curve that can be taken to be normal to the southern hemisphere of the
Darboux ball B3

ε ⊂ B2
ε × [−ε, ε], whereas the incoming negatively transverse part

is normal to the northern hemisphere. We now want to deform these arcs so that
they pass through the south and north pole, respectively. We claim that this can
easily be done by, first, perturbing the transverse arcs near the boundary of B3

ε so
that, near the boundary, they are contained inside planes of the form (Rr ·eic)×Rz

for some fixed c ∈ [0, 2π) and then deforming the transverse arcs inside the latter
planes. Note that here is why, at the start of the proof, we introduce the polar
coordinates (r, θ) on R2

(x,y).

We prove this claim. The characteristic distribution of these planes is the hori-
zontal line field spanned by ∂r, while the boundary of the Darboux ball B3

ε intersects
the plane in the round circle S1

ε . Thus, it is easy to deform K1 locally near the
boundary of the Darboux ball avoiding the horizontal direction and hence staying
negatively transverse. We finally produce the sought contact isotopy by alluding to
Corollary 4.2.

Step III. Shrinking the uncontrolled part of K1 inside the Darboux ball from the
previous steps.

Note that the contact isotopy

(r, θ, z) �→
(
e−tr, θ, e−tz

)
fixes both the transverse curve {r = 0} = {x = y = 0} and any Legendrian
{θ = θ0, z = 0} setwise. In view of the second bullet point in Step I and fourth
bullet point in Step II, one can thus apply this rescaling to the part of K1 that is
contained in the previously defined neighborhood B2

ε × [−ε, ε] in order to achieve
the following:

• outside of an arbitrarily small neighborhood of the origin (x, y, z) = 0, the
properly embedded unknotted arc K1 ∩ (B2

ε × [−ε, ε]) is contained inside
the union

{z = y = 0} ∪ {x = y = 0}
consisting of a Legendrian and a negatively transverse arc.
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Here we allude to Corollary 4.2 in order to extend the isotopy of the knot to an
ambient contact isotopy.

Step IV. Constructing a standard neighborhood of each component of g−1R<0.
Recall the well-known fact that a transverse arc has a standard contact neigh-

borhood of the form

{(0, 0)} × I ⊂
(
B2

ε′ × I, dz − r2

2
dθ

)
for ε′ > 0 sufficiently small. Using this model, together with the local coordinates
previously produced, we can now patch them together to yield a contact neighbor-
hood of an entire component of g−1R<0 that is contactomorphic to(

B2
ε × [−1− ε, ε], dz − r2

2
dθ

)
.

Because the Legendrian components have non-empty interiors, K1 intersected with
the subset

{r ∈ [δ/2, ε]} ∪ {z ∈ {−1− ε, ε}} ⊂ B2
ε × [−1− ε, ε]

can be made to coincide with the two Legendrian arcs

A0 := {r ∈ (δ/2, ε), θ = θ0, z = 0} ∪ A1 := {r ∈ (δ/2, ε), θ = θ1, z = −1}.
Here ε > 0 is sufficiently small, and 0 < δ � ε can be taken to be arbitrarily small.

For each of these arcs, we will independently make use of the last bullet point in
Step III, which shrinks the arcs ∂(g−1R<0) where the knot changes behavior form
Legendrian to negatively transverse (and vice versa).

Since one can perform a contact-form-preserving rotation of the neighborhood
in the domain, we can assume that θ0 = π is satisfied for the arc A0 without loss
of generality.

