THE ABSTRACT GROUP G SIMPLY ISOMORPHIC WITH THE ALTERNATING GROUP ON SIX LETTERS.

BY PROFESSOR L. E. DICKSON.

(Read before the American Mathematical Society, December 29, 1902.)

1. A slight correction of a theorem due to De Séguier* leads to the result that G is generated by three operators a, b, c, subject only to the relations

1. $a^2 = I, b^4 = I, c^3 = I, (ae)^3 = I,$
2. $(ab^{-1}ab)^3 = I, (ab^{-2}ab^2)^2 = I,$
3. $(cb^{-1}ab)^2 = I, (cb^{-2}ab^2)^2 = I.$

But these generators are not independent, since

4. $a = cb^{-1}bc.$

A simple verification of (4) results from the correspondence

$a \sim (12)(34), \quad b \sim (12)(3456), \quad c \sim (123)$

between the generators of the simply isomorphic groups.

It is shown in this section that G is generated by the two operators b and c, subject to the complete set of generational relations

5. $b^4 = I, c^3 = I, (b^{-1}cbe^{-1})^2 = I, (b^2c)^4 = I.$

These relations follow from (1), (2), (3); for, by the above correspondence, $b^{-1}cbe^{-1} \sim (14)(23), \quad b^2c \sim (1235)(46)$.

If a be defined by (4), relations (1), (2), (3) follow from (5).

$a^2 = cb^{-1}cbe^{-1}b^{-1}cbe = c(b^{-1}cbe^{-1})^2c^{-1} = I,$
$(ae)^3 = cb^{-1}cbe^{-1} = I.$

*Journal de Math., 1902, p. 262. For $y = 2, \ldots, n - 3$ in his formula (6), should stand $y = 1, \ldots, n - 4.$
As an auxiliary result, we note that

\[(6) \quad c(bcb^{-1}cb) = (bcb^{-1}cb)ce.\]

The condition (6) may be given the successive forms

\[e \cdot ccb^{-1} \cdot c^{-1}b^{-1} = I,\]
\[e \cdot ccb^{-1} \cdot c^{-1}b^{-1} = (bcb^{-1}b^{-1})^2 = I \quad \text{[by (5)]}.\]

Since (6) may be written \(e \cdot cbab^{-1} = ba\), we have

\[(7) \quad e \cdot ba = ba \cdot c.\]

In view of (6) and (5), we get

\[(8) \quad (cb^{-1}cb)^3 = e^{-1} \cdot b^{-1} \cdot c^{-1}bcb^{-1} \cdot e^{-1}b^{-1}c = I.\]

To verify (3), we note that, by (8),

\[ab^{-1}ab = ab^{-1} \cdot ab^{-1} \cdot c^{-1}b \cdot c \cdot ab^{-1} = (c^{-1}b)^4 = I \quad \text{[by (5)]}.\]

To verify (3), we transform by \(b^{-1}c^{-1}\) and get

\[c^{-1}b^{-1}c^{-1} \cdot b^{-1}c^{-1} \cdot cb^{-1} \cdot cb^{-1} \cdot c^{-1}b^{-1}c^{-1}b^{-1} = (c^{-1}b^{-1}c^{-1})^2 = I \quad \text{[by (5)]}.\]

To verify (3), we note that

\[ab^{-1}ab = ab^{-1} \cdot c^{-1}b \cdot c^{-1}b^{-1}c = (ab^{-1}b^{-1}c)^{-1} = c^{-1}b^{-1}c^{-1}b^{-1}c^{-1}b^{-1}c^{-1}.\]

Cubing the inverse and transforming by \(c\), we get (8).

To verify (3), we note that

\[ab^{-2}ab^2 = ac^{-1} \cdot ab^{-2}a = ab^{-1} \cdot b^{-2}a^{-1}b^{-1}c^{-1} = (ab^{-1}b^{-1}c^{-1}b^{-1}c^{-1})^{-1} = c^{-1}b^{-1}c^{-1}b^{-1}c^{-1}b^{-1}c^{-1}.\]
Transforming its square by cb^2, we get
\[
\begin{align*}
&bcb^{-1}c^{-1} \cdot b^{-1}c^{-1}b^{-1}c^{-1} \cdot bcb^{-1}c^{-1} \\
&= cbc^{-1}b^{-1} \cdot b^{-1}c^{-1}b^{-1} \cdot cbc^{-1}b^{-1} \cdot b^{-1}c^{-1}b^{-1} \\
&= cbc^{-1}b^{-1}c^{-1}b^{-1}c^{-1}b^{-1}c^{-1}b^{-1}.
\end{align*}
\]

Transforming by cb and taking the inverse, we get $(b^2c)^4 = I$.

