A THEOREM CONCERNING CONTINUOUS CURVES.

BY PROFESSOR ROBERT L. MOORE.

(Read before the American Mathematical Society, October 28, 1916.)

In this paper I propose to show that every continuous curve has the simple property stated below in Theorem 1. Though my proof is worded for the case of a plane curve, it is clear that with a slight change in phraseology it would apply to a curve in a space of any number of dimensions.

Lemma. If S_1, S_2, S_3, \ldots is a countable sequence of connected,* bounded point sets such that, for every n, S_n contains $S_{n+1},$† then the set of all points that are common to S_1, S_2, S_3, \ldots is closed and connected.

For a proof of this lemma see my paper “On the foundations of plane analysis situs,” Transactions of the American Mathematical Society, volume 17 (1916), page 137. Cf. also S. Janiszewski and E. Mazurkiewicz, Comptes Rendus, volume 151 (1910), pages 199 and 297 respectively.

Theorem 1. Every two points of a continuous curve are the extremities of at least one simple continuous arc that lies entirely on that curve.

Proof. Suppose A and B are two points belonging to the continuous plane curve C. Hahn has shown‡ that the curve C is connected “im kleinen,” i.e., that if P is a point of C, ϵ is a positive number and K is a circle, of radius $1/\epsilon$, with center at P, then there exists, within K and with center at P, another circle $K_{\epsilon P}$ such that if X is a point within $K_{\epsilon P}$, and belonging to C, then X and P lie together in some connected subset of C that lies entirely within K. Let $K_{\epsilon P}$ denote the set of all points $[Y]$ belonging to C such that Y and P lie together in some connected subset of C that lies entirely within K. Clearly $K_{\epsilon P}$ contains $K_{\epsilon P}$.

* A set of points is said to be connected if, however it be divided into two mutually exclusive subsets, one of them contains a limit point of the other one.
† If S is a point set, S' denotes the set of points composed of S together with all its limit points.
and indeed if Z is any point of K_e then there exists about Z a circle such that every point of C within this circle belongs to K_e. Let $e = 1$ and for each point P of C construct the corresponding K_{1P}. Let G_1 denote the set of all such K_{1P}'s. I will proceed to show that there exists a simple chain* from A to B every link of which is a point set of the set G_1. Suppose that no such simple chain exists. Then the points of C fall into two classes, S_A and S_B where S_A is the set of all points $[P]$, belonging to C, such that P can be joined to A by a simple chain every link of which belongs to the set G_1, while S_B is composed of all the remaining points of C. Since C is connected, one of the sets S_A and S_B contains a point X which is a limit point of the other one. There exists a circle k with center at X such that every point of C that lies within k lies also in K_{1X}. But the interior of k contains a point A_1 belonging to S_A and a point B_1 belonging to S_B where A_1 is X or B_1 is X according as X belongs to S_A or to S_B. The point A can be joined to A_1 by a simple chain $R_1R_2R_3 \cdots R_n$ every link of which is a point set of the set G_1. Let R_k be the first link of this chain that has a point in common with K_{1X}. Then $R_1R_2R_3 \cdots R_kK_{1P}$ is a simple chain from A to B_1 every link of which belongs to G_1. Thus the supposition that A can not be joined to B by a simple chain every link of which is a point set belonging to G_1 leads to a contradiction. It follows that A can be joined to B by at least one such chain $R_{11}R_{12} \cdots R_{1m_1}$. Call this chain C_1. For each i $(1 \leq i < m_1)$ select a point P_{1i} common to R_{1i} and R_{1i+1} Let $P_{10} = A$ and $P_{1m_1} = B$. If $0 \leq i < m_1$ then P_{1i} can be joined to P_{1i+1} by a simple chain C_{1i+1} each link of which is a K_{1P} for some point P of C and some $r \geq 2$ and lies with all its limit points entirely in K_{1P}. If any link of the chain C_{11}, except the last one, has a point in common with any link of C_2, then omit from C_{11} every link that follows T_{11}, where T_{11} is the first link of C_{11} that has a point in common with a link of C_{12}; also omit