Step V. Finalizing the constructing of K2.
The next step is to deform A0 ∪ A1 ⊂ K1 in order to make it coincide with the

Legendrian {z = y = 0} near the boundary of some subset of the form

B2
δ × [−1− ε, ε] ⊂

(
B2

ε × [−1− ε, ε], dz − r2

2
dθ

)
,

where 0 < δ � ε. This we do with Lemma 4.5. After this has been achieved, the
sought squashing onto a knot K2 is now easy to construct. First we take K2 to be
equal to the deformed version of K1 outside of the neighborhoods B2

δ × [−1− ε, ε],
while it is given by the Legendrian arc {z = y = 0} inside of the latter neighborhood.
Note that K1 now can be squashed onto K2 by simply keeping it fixed outside of
the neighborhoods B2

δ × [−1− ε, ε], while we apply a rescaling as in Step III inside
the neighborhoods. Again, we rely on Corollary 4.2 for producing an extension to
a global contact isotopy. �

Lemma 4.5. For any ε > 0 and 0 < δ � ε sufficiently small, there exists a
compactly supported contact isotopy of

{r ∈ (δ/2, ε), z ∈ (−1− ε, ε)} ⊂
(
R2

(x,y) × Rz, dz − (1/2)(y dx− x dy)
)

that takes the Legendrian arcs

A0 := {θ = π, z = 0} ∪ A1 := {θ = θ1, z = −1}
to arcs that coincide with the Legendrian {z = y = 0} near ∂(B2

δ × (−1− ε, ε)).
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Proof. We will perform an explicit construct of the Legendrian isotopy. We begin
with the basic observation that a curve

s �→ (r, θ, z) = (r(s), θ(s), z(s)) ∈
(
B2 × Rz, dz −

r2

2
dθ

)

is Legendrian for this contact form precisely when

z(s) = z(0) +

∫ s

0

r(σ)2

2
θ′(σ)dσ

is satisfied. In particular, we obtain a path of Legendrian embeddings{
θ = θ1 + tf(r), z = −1 + t

∫ r

ε′/2

ρ2

2
f ′(ρ)dρ

}

for any smooth function f(r). The goal is to produce a Legendrian isotopy of the
second arc {r ∈ [δ/2, ε], θ = θ1, z = −1} of this form, which is disjoint from the
first arc {r ∈ [δ/2, ε], θ = π, z = 0}.

We will describe a piecewise smooth curve γ(s) = (r(s), θ(s)) ∈ B2
ε which has

a piecewise smooth embedded Legendrian lift to B2
ε × R, and then let f(r) be a

suitable function whose graph approximates the curve γ(s) in the C0-sense. It
follows that the Legendrian lift of the graph of f(r) can be taken to be C0-close to
the former piecewise smooth Legendrian.

We take the curve γ to be given by the union of

{r∈(0, a), θ = 0}∪{r = a, θ∈ [0, 2/a2]}∪{r∈ [a, b], θ = 2/a2}∪{r = b, θ ∈ [0, 2/a2]}

joined with

{r = b, θ ∈ [−δ, 0]}∪{r ∈ [b, c], θ ∈ θ = −δ}∪{r = c, θ ∈ [−δ, 0]}∪{r ∈ [c, ε] θ = 0}

as depicted in Figure 2.

θ

r

γ

2/a2

−δ

c

ε

ba

δ

Figure 2. The curve γ, which depicts the Lagrangian projection
to B2

ε of a piecewise smooth Legendrian in B2
ε × R expressed in

polar coordinates.
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One easily computes ∫
γ∩{r≤t}

r2

2
dθ = 1

for any t ∈ (a, b). We choose the constants a, b, c to satisfy:

• c =
√
2 b2−a2

a2δ + b2 < ε,

• a =
√
2/
√
k2π − θ1 for some integer k � 0.

• a < δ and b > δ, with b2 − a2 > 0 and b2

a2 − 1 > 0 both being sufficiently
small.

Here we need to use the assumption that δ > 0 can be taken arbitrarily small.
The first bullet point implies∫

γ

r2

2
dθ =

a2

2

2

a2
− b2

2

(
2

a2
+ δ

)
+

c2

2
δ = 0.