2. In a paper entitled “The abstract group simply isomorphic with the group of linear fractional transformations in a Galois field,” communicated November 2, 1902 to the London Mathematical Society, the writer shows that the group G is generated by three operators subject to the relations

\[(9) \quad T^2 = I, \quad S_1^2 = I, \quad S_j^3 = I, \quad S_jS_j = S_jS_j, \]

\[(10) \quad (S_jT)^3 = I, \quad (S_jT)^4 = I, \quad (S_jS_jTS_j^{-1}S_jT)^2 = I. \]

From these we obtain relations (1), (2), (3), if we set
\[a = T, \quad b = S_jT, \quad c = S_j.\]

This is evident for relations (1). Also,
\[
(ab^{-1}ab)^3 = (S_j^{-1}TS_jT)^3 = S_j^{-1} \cdot TS_jT \cdot S_jTS_jT \cdot S_j^{-1}TS_jT
\]
\[= S_j^{-1} \cdot S_jTS_jT \cdot TS_j^{-1}T \cdot S_jTS_jT \cdot S_j^{-1}TS_jT = (S_jT)^4 = I.
\]

Also (2) and (3) follow from (9) and $(S_jT)^4 = I$, while (3) follows from (9) and the first and third relations (10). We thus obtain a new proof that (9) and (10) define G.

We may readily derive directly from (9) and (10) a complete set of relations between the two generators $b = S_jT$ and $c = S_1$ of G. We note that, from (10),
\[
T = S_1TS_1T = S_1 \cdot TS_j^{-1} \cdot S_jTS_1 = cb^{-1}cbe.
\]

We therefore have
\[S_i = c, \quad T = cb^{-1}cbe, \quad S_j = be^{-1}b^{-1}c^{-1}be^{-1}.
\]

Then $(S_jT)^4 = I$ follows from (5_1), $S_i^3 = I$ from (5_2), $T^2 = I$ from (5_3), $S_jS_j = S_jS_1$ from (5_4). Thus
\[
S_iS_j = cbe^{-1}b^{-1} \cdot c^{-1}be^{-1} = beb^{-1}c^{-1} \cdot c^{-1}be^{-1} = be \cdot b^{-1}c^{-1}be^{-1} = be \cdot cb^{-1}c^{-1}b = S_jS_1.
\]
Since $S_1T = c^{-1}b^{-1}cbe$ is the transform of c by bc, it is of period three.

The final relation (10) becomes

$$(bc^{-1}b^{-1}c \cdot b^{-1}cbe)^2 = (c^{-1}bcb^{-1} \cdot b^{-1}cbe)^2 = (c^{-1}bc^2cbe)^2$$

$$= c^{-1}b(e^2b^2b^{-1}c = I.$$

Since S_j is commutative with S_j', the condition $S_j^3 = I$ follows from $(b^{-1}c^{-1}b^2c^{-1})^3 = I$ or $(c^2b^2b)^3 = I$.

THE UNIVERSITY OF CHICAGO,
December 11, 1902.

NOTE ON A PROPERTY OF THE CONIC SECTIONS.

BY PROFESSOR H. F. BLICHFELDT.

(Read before the San Francisco Section of the American Mathematical Society, December 20, 1902.)

It is easily proved that if P, Q, R are any three points on the conic $Ax^2 + By^2 = 1$, and O the center of the conic, then the areas of the triangles OPQ, OPR, OQR will satisfy an equation independent of the position of the points P, Q, R. If a, b, c are the areas in question, this equation is

$$a^4 + b^4 + c^4 - 2a^2b^2 - 2a^2c^2 - 2b^2c^2 + 16ABa^2b^2c^2 = 0.$$

Now we can prove that such an invariant relation is possible for no plane curves except the central conies; i.e., if we seek a plane curve C and a point O in its plane such that, if P, Q, R are any three points on C, the triangles OQR, OPR, OPQ are connected by a relation independent of the coordinates of the points P, Q, R, we find C to be a central conic section and O its center.

To prove this theorem, let O be the origin of coordinates, and let the coordinates of P, Q, R be respectively x_1, y_1; x_2, y_2; x_3, y_3. Then twice the areas of the three triangles are

$$2a = \pm (y_2x_3 - y_3x_2), \quad 2b = \pm (y_3x_1 - y_1x_3),$$

$$2c = \pm (y_1x_2 - y_2x_1).$$