Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: P. Exner and H. Kovařík
Title: Quantum waveguides
Additional book information: Theoretical and Mathematical Physics, Springer, Cham, 2015, xxii+382 pp., ISBN 978-3-319-18575-0, US$149.99 (hardcover); ISBN 978-3-319-36556-5, US$129.99 (softcover); ISBN 978-3-319-18576-7, US$99.00 (e-book)

References [Enhancements On Off] (What's this?)

  • [1] C. W. J. Beenakker and H. van Houten, Quantum transport in semiconductor nanostructures, Solid State Physics, 44 (1991) 1-228.
  • [2] Gregory Berkolaiko and Peter Kuchment, Introduction to quantum graphs, Mathematical Surveys and Monographs, vol. 186, American Mathematical Society, Providence, RI, 2013. MR 3013208
  • [3] Jiří Blank, Pavel Exner, and Miloslav Havlíček, Hilbert space operators in quantum physics, AIP Series in Computational and Applied Mathematical Physics, American Institute of Physics, New York, 1994. MR 1275370
  • [4] Guy Bouchitté, M. Luísa Mascarenhas, and Luís Trabucho, On the curvature and torsion effects in one dimensional waveguides, ESAIM Control Optim. Calc. Var. 13 (2007), no. 4, 793-808. MR 2351404
  • [5] J. P. Carini, J. T. Londergan, J. T. Mullen, and D. P. Murdock, Bound states and resonances in quantum wires, Phys. Rev. B 46 (1992) 15538-15541.
  • [6] J. P. Carini, J. T. Londergan, J. T. Mullen, and D. P. Murdock, Multiple bound states in sharply bent waveguides, Phys. Rev. B 48 (1993) 4503-4514.
  • [7] Iain J. Clark and Anthony J. Bracken, Effective potentials of quantum strip waveguides and their dependence upon torsion, J. Phys. A 29 (1996), no. 2, 339-348. MR 1381564
  • [8] P. Exner and P. Šeba, Bound states in curved quantum waveguides, J. Math. Phys. 30 (1989), no. 11, 2574-2580. MR 1019002
  • [9] P. Exner and P. Šeba, Trapping modes in a curved electromagnetic waveguide with perfectly conducting walls, Phys. Lett. A 144 (1990), no. 6-7, 347-350. MR 1045130
  • [10] Richard Froese and Ira Herbst, Realizing holonomic constraints in classical and quantum mechanics, Comm. Math. Phys. 220 (2001), no. 3, 489-535. MR 1843773
  • [11] I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Translated from the Russian by the IPST staff, Israel Program for Scientific Translations, Jerusalem, 1965; Daniel Davey & Co., Inc., New York, 1966. MR 0190800
  • [12] J. Goldstone and R. L. Jaffe, Bound states in twisting tubes, Phys. Rev. B 45 (1992) 14100-14107.
  • [13] Daniel Grieser, Thin tubes in mathematical physics, global analysis and spectral geometry, Analysis on graphs and its applications, Proc. Sympos. Pure Math., vol. 77, Amer. Math. Soc., Providence, RI, 2008, pp. 565-593. MR 2459891
  • [14] Mark Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1966), no. 4, 1-23. MR 0201237
  • [15] D. Krejčiřík, ``Twisting versus bending in quantum waveguides'', in Analysis on Graphs and Applications (P. Exner J. P. Keating, P. Kuchment, T. Sunada, and A. Teplyaev, eds.), Proc. Sympos. Pure Math., 77 (pp. 617-636), American Mathematical Society, Providence, RI, 2008.
  • [16] Christopher Lin and Zhiqin Lu, On the discrete spectrum of generalized quantum tubes, Comm. Partial Differential Equations 31 (2006), no. 10-12, 1529-1546. MR 2273964
  • [17] Christopher Lin and Zhiqin Lu, Existence of bound states for layers built over hypersurfaces in $ \mathbb{R}^{n+1}$, J. Funct. Anal. 244 (2007), no. 1, 1-25. MR 2294473
  • [18] Christopher Lin and Zhiqin Lu, Quantum layers over surfaces ruled outside a compact set, J. Math. Phys. 48 (2007), no. 5, 053522, 14. MR 2329884
  • [19] J. W. Strutt, 3rd Baron Rayleigh, The theory of sound, second edition, Dover, New York, 1945 (original publication, 1894). MR 0016009
  • [20] J. W. Strutt, 3rd Baron Rayleigh, On the passage of electric waves through tubes, or the vibrations of dielectric cylinders, Phil. Mag., London, 43 (261) (1897) 125-132. doi:10.1080/14786449708620969
  • [21] K. Ruedenbeerg and C. W. Scherr, Free-electron network for conjugated systems. I, J. Chem. Phys. 21 (1953) 1565-1581.
  • [22] Uzy Smilansky and Michael Solomyak, The quantum graph as a limit of a network of physical wires, Quantum graphs and their applications, Contemp. Math., vol. 415, Amer. Math. Soc., Providence, RI, 2006, pp. 283-291. MR 2277623
  • [23] W. Thirring, A course in mathematical physics, III: Quantum mechanics of atoms and molecules, Springer-Verlag, New York and Vienna, 1981.
  • [24] Jakob Wachsmuth and Stefan Teufel, Effective Hamiltonians for constrained quantum systems, Mem. Amer. Math. Soc. 230 (2014), no. 1083, vi+83. MR 3236129
  • [25] Andrew Zangwill, Modern electrodynamics, Cambridge University Press, Cambridge, 2013. MR 3012344

Review Information:

Reviewer: Evans M. Harrell, II
Affiliation: School of Mathematics Georgia Institute of Technology Atlanta Georgia 30332-0160
Journal: Bull. Amer. Math. Soc.
MSC (2010): Primary 35P99, 35Q40, 58J37, 78A50, 81Q10, 81Q35, 81Q37, 81V99
Published electronically: December 15, 2017
Review copyright: © Copyright 2017 Evans M. Harrell II, with fair use permitted.
American Mathematical Society