The second one implies that θ = −θ1 mod 2π in the region r ∈ (a, b). Furthermore,
one can check that there exists a piecewise smooth Legendrian lift of γ whose z–
coordinate satisfies

(4.1) 1−
(

2

a2
+ δ

)
b2

2
= 1− b2

a2
+

δb2

2
≤ z ≤ 1

where the equality z = 1 holds precisely in the set {r ∈ (a, b)}. By assumption,
both quantities b2/a2−1 > 0 and δ > 0 can be taken to be sufficiently small, which
makes the z-coordinate bounded from below by a number just slightly smaller than
zero.

A suitable function f(r) whose graph approximates γ can now be used to produce
the sought Legendrian isotopy. More precisely, we take f(r) to satisfy the property
that the Legendrian lift of its graph {θ = f(r)} still has a z-coordinate that satisfies
the same bound as in Equation (4.1), and such that it coincides with the Legendrian
lift of γ in the subset where z = 1. �

Lemma 4.6. Inside any neighborhood of a non–Legendrian knot K2 that is posi-
tively transverse except at finite number of Legendrian arcs (i.e., satisfies the con-
clusion of the previous lemma) there exists a neighborhood that is contactomorphic
to

U ⊂
(
R2

(x,y) × S1
θ , ker (dθ − (1/2) (y dx− x dy))

)
where

• ({(0, 0)} × S1) ∪ B3
ε ({((0, 0), θ0)}) ∪ . . . ∪ B3

ε ({((0, 0), θN)}) ⊂ U where
θ0, . . . , θN ∈ S1 are cyclically ordered points more than 2ε-apart; and

• the contactomorphism takes K2 to a knot that coincides with {(0, 0)} × S1

outside of the balls B3
ε ({((0, 0), θi)}), while its image inside each of these

balls is a smoothly unknotted arc with two boundary points contained in the
boundary of the ball.

Proof. Use Theorem 4.1 to map K2 to the graph

{z = 0, p = g(θ)} ⊂ (J1S1 = S1
θ × Rp × Rz, ker(dz − p dθ))

under a contactomorphic embedding of a neighborhood U ⊃ K2. Recall that a
smooth family of knots of the form

{z = 0, p = gt(θ)} ⊂ (J1S1 = S1
θ × Rp × Rz, ker(dz − p dθ)),
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for which the gt(θ) differ by pre-compositions with isotopies of S1, can be realized
by an ambient contact isotopy by Corollary 4.2.

After a suitable such isotopy, supported in an arbitrarily small neighborhood
of K2, we may assume that g1(θ) ≥ 0 has the property that it vanishes precisely
inside a finite number of intervals [ai, ai + ε] where ε > 0 is arbitrarily small.
(Roughly, reparameterize g(θ) in small neighborhoods of g−1(0) in order to shrink
the domains where the function vanishes.) For ε > 0 sufficiently small we are
guaranteed the existence of round Darboux balls centered at (θ, p, z) = (ai, 0, 0) of
radius r = 2ε that are entirely contained inside U . Obviously these Darboux balls
cover the non-transverse part of the knot. Arguing as in the proof of Lemma 4.4,
in particular using the contactomorphism between (R2

(x,y) × Rz, dz − y dx) and

(R2
(x,y) × Rz, dz − (1/2)(y dx − x dy)), we get Darboux balls where the incoming

transverse arc is a normal to the southern hemisphere of the ball while the outgoing
transverse arc is normal to the northern hemisphere. As in Step II of the same proof,
one can then deform these arcs so that they are both passing through the south
pole and north pole, respectively, where they are contained inside the Reeb chord
{(x, y) = 0}.

The part of the knot outside of these Darboux balls is positively transverse. One
can connect these arcs by positively transverse arcs inside the Darboux balls to
form a closed transverse knot Ktr ⊂ U . The sought neighborhood is finally given
by the union consisting of a suitable standard neighborhood of Ktr together with
the previously constructed Darboux balls. �

Proof of Theorem A. In view of Lemmas 4.3, 4.4, and 4.6, it suffices to produce a
contact isotopy of a knot

K ⊂ ({(0, 0)} × S1) ∪ B3
ε ({((0, 0), θ0)}) ∪ . . . ∪ B3

ε ({((0, 0), θN)})
that squashes it onto the transverse knot {(0, 0)} × S1, where we can assume that
K∩B3

ε ({((0, 0), θi)} is an unknotted arc, and where K coincides with the transverse
knot {(0, 0)} × S1 outside of these balls.

