THE JACOBIAN
OF A CONTACT TRANSFORMATION*

BY E. F. ALLEN

The equations

(1) \[x_1 = X(x, z, p), \quad z_1 = Z(x, z, p), \quad p_1 = P(x, z, p), \]

where \(X, Z, \) and \(P \) are functions of class \(C'' \), represent a transformation of line-elements in the \(xz \) plane to line-elements in the \(x_1 z_1 \) plane. With Lie we shall define every transformation in \(x, z, p \), which leaves the Pfaff differential equation

(2) \[dz - pdx = 0 \]

invariant, as a contact transformation of the \(xz \) plane to the \(x_1 z_1 \) plane. Hence the equations (1) must satisfy an identity of the form

(3) \[dz_1 - p_1 dx_1 = \phi(dz - pdx), \]

where \(\phi \) is a function of \(x, z, \) and \(p \) alone.

The following relations connecting \(X, Z, P, \) and their partial derivatives are easily obtained:

(4) \[
\begin{align*}
Z_x - PX_x &= -p\phi, \\
Z_z - PX_z &= \phi, \\
Z_p - PX_p &= 0;
\end{align*}
\]

(5) \[
\begin{align*}
[XZ] &= X_p(Z_x + pZ_z) - Z_p(X_x + pX_z) = 0, \\
[PX] &= \phi, \text{ and } [PZ] = \phi P.
\end{align*}
\]

The jacobian of transformation (1) is

(6) \[
J = \begin{vmatrix}
X_x & X_x & X_x \\
Z_x & Z_z & Z_p \\
P_x & P_z & P_p
\end{vmatrix}.
\]

* Presented to the Society, December 1, 1923.
† Lie und Scheffers, *Geometrie der Berührungstransformationen*, p. 68, Chap. 3.
We shall show that this jacobian is equal to q^2. Let us multiply the first row by P and subtract the product from the second row; then

$$
\begin{vmatrix}
X_x & X_z & X_p \\
Z_x - PX_x & Z_z - PX_z & Z_p - PX_p \\
P_x & P_z & P_p
\end{vmatrix}
$$

(7)

Hence, using equations (4), we find

$$
\begin{vmatrix}
X_x & X_z & X_p \\
-pq & q & 0 \\
P_x & P_z & P_p
\end{vmatrix}
$$

(8)

This reduces to

$$
\begin{vmatrix}
X_x + pX_z & X_z & X_p \\
0 & q & 0 \\
P_x + pP_z & P_z & P_p
\end{vmatrix}
$$

(9)

when the second column is multiplied by p and the sum is added to the first column. Evaluating this determinant, we have

$$
J = q[p(X_x + pX_z) - X_p(P_x + pP_z)].
$$

(10)

Therefore, by equation (5), we may write

$$
J = q^2.
$$

(11)

The equations of a contact transformation may be regarded as the equations of a point transformation, which transforms points in xz_p space to points in $x_1z_1p_1$ space. In general a surface in xzp space, represented by the equation $F_1(x, z, p) = 0$, will be transformed into a surface in $x_1z_1p_1$ space, represented by the equation $F_2(x_1, z_1, p_1) = 0$. Or if we regard equations (1) as the equations of a transformation of line-elements, it will transform a differential equation in x, z, p, into one in x_1, z_1, p_1, and also the solutions of the first differential equation into the solutions of the second.

Now if we set q equal to zero,* we will have the equa-

* In some cases there are no values of the variables that will make p equal to zero. The following theory does not apply to such cases.
tion of a surface in xzp space, or we might say that we have a differential equation in xz space. Let us see into what this surface or into what this differential equation is transformed when it is subjected to the transformation (1).

A few examples result in obtaining curves in $x_1z_1p_1$ space or in obtaining differential equations free from p_1. This leads to the following theorem.

Theorem. The surface $Q = 0$ is transformed into a curve in space by the transformation (1).

If the partial derivative of Q with respect to z is not identically equal to zero, the equation $Q = 0$ may be solved for z.\(^*\) Assuming that this is true, when the value thus obtained for z is substituted in $X, Z,$ and P, they become functions of x and p alone. Regarding x and p as parameters, the equations (1) are the parametric equations of a surface. A necessary and sufficient condition\(^\dagger\) that

\[
\begin{align*}
 x_1 &= f(x, y), \quad y_1 = g(x, y), \quad z_1 = h(x, y)
\end{align*}
\]

define a curve in space and not a surface is that

\[
EG - F^2 = A^2 + B^2 + C^2 \equiv 0,
\]

where

\[
A = \frac{\partial(y_1, z_1)}{\partial(x, y)}, \quad B = \frac{\partial(z_1, x_1)}{\partial(x, y)}, \quad C = \frac{\partial(x_1, y_1)}{\partial(x, y)}.
\]

To prove our theorem it is necessary and sufficient to show that the $A, B,$ and C connected with equations (1) are identically equal to zero. That is, it is sufficient to show that all the determinants of the following matrix vanish identically:

\[
\begin{vmatrix}
 X_x + pX_z & X_p + \frac{\partial z}{\partial p}X_z \\
 Z_x + pZ_z & Z_p + \frac{\partial z}{\partial p}Z_z \\
 P_x + pP_z & P_p + \frac{\partial z}{\partial p}P_z
\end{vmatrix}
\]

\(^*\) If $\partial p/\partial z \equiv 0$ we will be able to solve for either x or p if $p \neq \text{const.}$

\(^\dagger\) Eisenhart, *Differential Geometry*, p. 71.
Let us see what the effect will be when the value of \(z \) as obtained from \(q = 0 \) is substituted in equations (1). Suppose that the substitution has been made in \(X \) and \(Z \). It is easy to see that \(X_z \) and \(Z_z \) are equal to zero, and that to differentiate \(X \) completely with respect to \(x \), it is necessary to differentiate with respect to \(x \) and then to use the function of a function rule, thus \(X_x + X_z(\partial z / \partial x) \), and similarly for the other letters. Thus using the fact that \(q = 0 \), we may write the equations (5) in the form

\[
\begin{align*}
\left(\frac{\partial^2 z}{\partial p} X_z \right) (Z_x + p Z_z) - \left(\frac{\partial^2 z}{\partial p} Z_z \right) (X_x + p X_z) &= 0, \\
\left(\frac{\partial^2 z}{\partial p} P_z \right) (X_x + p X_z) - \left(\frac{\partial^2 z}{\partial p} X_z \right) (P_x + p P_z) &= 0, \\
\left(\frac{\partial^2 z}{\partial p} P_z \right) (Z_x + p Z_z) - \left(\frac{\partial^2 z}{\partial p} Z_z \right) (P_x + p P_z) &= 0.
\end{align*}
\]

It is very easy to see that these equations are now the expanded form of the determinants of the matrix (15). Hence the theorem is proved.

The University of Missouri

INTEGRO-DIFFERENTIAL INVARIENTS OF ONE-PARAMETER GROUPS OF FREDHOLM TRANSFORMATIONS

BY A. D. MICHAL

1. *Statement of the Problem.* The author† has already considered functionals of the form \(f[y(x_0), y'(x_0)] \) (depending only on a function \(y(x) \) and its derivative \(y'(x) \) between 0 and 1) which are invariant under an arbitrary Volterra one-parameter group of continuous transformations. The

* Presented to the Society, December 1, 1923.
† Cf. *Integro-differential expressions invariant under Volterra's group of transformations* in a forthcoming issue of the *Annals of Mathematics.* This paper will be referred to as "I.D.I.V."