Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 3443948
Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Alexander Brudnyi and Yuri Brudnyi
Title: Methods of geometric analysis in extension and trace problems. Volume 1
Additional book information: Monographs in Mathematics, Vol. 102, Birkh\"auser/Springer Basel AG, Basel, 2012, xxiv+560 pp., ISBN 978-3-0348-0208-6, US$129

Authors: Alexander Brudnyi and Yuri Brudnyi
Title: Methods of geometric analysis in extension and trace problems. Volume 2
Additional book information: Monographs in Mathematics, Vol. 103, Birkh\"auser/Springer Basel AG, Basel, 2012, xx+414 pp., ISBN 978-3-0348-0211-6, US$129

References [Enhancements On Off] (What's this?)

  • K. Ball, Markov chains, Riesz transforms and Lipschitz maps, Geom. Funct. Anal. 2 (1992), no. 2, 137–172. MR 1159828, DOI 10.1007/BF01896971
  • Edward Bierstone, Pierre D. Milman, and Wiesław Pawłucki, Differentiable functions defined in closed sets. A problem of Whitney, Invent. Math. 151 (2003), no. 2, 329–352. MR 1953261, DOI 10.1007/s00222-002-0255-6
  • L. E. J. Brouwer, Über die Erweiterung des Definitionsbereichs einer stetigen Funktion, Math. Ann. 79 (1918), no. 3, 209–211 (German). MR 1511921, DOI 10.1007/BF01458203
  • Yu. A. Brudnyĭ and P. A. Shvartsman, A linear extension operator for a space of smooth functions defined on a closed subset in $\textbf {R}^n$, Dokl. Akad. Nauk SSSR 280 (1985), no. 2, 268–272 (Russian). MR 775048
  • Ju. A. Brudnyi and P. A. Shvartsman, The traces of differentiable functions to closed subsets of $\textbf {R}^n$, Function spaces (Poznań, 1989) Teubner-Texte Math., vol. 120, Teubner, Stuttgart, 1991, pp. 206–210. MR 1155176
  • Yuri Brudnyi and Pavel Shvartsman, Generalizations of Whitney’s extension theorem, Internat. Math. Res. Notices 3 (1994), 129 ff., approx. 11. MR 1266108, DOI 10.1155/S1073792894000140
  • Yuri Brudnyi and Pavel Shvartsman, The Whitney problem of existence of a linear extension operator, J. Geom. Anal. 7 (1997), no. 4, 515–574. MR 1669235, DOI 10.1007/BF02921632
  • Yuri Brudnyi and Pavel Shvartsman, The trace of jet space $J^k\Lambda ^\omega$ to an arbitrary closed subset of $\mathbf R^n$, Trans. Amer. Math. Soc. 350 (1998), no. 4, 1519–1553. MR 1407483, DOI 10.1090/S0002-9947-98-01872-8
  • Yuri Brudnyi and Pavel Shvartsman, Whitney’s extension problem for multivariate $C^{1,\omega }$-functions, Trans. Amer. Math. Soc. 353 (2001), no. 6, 2487–2512. MR 1814079, DOI 10.1090/S0002-9947-01-02756-8
  • Yu. Brudnyi and P. Shvartsman, Stability of the Lipschitz extension property under metric transforms, Geom. Funct. Anal. 12 (2002), no. 1, 73–79. MR 1904557, DOI 10.1007/s00039-002-8237-9
  • Charles L. Fefferman, A sharp form of Whitney’s extension theorem, Ann. of Math. (2) 161 (2005), no. 1, 509–577. MR 2150391, DOI 10.4007/annals.2005.161.509
  • Charles Fefferman, Interpolation and extrapolation of smooth functions by linear operators, Rev. Mat. Iberoamericana 21 (2005), no. 1, 313–348. MR 2155023, DOI 10.4171/RMI/424
  • Charles Fefferman, The structure of linear extension operators for $C^m$, Rev. Mat. Iberoam. 23 (2007), no. 1, 269–280. MR 2351135, DOI 10.4171/RMI/495
  • Charles Fefferman, The $C^m$ norm of a function with prescribed jets. II, Rev. Mat. Iberoam. 25 (2009), no. 1, 275–421. MR 2514339, DOI 10.4171/RMI/570
  • Charles Fefferman, Extension of $\mathsf C^{m,\omega }$-smooth functions by linear operators, Rev. Mat. Iberoam. 25 (2009), no. 1, 1–48. MR 2514337, DOI 10.4171/RMI/568
  • Charles Fefferman, The $C^m$ norm of a function with prescribed jets I, Rev. Mat. Iberoam. 26 (2010), no. 3, 1075–1098. MR 2789377, DOI 10.4171/RMI/628
  • Charles Fefferman, Nearly optimal interpolation of data in $\textrm {C}^2(\Bbb R^2)$. Part I, Rev. Mat. Iberoam. 28 (2012), no. 2, 415–533. MR 2916966, DOI 10.4171/rmi/68