The contact isotopy can be taken to fix the arcs

K \
(
B3

ε ({((0, 0), θ0)}) ∪ . . . ∪B3
ε ({((0, 0), θN)})

)
,

while, inside each Darboux ball, it acts on K by the rescaling

(x, y, z) �→ (e−tx, e−ty, e−2tz).

(Here we consider a Darboux ball centered at the origin.) Corollary 4.2 is used in
order to ensure that this isotopy is induced by an ambient contact isotopy. �

5. Smooth C0
-limits of Legendrians are Legendrian (proof of

Theorem D)

The statement that the image is a Legendrian is an immediate consequence of
Lemma 5.1 together with Corollary C.

Lemma 5.1. Under the assumptions of the theorem, the Legendrian Λ is squashed
onto K by the sequence ϕi : M → M of contactomorphisms. (See Definition 1.5.)

Proof. For i0 � 0, we may assume that the contactomorphisms ϕi◦ϕ−1
i0

with i ≥ i0
all are arbitrarily close in C0-distance to the identity.
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Part (1) of the definition: We need to show that for i0 � 0, there exists a tubular
neighborhood of K that contains the image of ϕi(Λ) for all i ≥ i0, in which the
latter is smoothly isotopic to K. This follows from Lemma 5.2.

Part (2) of the definition follows immediately from the C0-convergence. �

Lemma 5.2. Consider a smooth knot K ⊂ M and a fixed tubular neighborhood
N ⊃ K. Let φ : M → M be a smooth map which is sufficiently C0-close to a
homeomorphism ψ that satisfies ψ(Λ) = K. Then we may assume that φ(Λ) ⊂ N
is smoothly isotopic to K inside of N .

Proof. It suffices to show that π1(N \ φ(Λ)) = Z2 since the existence of a smooth
isotopy inside N from φ(Λ) to K is then a consequence of the classical fact that
the Hopf link is detected by the fundamental group of its complement; see [Neu61].
To that end, note that N is a solid torus, i.e., the complement of an unknot in S3.

Consider nested closed tubular neighborhoods

K ⊂ N1 � N2 � N

that hence satisfy the property that the inclusion ∂N2 ⊂ N \ N1 is a homotopy
equivalence between a torus and a fattened torus.

We consider the tubular neighborhood NΛ := ψ−1(N2) of Λ. For φ sufficiently
C0-close to ψ, we may assume that φ(∂NΛ) ⊂ N \N1 is satisfied. Since the map is
a C0-approximation of ψ, it is clearly homotopic to ψ. Hence, it follows that

(φ|∂NΛ
)∗ = (ψ|∂NΛ

)∗ : π1(∂NΛ) → π1(N \ N1)

is an isomorphism of fundamental groups. In other words, the inclusion φ(∂NΛ) ⊂
N \ N1 also induces an isomorphism of fundamental groups

(ιφ(∂NΛ))∗ : π1(φ(∂NΛ)) → π1(N \ N1).

First we claim that the rank of π1(N \ φ(Λ)) is at least equal to two. This follows
since the previously established isomorphism

(ιφ(∂NΛ))∗ : π1(φ(∂NΛ)) ∼= Z2 → π1(N \ N1)

of groups factors through π1(N \ φ(NΛ)). (Recall that φ(∂NΛ) ⊂ N \ N1 and
that there is a homeomorphism N \ φ(NΛ) ∼= N \ φ(Λ) since NΛ ⊃ Λ is a tubular
neighborhood.)

