tremity through 90° in such a direction that then the models can be opposed to each other and each severed portion can be united to the duplicate of that from which it was divided. The resulting surface will be of deficiency 3 and will contain a regular reticulation with twice as many vertices, faces and edges as its original. As illustrations of this mode of derivation Mr. Basquin has found fairly simple examples to arise from Nos. 3, 6, 9, 11 of the table for deficiency 2. It will be seen that the closed line marking the cut may be equally well any number, not greater than \(p - 1 \), of non-intersecting closed curves. Where \(p > 2 \), this observation points to an interesting variety of derivative reticulations.

Of the starred polyedra, one is found to belong to this scheme of regular reticulations, namely the starred dodecahedron; in the others, the connectivity of the individual faces and vertices has to be taken into account. Semi-regular reticulations, analogous to the solids of Archimedes, I have not investigated; but I should expect that the graphical production of such would give the inventive faculties more exercise and pleasure than the construction of those wholly regular.*

NORTHWESTERN UNIVERSITY,
EVANSTON, ILL., August, 1896.

CORRECTION.

The theorem given in the first paragraph of the article "Note on the Special Linear Homogeneous Group," p. 336, of the last volume of the BULLETIN, is not true, and is not, as there stated, a consequence of results given on p. 232. The theorem given in the second paragraph, p. 336, regarding the special linear homogeneous group in \(n \) variables, for \(n = 2 \) or composite, and the method of proof which follows, holds also if \(n \) is an odd prime. HENRY TABER.

*The theory of canonical dissections of a Riemann surface leads to the completion of the foregoing discussions.—H. S. W.