  • Charles Fefferman and Bo’az Klartag, Fitting a $C^m$-smooth function to data. I, Ann. of Math. (2) 169 (2009), no. 1, 315–346. MR 2480607, DOI 10.4007/annals.2009.169.315
  • Charles Fefferman and Bo’az Klartag, Fitting a $C^m$-smooth function to data. II, Rev. Mat. Iberoam. 25 (2009), no. 1, 49–273. MR 2514338, DOI 10.4171/RMI/569
  • Charles Fefferman, Arie Israel, and Garving K. Luli, The structure of Sobolev extension operators, Rev. Mat. Iberoam. 30 (2014), no. 2, 419–429. MR 3231204, DOI 10.4171/RMI/787
  • Charles L. Fefferman, Arie Israel, and Garving K. Luli, Sobolev extension by linear operators, J. Amer. Math. Soc. 27 (2014), no. 1, 69–145. MR 3110796, DOI 10.1090/S0894-0347-2013-00763-8
  • Charles Fefferman, Arie Israel, and Garving K. Luli, Fitting a Sobolev function to data, arXiv:1411.1786, 2014.
  • Georges Glaeser, Étude de quelques algèbres tayloriennes, J. Analyse Math. 6 (1958), 1–124; erratum, insert to 6 (1958), no. 2 (French). MR 101294, DOI 10.1007/BF02790231
  • Arie Israel, A bounded linear extension operator for $L^{2,p}(\Bbb R^2)$, Ann. of Math. (2) 178 (2013), no. 1, 183–230. MR 3043580, DOI 10.4007/annals.2013.178.1.3
  • William B. Johnson and Joram Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 189–206. MR 737400, DOI 10.1090/conm/026/737400
  • Mojźesz David Kirszbraun, Über die zusammenziehende und lipschitzsche transformationen, Fund. Math., 22:77–108, 1934.
  • U. Lang and V. Schroeder, Kirszbraun’s theorem and metric spaces of bounded curvature, Geom. Funct. Anal. 7 (1997), no. 3, 535–560. MR 1466337, DOI 10.1007/s000390050018
  • Urs Lang and Thilo Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. 58 (2005), 3625–3655. MR 2200122, DOI 10.1155/IMRN.2005.3625
  • Erwan Le Gruyer, Minimal Lipschitz extensions to differentiable functions defined on a Hilbert space, Geom. Funct. Anal. 19 (2009), no. 4, 1101–1118. MR 2570317, DOI 10.1007/s00039-009-0027-1
  • Henri Lebesgue, Sur le probléme de Dirichlet, Rend. Circ. Mat. Palermo, 24:371–402, 1907.
  • E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), no. 12, 837–842. MR 1562984, DOI 10.1090/S0002-9904-1934-05978-0
  • Assaf Naor, Yuval Peres, Oded Schramm, and Scott Sheffield, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Math. J. 134 (2006), no. 1, 165–197. MR 2239346, DOI 10.1215/S0012-7094-06-13415-4
  • P. Shvartsman, Sobolev $W^1_p$-spaces on closed subsets of $\textbf {R}^n$, Adv. Math. 220 (2009), no. 6, 1842–1922. MR 2493183, DOI 10.1016/j.aim.2008.09.020
  • Heinrich Tietze, Über funktionen, die auf einer abgeschlossenen menge stetig sind, J. Reine Angew. Math., 145:9–14, 1915.
  • Paul Urysohn, Über die Mächtigkeit der zusammenhängenden Mengen, Math. Ann. 94 (1925), no. 1, 262–295 (German). MR 1512258, DOI 10.1007/BF01208659
  • F. A. Valentine, On the extension of a vector function so as to preserve a Lipschitz condition, Bull. Amer. Math. Soc. 49 (1943), 100–108. MR 8251, DOI 10.1090/S0002-9904-1943-07859-7
  • F. A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math. 67 (1945), 83–93. MR 11702, DOI 10.2307/2371917
  • Hassler Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63–89. MR 1501735, DOI 10.1090/S0002-9947-1934-1501735-3
  • Hassler Whitney, Differentiable functions defined in closed sets. I, Trans. Amer. Math. Soc. 36 (1934), no. 2, 369–387. MR 1501749, DOI 10.1090/S0002-9947-1934-1501749-3

  • Review Information:

    Reviewer: Garving K. Luli
    Affiliation: University of California, Davis
    Email: kluli@math.ucdavis.edu
    Journal: Bull. Amer. Math. Soc. 53 (2016), 143-149
    DOI: https://doi.org/10.1090/bull/1496
    Published electronically: May 20, 2015
    Review copyright: © Copyright 2015 American Mathematical Society