Second, we claim that the inclusion

ι : N \ N1 ↪→ N \ φ(Λ)

induces a surjection

ι∗ : π1(N \ N1) ∼= Z2 → π1(N \ φ(Λ))

of fundamental groups. Namely, since the inclusion N \ φ(NΛ) ⊂ N \ φ(Λ) is a
deformation retract, considering the composition of inclusions

N \ φ(NΛ) ⊂ N \ N1 ⊂ N \ φ(Λ)
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we see that the isomorphism

π1(N \ φ(NΛ)) ∼= π1(N \ φ(Λ))
factors through ι∗.

Finally, the fact that the surjective group homomorphism ι∗ : Z
2 → π1(N \φ(Λ))

in addition is injective now follows by purely algebraic considerations, using the
previously established fact that the rank of π1(N \ φ(Λ)) is at least equal to two.
(The rank of Z2 is equal to two and that any quotient of Z2 by a non-trivial subgroup
has rank strictly less than two). �

Now that we know K is Legendrian, it remains to show that K is the contacto-
morphic image of Λ. We establish this by showing that φi(Λ) is Legendrian isotopic
to K for i � 0. We may assume that φi(Λ) ⊂ J1K is contained inside a standard
contact neighborhood of K, and that φi(Λ) is smoothly isotopic to j10 = K inside
the same neighborhood. We prove the following.

Proposition 5.3. The Legendrian knot ϕi(Λ) ⊂ J1K ⊂ M for i � 0 has the
same classical invariants as the Legendrian K = j10 (rotation number, Thurston–
Bennequin invariant relative to a big Reeb push-off K ′ of K, smooth isotopy class)
when considered inside the standard contact neighborhood J1K of the Legendrian
knot K = φ∞(Λ).

Remark 5.4. In the case when the contact manifold (M, ξ) satisfies H1(M) =
H2(M) = 0 and the absolute Thurston–Bennequin invariant thus is well-defined,
the same ideas as the proof of Proposition 5.3 can be used to show something
stronger: if the Legendrian Λ0 can be squashed onto the Legendrian Λ1, and Λ1

can be squashed onto Λ0, then Λ0 and Λ1 are contactomorphic.

Proof. If we take i0 � 0 sufficiently large, then ϕi(Λ) ↪→ UK ⊂ (M, ξ) for all
i ≥ i0, where UK ↪→ J1K is contactomorphic to standard contact neighborhood
of K in which the latter is identified with j10. Furthermore, we may assume that
ϕi ◦ ϕ−1

i0
is ε-close to the identity on some neighborhood Br(K) ⊂ J1K, while

ϕi0(Λ) ⊂ Br/2(K), for some fixed r > 0 and ε > 0 arbitrarily small.
First we show that for any knot K ′ ⊂ Br(K) \ Br/2(K) in the same homology

class as K, the relative Thurston–Bennequin numbers tbK′(ϕi0(Λ)) and tbK′(K)
as computed inside UK are the same. Since Lemma 3.3 implies tbK′(ϕi0(Λ)) ≤
tbK′(K), it suffices to prove tbK′(ϕi0(Λ)) ≥ tbK′(K).

Consider the sequence (ϕi ◦ ϕ−1
i0

)−1 of inverses of the previously defined contac-

tomorphisms, which C0-converges to ϕi0 ◦ϕ−1
∞ . Lemma 5.1 implies this sequence of

contactomorphisms squashes the Legendrian K onto ϕi0(Λ). As before, we again
assume the contactomorphisms to be ε-close to the identity on Br(K) for i ≥ i0.

For i � 0 the squashing property implies that

(ϕi ◦ ϕ−1
i0

)−1(K) ⊂ UΛ

where UΛ ↪→ J1Λ is a standard contact neighborhood of ϕi0(Λ) in which the latter
is identified with j10. Again Lemma 3.3 implies

tbK′(ϕi0(Λ)) ≥ tbK′((ϕi ◦ ϕ−1
i0

)−1(K)) = tbϕi◦ϕi0
(K′)(K).

