approximate construction for π.

angles. This approximation is then made closer by using the values of f at points where AB cuts the curve $f(x, y) = \text{const.}$ If the second approximation is not close enough, the process is repeated.

23. Herr Wagenmann correlates successive steps in the theory of evolution with series $-\infty, \cdots, -2, -1, 0, 1, 2, \cdots, \infty$ along three coordinate axes developing successively the ideas of motion, mass, the nebular hypothesis and evolution of living organisms and of civilization. He finds that his method leads to a monistic philosophy—in fact to a pan-monism.

Göttingen,
November, 1906.

A NEW APPROXIMATE CONSTRUCTION FOR π.

By Mr. George Peirce.

Given a circle with radius r and center at O; to find an approximate construction for πr.

Draw the diameter AOB and the tangent BC at right angles to it. Describe the arc ODC with radius r and center at B.

Draw the line AC cutting the arcs ODC and AB at D and J; also draw the line BDE through B and D cutting the given circle at E. Then $AD + 3DE = \pi r$ approximately.
1907]. APPROXIMATE CONSTRUCTION FOR π. 167

Proof:

\[AC = \sqrt{AB^2 + BC^2} = r\sqrt{5} \]

\[AD = \frac{AO \cdot AH}{AC} = \frac{r \cdot 3r}{r\sqrt{5}} = \frac{3}{5}\sqrt{5}r, \]

\[JC = \frac{BC^2}{AC} = \frac{r^2}{r\sqrt{5}} = \frac{1}{5}\sqrt{5}r \]

\[DJ = AC - AD - JC = \frac{1}{5}\sqrt{5}r, \]

\[DE = \frac{AD \cdot DJ}{BD} = \frac{\frac{3}{5}\sqrt{5}r \cdot \frac{1}{5}\sqrt{5}r}{r} = \frac{3}{5}r, \]

\[AD + 3DE = \frac{3}{5}\sqrt{5}r + 3\left(\frac{3}{5}r\right) = 3.141641r. \]

By making use of the fact that in the triangle \(ABE \)

\[AE = \sqrt{(AB^2 - BE^2)} = \sqrt{(2r)^2 - \left(\frac{3}{5}r\right)^2} = \frac{2}{5}r = 2DE, \]

we can obtain a single line of the same length as \(AD + 3DE \).

We can therefore draw the arc \(EG \) with radius \(DE \) and center at \(D \) and the arc \(EF \) with radius \(AE \) and center at \(A \). Then \(AD + 3DE = AD + AE + DE = AD + FA + DJ = FG \).

There are many other approximate constructions for \(\pi r \). A summary of those that have been worked out according to the method of geometrography is given below. \(A, B, C \) and \(D \) are to be found in the BULLETIN for January, 1902, page 137; \(E \) is in Cantor’s Geschichte der Mathematik, volume 3, page 23; \(F \) is the construction given above.

<table>
<thead>
<tr>
<th>Author</th>
<th>Δ</th>
<th>A</th>
<th>S. E. Lines. Circles. S. E. Lines. Circle</th>
</tr>
</thead>
<tbody>
<tr>
<td>A G. Peirce</td>
<td>+.0012</td>
<td>22 14 4 4 17 11 4 2</td>
<td></td>
</tr>
<tr>
<td>B Kühn</td>
<td>+.0047</td>
<td>14 9 2 3 14 9 2 3</td>
<td></td>
</tr>
<tr>
<td>C Lemoine</td>
<td>+.0030</td>
<td>21 13 2 6 20 13 2 5</td>
<td></td>
</tr>
<tr>
<td>D Pleskot</td>
<td>-.00016</td>
<td>24 16 3 5 24 16 3 5</td>
<td></td>
</tr>
<tr>
<td>E Kochansky</td>
<td>-.000060</td>
<td>33 20 6 7 23 13 6 4</td>
<td></td>
</tr>
<tr>
<td>F G. Peirce</td>
<td>+.000048</td>
<td>24 15 4 5 19 12 4 3</td>
<td></td>
</tr>
</tbody>
</table>

\(Δ \) is the difference between the mechanically exact construction and \(πr \). \(S \) stands for simplicity and \(E \) for exactitude.

For the technical meanings of these two words see the article in the BULLETIN for January, 1902. The lower these numbers are, the better the construction.