*A simple chain from A to B is a finite sequence of point sets R_1, R_2, R_3, \cdots, R_n such that (1) R_1 contains A if and only if $i = 1$, (2) R_i contains B if and only if $i = n$, (3) if $1 \leq i \leq n$, $1 \leq j \leq n$, $i < j$, then R_i has a point in common with R_j if and only if $j = i + 1$. The point set R_k $(1 \leq k \leq n)$ is said to be the kth link of the chain $R_1R_2R_3 \cdots R_n$ and the chain $R_1R_2R_3 \cdots R_n$ is said to join A to B. Cf. my paper "On the foundations of plane analysis situs," loc. cit., page 134.
from C_{12} every link (if there be any such) that precedes the last link that has a point in common with T_{11}. These omissions having been made, the remaining links of the chains C_{11} and C_{12} form a simple chain \overline{C}_{12} from A to P_{12}. In a similar manner it may be shown that there exists a simple chain \overline{C}_{13} from A to P_{13} such that each link of \overline{C}_{13} is a link of either \overline{C}_{12} or C_{13}. This process may be continued. It follows that there exists a simple chain C_2 from A to B such that each link of C_2 is a link of some C_{1i} (1 ≤ i ≤ m_1). The chain C_2 has the property that each one of its links lies wholly in some single link of the chain C_1 and if a link x of C_2 lies in a link y of C_1 then every link that follows x in C_2 lies either in y or in some link that follows y in C_1. Similarly there exists a chain C_3 having a relation to C_2 analogous to the above indicated relation of C_2 to C_1 and such that every link of C_3 is a \overline{K}_{rp} for some point P of C and some $r \geq 3$. This process may be continued. Thus there exists an infinite sequence of simple chains C_1, C_2, C_3, · · · such that (1) each link of the chain C_{n+1} lies, together with all its limit points, wholly in some single link of C_n; (2) if a link x of C_{n+1} lies in a link y of C_n then each link that follows x in C_{n+1} lies either in y or in some link that follows y in C_n. Similarly there exists a chain C_3 having a relation to C_2 analogous to the above indicated relation of C_2 to C_1 and such that every link of C_3 is a \overline{K}_{rp} for some point P of C and some $r \geq 3$. This process may be continued. Thus there exists an infinite sequence of simple chains C_1, C_2, C_3, · · · such that (1) each link of the chain C_{n+1} lies, together with all its limit points, wholly in some single link of C_n; (2) if a link x of C_{n+1} lies in a link y of C_n then each link that follows x in C_{n+1} lies either in y or in some link that follows y in C_n. Similarly there exists a chain C_3 having a relation to C_2 analogous to the above indicated relation of C_2 to C_1 and such that every link of C_3 is a \overline{K}_{rp} for some point P of C and some $r \geq 3$.

Let S_n denote the point set which is the sum of all the links of the chain C_n. Let S denote the set of all the points that the sets S_1, S_2, S_3, · · · have in common. It will be shown that S satisfies Lennes’ definition* of a simple continuous arc from A to B.

I. That S is closed and connected follows easily with the help of the lemma on page 233. That it is bounded is evident.

II. To prove that S contains no connected proper subset that contains both A and B, let us first order the points of S. If X_1 and X_2 are two distinct points of S, then there exists n such that if $r \geq n$ and P is a point of S then X_1 and X_2 do not both lie in \overline{K}_{rp}. But every link of C_n is a \overline{K}_{rp} for some point P of C and some $r \geq n$. Hence for every two distinct points X_1 and X_2 be-

CONCERNING CONTINUOUS CURVES. [Feb.,

longing to C there exists n such that X_1 and X_2 do not belong to the same link of C_n. Furthermore, it is clear that if X_1 and X_2 do not lie in the same link of C_n but X_1 lies in a link of C_n that precedes one in which X_2 lies, then, if $m > n$, every link of C_m that contains X_1 precedes every link of C_m that contains X_2. The point X_1 is said to precede the point $X_2 (X_1 < X_2)$ if there exists n such that every link of C_n that contains X_1 precedes every link of C_n that contains X_2. From facts observed above it follows that if X_1 and X_2 are distinct points of C then either $X_1 < X_2$ or $X_2 < X_1$; while if $X_1 < X_2$ then it is not true that $X_2 < X_1$. Furthermore if $X_1 < X_2$ and $X_3 < X_3$ then $X_1 < X_3$. For there exist n_1 and n_2 such that n_1 and n_2 do not lie in the same link of C_{n_1} and X_2 and X_3 do not lie in the same link of C_{n_2}. Hence every link of $C_{n_1 + n_2}$ that contains X_1 precedes every link of $C_{n_1 + n_2}$ that contains X_2 and every link of $C_{n_1 + n_2}$ that contains X_3 precedes every one that contains X_3. Hence every one that contains X_1 precedes every one that contains X_3. Therefore $X_1 < X_3$.

Suppose now that H is a proper subset of S that contains both A and B. Then there exists a point P belonging to S, but different from A and from B, such that H is a subset of $S - P$. Now $S - P = S_A + S_B$ where S_A is the set of all points of S that precede P and S_B is the set of all points of S that follow P. It is clear that S_A contains A and S_B contains B. Suppose that P_A is a point of S_A. Then there exists n such that every link of C_n that contains P_A precedes every one that contains P. Suppose that some link y of the chain C_n contains P_A and also a point P_B of the set S_B. Since y precedes every link of C_n that contains P, it follows that P_B precedes P, which is contrary to hypothesis. Hence no link of C_n that contains P_A contains any point of S. But some link l of C_n does contain P_A. There exists, about P_A, a circle t such that every point of C that lies within t is a point of l. It follows that there is no point of S_B within the circle t. Therefore P_A is not a limit point of S_B. Similarly no point of S_B is a limit point of S_A. But H contains a point A that belongs to S_A and a point B that belongs to S_B. Moreover H is a subset of $S_A + S_B$. It follows that H is not connected.

It follows that S is a simple continuous arc from A to B. But clearly S is a subset of C. The truth of Theorem 1 is therefore established.

The University of Pennsylvania.