Since ϕi ◦ ϕi0 |K′ is ε-close to the identity, we may assume that ϕi ◦ ϕi0(K
′)

is homologous to K ′ inside Br(K) \ Br/2(K). This immediately implies that
tbϕi◦ϕi0

(K′)(K) = tbK′(K) is satisfied.
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This finishes the proof of the equality of relative Thurston–Bennequin numbers

tbK′(ϕi0(Λ)) = tbK′(K).

in UK ↪→ J1K.
Since the smooth isotopy types are clearly the same, it remains to establish an

equality between rotation numbers. Recall the Thurston–Bennequin inequality

tb(F (ϕi0(Λ))) + |rot(F (ϕi0(Λ)))| ≤ −1,

where F : J1S1 ↪→ (R3, ξst) is a contact embedding that takes j10 to the standard
unknot Λst [Ben83]. Then

tb(F (ϕi0(Λ))) = tb(F (j10)) = tb(Λst) = −1,

which implies the vanishing of the rotation number. �

Proposition 5.3 combined with the classification result of Legendrian knots inside
J1S1 in [DG07] due to Ding–Geiges produces the sought-after Legendrian isotopy
from ϕi(Λ) to K for i � 0 confined inside the standard contact neighborhood
J1K ⊂ M . Note that, if we compute the relative Thurston-Bennequin invariant
tbK′ inside the jet-space with respect to K ′ given as a Reeb-flow push-off of the
zero section, then this agrees with the definition of the Thurston-Bennequin invari-
ant used by Ding–Geiges (e.g., the zero-section has vanishing Thurston–Bennequin
invariant).

Acknowledgments

The authors are grateful to: Paolo Ghiggini who taught the authors about prop-
erties of Legendrians in neighborhoods of transverse knots; Sobhan Seyfaddini for
pointing out relevant questions and showing interest in the work; and Thomas
Kragh for pointing out that Theorem D indeed is sufficiently strong to settle Gro-
mov’s Alternative.

References
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[Gir91] E. Giroux, Convexité en topologie de contact (French), Comment. Math. Helv. 66 (1991),
no. 4, 637–677, DOI 10.1007/BF02566670. MR1129802

[Gir00] E. Giroux, Structures de contact en dimension trois et bifurcations des feuil-
letages de surfaces (French), Invent. Math. 141 (2000), no. 3, 615–689, DOI
10.1007/s002220000082. MR1779622

[Gro85] M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82
(1985), no. 2, 307–347, DOI 10.1007/BF01388806. MR809718

[HLS15] V. Humilière, R. Leclercq, and S. Seyfaddini, Coisotropic rigidity and C0-symplectic
geometry, Duke Math. J. 164 (2015), no. 4, 767–799, DOI 10.1215/00127094-2881701.
MR3322310

[Hon00] K. Honda, On the classification of tight contact structures. I, Geom. Topol. 4 (2000),
309–368, DOI 10.2140/gt.2000.4.309. MR1786111

[Laz19] O. Lazarev, Geometric and algebraic presentations of Weinstein domains, Preprint,
arXiv:1910.01101, 2019.

[LS94] F. Laudenbach and J.-C. Sikorav, Hamiltonian disjunction and limits of Lagrangian
submanifolds, Internat. Math. Res. Notices 4 (1994), 161 ff., approx. 8 pp., DOI
10.1155/S1073792894000176. MR1266111

[MS14] S. Müller and P. Spaeth, Gromov’s alternative, Eliashberg’s shape invariant, and C0-
rigidity of contact diffeomorphisms, Internat. J. Math. 25 (2014), no. 14, 1450124, 13,
DOI 10.1142/S0129167X14501249. MR3306832

[Mur] E. Murphy, Loose Legendrian embeddings in high dimensional contact manifolds, Pro-
Quest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–Stanford University. MR4172336

[Nak20] L. Nakamura, C0-limits of Legendrian submanifolds, Preprint, arXiv:2008.00924, 2020.
[Neu61] L. Neuwirth, A note on torus knots and links determined by their groups, Duke Math.

J. 28 (1961), 545–551. MR133818
[Ops09] E. Opshtein, C0-rigidity of characteristics in symplectic geometry (English, with English
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