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ON THE INTRODUCTION OF THE NOTION OF 
HYPEEBOLIC FUNCTIONS.* 

BY PROFESSOR M. W. HASKELL. 

T H E difficulties in the way of a satisfactory geometrical de
duction of the fundamental formulae of the hyperbolic func
tions seem to be due to the lack of a definition of these func
tions which shall be independent of the particular position of 
the argument area., A general definition of this kind can, 
however, readily be found in terms of the ratios of certain 
areas, instead of lines. From this definition the addition-
theorem and other characteristics can be easily deduced by 
the methods of analytic geometry; and the definitions hold, 
furthermore, not merely for the rectangular, but for any hy
perbola. 

I. The circular functions. In order to bring out clearly 
the analogy with the circular functions, I will first indicate 
briefly how the latter would be defined according to this 
method. 

In a circle of radius a (Fig. 1) let 0 be the angle between 
the radii OP and OQ, and let OP' be drawn perpendicular to 

F I G . 1. 

*Read before the* AMERICAN MATHEMATICAL SOCIETY, December 28, 
1894. For various geometrical definitions of these functions, see Pro
fessor A. Macfarlane's paper : " On the definition of the trigonometric 
functions/' 1894.—EDITORS. 
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OP. The following areas are either well known or easily 
found (the sign A denoting triangle) : 

sector OPQ - \fi<t>, A OPQ = ia* sin 0, 

A OQP' = la* cos 0, A OPP' = i^2, 

from which follow immediately : 

^ sector OP Q . , A 0 P Ç ^ A OÇP' 
0 = - Z Ö P F - ^ *m* = TÔPF> cos 0 = XÖPF' 

Similarly, if the tangent at Ç meet OP in 21 and OP' in 
T', it is not difficult to show that 

AOTQ AOQT' 
tan 0 = —77-0^7 > c t n 0 AOPP" ^~ AOPP" 

. AOTP' ^ A OPT' 
s e c 0 = T O P P ^ ' CSC 0 = Z Ô P P 7 ' 

Now, these formulae might be taken as definitions of the 
argument 0 and of its various functions. They can then be 
immediately extended to any ellipse, the only modification 
necessary being that OP and OP' shall be conjugate semi-
diameters. The area of the triangle OPPf is then = \ab, 
and 0 is equal to the difference between the eccentric angles 
P and Q. 

II. Definition of the hyperbolic functions. Since of two 
conjugate diameters only one meets the hyperbola in real 
points, the conjugate hyperbola must be employed also, and 
P ' is the point where the diameter conjugate to OP meets the 
conjugate hyperbola. We shall then define the argument u 
and its functions in strict analogy with the preceding results, 
as follows (see Fig. 2) : 

sector OPQ . . A OPQ . A OQP' 
u^-^OPP^> *mhu = -KöPp->> C O S ^ = - Z Ö P Ï ^ 

etc. 

If now the hyperbola be referred to its principal axes as 
axes of coordinates, its equation may be written 

- — ^ = 1. (1) 
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Let xl9 yx be the coordinates of P, and x9, y^ those of Q. 
ctif bx 

Then the coordinates of P' will be -~-9 —K and the area of 
b a 

the triangle OPP' is equal to iab. The definitions of sinh u 
and cosh u become 

sinh u 
ab 

cosh ^ = ^ - - # 
a? b* 

Interchanging the coordinates of P and Q, we have 

sinh ( — u) = — sinh u, cosh (— u) = cosh u. 

Also, if P and Q coincide, u = 0 and 

sinh 0 = 0, cosh 0 = 1. 

(8) 

(B) 

(4) 

FIG. 2. 

_ , sector OAP _ sector OAQ ,. , 

^a — «!• The coordinates of A being #, 0, we have 

1/ X 1J X 

sinh ?/,, = ~, cosh w, = J ; sinh u„ = 4 ^ cosh ÎI0 = - . (5) 

Comparing with (1), we see at a glance that 

cosh2 nx — sinh2 u} — 1, (6) 
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and that this result is general may be instantly verified by 
(*), for 

cosh' u - sinh' u = W**-*Mf-?Vi*>»*-*ar 
ab 

^ i V r J ï b*x* ~ *V -1 
" a*b* ' a%V ~ 

III . The Addition-Theorem. Substituting (5) in the 
definitions of (2), we have 

sinh (u2 — ux) = sinh w2 cosh ^2 — cosh u2 sinh ^ ) 
cosh (^2 — Wj) = cosh 'w2 cosh wt — sinh u2 sinh «^ ) 

Writing -f- u1 instead of — ul9 we have by (3) 

sinh (wa + ux) 2= sinh ^2 cosh ux + cosh ^2 sinh ux \ 

cosh (^2 + ux) = cosh ^2 cosh Wj + sinh wa sinh ux ) 

The generality of these formulae is easily verified in the man
ner just exemplified in formula (6). 

IV. It is clear from (5) that the definitions we have given 
reduce to the ordinary form for the special position there 
considered. It remains to be shown that in the form given 
sinh u and cosh u are really functions of u alone. To this 
end let us choose the asymptotes as axes of coordinates. Let 
a and /? be the coordinates of any point, and let GO be the 
angle between the asymptotes; the equation of the hyperbola 
is then 

a/3 = \ab esc GO. (9) 

The coordinates of P being ax = OL and /3X = LP, those of 
Q being a^ and /?2, those of P' will be ax and — /3l9 and we 
have 

rinh „ = £!4=^A., cosh M = f ! 4 ± - " A (io) 
ab csc GO ab esc GO V ' 

a 6 
or, if we write —- = À and therefore •— = A - 1 , 

sinh u = K À - À - 1 ) , cosh u = ifi+X-1). (11) 
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If we now apply to the plane the linear transformation 

a' = Tea, p' = i " *# (12) 

the hyperbola is transformed into itself. The points P and Q 
are moved to any arbitrary position on the curve, but the 
ratio tf2 : ax is unaltered. It is easily shown that in this trans
formation the area of any triangle, and hence the area of 
any figure in the plane, is unchanged ; so that u, sinh u and 
cosh u are unchanged. They are therefore all functions of 
the ratio a^ : a1 alone. Hence sinh u and cosh u are func
tions of u alone, and the definitions here given are a proper 
generalization of the usual definitions. 

Y. The exponential formulée. The sector OPQ may be 
regarded as the limit of a circumscribed polygon and hence 
u may be regarded as the limit of the sum of a series of 
hyperbolic sines. To make each of the terms in this series 
equal, we have evidently only to put X = pn, where n may be 
any whole number. Then, writing It briefly for limit, 

u = i It n{p - p-1) = It t (A»-A-*) (13) 

= It ^n l . X n , as n increases indefinitely. 

-- A* — 1 
The limit of À n is equal to 1, and the limit of — is 

n 

the natural logarithm of À. Hence X = eu. Introducing 
this value of X in (12), we have 

sinh u = i(eu — e ~w), cosh u = i(eu + e ~ tt). (14) 

BERKELEY, CAL., November 26, 1894. 


